DE19730003A1 - Use of aluminium-aluminium oxide composite material - Google Patents

Use of aluminium-aluminium oxide composite material

Info

Publication number
DE19730003A1
DE19730003A1 DE19730003A DE19730003A DE19730003A1 DE 19730003 A1 DE19730003 A1 DE 19730003A1 DE 19730003 A DE19730003 A DE 19730003A DE 19730003 A DE19730003 A DE 19730003A DE 19730003 A1 DE19730003 A1 DE 19730003A1
Authority
DE
Germany
Prior art keywords
fuel cells
aluminium
powder
mixture
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19730003A
Other languages
German (de)
Other versions
DE19730003B4 (en
Inventor
Peter Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions Augsburg GmbH
Original Assignee
MTU Friedrichshafen GmbH
MTU Motoren und Turbinen Union Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH, MTU Motoren und Turbinen Union Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Priority to DE19730003A priority Critical patent/DE19730003B4/en
Publication of DE19730003A1 publication Critical patent/DE19730003A1/en
Application granted granted Critical
Publication of DE19730003B4 publication Critical patent/DE19730003B4/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Electrically conductive components for high temperature fuel cells, especially electrodes and bipolar plates for molten carbonate fuel cells, consist of a mixture of (preferably 40-70%) aluminium oxide and (preferably 30-60%) aluminium. Also claimed is production of the above components by (i) dry pressing fine Al2O3 powder in a mould and then saturating with aluminium in an aluminium melt; or (ii) mixing fine Al2O3 powder with fine Al powder, dry pressing the mixture in a mould and then sintering at high temperature. Further claimed is the use of a mixture of Al2O3 and Al for producing current conducting components for high temperature fuel cells.

Description

Hochtemperaturbrennstoffzellen wie Festoxidbrennstoffzellen oder Schmelzkarbonatbrennstoffzellen enthalten bekanntlich elektrisch leitfähige Komponenten, wie insbesondere die beiden Elektroden (Anode und Kathode) oder Bipolarplatten. Bipolarplatten bestehen aus dem Trennblech und den gewellten Stromsammlern, von denen letztere an den Anoden bzw. Kathoden anliegen. An solche elektrisch leitfähigen Komponenten von Hochtemperaturbrennstoffzellen werden hohe Anforderungen gestellt. Sie müssen nämlich eine hinreichende mechanische Festigkeit besitzen, so daß während des Betriebs weder Deformationen noch Risse oder Brüche eintreten. Insbesondere ist natürlich ein Zusammenfallen der porösen Struktur von Anode und Kathode zu vermeiden. Desweiteren wird Korrosionsbeständigkeit gefordert und zwar unter reduzierender Atmosphäre auf der Anodenseite und oxidierender Atmosphäre auf der Kathodenseite. Bei Schmelzkarbonatbrennstoffzellen wird zudem Beständigkeit gegenüber dem aggressiven Elektrolyten verlangt. Um hohe elektrische Wirkungsgrade und eine gute Energiedichte der Zellen zu erreichen, ist im weiteren eine gute elektrische Leitfähigkeit der entsprechenden Bauteile Voraussetzung.High temperature fuel cells such as solid oxide fuel cells or Molten carbonate fuel cells are known to contain electrically conductive components, such as in particular the two electrodes (anode and cathode) or bipolar plates. Bipolar plates consist of the divider and the corrugated current collectors, one of which the latter abut the anodes or cathodes. To such electrically conductive Components of high-temperature fuel cells have high requirements. You must namely have sufficient mechanical strength so that during the No deformations, cracks or breaks occur during operation. In particular is natural to avoid collapse of the porous structure of the anode and cathode. Furthermore, corrosion resistance is required, and that under reducing Atmosphere on the anode side and oxidizing atmosphere on the cathode side. At Molten carbonate fuel cells will also become resistant to the aggressive Electrolytes required. To ensure high electrical efficiency and good energy density Reaching cells is also a good electrical conductivity of the corresponding Components requirement.

Bis heute gibt es keinen Werkstoff, der alle diese Anforderungen in der Summe in befriedigender Weise erfüllt. Es wird versucht, durch die unterschiedlichsten Kombinationen von Werkstoffen, Schutzschichten und Behandlungsmethoden den obigen Anforderungen nachzukommen. Beispielsweise wird bei Schmelzkarbonatbrennstoffzellen die Kathodenseite der Bipolarplatte aus Chromnickelstahl hergestellt. Die Anodenseite der Bipolarplatte besteht aus Nickel, das aus Steifigkeitsgründen auf eine Metallschicht aufgebracht ist. Für die Kathode wird lithiiertes Nickeloxid verwendet. Die Anode besteht aus Nickel mit den Legierungsbestandteilen Chrom oder Aluminium für erhöhte mechanische Festigkeit.To date, there is no material that all of these requirements in total satisfactorily fulfilled. It is tried through the most varied combinations of materials, protective layers and treatment methods meet the above requirements to comply. For example, in molten carbonate fuel cells Cathode side of the bipolar plate made of chromium-nickel steel. The anode side of the Bipolar plate is made of nickel, which for reasons of stiffness on a metal layer  is applied. Lithiated nickel oxide is used for the cathode. The anode is there made of nickel with the alloy components chrome or aluminum for increased Mechanic solidity.

Aus der EP 0 459 351 B1 geht es im weiteren als bekannt hervor, zur Herstellung von Elektroden für Schmelzkarbonatbrennstoffzellen Nickelpulver und Oxide wie z. B. Al2O3 in Pulverform miteinander zu vermischen und unter Zugabe von organischen Lösungsmitteln und einem Binder eine breiige Paste herzustellen, die zu Folien gegossen wird. Durch Sintern der Folie wird eine poröse Elektrode erhalten. Aufgrund der Dichtigkeitsunterschiede zwischen Nickel- und Oxidpulver neigen die Oxide jedoch offensichtlich dazu, sich beim Gießen der Folie in einer oberen Schicht anzusammeln, was zu unerwünschten Inhomogenitäten führt.From EP 0 459 351 B1 it is furthermore known that, for the production of electrodes for molten carbonate fuel cells, nickel powder and oxides such as e.g. B. Al 2 O 3 in powder form to mix with each other and with the addition of organic solvents and a binder to make a pasty paste, which is cast into films. A porous electrode is obtained by sintering the film. However, due to the differences in density between nickel and oxide powders, the oxides obviously tend to accumulate in an upper layer when the film is cast, which leads to undesirable inhomogeneities.

In der Zeitschrift TR Transfer Nr. 26, 1996, Seiten 44 und 45 ist ein neuer Al2O3/Al- Verbundwerkstoff beschrieben, der bei Raumtemperatur über eine gute elektrische und thermische Leitfähigkeit verfügt, mit Stahl vergleichbare Festigkeitseigenschaften besitzt und in der Fertigung zu geringen Verzügen neigt. Über die Anwendungsmöglichkeiten des Werkstoffs finden sich jedoch keine Hinweise.In the magazine TR Transfer No. 26, 1996, pages 44 and 45, a new Al 2 O 3 / Al composite material is described, which has good electrical and thermal conductivity at room temperature, has comparable strength properties to steel and also in manufacturing slight delays. However, there is no information about the possible uses of the material.

Obwohl eine Vielzahl von Werkstoffen und Werkstoffkombinationen zur Darstellung von Brennstoffzellen und deren Komponenten betrachtet worden sind, so ist es dennoch bis heute nicht gelungen, insbesondere Schmelzkarbonatbrennstoffzellen mit ausreichender Korrosionsbeständigkeit und damit entsprechender Lebensdauer, guter innerer Leitfähigkeit und geringen ohmschen Verlusten zu niedrigen Kosten herzustellen.Although a large number of materials and material combinations to represent Fuel cells and their components have been considered, so it is still up failed today, especially molten carbonate fuel cells with sufficient Corrosion resistance and therefore a corresponding service life, good internal conductivity and produce low ohmic losses at low cost.

Der Erfindung liegt das Problem zugrunde, elektrisch leitfähige Bauteile für Hochtemperaturbrennstoffzellen, ein Verfahren zur Herstellung der Bauteile und die Verwendung eines Werkstoffs anzugeben, die den Brennstoffzellen eine hohe Lebensdauer und hohe Leistung bei niedrigen Herstellkosten verleihen.The invention is based on the problem of electrically conductive components for High temperature fuel cells, a process for manufacturing the components and the Use of a material to indicate that the fuel cells have a long service life and give high performance at low manufacturing costs.

Dieses Problem wird durch die im Patentanspruch 1 bzw. 3 bzw. 5 aufgeführten Merkmale gelöst. Danach besteht der Werkstoff für die elektrisch leitfähigen Komponenten der Hochtemperaturbrennstoffzelle aus einem Metall-Keramik-Verbundwerkstoff, der ein Metall, nämlich Aluminium und ein Metalloxid, nämlich Al2O3 enthält. Der Werkstoff besitzt ein feines, homogenes und mechanisch stabiles Gefüge, in dem die Ausgangswerkstoffe vermengt sind. Al2O3 entsteht bei hohen Temperaturen, wie beispielsweise in der oben zitierten Zeitschrift dargestellt. Vorzugsweise besteht der für Brennstoffzellen verwendete Werkstoff zu 2/3 aus Aluminiumoxid und zu 1/3 aus Aluminiummetall. Sowohl die keramische als auch die metallische Phase haben eine durchgehende dreidimensionale Struktur. Der Werkstoff besitzt, im Gegensatz zu rein keramischen Werkstoffen, eine bei Raumtemperatur gute elektrische und thermische Leitfähigkeit, sowie eine so sehr hohe Festigkeit und deutlich bessere Duktilität als rein keramische Werkstoffe. Aufgrund der Einbettung des Aluminiums in die Keramikmatrix erhält der Verbundwerkstoff seine Formstabilität auch bei Temperaturen, die weit oberhalb des Schmelzpunktes von Aluminium liegen. Außerdem bleibt das Aluminium, wie in Untersuchungen jetzt nachgewiesen werden konnte, auch bei hohen Temperaturen in oxidierender Atmosphäre in metallischem Zustand, so daß auch die elektrische Leitfähigkeit bei diesen hohen Temperaturen erhalten bleibt. So lassen sich die Anforderungen, die an elektrisch leitfähige Komponenten von Hochtemperaturbrennstoffzellen gestellt werden, mit diesem Material erfüllen.This problem is solved by the features listed in claim 1 or 3 or 5. The material for the electrically conductive components of the high-temperature fuel cell then consists of a metal-ceramic composite material which contains a metal, namely aluminum and a metal oxide, namely Al 2 O 3 . The material has a fine, homogeneous and mechanically stable structure, in which the starting materials are mixed. Al 2 O 3 is formed at high temperatures, as shown, for example, in the magazine cited above. The material used for fuel cells is preferably 2/3 aluminum oxide and 1/3 aluminum metal. Both the ceramic and the metallic phase have a continuous three-dimensional structure. In contrast to purely ceramic materials, the material has good electrical and thermal conductivity at room temperature, as well as very high strength and significantly better ductility than purely ceramic materials. Due to the embedding of aluminum in the ceramic matrix, the composite material maintains its shape stability even at temperatures that are well above the melting point of aluminum. In addition, as has now been demonstrated in studies, the aluminum remains in a metallic state even at high temperatures in an oxidizing atmosphere, so that the electrical conductivity is also maintained at these high temperatures. This means that the requirements placed on electrically conductive components of high-temperature fuel cells can be met with this material.

Als Herstellverfahren für die elektrisch leitfähigen Komponenten kommen bevorzugt pulvermetallurgische Prozesse in Frage. Hierbei wird beispielsweise feinkörniges Aluminiumoxidpulver unter hohen Drücken in die gewünschte Form verpreßt und das Pressteil anschließend in einer Aluminiumschmelze mit Aluminium gesättigt. Aluminiumoxidpulver und Aluminiumpulver können auch miteinander vermischt sein, wenn sie zur endgültigen Raumform verpreßt werden. Das entstandene Preßteil wird dann bei hohen Temperaturen gesintert. Zur Herstellung von porösen Elektroden sind Porenbildner beigesetzt, die sich beim Sintern verflüchtigen. Wenn eine Elektrode nach dem Foliengießverfahren hergestellt werden soll, so sind die entsprechenden Pulver aus Aluminium und Aluminiumoxid mit einem Lösungsmittel und einem Binder zu versetzen, die eine breiförmige Masse ergeben, die zu Folien gegossen werden kann. Nach dem Trocknen und Sintern entstehen poröse Elektroden aus dem erfindungsgemäßen Verbundwerkstoff.Preferred manufacturing processes for the electrically conductive components are powder metallurgical processes in question. Here, for example, becomes fine-grained Alumina powder pressed under high pressure into the desired shape and that The pressed part is then saturated with aluminum in an aluminum melt. Aluminum oxide powder and aluminum powder can also be mixed together if they are pressed into the final spatial shape. The pressed part is then at sintered at high temperatures. Pore formers are used to produce porous electrodes buried, which evaporate during sintering. If an electrode after Foil casting process is to be produced, the corresponding powders are made To add a solvent and a binder to aluminum and aluminum oxide, which result in a pasty mass that can be cast into films. After this Drying and sintering result in porous electrodes from the invention Composite.

Claims (5)

1. Elektrisch leitfähiges Bauteil für Hochtemperaturbrennstoffzellen, insbesondere Elektroden und Bipolarplatten für Schmelzkarbonatbrennstoffzellen, aus einem Werkstoffe der Aluminiumoxid und ein Metall enthält, dadurch gekennzeichnet, daß der Werkstoff aus einem Gemisch aus Aluminiumoxid und metallischem Aluminium besteht.1. Electrically conductive component for high-temperature fuel cells, in particular electrodes and bipolar plates for molten carbonate fuel cells, made of a material that contains aluminum oxide and a metal, characterized in that the material consists of a mixture of aluminum oxide and metallic aluminum. 2. Bauteil nach Anspruch 1, dadurch gekennzeichnet, daß der Werkstoff zwischen 40 und 70% Al2O3 und zwischen 30 und 60% Al enthält.2. Component according to claim 1, characterized in that the material contains between 40 and 70% Al 2 O 3 and between 30 and 60% Al. 3. Verfahren zur Herstellung eines Bauteils nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß feinkörniges Al2O3-Pulver trocken in Form verpreßt wird, und daß das solchermaßen hergestellte Formteil in einer Aluminiumschmelze mit Aluminium gesättigt wird.3. A method for producing a component according to claim 1 or 2, characterized in that fine-grained Al 2 O 3 powder is pressed dry into shape, and that the molding thus produced is saturated with aluminum in an aluminum melt. 4. Verfahren zur Herstellung eines Bauteils nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß feinkörniges Al2O3-Pulver mit feinkörnigem Al-Pulver vermischt wird, daß die Mischung trocken in Form verpreßt wird, und daß das solchermaßen hergestellte Formteil bei hohen Temperaturen gesintert wird.4. A method for producing a component according to claim 1 or 2, characterized in that fine-grained Al 2 O 3 powder is mixed with fine-grained Al powder, that the mixture is pressed dry into shape, and that the molding thus produced at high temperatures is sintered. 5. Verwendung eines Werkstoffs aus einem Gemisch aus Al2O3 und Al zur Herstellung stromführender Bauteile für Hochtemperaturbrennstoffzellen.5. Use of a material made from a mixture of Al 2 O 3 and Al for the production of current-carrying components for high-temperature fuel cells.
DE19730003A 1997-07-12 1997-07-12 An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component Expired - Fee Related DE19730003B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19730003A DE19730003B4 (en) 1997-07-12 1997-07-12 An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19730003A DE19730003B4 (en) 1997-07-12 1997-07-12 An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component

Publications (2)

Publication Number Publication Date
DE19730003A1 true DE19730003A1 (en) 1999-01-14
DE19730003B4 DE19730003B4 (en) 2007-06-21

Family

ID=7835572

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19730003A Expired - Fee Related DE19730003B4 (en) 1997-07-12 1997-07-12 An electrically conductive high temperature fuel cell component and use of a metal-ceramic composite material to manufacture a high temperature fuel cell component

Country Status (1)

Country Link
DE (1) DE19730003B4 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134129A1 (en) * 2001-07-13 2003-02-13 Siemens Ag Coating used for a gas diffusion electrode, especially for an anode or cathode of a high temperature fuel cell, has a porosity which maintains its value after applying an electrolyte and subsequently sintering
DE10156033A1 (en) * 2001-11-15 2003-06-12 Mtu Friedrichshafen Gmbh Fuel cell arrangement suitable for molten carbonate cells, has porous anode and cathode current collectors containing alkali-interceptor
WO2005029618A2 (en) * 2003-09-17 2005-03-31 Tiax Llc Electrochemical devices and components thereof
WO2011154186A1 (en) * 2010-06-08 2011-12-15 Robert Bosch Gmbh Apparatus for making contact with a current source and current source with a metal-infiltrated ceramic
CN106636712A (en) * 2016-12-26 2017-05-10 河南和成无机新材料股份有限公司 Metal plasticity-combined microcrystalline alumina ceramic and preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600481A (en) * 1982-12-30 1986-07-15 Eltech Systems Corporation Aluminum production cell components
DD300725A5 (en) * 1990-07-19 1992-07-09 Vaw Ver Aluminium Werke Ag CERAMIC-METAL COMPOSITES
DK0840388T3 (en) * 1996-10-30 2005-09-19 Sulzer Hexis Ag Battery with planar high temperature fuel cells

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134129A1 (en) * 2001-07-13 2003-02-13 Siemens Ag Coating used for a gas diffusion electrode, especially for an anode or cathode of a high temperature fuel cell, has a porosity which maintains its value after applying an electrolyte and subsequently sintering
DE10156033A1 (en) * 2001-11-15 2003-06-12 Mtu Friedrichshafen Gmbh Fuel cell arrangement suitable for molten carbonate cells, has porous anode and cathode current collectors containing alkali-interceptor
DE10156033C2 (en) * 2001-11-15 2003-10-30 Mtu Cfc Solutions Gmbh Current collector and use of a current collector in a molten carbonate fuel cell
WO2005029618A2 (en) * 2003-09-17 2005-03-31 Tiax Llc Electrochemical devices and components thereof
WO2005029618A3 (en) * 2003-09-17 2005-10-27 Tiax Llc Electrochemical devices and components thereof
WO2011154186A1 (en) * 2010-06-08 2011-12-15 Robert Bosch Gmbh Apparatus for making contact with a current source and current source with a metal-infiltrated ceramic
US9099798B2 (en) 2010-06-08 2015-08-04 Robert Bosch Gmbh Current-source contacting device and current source having metal-infiltrated ceramic
CN106636712A (en) * 2016-12-26 2017-05-10 河南和成无机新材料股份有限公司 Metal plasticity-combined microcrystalline alumina ceramic and preparation method and application thereof
CN106636712B (en) * 2016-12-26 2018-08-31 河南和成无机新材料股份有限公司 A kind of plastic deformation is combined Fine Grain Alumina Ceramics and the preparation method and application thereof

Also Published As

Publication number Publication date
DE19730003B4 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
DE19710345C1 (en) Material for electrical contact layers between an electrode of a high-temperature fuel cell and a connecting element
DE69733584T2 (en) Sintered multilayer body for electrochemical cell, electrochemical cell therewith and method of their manufacture
DE3922673A1 (en) Stacked high temp. fuel cell - with multilayer electrodes for smooth thermal expansion coefft. transition
DE19949431A1 (en) Solid oxide fuel cell of cylindrical or flat layered structure has solid electrolyte and air electrode layers or an interlayer of continuously varying perovskite composition
DE2753198A1 (en) MAGNETOHYDRODYNAMIC ELECTRODE
DE3718921C2 (en) Process for producing a cathode, a cathode obtainable by this process and use of the cathode in an electrochemical cell
DE10324396A1 (en) Fuel cell e.g. solid oxide fuel cell, has support substrate which is made of iron and/or iron group metal oxides along with rare earth oxides
EP0682816B1 (en) Process for producing the cathode layer of molten carbonate fuel cells
EP2335312B1 (en) Method for producing an interconnector for high temperature fuel cells, associated high temperature fuel cell and thus built fuel cell assembly
AT8975U1 (en) POROUS BODY
DE2716370A1 (en) ELECTRODE COMPOSITION
DE19730003A1 (en) Use of aluminium-aluminium oxide composite material
EP1027743A2 (en) Method for the production of high temperature fuel cells
DE1671721A1 (en) Oxygen electrode for galvanic cells, especially as cathodes in fuel cells
DE2710697A1 (en) METHOD OF MANUFACTURING AN ELECTROCHEMICAL CELL
DE3543586A1 (en) CONTACT MATERIAL FOR VACUUM SWITCHES
DE4030945A1 (en) Molten carbonate fuel cell - has lithium aluminate-lithium zirconate matrix to stabilise inside dia. by inhibiting recrystallisation
DE4307727C3 (en) Electrolytic film for planar high-temperature fuel cells and process for their production
DE19749004C2 (en) Manufacturing process for an electrically conductive connection between a ceramic and a metallic component
DE4030944A1 (en) Molten carbonate fuel cell - has sintered cathode of lithium ferrite and opt. lithiated nickel oxide with high conductivity and catalytic activity
DE1496180A1 (en) Process for the production of the electrolyte body for fuel cells
DE19620504C2 (en) Electrode for a molten carbonate fuel cell and method for producing such and their use
EP0897196B1 (en) Method of manufacturing an insulating component for a high-temperature fuel-cell and high-temperature fuel-cell
DE4030943A1 (en) Molten carbonate fuel cell - has sintered porous nickel-nickel oxide anode with lithium titanate on inside and outside to stabilise inside dia.
DE102006056456A1 (en) Iron alloy used for making metal connecting pieces in solid oxide fuel cells contains chromium and rare earth metal and/or yttrium

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, D

8127 New person/name/address of the applicant

Owner name: MTU CFC SOLUTIONS GMBH, 88045 FRIEDRICHSHAFEN, DE

8110 Request for examination paragraph 44
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: CFC SOLUTIONS GMBH, 88045 FRIEDRICHSHAFEN, DE

8327 Change in the person/name/address of the patent owner

Owner name: MTU ONSITE ENERGY GMBH, 88045 FRIEDRICHSHAFEN, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140201