DE19650181A1 - Protective layer exhibiting irreversible structural compaction on heating - Google Patents

Protective layer exhibiting irreversible structural compaction on heating

Info

Publication number
DE19650181A1
DE19650181A1 DE19650181A DE19650181A DE19650181A1 DE 19650181 A1 DE19650181 A1 DE 19650181A1 DE 19650181 A DE19650181 A DE 19650181A DE 19650181 A DE19650181 A DE 19650181A DE 19650181 A1 DE19650181 A1 DE 19650181A1
Authority
DE
Germany
Prior art keywords
protective layer
layer
deposition
heating
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19650181A
Other languages
German (de)
Inventor
Bernd Dr Rother
Herbert Dipl Ing Kappel
Herbert Dr Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE19650181A priority Critical patent/DE19650181A1/en
Publication of DE19650181A1 publication Critical patent/DE19650181A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5068Titanium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Abstract

A thermally compressible protective layer, consisting of nitrides, carbides and/or oxides of one or more of group IVb to VIb metals, Al and Si and having a grain structure which is irreversible compacted on heating, additionally contains 0.05-10 at.% B. Also claimed is a process for depositing the above protective layer, in which deposition is effected from the vapour phase at below 200 deg C.

Description

Die Erfindung bezieht sich auf Schutzschichten von bis zu wenigen Mikrometern Dicke, welche auf metallischen oder auch auf keramischen Unterlagen mit dem Ziel abgeschieden wurden, die thermische Stabilität der beschichteten Komponentenoberfläche zu erhöhen. Wesentliche Bestandteile der thermischen Stabilität sind dabei die Beständigkeit gegen Diffusions- und Oxidationserscheinungen bei erhöhten Temperaturen, wie sie beispielsweise bei der Anwendung auf thermisch belasteten Komponenten von Verbrennungsmotoren, oder auch an Komponenten der Mikroelektronik auftreten. Die Abscheidung der Schichten erfolgt in der Regel mittels physikalischer und/oder chemischer Abscheidung aus der Dampfphase bei Temperaturen oberhalb 200°C.The invention relates to protective layers of up to a few micrometers in thickness, which were deposited on metallic or also on ceramic substrates with the aim of increase thermal stability of the coated component surface. Essentials Components of the thermal stability are the resistance to diffusion and Oxidation phenomena at elevated temperatures, such as during use on thermally loaded components of internal combustion engines, or also on components of the Microelectronics occur. The layers are usually deposited by means of physical and / or chemical deposition from the vapor phase at temperatures above 200 ° C.

Eine strukturelle Voraussetzung für die erwähnte Diffusions- und Oxidationsbeständigkeit des Schichtmaterials ist eine dichte Kornstruktur über einen möglichst weiten Dickenbereich der Schicht. Dies wird gegenwärtig mittels der im folgenden näher bezeichneten Grundprinzipien realisiert:A structural requirement for the diffusion and oxidation resistance of the Layer material is a dense grain structure over the widest possible range of thicknesses Layer. This is currently achieved by means of the basic principles described in more detail below realized:

1. Abscheidung bei erhöhten Temperaturen und/oder mit erhöhtem Energieeintrag1. Deposition at elevated temperatures and / or with increased energy input

Die hierbei vorgeschlagenen Möglichkeiten zur Abscheidung von Schichten mit einer dichten Kornstruktur beruhen auf den durch Thornton (Ann. Rev. Mat. Sci. 7 (1977) 239) und durch Messier (J. Vac. Sci. Technol. A2 (1984) 500) begründeten Zonenmodellen. Danach wird die Kornstruktur des Schichtmaterials bei der physikalische Abscheidungen aus der Dampfphase durch das Verhältnis aus Substrattemperatur zu Schmelztemperatur des Schichtmaterials sowie durch den Gasdruck und durch die Energie der schichtbildenden und schichtmodifizierenden Teilchen bestimmt. In Übereinstimmung mit diesen Modellen wurden beispielsweise für die ionengestütze Abscheidung von TiN von Kopacz und Jehn (Thin Solid Films 126 (1985) 265) sehr dichte und stabile kolumnare Kornstrukturen bei Abscheidetemperaturen oberhalb 400°C erzielt.The possibilities proposed here for the deposition of layers with a dense Grain structure are based on that by Thornton (Ann. Rev. Mat. Sci. 7 (1977) 239) and by Messier (J. Vac. Sci. Technol. A2 (1984) 500) justified zone models. After that the Grain structure of the layer material during the physical deposition from the vapor phase by the ratio of the substrate temperature to the melting temperature of the layer material and through the gas pressure and through the energy of the layer-forming and layer-modifying Particle determined. In accordance with these models, for example, for Ion-assisted deposition of TiN by Kopacz and Jehn (Thin Solid Films 126 (1985) 265) very much dense and stable columnar grain structures achieved at deposition temperatures above 400 ° C.

Abscheidungen von TiN bei geringeren Substrattemperaturen erfordern Kompromisse zwischen dem zusätzlichen Energieeintrag und der noch tolerierbaren Kornvergrößerung. Analoge Aussagen gelten für andere Schutzschichtmaterialien. Deposition of TiN at lower substrate temperatures require compromises between the additional energy input and the still tolerable grain enlargement. Analog statements apply to other protective layer materials.  

2. Abscheidung von Mehrlagen- und Dispersionsschichten2. Deposition of multilayer and dispersion layers

Das unter 1. erwähnte Stengelwachstum der Schichten wird bei den hier zu nennenden Lösungs­ vorschlagen im Verlaufe des Schichtwachstums immer wieder unterbrochen, so daß auch bei geringeren Substrattemperaturen und/oder Teilchenenergien relativ dichte und stabile Korn­ strukturen erreicht werden. Technologisch geeignete Varianten umfassen unter anderem die von Donohue u. a. vorgeschlagenen Mehrlagenschichten aus (Ti,Al)N und ZrN mit Lagendicken im Bereich von nur wenigen Nanometern (Surf. Coat. Technol. 76/77 (1995) 149) sowie die von Vepreck u. a. beschriebenen nanokristallinen zweiphasigen Dispersionsschichten aus TiN und Si3N4 (Appl. Phys. Lett. 66 (1995) 2640).The stalk growth of the layers mentioned under 1 is proposed in the solution to be mentioned here in the course of the layer growth repeatedly interrupted, so that relatively dense and stable grain structures can be achieved even at lower substrate temperatures and / or particle energies. Technologically suitable variants include, among others, the multi-layer layers of (Ti, Al) N and ZrN proposed by Donohue with layer thicknesses in the range of only a few nanometers (Surf. Coat. Technol. 76/77 (1995) 149) and those described by Vepreck and others nanocrystalline two-phase dispersion layers made of TiN and Si 3 N 4 (Appl. Phys. Lett. 66 (1995) 2640).

Beide Prinzipien erfordern für die Realisierung der entsprechenden Schichtstrukturen einen gegenüber der Abscheidung einphasiger Schutzschichtmaterialien erhöhten technologischen Aufwand.Both principles require one for the implementation of the corresponding layer structures compared to the deposition of single-phase protective layer materials increased technological Expenditure.

3. Ausbildung einer dichten Oxidschicht nach der eigentlichen Schichtabscheidung3. Formation of a dense oxide layer after the actual layer deposition

Die effektive Wirkungsweise dieses Lösungsprinzips ist an bestimmte Materialien sowie an eine bereits vorhandene dichte und stabile Kornstruktur des Schichtmaterials gebunden. Im Schichtmaterial muß dabei ein Element enthalten sein, welches eine dichte und stabile Oxidschicht ausbilden kann. Als bevorzugtes Element gilt in diesem Zusammenhang das Aluminium. Ein typisches Beispiel für die Umsetzung dieser Effekte ist das Schichtmaterial (Ti0,5Al0,5)N, dessen Diffusions- und Oxidationsbeständigkeit erheblich durch die Ausbildung einer dichten Oxidschicht aus Al2O3 gesteigert werden kann (siehe z. B. H. Jehn u. a.: Thin Solid Films, 153 (1987) 45).The effective mode of operation of this solution principle is linked to certain materials and to an existing dense and stable grain structure of the layer material. An element must be contained in the layer material, which can form a dense and stable oxide layer. In this context, aluminum is the preferred element. A typical example for the implementation of these effects is the layer material (Ti 0.5 Al 0.5 ) N, the diffusion and oxidation resistance of which can be increased considerably by the formation of a dense oxide layer made of Al 2 O 3 (see, for example, BH Jehn et al : Thin Solid Films, 153 (1987) 45).

Wie bereits erwähnt ist die Wirkungsweise dieses Effektes an bestimmte Materialien sowie an eine bereits vorhandene dichte Kornstruktur gekoppelt. Beschränkend wirkt außerdem, daß die für die Hartstoffbeschichtung dominierende kathodische Lichtbogenabscheidung auf dem aluminiumhaltigen Ausgangsmaterial zu einer verstärkten Tröpfchenbildung führt.As already mentioned, the effect of this effect is on certain materials as well an already existing dense grain structure coupled. Another limitation is that the for the cathode arc deposition dominating the hard material coating on the aluminum-containing starting material leads to increased droplet formation.

Der Erfindung liegt die Aufgabe zugrunde, ein technologisch einfach zu beherrschendes Schutzschichtmaterial bereitzustellen, welches bei niedrigen Substrattemperaturen auf Metallen und auf Keramiken abgeschieden werden kann und welches bei einer thermischen Belastung eine stabile dichtere und damit diffusions- und oxidationsbeständigere Kornstruktur als bei der Abscheidung ausbildet. The invention has for its object a technologically easy to master Provide protective layer material, which at low substrate temperatures on metals and can be deposited on ceramics and which is a thermal load stable denser and therefore more diffusion and oxidation resistant grain structure than the Deposition trains.  

Diese Aufgabe wird mit der Erfindung derartig gelöst, daß dem als Nitrid, Karbid und/oder Oxid wenigstens eines der Metalle der vierten bis sechsten Nebengruppe des Periodensystems der Elemente sowie des Aluminiums und des Siliziums vorliegendem Schichtmaterial ein Anteil von 0,05 bis 10 At.% Bor beigemischt wird. Das nach der Abscheidung über die einzelnen Körner der Schichtstruktur im wesentlichen gleichverteilte Bor diffundiert bei einer nachträglichen thermischen Belastung des Schichtmaterials an die Korngrenzen und führt somit zu einer irreversiblen Verdichtung derselben. Infolge dieses Korngrenzenverschlusses werden Diffusions­ erscheinungen entlang der Korngrenzen und damit auch Oxidationseffekte des Schichtmaterials nach einer einmaligen Temperaturbelastung stark reduziert.This object is achieved with the invention in such a way that as nitride, carbide and / or oxide at least one of the metals of the fourth to sixth subgroup of the periodic table of the Elements and the aluminum and silicon layer material present a share of 0.05 to 10 at.% Boron is added. That after the separation over the individual grains of the Layer structure of essentially uniformly distributed boron diffuses with a subsequent one thermal stress on the layer material to the grain boundaries and thus leads to a irreversible compression of the same. As a result of this grain boundary closure, diffusions become phenomena along the grain boundaries and thus also oxidation effects of the layer material greatly reduced after a single temperature exposure.

Neben den Vorteilen für das Leistungsvermögen des Schichtmaterials infolge des Korngrenzen­ verschlusses kann der gleiche Effekt auch für eine vereinfachte Prozeßführung bei der Schicht­ abscheidung ausgenutzt werden. Die infolge technologischer oder anwendungsspezifischer thermischer Belastungen verdichtenden Kornstrukturen können bei wesentlich geringeren Substrattemperaturen als die borfreien Referenzmaterialien abgeschieden werden. Als technologische Effekte einer Temperaturabsenkung wirken dann reduzierte Heiz- und Abkühlzeiten sowie reduzierter Energieeinsatz.In addition to the advantages for the performance of the layer material due to the grain boundaries closure can have the same effect for a simplified process control in the layer deposition can be exploited. The result of technological or application-specific Grain structures that compress thermal stresses can be much smaller Substrate temperatures are deposited as the boron-free reference materials. As Technological effects of lowering the temperature then have reduced heating and Cooling down times and reduced energy consumption.

Ein Ausführungsbeispiel soll die erfindungsgemäße thermisch verdichtende Schutzschicht und die damit erzielten Effekte im folgenden näher erläutern.One exemplary embodiment is the thermally compacting protective layer according to the invention and the explain the effects achieved in the following.

Mittels kathodischer Lichtbogenbeschichtung wurden 1 At.% Bor enthaltende TiN-Schichten sowie Referenzschichten aus reinem TiN auf poliertem Hartmetall abgeschieden. Die Substrattemperatur betrug dabei ca. 100°C. Im Ergebnis der Beschichtung bildeten sich in den ca. 3 µm dicken Schichten beiden Typs stengelige Kornstrukturen mit Stengeldurchmessern von einigen 10 bis ca. 100 nm aus, was mittels Bruchflächenpräparation nachgewiesen wurde. Nach einstündigem Glühen der Proben unter Atmosphärenbedingungen bei 700°C wurden wiederum Bruchflächenuntersuchungen durchgeführt. Dabei konnte an den Bruchflächen der Bor enthaltenden und chemisch nicht veränderten Schichten keine Kornstruktur mehr nachgewiesen werden. Der darunter liegende Substratbereich war vollständig gegen Oxidation geschützt worden. Unter gleichen Bedingungen getemperte reine TiN-Schichten waren dagegen vollständig durchoxidiert. Gleichzeitig wurde das darunter liegende Substratmaterial bis in eine Tiefe von 80 µm durchoxidiert.TiN layers containing 1 at.% Boron were formed by means of cathodic arc coating and reference layers made of pure TiN are deposited on polished hard metal. The The substrate temperature was approximately 100 ° C. As a result of the coating, approx. 3 µm thick layers of both types of stalked grain structures with stalk diameters of some 10 to about 100 nm, which has been demonstrated by fracture surface preparation. After The samples were once again annealed under atmospheric conditions at 700 ° C Fracture surface examinations carried out. The boron containing and chemically unchanged layers no longer detected grain structure will. The underlying substrate area was completely protected against oxidation. Pure TiN layers tempered under the same conditions, however, were complete  thoroughly oxidized. At the same time, the underlying substrate material was deeper than 80 µm thoroughly oxidized.

Claims (5)

1. Thermisch verdichtende Schutzschicht, bestehend aus Nitriden, Karbiden und/oder Oxiden wenigstens eines der Metalle der vierten bis sechsten Nebengruppe des Periodensystems der Elemente sowie des Aluminiums und des Siliziums mit einer jeweiligen Kornstruktur des Schichtmaterials, welche sich bei thermischer Belastung irreversibel verdichtet, dadurch gekennzeichnet, daß das Schichtmaterial 0,05 bis 10 At.% Bor enthält.1.Thermally compacting protective layer consisting of nitrides, carbides and / or oxides of at least one of the metals of the fourth to sixth subgroup of the periodic table of the elements and of aluminum and silicon with a respective grain structure of the layer material, which compresses irreversibly under thermal stress, thereby characterized in that the layer material contains 0.05 to 10 at.% Boron. 2. Thermisch verdichtende Schutzschicht nach Anspruch 1, dadurch gekennzeichnet, daß das Schichtmaterial Bestandteil eines Mehrlagenschichtsystems ist.2. Thermally compacting protective layer according to claim 1, characterized in that the Layer material is part of a multi-layer system. 3. Thermisch verdichtende Schutzschicht nach Anspruch 1, dadurch gekennzeichnet, daß der Borgehalt über der Schichtdicke gradientenbehaftet ist.3. Thermally compacting protective layer according to claim 1, characterized in that the Boron content above the layer thickness is gradient. 4. Verfahren zur Abscheidung der thermisch verdichtenden Schutzschicht nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Abscheidung aus der Dampfphase bei Temperaturen unter 200°C erfolgt.4. Process for the deposition of the thermally compacting protective layer according to the claims 1 to 3, characterized in that the deposition from the vapor phase at temperatures below 200 ° C. 5. Verfahren zur Abscheidung der thermisch verdichtenden Schutzschicht nach den Ansprüchen 1, 2 und 4, dadurch gekennzeichnet, daß das Ausgangsmaterial wenigstens einer der metallischen Schichtkomponenten als Festkörper vorliegt und daß das Bor als legierter Bestandteil darin enthalten ist.5. Process for the deposition of the thermally compacting protective layer according to the claims 1, 2 and 4, characterized in that the starting material at least one of the metallic layer components as a solid and that the boron as an alloy Part of it is included.
DE19650181A 1996-12-04 1996-12-04 Protective layer exhibiting irreversible structural compaction on heating Ceased DE19650181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19650181A DE19650181A1 (en) 1996-12-04 1996-12-04 Protective layer exhibiting irreversible structural compaction on heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19650181A DE19650181A1 (en) 1996-12-04 1996-12-04 Protective layer exhibiting irreversible structural compaction on heating

Publications (1)

Publication Number Publication Date
DE19650181A1 true DE19650181A1 (en) 1998-06-10

Family

ID=7813548

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19650181A Ceased DE19650181A1 (en) 1996-12-04 1996-12-04 Protective layer exhibiting irreversible structural compaction on heating

Country Status (1)

Country Link
DE (1) DE19650181A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD296110A5 (en) * 1990-06-28 1991-11-21 Technische Universitaet Chemnitz,De METHOD FOR PRODUCING HARD MATERIAL LAYERS BY VACUUM BOW EVAPORATION
DE4408250A1 (en) * 1993-07-12 1995-01-19 Oriental Engineering Co Process for coating the surface of a substrate and coating material
EP0695731A1 (en) * 1994-08-01 1996-02-07 Sumitomo Electric Industries, Limited Super hard composite material for tools
US5525420A (en) * 1993-03-16 1996-06-11 Balzers Aktiengesellschaft Method for increasing the service life of tools and a wear protection-coated tool
EP0605273B1 (en) * 1992-12-23 1996-06-19 SOCIETE NOUVELLE DE METALLISATION INDUSTRIES (Société Anonyme) Thermal barriers, materials and process for their preparation
EP0730044A2 (en) * 1995-03-01 1996-09-04 Sumitomo Electric Industries, Inc. Boron-aluminum nitride coating and method of producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD296110A5 (en) * 1990-06-28 1991-11-21 Technische Universitaet Chemnitz,De METHOD FOR PRODUCING HARD MATERIAL LAYERS BY VACUUM BOW EVAPORATION
EP0605273B1 (en) * 1992-12-23 1996-06-19 SOCIETE NOUVELLE DE METALLISATION INDUSTRIES (Société Anonyme) Thermal barriers, materials and process for their preparation
DE69303262T2 (en) * 1992-12-23 1997-01-23 Metallisation Ind S A Soc Nouv Thermal protection layers, materials and processes for their manufacture
US5525420A (en) * 1993-03-16 1996-06-11 Balzers Aktiengesellschaft Method for increasing the service life of tools and a wear protection-coated tool
DE4408250A1 (en) * 1993-07-12 1995-01-19 Oriental Engineering Co Process for coating the surface of a substrate and coating material
EP0695731A1 (en) * 1994-08-01 1996-02-07 Sumitomo Electric Industries, Limited Super hard composite material for tools
EP0730044A2 (en) * 1995-03-01 1996-09-04 Sumitomo Electric Industries, Inc. Boron-aluminum nitride coating and method of producing same

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
4- 26756 A,C- 937,May 8, 1992,Vol. 16, No. 190 *
4-157155 A,C- 986,Sept. 18, 1992,Vol. 16, No. 449 *
JP 07316844 A *
JP 08035076 A *
JP 0881265 A *
JP Patents Abstracts of Japan: 5-311398 A,C-1174,March 2, 1994,Vol. 18, No. 128 *
Metalloberfläche 50, 1996, 9, S.712-714 *

Similar Documents

Publication Publication Date Title
EP1790752B1 (en) Thermal spray material, sprayed coating, thermal spray method and coated component
DE602004004832T2 (en) Coating for silicon-containing substrate
EP1365045B1 (en) TiBN coating
DD243514B1 (en) HARD COATINGS FOR MECHANICAL AND CORROSIVE CLADDED PARTS
DE2431448B2 (en) PROCESS FOR COATING A SUBSTRATE WITH A NITRIDE OR CARBIDE OF TITANIUM OR ZIRCONIUM BY REACTIVE EVAPORATION
EP0880607B1 (en) Oxidation protective coating for refractory metals
DE2233700A1 (en) PROCESS FOR INCREASING THE ABRASION RESISTANCE OF THE SURFACE OF CUTTING TOOLS ETC. CARBIDE PARTS
WO1995012009A1 (en) Coated body, its method of production and its use
DE4408250A1 (en) Process for coating the surface of a substrate and coating material
EP3063309A1 (en) Oxidation barrier layer
EP0337007B1 (en) Hard material protection layer with a homogeneous element distribution
EP3333281B1 (en) High-temperature protective layer for titanium aluminide alloys
EP0798402B1 (en) Layer for protection against oxydation
DE4215664C1 (en) Process for the application of metallic intermediate layers and its application
DE112004000576B4 (en) A production method of an alumina layer mainly in α-crystal structure and a method of producing a multi-layer coated part having such a layer
DE602004006336T2 (en) Combustion chamber or turbine part of a gas turbine plant
EP1370712B1 (en) Structural component coated with a hard material and comprising an intermediate layer for improving the adhesive strength of the coating
DE3523027A1 (en) Sintered object based on zirconium, with a coating film
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
DE19650181A1 (en) Protective layer exhibiting irreversible structural compaction on heating
DE19815677C2 (en) Composite body and method for its production
DE102006030235A1 (en) Process for the protection of hot gas corrosion of ceramic surfaces or a body, high temperature resistant body and their use
DE102004002304B4 (en) Process for producing a coated carbon / carbon composite and composite material produced therefrom
DE2610456A1 (en) CUTTING TOOL
DE3737361C2 (en)

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
OP8 Request for examination as to paragraph 44 patent law
8122 Nonbinding interest in granting licences declared
8131 Rejection