DE19649841A1 - Reflecting telescope with two or three slanting mirrors - Google Patents

Reflecting telescope with two or three slanting mirrors

Info

Publication number
DE19649841A1
DE19649841A1 DE1996149841 DE19649841A DE19649841A1 DE 19649841 A1 DE19649841 A1 DE 19649841A1 DE 1996149841 DE1996149841 DE 1996149841 DE 19649841 A DE19649841 A DE 19649841A DE 19649841 A1 DE19649841 A1 DE 19649841A1
Authority
DE
Germany
Prior art keywords
mirror
mirrors
telescope
beam path
variant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1996149841
Other languages
German (de)
Other versions
DE19649841C2 (en
Inventor
Erwin Herrig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LACHMANN, SYLVIO, 01445 RADEBEUL, DE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1996149841 priority Critical patent/DE19649841C2/en
Publication of DE19649841A1 publication Critical patent/DE19649841A1/en
Application granted granted Critical
Publication of DE19649841C2 publication Critical patent/DE19649841C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/0621Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0626Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors
    • G02B17/0642Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using three curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Telescopes (AREA)

Abstract

The first mirror (1,3) in the beam path is always a convex mirror. A four-mirror telescope with a folded beam course is formed by double use of both mirrors, e.g. two-mirror variant, and one mirror, e.g. three-mirror variant. Image distortions are compensated by the right selection of focal distances, distances between mirrors, tilt angles and by slight rotationally symmetrical deformations in the reflection surfaces. Mirror surface rims of non-circular shape or an oval optical aperture diaphragm are used.

Description

Stand der TechnikState of the art

Spiegelteleskope herkömmlicher Bauart in rotationssymmetrischer Spiegelanordnung (Newton-, Cassegrain- und andere derartige optische Systeme) leiden unter der kontrastmindernden Mittenabschattung durch den im Strahlengang befindlichen Sekundärspiegel sowie zusätzlich durch dessen meist vorhandene Haltestreben. Obstruktionsfreie Spiegelteleskope (Schiefspiegler) bestehen im allgemeinen aus zwei bis vier Spiegeln in unterschiedlich gekippter Anordnung und in unterschiedlicher Ausführung (konkav, konvex, torisch-konkav, teilpara- bis hyperbolisch und dergl.). Dieser der Korrektur der Bildfehler dienende Aufwand gestattet bei den Zweispiegelanordnungen (Systeme Kutter und Yolo) nur geringe Lichtstärken oder es werden andere aufwendige Korrekturmaßnahmen notwendig (Korrekturlinse, stark torisch deformierte Spiegelfläche). Die bekannten Dreispiegelanordnungen (z. B. die Systeme Kutter-Tri, Buchroeder, Solano) sind in der Möglichkeit der Fehlerkorrektur gleichfalls eingeschränkt. Vierspiegelanordnungen (z. B. die Systeme Stevick-Paul, Brunn u. dergl.) gestatten zwar eine bessere Fehlerkorrektur, sind jedoch konstruktiv aufwendig und in ihrer Spiegelanordnung von einer anzustrebenden kompakten Bauweise weit entfernt.Mirror telescopes of conventional design in a rotationally symmetrical mirror arrangement (Newton, Cassegrain and other such optical systems) suffer from the contrast-reducing center shading through the one located in the beam path Secondary mirror as well as its mostly existing struts. Obstruction-free mirror telescopes (Schiefspiegler) generally consist of two to four mirrors in different tilted configurations and in different designs (concave, convex, toric-concave, partially para- to hyperbolic and the like). This is the correction the outlay for image errors allows for the two mirror arrangements (Kutter systems and Yolo) only low light intensities or other complex corrective measures necessary (correction lens, strongly toric deformed mirror surface). The well-known Three-mirror arrangements (e.g. the systems Kutter-Tri, Buchroeder, Solano) are in the Possibility of error correction also limited. Four mirror arrangements (e.g. the Systems Stevick-Paul, Brunn u. the like.) allow a better error correction, are however, structurally complex and in their mirror arrangement of a target compact design far away.

Literaturliterature

[1] Kutter, A.: Der Schiefspiegler, Verlag F. Weichhardt 1953.[1] Kutter, A .: Der Schiefspiegler, published by F. Weichhardt 1953.

[2] Leonard, A. S.: Advanced Teleskope Making Techniques, Vol. 1, Willman-Bell, Richmond, Virginia, USA, 1986.[2] Leonard, A. S .: Advanced Telescope Making Techniques, Vol. 1, Willman-Bell, Richmond, Virginia, USA, 1986.

[3] Kutter, A.: A New Three-Mirror Unobstructed Reflector, Sky & Telescope 1/1975.[3] Kutter, A .: A New Three-Mirror Unobstructed Reflector, Sky & Telescope 1/1975.

[4] Buchroeder, R.A.: A New Three-Mirror Off-Axis Amateur Telescope, Sky & Telescope 12/1969.[4] Buchroeder, R.A .: A New Three-Mirror Off-Axis Amateur Telescope, Sky & Telescope 12/1969.

[5] Leonard, A.S.: The Solano Reflector, Advanced Telescope Making Techniques, Band 1: Optics, Willmann-Bell, 1986.[5] Leonard, A.S .: The Solano Reflector, Advanced Telescope Making Techniques, Volume 1: Optics, Willmann-Bell, 1986.

[6] Sasian, J.M.: Variations on the Schiefspiegler, Telescope Making 43, 18.[6] Sasian, J.M .: Variations on the Schiefspiegler, Telescope Making 43, 18th

[7] Sasian, J.M.: The World of Unobstructed Telescopes, ATM Journal 1, 1992.[7] Sasian, J.M .: The World of Unobstructed Telescopes, ATM Journal 1, 1992.

[8] Brunn, M.: Die Entwicklung des Schiefspieglers, Sterne und Weltraum 8-9/1993, 11/1993.[8] Brunn, M .: The Development of the Schiefspiegler, Stars and Space 8-9 / 1993, 11/1993.

[9] Brunn, M.: Patentschrift DE 39 43 258 C2.[9] Brunn, M .: Patent DE 39 43 258 C2.

[10] Stevick, D.: The Stevick-Paul Off-Axis Reflecting Telescope, 2224 Charles Street, Wellsburg, WV 26070.[10] Stevick, D .: The Stevick-Paul Off-Axis Reflecting Telescope, 2224 Charles Street, Wellsburg, WV 26070.

Zielstellunggoal

Die Erfindung verfolgt das Ziel, die genannten Nachteile weitgehend zu vermeiden und im Vergleich mit den bekannten Schiefspieglersystemen eine kompaktere Bauweise bei geringem Bauaufwand und relativ großem Öffnungsverhältnis ohne störende Abbildungsfehler zu erreichen. Bei mittlerem Öffnungsverhältnis soll der Aufbau bei gleicher Abbildungsgüte aus rein sphärischen Spiegeln möglich sein.The invention aims to largely avoid the disadvantages mentioned and in Comparison with the known Schiefspiegler systems a more compact design low construction costs and relatively large opening ratio without annoying To achieve aberrations. With a medium opening ratio, the structure should be the same Imaging quality from purely spherical mirrors may be possible.

Lösungsolution

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß im Gegensatz zu den obengenannten Spiegelanordnungen der erste Spiegel im Strahlengang ein sphärischer Konvexspiegel ist, der gekippt angeordnet wird. Der zweite Spiegel im Strahlengang ist ein entgegengesetzt gekippter, im erforderlichen Maße paraholisierter Konkavspiegel oder ein konkaver Kugelspiegel. Die Winkel der Kippachsen liegen in einer Ebene. Die Kippung der Spiegel erfolgt so, daß das System optisch gesehen ein obstruktionsfreies, fehlerkompensiertes Vierspiegelteleskop mit gefaltetem Strahlenverlauf darstellt, bei dem die Koma und der Astigmatismus in bekannter Weise kompensiert werden können.According to the invention, this object is achieved in that, in contrast to the above mirror arrangements the first mirror in the beam path a spherical Is convex mirror that is arranged tilted. The second mirror in the beam path is a oppositely tilted, paraholized concave mirror to the required degree or a concave spherical mirror. The angles of the tilt axes lie in one plane. The tipping of the Mirror is made so that the system is optically an obstruction-free, error-compensated four-mirror telescope with folded beam path, in which the Coma and astigmatism can be compensated in a known manner.

In der einfachsten Anordnung übernimmt optisch gesehen der erste Spiegel gleichzeitig die Aufgabe des dritten und der zweite die des vierten Spiegels (Fig. 1): das heißt, die Reflexionsfläche wird im Strahlenverlauf jeweils doppelt genutzt. Dafür müssen die Durchmesser der Spiegel bemessen sein und die Brennweiten und der Spiegelabstand in einem rechnerisch optimierten Verhältnis zueinander stehen. Bedingung dabei ist, daß die negative Brennweite des Konvexspiegels je nach gewählter Variante (Fig. 1 . . . 4) größer als die des folgenden Konkavspiegels ausgelegt wird. Die Variante (Fig. 5) mit einem Konvex- zwei Konkavspiegeln stellt insofern einen Sonderfall dar, daß sich dann diese Bedingung auf die resultierende Brennweite beider Konkavspiegel bezieht. Ein Minimum der Bildfehler wird in Anordnung nach Fig. 1 bei einem bestimmten rechnerisch bestimmbaren Spiegelabstand und bei optimierter Wahl der Kippwinkel beider Spiegel erreicht.In the simplest arrangement, optically speaking, the first mirror simultaneously takes on the task of the third and the second that of the fourth mirror ( FIG. 1): that is, the reflection surface is used twice in the beam path. For this, the diameter of the mirrors must be dimensioned and the focal lengths and the mirror spacing must be in a mathematically optimized relationship to one another. The condition here is that the negative focal length of the convex mirror, depending on the variant chosen ( FIG. 1... 4), is designed to be larger than that of the following concave mirror. The variant ( FIG. 5) with one convex - two concave mirrors represents a special case in that this condition then relates to the resulting focal length of both concave mirrors. A minimum of the image errors is achieved in the arrangement according to FIG. 1 with a certain mathematically determinable mirror distance and with an optimized choice of the tilt angle of both mirrors.

Die Fig. 1 zeigt ein Ausführungsbeispiel des Strahlenverlaufs. Zur besseren Ausnutzung der Fläche einer runden Spiegelscheibe kann ohne nennenswerte Nachteile die optische Pupille oval gestaltet werden. Fig. 1 shows an embodiment of the beam path. In order to make better use of the area of a round mirror pane, the optical pupil can be designed oval without any significant disadvantages.

Weitere Lösungen ergeben sich, wenn das System als Dreispiegelvariante ausgeführt wird, bei der nur ein Spiegel im Strahlengang doppelt genutzt wird. Durch die zusätzlichen Freiheitsgrade einer weiteren Brennweite und eines weiteren Kippwinkels ergeben sich für die optische und konstruktive Gestaltung größere Auslegungsspielräume. Wird optisch gesehen der erste Konvexspiegel mit dem dritten Spiegel im Strahlenverlauf auf einer gemeinsamen konvexen Reflektionsfläche vereinigt, dann können die Strahlenverläufe nach Fig. 2 und Fig. 3 realisiert werden. Die im Strahlenverlauf jeweils nachfolgenden Spiegel sind Konkavspiegel, wobei der erste oder der zweite oder beide bedarfsfalls rotationssymmetrisch deformierte Flächen aufweisen können.Further solutions result if the system is designed as a three-mirror variant, in which only one mirror is used twice in the beam path. The additional degrees of freedom of a further focal length and a further tilt angle result in greater design freedom for the optical and structural design. Be seen visually, the first convex mirror to said third mirror in the beam path on a common convex reflection surface combined, then the optical paths can of FIG. 2 and FIG. Realized. 3 The mirrors that follow each other in the beam path are concave mirrors, wherein the first or the second or both can have rotationally symmetrically deformed surfaces if necessary.

Die Dreispiegelvarianten nach Fig. 4 und Fig. 5 vereinigen optisch gesehen den zweiten und den vierten Konkavspiegel auf der gemeinsamen Reflexionsfläche. Der konvexe erste Spiegel und der dritte (konvex bzw. konkav) ermöglichen durch unterschiedliche Brennweiten und Kippwinkel gleichfalls einen breiten Auslegungsspielraum.The three mirror variants according to Fig. 4 and Fig. 5 unite visually seen the second and fourth concave mirror to the common reflection surface. The convex first mirror and the third (convex or concave) also allow a wide range of designs due to different focal lengths and tilt angles.

Claims (3)

1. Schiefspiegler-Teleskop, bestehend aus zwei oder drei in einer Ebene gekippten Spiegeln, bei dem der erste im Strahlengang stets ein Wölbspiegel ist; dadurch gekennzeichnet, daß es durch Doppelnutzung beider (Zweispiegelvariante) oder eines Spiegels (Dreispiegelvariante) optisch gesehen ein Vierspiegelteleskop mit gefaltetem Strahlenverlauf darstellt.1. Schiefspiegler telescope, consisting of two or three mirrors tilted in one plane, in which the first in the beam path is always a vaulted mirror; characterized in that, through the double use of both (two-mirror variant) or one mirror (three-mirror variant), it optically represents a four-mirror telescope with a folded beam path. 2. Schiefspiegler-Teleskop nach Anspruch 1, dadurch gekennzeichnet, daß die Kompensation der Abbildungsfehler durch geeignete Wahl der Brennweiten, der Spiegelabstände, der Kippwinkel sowie bei Bedarf durch geringe rotationssymmetrische Deformation der Reflexionsflächen erfolgt.2. Schiefspiegler telescope according to claim 1, characterized in that the compensation the aberration by a suitable choice of the focal lengths, the mirror distances, the Tilt angle and, if necessary, by slight rotationally symmetrical deformation of the Reflective surfaces are made. 3. Schiefspiegler-Teleskop nach Anspruch 1, dadurch gekennzeichnet, daß aus ökonomischen Gründen von der Kreisform abweichende Spiegelflächenberandungen oder eine ovale optische Pupille zum Einsatz kommen können.3. Schiefspiegler telescope according to claim 1, characterized in that from economic Mirror surface borders deviating from the circular shape or an oval optical pupil can be used.
DE1996149841 1996-12-02 1996-12-02 Compact Schiefspiegler Expired - Fee Related DE19649841C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1996149841 DE19649841C2 (en) 1996-12-02 1996-12-02 Compact Schiefspiegler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996149841 DE19649841C2 (en) 1996-12-02 1996-12-02 Compact Schiefspiegler

Publications (2)

Publication Number Publication Date
DE19649841A1 true DE19649841A1 (en) 1997-06-12
DE19649841C2 DE19649841C2 (en) 2001-03-01

Family

ID=7813335

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996149841 Expired - Fee Related DE19649841C2 (en) 1996-12-02 1996-12-02 Compact Schiefspiegler

Country Status (1)

Country Link
DE (1) DE19649841C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964283A1 (en) * 1998-06-11 1999-12-15 Heino Dr. Wolter Multiple tilted mirror compact telescope (Schiefspiegler)
DE19925931A1 (en) * 1998-06-11 1999-12-23 Heino Wolter Compact multi-slanted mirror
US7602548B2 (en) 2005-09-14 2009-10-13 Jena-Optronik Gmbh Schiefspiegler telescope with three reflecting surfaces
WO2013187925A1 (en) * 2012-06-13 2013-12-19 Raytheon Company All reflective real pupil telecentric imager

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426224A1 (en) * 1994-07-23 1996-04-11 Zeiss Carl Fa Three-inclined mirror type system for astronomical mirror telescope

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964283A1 (en) * 1998-06-11 1999-12-15 Heino Dr. Wolter Multiple tilted mirror compact telescope (Schiefspiegler)
DE19925931A1 (en) * 1998-06-11 1999-12-23 Heino Wolter Compact multi-slanted mirror
DE19925931C2 (en) * 1998-06-11 2001-03-22 Heino Wolter Multi-leaning mirror
US7602548B2 (en) 2005-09-14 2009-10-13 Jena-Optronik Gmbh Schiefspiegler telescope with three reflecting surfaces
WO2013187925A1 (en) * 2012-06-13 2013-12-19 Raytheon Company All reflective real pupil telecentric imager
US8714760B2 (en) 2012-06-13 2014-05-06 Raytheon Company All reflective real pupil telecentric imager
JP2015519616A (en) * 2012-06-13 2015-07-09 レイセオン カンパニー A real-eye telecentric imager with total reflection

Also Published As

Publication number Publication date
DE19649841C2 (en) 2001-03-01

Similar Documents

Publication Publication Date Title
DE69430983T2 (en) Device for displaying images
US5218480A (en) Retrofocus wide angle lens
DE69325607T2 (en) Wide spectral band virtual image display optical system
US4737021A (en) Wide-field three-mirror collimator
DE3786648T2 (en) OPTICAL TRANSMISSION SYSTEM WITH MAGNIFICATION.
US4383740A (en) Infinity image visual display system
DE69806783T2 (en) OPTICAL DEVICE FOR HELMET VISOR WITH A MANGIN MIRROR
US5652679A (en) Optical systems, telescopes and binoculars
DE3943258A1 (en) SILHOUETTING-FREE MIRROR SYSTEM FOR ASTRONOMICAL TELESCOPES OF THE LATER-MIRROR TYPE
US3432219A (en) Wide field optical viewer with concave mirror eyepiece
DE102007014298A1 (en) Head-up display device
CH624776A5 (en)
EP1072922B1 (en) Telescope with a correction of optical wavefront abberations
JP3057946B2 (en) Aberration correction system and astronomical telescope using it
US4645314A (en) Reflector telescope with upright image
DE69804625T2 (en) OPTICAL DEVICE FOR HELMET VISOR EQUIPPED WITH AN ASPHERICAL MIRROR
DE19649841A1 (en) Reflecting telescope with two or three slanting mirrors
JPH1114913A (en) Telescope using concave spherical reflector as 1st surface
DE4314499A1 (en) Silhouetting-free (vignetting-free, shading-free) 4-mirror-systems for telescopes; tetra-inclined-mirror type 2
US4718753A (en) Telescope with correcting lens
DE69524634T2 (en) Compact Keplerian telescope
DE4301291C2 (en) Universal double mirror corrector for Cassegrain and Ritchey Chretien mirror systems
DE10029311A1 (en) Optical system to correct blurred movements in an optical observation instrument has a leading lens system with structured leading and trailing lens groups to apply a correction in a compact and lightweight assembly
CN1062356C (en) Imaging structure of long-focus optical system
DE19925931C2 (en) Multi-leaning mirror

Legal Events

Date Code Title Description
OAV Applicant agreed to the publication of the unexamined application as to paragraph 31 lit. 2 z1
8122 Nonbinding interest in granting licenses declared
8110 Request for examination paragraph 44
8127 New person/name/address of the applicant

Owner name: LACHMANN, SYLVIO, 01445 RADEBEUL, DE

8181 Inventor (new situation)

Free format text: HERRIG, ERWIN, 09127 CHEMNITZ, DE

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee