DE19627504C1 - Connection lead plate for high temperature fuel cell stack - Google Patents

Connection lead plate for high temperature fuel cell stack

Info

Publication number
DE19627504C1
DE19627504C1 DE19627504A DE19627504A DE19627504C1 DE 19627504 C1 DE19627504 C1 DE 19627504C1 DE 19627504 A DE19627504 A DE 19627504A DE 19627504 A DE19627504 A DE 19627504A DE 19627504 C1 DE19627504 C1 DE 19627504C1
Authority
DE
Germany
Prior art keywords
layer
circuit board
fuel cell
composite circuit
ceramic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19627504A
Other languages
German (de)
Inventor
Harald Dr Schmidt
Belinda Brueckner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19627504A priority Critical patent/DE19627504C1/en
Application granted granted Critical
Publication of DE19627504C1 publication Critical patent/DE19627504C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • H01M8/0219Chromium complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A connection lead plate (4) of chromium-based alloy, for a high temperature fuel cell stack (2), has at least part of its surface (18, 20, 22) coated with a contact layer (24) comprising a lower oxidic layer (26), a middle ceramic layer (28) and an upper ceramic layer (30), the middle ceramic layer having less porosity than the upper ceramic layer. Preferably, the lower oxidic layer (26) is an La0.9Sr0.1CrO3 or La0.8Sr0.2MnO3 layer and the middle and upper ceramic layers (28, 30) are La1-xSrxMnO3 (x = 0.1 to 0.2) or LaCoO3 layers.

Description

Die Erfindung bezieht sich auf eine Verbundleiterplatte und auf eine Verwendung einer Verbundleiterplatte in einem Hoch­ temperatur-Brennstoffzellenstapel.The invention relates to a composite circuit board and on using a composite circuit board in a high temperature fuel cell stack.

Verbundleiterplatten werden unter anderem in Hochtemperatur- Brennstoffzellenstapeln eingesetzt. Bei einem Hochtemperatur- Brennstoffzellenstapel aus Hochtemperatur-Brennstoffzellen, in der Fachliteratur wird ein Brennstoffzellenstapel auch "Stack" genannt, liegen unter einer oberen Verbundleiterplat­ te, welche den Hochtemperatur-Brennstoffzellenstapel abdeckt, der Reihenfolge nach eine Kontaktschicht, ein Elektrolyt- Elektroden-Element, eine weitere Verbundleiterplatte usw. aufeinander.Composite circuit boards are used in high-temperature Used fuel cell stacks. With a high temperature Fuel cell stacks of high-temperature fuel cells, a fuel cell stack is also in the specialist literature Called "stack", they lie under an upper composite circuit board te covering the high temperature fuel cell stack in order of a contact layer, an electrolyte Electrode element, another composite circuit board, etc. on each other.

Das Elektrolyt-Elektroden-Element umfaßt dabei zwei Elektro­ den und einen zwischen den beiden Elektroden angeordneten Fest­ elektrolyten. Die Verbundleiterplatten innerhalb des Hoch­ temperatur-Brennstoffzellenstapels sind als bipolare Platten ausgeführt. Diese sind im Gegensatz zu der jeweils am Ende des Hochtemperatur-Brennstoffzellenstapels angeordneten Ver­ bundleiterplatten auf beiden Seiten mit gasführenden Kanälen für die Versorgung der Festelektrolyt-Elektroden-Elemente mit jeweils einem Betriebsmittel, z. B. Wasserstoff oder Sauer­ stoff, versehen.The electrolyte electrode element comprises two electrical the and a fixed arranged between the two electrodes electrolytes. The composite circuit boards within the high Temperature fuel cell stacks are bipolar plates executed. These are in contrast to the one at the end of the high temperature fuel cell stack arranged Ver Bund printed circuit boards on both sides with gas-carrying channels for supplying the solid electrolyte electrode elements with one piece of equipment, e.g. B. hydrogen or acid fabric, provided.

Dabei bilden jeweils ein zwischen den benachbarten Verbund­ leiterplatten liegendes Elektrolyt-Elektroden-Element, mit den beidseitig am Elektrolyt-Elektroden-Element unmittelbar anliegenden Kontaktschichten, und den an den Kontaktschichten anliegenden Seiten jeder der beiden Verbundleiterplatten zu­ sammen eine Hochtemperatur-Brennstoffzelle. Dieser und wei­ tere Typen von Brennstoffzellenmodulen sind beispielsweise aus dem "Fuel Cell Handbook" von A. J. Appleby und S. R. Foulkes, 1989, Seiten 440 bis 454, bekannt.They each form a bond between the neighboring groups circuit board-lying electrolyte electrode element, with directly on both sides of the electrolyte electrode element adjacent contact layers, and those on the contact layers adjacent sides of each of the two composite circuit boards  together a high temperature fuel cell. This and knows Other types of fuel cell modules are, for example from the "Fuel Cell Handbook" by A. J. Appleby and S. R. Foulkes, 1989, pages 440-454.

Aus der Offenlegungsschrift WO 94/11913 ist weiterhin be­ kannt, daß beim Zusammenbau eines Brennstoffzellenstapels zwischen den Verbundleiterplatten und den Elektroden soge­ nannte Funktionsschichten eingefügt werden.From the published patent application WO 94/11913 is furthermore knows that when assembling a fuel cell stack So-called between the composite circuit boards and the electrodes called functional layers are inserted.

Als Material für die Kontaktschicht, d. h. diejenige Schicht, welche zwischen der Elektrode und der Verbundleiterplatte an­ geordnet ist, wurde zum Beispiel auf der Sauerstoff führenden Seite unter anderem bisher LaCoO₃ verwendet. LaCoO₃ hat im Gegensatz zu anderen getesteten keramischen Materialien, wie z. B. den Manganaten, eine höhere intrinsische Leitfähigkeit. Außerdem wurde die Bildung einer Reaktionsschicht zwischen der Verbundleiterplatte und der LaCoO₃-Kontaktschicht aus CoCrO₄ beobachtet, die den elektrischen Kontakt verbessert.As a material for the contact layer, i.e. H. the layer which between the electrode and the composite circuit board was ordered, for example, on the leading oxygen Page among other things previously used LaCoO₃. LaCoO₃ has Contrary to other tested ceramic materials like e.g. B. the manganates, a higher intrinsic conductivity. In addition, the formation of a reaction layer between the composite circuit board and the LaCoO₃ contact layer CoCrO₄ observed that improves electrical contact.

Das LaCoO₃ wurde als Pulver hergestellt und anschließend als Spritzsuspension mittels Naßpulverspritzen oder als Sieb­ druckpaste durch Siebdrucken auf die Verbundleiterplatte auf­ getragen. Die Haftung der Schicht und damit der elektrische Kontaktwiderstand war hierbei im erheblichen Maß von der Pul­ verbeschaffenheit abhängig, wie beispielsweise vom mittleren Teilchendurchmesser und der spezifischen Oberflächenbeschaf­ fenheit. Der geforderte elektrische Kontaktwiderstand von 10mΩ/cm² konnte nur mit einem LaCoO₃-Pulver erzielt werden. Der anfänglich niedrige elektrische Kontaktwiderstand stieg jedoch bei einer Versuchstemperatur von 950°C, welche der Be­ triebstemperatur eines Hochtemperatur-Brennstoffzellenstapels entspricht, mit zunehmender Versuchsdauer an. Dies ist auf eine Versinterung der Kontaktschicht zurückzuführen, die be­ wirkt, daß die Kontaktschicht partial von der Verbundleiter­ platte abreißt. The LaCoO₃ was produced as a powder and then as Spray suspension using wet powder spraying or as a sieve printing paste onto the composite circuit board by screen printing carried. The adhesion of the layer and thus the electrical Contact resistance was here to a considerable extent from the pulse depending on the nature of the verb, such as the middle one Particle diameter and the specific surface finish serenity. The required electrical contact resistance of 10mΩ / cm² could only be achieved with a LaCoO₃ powder. The initially low electrical contact resistance increased however at a test temperature of 950 ° C, which the Be operating temperature of a high-temperature fuel cell stack corresponds with increasing test duration. This is on a sintering of the contact layer attributable to be acts that the contact layer partially from the composite conductor plate tears off.  

Außerdem erweist sich als Problem, daß sich die LaCoO₃-Kon­ taktschicht nach dem Abkühlen häufig von der Verbundleiter­ platte ablöst. Dieses Problem ist auf die unterschiedlichen thermischen Ausdehnungskoeffizienten der Verbundleiterplatte und der LaCoO₃-Kontaktschicht zurückzuführen. In addition, it proves to be a problem that the LaCoO₃ Kon clock layer after cooling often from the composite conductor plate peels off. This problem is different coefficient of thermal expansion of the composite circuit board and attributed to the LaCoO₃ contact layer.  

Messungen des elektrischen Kontaktwiderstandes nach einer Thermischen Zyklierung, d. h. mit anderen Worten einem peri­ odischen Aufheizen und Abkühlen, zeigten, daß der elektrische Kontaktwiderstand nach erneutem Aufheizen deutlich über dem ursprünglichen Anfangswert lag und somit die LaCoO₃-Kontakt­ schicht nicht mehr den Anforderungen für den Einsatz in einem Hochtemperatur-Brennstoffzellenstapel genügt.Measurements of the electrical contact resistance after a Thermal cycling, d. H. in other words a peri heating and cooling, showed that the electrical Contact resistance after heating up significantly higher than original initial value was and thus the LaCoO₃ contact no longer layer the requirements for use in one High-temperature fuel cell stacks are sufficient.

Der Erfindung liegt nun die Aufgabe zugrunde, eine Verbund­ leiterplatte für einen Hochtemperatur-Brennstoffzellenstapel anzugeben, welche mit einer Kontaktschicht versehen ist, die einen langzeitstabilen elektrischen Kontakt zwischen der Ka­ thode und der Verbundleiterplatte gewährleistet und die Her­ stellungskosten für den Hochtemperatur-Brennstoffzellenstapel reduziert.The invention is based on the object of a composite PCB for a high temperature fuel cell stack specify which is provided with a contact layer, the a long-term stable electrical contact between the Ka method and the composite circuit board and the Her costs for the high-temperature fuel cell stack reduced.

Die Aufgabe wird gemäß der Erfindung gelöst mit einer Ver­ bundleiterplatte für einen Hochtemperatur-Brennstoffzellen­ stapel, die aus einer Chrombasislegierung besteht, bei der zumindest ein Teil der Oberfläche mit einer Kontaktschicht beschichtet ist, die eine untere oxidische Lage, eine mitt­ lere keramische Lage und eine obere keramische Lage umfaßt, wobei die mittlere keramische Lage eine kleinere Porosität als die obere keramische Lage aufweist.The object is achieved according to the invention with a ver Bund printed circuit board for a high temperature fuel cell stack, which consists of a chromium base alloy, in which at least part of the surface with a contact layer is coated, the lower oxide layer, a mitt ceramic layer and an upper ceramic layer, the middle ceramic layer has a smaller porosity than the top ceramic layer.

Mit dieser Kontaktschicht wird ein langzeitstabiler elektri­ scher Kontakt zwischen der Verbundleiterplatte und der Ka­ thode erreicht. Wegen der vorherrschenden oxidierenden Atmo­ sphäre zwischen Verbundleiterplatte und Kathode sind aus Kor­ rosionsgründen keine wirtschaftlich akzeptablen Metalle ein­ setzbar. Deswegen werden hier keramische Lagen verwendet. Durch diese keramischen Lagen werden Fertigungsunebenheiten zwischen der Verbundleiterplatte und der siebgedruckten Ka­ thode beim Lötvorgang ausgeglichen und ein großflächiger Kon­ takt zwischen Verbundleiterplatte und Kathode hergestellt.With this contact layer a long-term stable electri shear contact between the composite circuit board and the Ka  method achieved. Because of the prevailing oxidizing atmosphere spheres between composite circuit board and cathode are made of Cor corrosion reasons no economically acceptable metals settable. That is why ceramic layers are used here. Due to these ceramic layers, there will be unevenness in production between the composite circuit board and the screen printed Ka method balanced during the soldering process and a large Kon clock between composite circuit board and cathode.

Bei mehrfachen Ein- und Ausschaltvorgängen des Hochtempera­ tur-Brennstoffzellenstapels, d. h. mit anderen Worten der thermischen Zyklierbarkeit, und somit des ständigen Wechsels zwischen Raumtemperatur und Betriebstemperatur des Hochtem­ peratur-Brennstoffzellenstapels, verändert sich der Zustand der Kontaktschicht nicht. Diese Langzeitstabilität des gesam­ ten Hochtemperatur-Brennstoffzellenstapels bezüglich seiner Kontaktschichten reduziert somit zugleich die Herstellungsko­ sten des Hochtemperatur-Brennstoffzellenstapels.With multiple switching on and off of the high temperature tur fuel cell stack, d. H. in other words the thermal cyclability, and thus the constant change between room temperature and operating temperature of the high temperature fuel cell stack, the state changes the contact layer is not. This long-term stability of the total high-temperature fuel cell stack in terms of its Contact layers thus also reduce the manufacturing cost most of the high temperature fuel cell stack.

Vorzugsweise ist ein Steg, der zwei gasführende Kanäle von­ einander trennt, an einer Stirnfläche mit der Schicht be­ schichtet.Preferably there is a web which has two gas-carrying channels separates one another, on one end face with the layer layers.

In einer weiteren Ausgestaltung umfaßt die untere oxidische Schicht La0.9Sr0.1CrO₃ und weist eine Dicke von bis zu 30 µm auf. Diese oxidische Lage bewirkt eine gute Haftung der kera­ mischen Lagen der Kontaktschicht auf der Verbundleiterplatte. Das Auftragen der oxidischen Lage kann mit unterschiedlichen Beschichtungsverfahren, wie Spritzverfahren, Sol-Gel-Be­ schichtung usw. durchgeführt werden. Am besten geeignet ist das Vakuumplasmaspritzen. Neben der Aufgabe als Haftvermitt­ ler wirkt die oxidische Lage zugleich als Chromverdampfungs­ schutzschicht, was ein Verdampfen von Chromverbindungen aus der Verbundleiterplatte verhindert. In a further embodiment, the lower oxide layer comprises La 0.9 Sr 0.1 CrO₃ and has a thickness of up to 30 µm. This oxidic layer ensures good adhesion of the ceramic layers of the contact layer on the composite circuit board. The application of the oxide layer can be carried out with different coating methods, such as spraying, sol-gel coating, etc. Vacuum plasma spraying is the most suitable. In addition to its role as an adhesion promoter, the oxidic layer also acts as a chromium evaporation protective layer, which prevents chromium compounds from evaporating from the composite circuit board.

Vorzugsweise umfaßt die mittlere und obere keramische Lage La1-xSrxMnO₃ mit 0.1x0.2. Preferably, the middle and upper ceramic layer comprises La 1-x Sr x MnO₃ with 0.1x0.2.

Insbesondere umfaßt die mittlere- und obere keramische Lage LaCoO₃. Bei einer Untersuchung dieser Keramik hat sich erge­ ben, daß der elektrische Kontaktwiderstand zwischen Verbund­ leiterplatte und Kathode bei einer Betriebstemperatur von 950°C über eine Versuchszeit von ca. 350 Stunden nicht an­ steigt. Auch eine mehrmalige thermische Zyklierung zwischen Raumtemperatur und Betriebstemperatur des Hochtemperatur- Brennstoffzellenstapels führt zu keinem Wiederanstieg des elektrischen Kontaktwiderstandes zwischen Verbundleiterplatte und Kathode. Außerdem werden keine Veränderungen in der Ma­ terialbeschaffenheit, wie beispielsweise Risse, beobachtet.In particular, the middle and top ceramic layers LaCoO₃. An examination of this ceramic has shown results ben that the electrical contact resistance between composite circuit board and cathode at an operating temperature of 950 ° C over a test period of approx. 350 hours increases. Repeated thermal cycling between Room temperature and operating temperature of the high temperature Fuel cell stack does not lead to a rise in the electrical contact resistance between composite circuit board and cathode. In addition, no changes in the Ma material properties, such as cracks, observed.

In einer weiteren Ausgestaltung weist die mittlere keramische Lage eine Dicke von 5 bis 10 µm auf.In a further embodiment, the middle ceramic Lay on a thickness of 5 to 10 microns.

Vorzugsweise weist die obere keramische Lage eine Dicke zwi­ schen 70 und 90 µm auf.The upper ceramic layer preferably has a thickness of between between 70 and 90 µm.

Insbesondere werden die keramischen Lagen durch Naßpulver­ spritzen oder durch ein Siebdruckverfahren erzeugt.In particular, the ceramic layers are wet powder spray or generated by a screen printing process.

Vorzugsweise wird zum Erzeugen der mittleren keramischen Lage ein Pulver mit einem Durchmesser der Pulverkörner von kleiner 3 µm verwendet. Durch diese Wahl des Durchmessers der Pulver­ körner wird eine ausreichende Sinteraktivität des Pulvers ge­ währleistet, um bei der Inbetriebnahme des Hochtemperatur- Brennstoffzellenstapels eine Versinterung der mittleren ke­ ramischen Lage mit der unteren oxidischen Lage zu erreichen. Da diese mittlere keramische Lage keine ausreichende Ver­ formbarkeit gewährleistet, wird diese nur in einer Dicke von 5 bis 10 µm erzeugt.It is preferred to produce the middle ceramic layer a powder with a diameter of the powder grains of smaller 3 µm used. By choosing the diameter of the powder A sufficient sintering activity of the powder is granulated ensures that the high-temperature Fuel cell stack a sintering of the middle ke to reach the ramische layer with the lower oxide layer. Since this middle ceramic layer does not have sufficient ver formability guaranteed, this is only in a thickness of 5 to 10 microns generated.

Vorzugsweise wird zum Erzeugen der oberen keramischen Lage ein Pulver mit einem Durchmesser der Pulverkörner von wenig­ stens 3 µm verwendet. Die höhere Porösität und die geringere Sinteraktivität in dieser oberen keramischen Lage im Ver­ gleich zur mittleren keramischen Lage gewährleistet die er­ forderliche Verformbarkeit beim Fügezyklus, d. h. beim Zusam­ menfügen des Elektrolyt-Elektroden-Elements mit der Verbund­ leiterplatte.It is preferred to produce the upper ceramic layer a powder with a powder grain diameter of little at least 3 µm is used. The higher porosity and the lower Sintering activity in this upper ceramic layer in the ver  it guarantees the same to the middle ceramic layer required ductility during the joining cycle, d. H. together add the electrolyte electrode element to the composite circuit board.

Weitere vorteilhafte Ausgestaltungen sind in den Unteransprü­ chen wiedergegeben.Further advantageous embodiments are in the subclaims Chen reproduced.

Zur weiteren Erläuterung der Erfindung wird auf das Ausfüh­ rungsbeispiel der Zeichnung verwiesen, in deren einziger Figur ein Ausschnitt eines Hochtemperatur-Brennstoffzellensta­ pels mit einer Verbundleiterplatte schematisch dargestellt ist.To further explain the invention, the Ausfü Example of the drawing referenced in the only one Figure a section of a high temperature fuel cell sta pels shown schematically with a composite circuit board is.

Gemäß der Figur umfaßt ein Hochtemperatur-Brennstoffzellen­ stapel 2 eine Verbundleiterplatte 4 und ein Elektrolyt-Elek­ troden-Element 6. Das Elektrolyt-Elektroden-Element 6 umfaßt eine Kathode 8 und eine Anode 10, wobei zwischen den beiden Elektroden 8, 10 ein Festelektrolyt 12 angeordnet ist.According to the figure, a high-temperature fuel cell stack 2 comprises a composite circuit board 4 and an electrolyte electrode element 6 . The electrolyte electrode element 6 comprises a cathode 8 and an anode 10 , a solid electrolyte 12 being arranged between the two electrodes 8 , 10 .

Auf der Oberseite der Verbundleiterplatte 4, wobei die Ver­ bundleiterplatte 4 aus einer Chrombasislegierung besteht, sind gasführende Kanäle 14 parallel angeordnet. Die gasfüh­ renden Kanäle 14 sind jeweils durch Stege 16 voneinander ge­ trennt. Ist die Verbundleiterplatte 4 als bipolare Platte ausgeführt, d. h. mit anderen Worten, daß die Verbundleiter­ platte 4 innerhalb des Hochtemperatur-Brennstoffzellenstapels 2 angeordnet, so ist die nicht näher dargestellte Unterseite der Verbundleiterplatte 4 in gleicher Weise wie die Oberseite strukturiert.On the top of the composite circuit board 4 , wherein the composite circuit board 4 consists of a chromium-based alloy, gas-carrying channels 14 are arranged in parallel. The gas-guiding channels 14 are each separated by webs 16 ge. Is the composite printed circuit board 4 implemented as a bipolar plate, in other words, that the composite printed circuit board 4 is arranged inside the high-temperature fuel cell stack 2, the bottom of the interconnector plate 4 is not shown in detail, is structured in the same way as the upper side.

Über die gasführenden Kanäle 14 wird die Kathode 8 des Elek­ trolyt-Elektroden-Elements 6 mit einem Betriebsmittel, bei­ spielsweise Sauerstoff, versorgt. Über die Stege 16 wird eine elektrisch leitende Verbindung mit der Kathode 8 des Elektro­ lyt-Elektroden-Elements 6 erreicht. Via the gas-carrying channels 14 , the cathode 8 of the electrolyte electrode element 6 is supplied with an operating medium, for example oxygen. Via the webs 16 , an electrically conductive connection with the cathode 8 of the electrolyte electrode element 6 is achieved.

Die der Kathode 8 des Elektrolyt-Elektroden-Elements 6 zuge­ wandte Oberfläche 18, 20, 22 der Verbundleiterplatte 4 umfaßt demzufolge die Seitenflächen 18 und die Grundflächen 20 der gasführenden Kanäle 14 und die Stirnflächen 22 der Stege 16. Die Seitenflächen 18 der gasführenden Kanäle 14 sind somit zugleich die Seitenflächen 18 der Stege 16.The surface 18 , 20 , 22 of the composite printed circuit board 4 facing the cathode 8 of the electrolyte electrode element 6 accordingly comprises the side surfaces 18 and the base surfaces 20 of the gas-carrying channels 14 and the end surfaces 22 of the webs 16 . The side surfaces 18 of the gas-carrying channels 14 are thus also the side surfaces 18 of the webs 16 .

Die Oberfläche 18, 20, 22 der Verbundleiterplatte 4 ist mit einer Kontaktschicht 24 beschichtet, die eine untere oxidi­ sche Lage 26, eine mittlere keramische Lage 28 und eine obere keramische Lage 30 umfaßt, wobei die mittlere keramische Lange 28 eine kleinere Porosität als die obere keramische Lage 30 aufweist.The surface 18 , 20 , 22 of the composite printed circuit board 4 is coated with a contact layer 24 , which comprises a lower oxide layer 26 , a middle ceramic layer 28 and an upper ceramic layer 30 , the middle ceramic length 28 having a smaller porosity than the upper one has ceramic layer 30 .

Die untere oxidische Lage 26 umfaßt La0.8Sr0.2MnO₃ oder La0.4Sr0.1CrO₃ und weist eine Dicke von bis zu 30 µm auf. Sie wird bevorzugt durch Vakuumplasmaspritzen erzeugt. Die oxi­ dische Lage 26 wirkt als Haftvermittler zwischen der mittle­ ren keramischen Lage 28 und der Verbundleiterplatte 4. Zu­ gleich verhindert die oxidische Lage 26 ein Verdampfen von Chromverbindungen aus der Verbundleiterplatte 4.The lower oxide layer 26 comprises La 0.8 Sr 0.2 MnO₃ or La 0.4 Sr 0.1 CrO₃ and has a thickness of up to 30 microns. It is preferably generated by vacuum plasma spraying. The oxide layer 26 acts as an adhesion promoter between the ceramic layer 28 and the composite printed circuit board 4 . At the same time, the oxide layer 26 prevents chromium compounds from evaporating from the composite printed circuit board 4 .

Die mittlere 28 und obere keramische Lage 30 umfassen La1-xSrxMnO₃ mit 0.1x0.2 oder LaCoO₃. Dabei weist die mittlere keramische Lage 28 eine Dicke von 5 bis 10 µm auf, wobei die obere keramische Lage 30 eine Dicke zwischen 70 und 90 µm auf­ weist.The middle 28 and upper ceramic layer 30 comprise La 1-x Sr x MnO₃ with 0.1x0.2 or LaCoO₃. The middle ceramic layer 28 has a thickness of 5 to 10 μm, the upper ceramic layer 30 having a thickness between 70 and 90 μm.

Aufgrund der geringen Sinteraktivität der zu verwendenden Ma­ terialien im Gegensatz zu den aus dem Stand der Technik be­ kannten Materialien, wie z. B. LaCoO₃, ist es effektiver, zwei keramische Lagen 28, 30 mit einer unterschiedlichen Porosität zu verwenden.Because of the low sintering activity of the materials to be used, in contrast to the materials known from the prior art, such as, for. B. LaCoO₃, it is more effective to use two ceramic layers 28 , 30 with a different porosity.

Die mittlere keramische Lage 28 mit der kleineren Porosität hat die Funktion bei der Inbetriebnahme des Hochtemperatur- Brennstoffzellenstapels 2 fest mit der oxidischen Lage 26 zu versintern, währenddessen die geforderten mechanischen Ei­ genschaften, wie z. B. gute Verformbarkeit der Kontaktschicht 24 beim Fügezyklus, durch die obere keramische Lage 30 mit der größeren Porosität erreicht wird.The middle ceramic layer 28 with the smaller porosity has the function of sintering firmly when the high-temperature fuel cell stack 2 is started up with the oxide layer 26 , during which the required mechanical properties, such as, for. B. good deformability of the contact layer 24 during the joining cycle, is achieved by the upper ceramic layer 30 with the greater porosity.

Um die gute Sintereigenschaft der mittleren keramischen Lage 28 zu erreichen, d. h. mit anderen Worten eine gute Haftung der mittleren keramischen Lage 28 mit der oxidischen Lage 26 zu erreichen, muß das keramische Material für die mittlere keramische Lage 28 in Form eines Pulvers mit einem Durchmes­ ser der Pulverkörner kleiner 3 µm verwendet werden. Nur in dieser feinpulvrigen Form ist eine Versinterung der mittleren keramischen Lage 28 mit der oxidischen Lage 26 möglich.In order to achieve the good sintering property of the middle ceramic layer 28 , ie in other words to achieve good adhesion of the middle ceramic layer 28 with the oxide layer 26 , the ceramic material for the middle ceramic layer 28 must be in the form of a powder with a diameter the powder grains smaller than 3 µm are used. Sintering of the central ceramic layer 28 with the oxide layer 26 is only possible in this fine powder form.

Für die obere keramische Lage 30 ist es ausreichend ein grö­ beres Pulver mit einem Durchmesser der Pulverkörner von we­ nigstens 3 µm zu verwenden. Dadurch wird eine leichte Verform­ barkeit der Kontaktschicht 24 beim Fügezyklus erreicht.For the upper ceramic layer 30 it is sufficient to use a coarser powder with a diameter of the powder grains of at least 3 μm. As a result, a slight deformability of the contact layer 24 is achieved during the joining cycle.

Für die mittlere 28 und die obere keramische Lage 30 ist es besonders geeignet die keramischen Pulver in einem Naßpulver­ spritzen oder einem Siebdruckverfahren aufzutragen und damit die keramischen Lagen 28, 30 zu erzeugen.For the middle 28 and the upper ceramic layer 30 , it is particularly suitable to spray the ceramic powder in a wet powder or to apply a screen printing process and thus to produce the ceramic layers 28 , 30 .

Diese Verbundleiterplatten 4 sind somit besonders für den Einbau in einen Hochtemperatur-Brennstoffzellenstapel 2 ge­ eignet.These composite circuit boards 4 are thus particularly suitable for installation in a high-temperature fuel cell stack 2 .

Durch die Kontaktschicht 24, die die verschiedenen Lagen 26, 28, 30 mit jeweils verschiedenen Funktionen umfaßt, werden die in der Aufgabenstellung geforderten Eigenschaften er­ füllt, wie niedriger elektrischer Übergangswiderstand zwi­ schen Verbundleiterplatte 4 und Kathode 8 des Elektrolyt- Elektroden-Elements 6, Verformbarkeit der Kontaktschicht 24 bei Inbetriebnahme des Hochtemperatur-Brennstoffzellenstapels 2, sowie thermische Zyklierbarkeit der Kontaktschicht 24 beim Ein- und Ausschalten des Hochtemperatur-Brennstoffzellensta­ pels 2. Dadurch wird die Langzeitstabilität der Kontakt­ schicht 24 und damit des gesamten Hochtemperatur-Brennstoff­ zellenstapels 2 verbessert, was zugleich zu einer Reduzierung der Herstellungskosten für den Hochtemperatur-Brennstoffzel­ lenstapel 2 führt.Through the contact layer 24 , which includes the different layers 26 , 28 , 30 with different functions, the required properties in the task he fills, such as low electrical contact resistance between rule composite circuit board 4 and cathode 8 of the electrolyte electrode element 6 , deformability the contact layer 24 when the high-temperature fuel cell stack 2 is started up , and thermal cyclability of the contact layer 24 when the high-temperature fuel cell stack 2 is switched on and off. This improves the long-term stability of the contact layer 24 and thus the entire high-temperature fuel cell stack 2 , which at the same time leads to a reduction in the production costs for the high-temperature fuel cell stack 2 .

Claims (10)

1. Verbundleiterplatte (4) für einen Hochtemperatur-Brenn­ stoffzellenstapel, die aus einer Chrombasislegierung besteht, bei der zumindest ein Teil der Oberfläche (18, 20, 22) mit einer Kontaktschicht (24) beschichtet ist, die eine untere oxidische Lage (26), eine mittlere keramische Lage (28) und eine obere keramische Lage (30) umfaßt, wobei die mittlere keramische Lage (28) eine kleinere Porosität als die obere keramische Lage (30) aufweist.1. Composite circuit board ( 4 ) for a high-temperature fuel cell stack, which consists of a chromium-based alloy, in which at least part of the surface ( 18 , 20 , 22 ) is coated with a contact layer ( 24 ) which has a lower oxide layer ( 26 ) , comprises a central ceramic layer ( 28 ) and an upper ceramic layer ( 30 ), the central ceramic layer ( 28 ) having a smaller porosity than the upper ceramic layer ( 30 ). 2. Verbundleiterplatte (4) nach Anspruch 1, mit wenigstens einem gasführenden Kanal (14), der Seitenflächen (18) und eine Grundfläche (20) umfaßt, die mit der Kontaktschicht (24) beschichtet sind.2. Composite circuit board ( 4 ) according to claim 1, with at least one gas-conducting channel ( 14 ), the side surfaces ( 18 ) and a base surface ( 20 ) which are coated with the contact layer ( 24 ). 3. Verbundleiterplatte (4) nach Anspruch 1 oder 2, mit wenig­ stens zwei gasführenden Kanälen (14), die durch einen Steg (16) voneinander getrennt sind, der an einer Stirnfläche (22) mit der Kontaktschicht (24) beschichtet ist.3. Composite circuit board ( 4 ) according to claim 1 or 2, with at least two gas-carrying channels ( 14 ) which are separated from one another by a web ( 16 ) which is coated on one end face ( 22 ) with the contact layer ( 24 ). 4. Verbundleiterplatte (4) nach einem der vorhergehenden An­ sprüche, bei der die untere oxidische Lage (26) La0.9Sr0.1CrO₃ umfaßt und eine Dicke von bis zu 30 µm aufweist.4. Composite circuit board ( 4 ) according to one of the preceding claims, in which the lower oxide layer ( 26 ) comprises La 0.9 Sr 0.1 CrO₃ and has a thickness of up to 30 microns. 5. Verbundleiterplatte (4) nach einem der Ansprüche 1 bis 3, bei der die untere oxidische Lage (26) La0.8Sr0.2MnO₃ umfaßt und eine Dicke von bis zu 30 µm aufweist.5. Composite circuit board ( 4 ) according to one of claims 1 to 3, in which the lower oxide layer ( 26 ) comprises La 0.8 Sr 0.2 MnO₃ and has a thickness of up to 30 µm. 6. Verbundleiterplatte (4) nach einem der vorhergehenden An­ sprüche, bei der die mittlere (28) und obere keramische Lage (30) La1-xSrxMnO₃ mit 0.1x0.2 umfaßt.6. Composite circuit board ( 4 ) according to one of the preceding claims, in which the middle ( 28 ) and upper ceramic layer ( 30 ) comprises La 1-x Sr x MnO₃ with 0.1x0.2. 7. Verbundleiterplatte (4) nach einem der Ansprüche 1 bis 5, bei der die mittlere (28) und obere keramische Lage (30) LaCoO₃ umfaßt. 7. Composite circuit board ( 4 ) according to one of claims 1 to 5, wherein the middle ( 28 ) and upper ceramic layer ( 30 ) comprises LaCoO₃. 8. Verbundleiterplatte (4) nach einem der vorhergehenden An­ sprüche, bei der die mittlere keramische Lage (28) eine Dicke von 5 bis 10 µm aufweist.8. Composite circuit board ( 4 ) according to one of the preceding claims, in which the central ceramic layer ( 28 ) has a thickness of 5 to 10 microns. 9. Verbundleiterplatte (4) nach einem der vorhergehenden An­ sprüche, bei der die obere keramische Lage (30) eine Dicke zwischen 70 und 90 µm aufweist.9. Composite circuit board ( 4 ) according to one of the preceding claims, in which the upper ceramic layer ( 30 ) has a thickness between 70 and 90 microns. 10. Verwendung der Verbundleiterplatte (4) nach einem der vorhergehenden Ansprüche in einem Hochtemperatur-Brennstoff­ zellenstapel (2).10. Use of the composite circuit board ( 4 ) according to one of the preceding claims in a high-temperature fuel cell stack ( 2 ).
DE19627504A 1996-07-08 1996-07-08 Connection lead plate for high temperature fuel cell stack Expired - Fee Related DE19627504C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19627504A DE19627504C1 (en) 1996-07-08 1996-07-08 Connection lead plate for high temperature fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19627504A DE19627504C1 (en) 1996-07-08 1996-07-08 Connection lead plate for high temperature fuel cell stack

Publications (1)

Publication Number Publication Date
DE19627504C1 true DE19627504C1 (en) 1997-10-23

Family

ID=7799259

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19627504A Expired - Fee Related DE19627504C1 (en) 1996-07-08 1996-07-08 Connection lead plate for high temperature fuel cell stack

Country Status (1)

Country Link
DE (1) DE19627504C1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805683A1 (en) * 1998-02-12 1999-08-19 Forschungszentrum Juelich Gmbh Connector element especially a bipolar plate in a fuel cell for mobile applications, e.g. automobiles
EP0955686A1 (en) * 1998-05-07 1999-11-10 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell incorporating the same, and method of production of the same
WO2000008701A2 (en) * 1998-08-04 2000-02-17 Siemens Aktiengesellschaft Method for the production of high temperature fuel cells
WO2001017045A2 (en) * 1999-08-31 2001-03-08 Forschungszentrum Jülich GmbH Layer between a cathode and an interconnector of a fuel cell and method for producing a layer of this type
DE10211042A1 (en) * 2002-03-13 2003-10-02 Andreas Schubert Bipolar plate for fuel cell stack has porous parts manufactured using powder metallurgical techniques and/or combination of powder metallurgical and conventional manufacturing techniques
DE10232129A1 (en) * 2002-07-11 2004-02-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fluid distribution device and method for manufacturing a fluid distribution device
WO2004075325A1 (en) * 2003-02-18 2004-09-02 Forschungszentrum Jülich GmbH Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
WO2004093211A2 (en) * 2003-04-15 2004-10-28 Bayerische Motoren Werke Fuel cell and/or electrolyser and method for the production thereof
DE10317388A1 (en) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Vehicle fuel cell with electrolyte layer sandwiched by anode and cathode layers, includes contacting component and second interconnector with mechanical and electrical bonding
DE10317361A1 (en) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Fuel cell and / or electrolyser and process for their production
WO2005008816A2 (en) 2003-07-18 2005-01-27 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
WO2006024246A1 (en) * 2004-08-30 2006-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell
WO2006053422A1 (en) 2004-11-16 2006-05-26 Versa Power Systems, Ltd. Electrically conductive fuel cell contact materials
EP1824674A1 (en) * 2004-11-30 2007-08-29 Sandvik Intellectual Property AB Strip product forming a surface coating of perovskite or spinel for electrical contacts
EP1850412A1 (en) * 2006-04-26 2007-10-31 Technical University of Denmark A multi-layer coating
WO2008083788A1 (en) * 2007-01-09 2008-07-17 Technical University Of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
EP2050158A2 (en) * 2006-08-04 2009-04-22 Delphi Technologies, Inc. Conductive coating for solid oxide fuel cell
WO2009059443A1 (en) * 2007-11-07 2009-05-14 Almus Ag Bipolar cell for fuel cell stack
US7892698B2 (en) * 2003-07-18 2011-02-22 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
US7897289B2 (en) 2003-09-08 2011-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Stackable high-temperature fuel cell
CN102687324A (en) * 2009-12-28 2012-09-19 Posco公司 Composite ceramic material and method for manufacturing the same
KR20180043843A (en) * 2015-09-14 2018-04-30 엘코겐 오와이 Protective device for structural plates of solid oxide batteries and method of forming said protective device
US10003083B2 (en) 2014-07-21 2018-06-19 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode
US10014531B2 (en) 2013-03-15 2018-07-03 Lg Fuel Cell Systems, Inc. Fuel cell system configured to capture chromium
US10062909B2 (en) 2015-10-28 2018-08-28 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747467B1 (en) * 1977-10-22 1979-02-22 Dornier System Gmbh, 7990 Friedrichshafen Cermet electrodes for solid electrolyte cells and processes for their manufacture
DE4122942C1 (en) * 1991-07-11 1992-01-30 Abb Patent Gmbh, 6800 Mannheim, De Plasma spray powder mfr. for fuel cell anode prodn. - by mixing nickel- and zirconium-oxide(s) with e.g. isopropanol, precalcining and coarsely comminuting
DE4235514A1 (en) * 1992-10-21 1994-04-28 Fraunhofer Ges Forschung High temperature fuel cell
WO1994011913A1 (en) * 1992-11-06 1994-05-26 Siemens Aktiengesellschaft High-temperature fuel cell stack and process for producing it
DE4422624A1 (en) * 1994-06-28 1996-01-04 Siemens Ag Corrosion prevention of chromium-contg. bodies in the presence of oxygen
DE4436456A1 (en) * 1994-10-12 1996-04-18 Siemens Ag Electrically conductive deformable coating for high temp. fuel cell electrode
DE19514164A1 (en) * 1995-04-15 1996-10-17 Dornier Gmbh Lanthanum chromite-based connecting element for high-temperature fuel cells and high-temperature electrolysis cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747467B1 (en) * 1977-10-22 1979-02-22 Dornier System Gmbh, 7990 Friedrichshafen Cermet electrodes for solid electrolyte cells and processes for their manufacture
DE4122942C1 (en) * 1991-07-11 1992-01-30 Abb Patent Gmbh, 6800 Mannheim, De Plasma spray powder mfr. for fuel cell anode prodn. - by mixing nickel- and zirconium-oxide(s) with e.g. isopropanol, precalcining and coarsely comminuting
DE4235514A1 (en) * 1992-10-21 1994-04-28 Fraunhofer Ges Forschung High temperature fuel cell
WO1994011913A1 (en) * 1992-11-06 1994-05-26 Siemens Aktiengesellschaft High-temperature fuel cell stack and process for producing it
DE4422624A1 (en) * 1994-06-28 1996-01-04 Siemens Ag Corrosion prevention of chromium-contg. bodies in the presence of oxygen
DE4436456A1 (en) * 1994-10-12 1996-04-18 Siemens Ag Electrically conductive deformable coating for high temp. fuel cell electrode
DE19514164A1 (en) * 1995-04-15 1996-10-17 Dornier Gmbh Lanthanum chromite-based connecting element for high-temperature fuel cells and high-temperature electrolysis cells

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19805683A1 (en) * 1998-02-12 1999-08-19 Forschungszentrum Juelich Gmbh Connector element especially a bipolar plate in a fuel cell for mobile applications, e.g. automobiles
EP0955686A1 (en) * 1998-05-07 1999-11-10 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell, fuel cell incorporating the same, and method of production of the same
WO2000008701A2 (en) * 1998-08-04 2000-02-17 Siemens Aktiengesellschaft Method for the production of high temperature fuel cells
WO2000008701A3 (en) * 1998-08-04 2000-06-08 Siemens Ag Method for the production of high temperature fuel cells
WO2001017045A2 (en) * 1999-08-31 2001-03-08 Forschungszentrum Jülich GmbH Layer between a cathode and an interconnector of a fuel cell and method for producing a layer of this type
WO2001017045A3 (en) * 1999-08-31 2001-06-14 Forschungszentrum Juelich Gmbh Layer between a cathode and an interconnector of a fuel cell and method for producing a layer of this type
DE10211042A1 (en) * 2002-03-13 2003-10-02 Andreas Schubert Bipolar plate for fuel cell stack has porous parts manufactured using powder metallurgical techniques and/or combination of powder metallurgical and conventional manufacturing techniques
DE10232129A1 (en) * 2002-07-11 2004-02-05 Deutsches Zentrum für Luft- und Raumfahrt e.V. Fluid distribution device and method for manufacturing a fluid distribution device
WO2004075325A1 (en) * 2003-02-18 2004-09-02 Forschungszentrum Jülich GmbH Method for producing a protective coating for substrates that are subjected to high temperatures and form chromium oxide
DE10317388A1 (en) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Vehicle fuel cell with electrolyte layer sandwiched by anode and cathode layers, includes contacting component and second interconnector with mechanical and electrical bonding
DE10317361A1 (en) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Fuel cell and / or electrolyser and process for their production
DE10317359A1 (en) * 2003-04-15 2004-11-04 Bayerische Motoren Werke Ag Fuel cell and / or electrolyser and process for their production
WO2004093211A3 (en) * 2003-04-15 2005-11-17 Bayerische Motoren Werke Ag Fuel cell and/or electrolyser and method for the production thereof
WO2004093211A2 (en) * 2003-04-15 2004-10-28 Bayerische Motoren Werke Fuel cell and/or electrolyser and method for the production thereof
DE10317388B4 (en) * 2003-04-15 2009-06-10 Bayerische Motoren Werke Aktiengesellschaft Fuel cell and / or electrolyzer and process for their preparation
US8962218B2 (en) 2003-07-18 2015-02-24 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
WO2005008816A2 (en) 2003-07-18 2005-01-27 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
WO2005008816A3 (en) * 2003-07-18 2006-01-26 Versa Power Systems Ltd Electrically conductive fuel cell contact material
US7892698B2 (en) * 2003-07-18 2011-02-22 Versa Power Systems, Ltd. Electrically conductive fuel cell contact material
US7897289B2 (en) 2003-09-08 2011-03-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Stackable high-temperature fuel cell
WO2006024246A1 (en) * 2004-08-30 2006-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Stackable high temperature fuel cell
JP2008521179A (en) * 2004-11-16 2008-06-19 ヴァーサ パワー システムズ リミテッド Conductive fuel cell contact material
WO2006053422A1 (en) 2004-11-16 2006-05-26 Versa Power Systems, Ltd. Electrically conductive fuel cell contact materials
AU2005306525B2 (en) * 2004-11-16 2010-07-15 Versa Power Systems, Ltd. Electrically conductive fuel cell contact materials
EP1824674A1 (en) * 2004-11-30 2007-08-29 Sandvik Intellectual Property AB Strip product forming a surface coating of perovskite or spinel for electrical contacts
EP1824674A4 (en) * 2004-11-30 2010-05-19 Sandvik Intellectual Property Strip product forming a surface coating of perovskite or spinel for electrical contacts
US8846211B2 (en) 2004-11-30 2014-09-30 Sandvik Intellectual Property Ab Strip product forming a surface coating of perovskite or spinel for electrical contacts
US9979030B2 (en) 2004-11-30 2018-05-22 Sandvik Intellectual Property Ab Strip product forming a surface coating of perovskite or spinel for electrical contacts
US8859116B2 (en) 2006-04-26 2014-10-14 Technical University Of Denmark Multi-layer coating
EP1850412A1 (en) * 2006-04-26 2007-10-31 Technical University of Denmark A multi-layer coating
AU2007241321B2 (en) * 2006-04-26 2010-07-01 Technical University Of Denmark A multi-layer coating
WO2007121986A1 (en) * 2006-04-26 2007-11-01 Technical University Of Denmark A multi-layer coating
EP2050158A2 (en) * 2006-08-04 2009-04-22 Delphi Technologies, Inc. Conductive coating for solid oxide fuel cell
EP2050158A4 (en) * 2006-08-04 2011-03-30 Delphi Tech Inc Conductive coating for solid oxide fuel cell
US20100119886A1 (en) * 2007-01-09 2010-05-13 Technical University Of Denmark Method of producing a multilayer barrier structure for a solid oxide fuel cell
US8945782B2 (en) 2007-01-09 2015-02-03 Technical University Of Denmark Method of producing a multilayer barrier structure for a solid oxide fuel cell
KR101123812B1 (en) * 2007-01-09 2012-03-22 토프쉐 푸엘 셀 에이/에스 A method of producing a multilayer barrier structure for a solid oxide fuel cell
WO2008083788A1 (en) * 2007-01-09 2008-07-17 Technical University Of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
EP1950824A1 (en) * 2007-01-09 2008-07-30 The Technical University of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
CN101682043B (en) * 2007-01-09 2014-07-02 丹麦科技大学 A method of producing a multilayer barrier structure for a solid oxide fuel cell
AU2007343351B2 (en) * 2007-01-09 2010-09-02 Technical University Of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
AU2007343351C1 (en) * 2007-01-09 2011-01-27 Technical University Of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
WO2009059443A1 (en) * 2007-11-07 2009-05-14 Almus Ag Bipolar cell for fuel cell stack
EP2521209A4 (en) * 2009-12-28 2014-12-24 Posco Composite ceramic material and a production method therefor
EP2521209A2 (en) * 2009-12-28 2012-11-07 Posco Composite ceramic material and a production method therefor
US9871259B2 (en) 2009-12-28 2018-01-16 Posco Method for manufacturing composite ceramic material
CN102687324A (en) * 2009-12-28 2012-09-19 Posco公司 Composite ceramic material and method for manufacturing the same
US10014531B2 (en) 2013-03-15 2018-07-03 Lg Fuel Cell Systems, Inc. Fuel cell system configured to capture chromium
US10003083B2 (en) 2014-07-21 2018-06-19 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode
KR20180043843A (en) * 2015-09-14 2018-04-30 엘코겐 오와이 Protective device for structural plates of solid oxide batteries and method of forming said protective device
US20180205094A1 (en) * 2015-09-14 2018-07-19 Elcogen Oy Protection arrangement and method of solid oxide cells
KR102026578B1 (en) * 2015-09-14 2019-09-27 엘코겐 오와이 Protective device for structural plates of solid oxide cells and method of forming the protective device
US10535883B2 (en) * 2015-09-14 2020-01-14 Elcogen Oy Protection arrangement and method of solid oxide cells
US10062909B2 (en) 2015-10-28 2018-08-28 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode

Similar Documents

Publication Publication Date Title
DE19627504C1 (en) Connection lead plate for high temperature fuel cell stack
DE10253958B4 (en) Low contact resistance PEM fuel cell and method of making a current collector for a fuel cell
DE112004002166B4 (en) Separator assembly for use in a stack of electrochemical cells and method of manufacturing
DE4237602A1 (en) High temperature fuel cell stack and process for its manufacture
EP2154742B1 (en) Fuel cell unit and method for producing an electrically conductive connection between an electrode and a bipolar plate
EP0966771B1 (en) Material for electric contact layers between a high-temperature fuel cell electrode and an interconnector
WO1998036464A1 (en) Interconnector for sofc fuel cell piles
EP0840388A1 (en) Battery of planar high-temperature fuel cells
EP1314217B1 (en) High temperature fuel cell
DE19841919A1 (en) Fuel cell module for, e.g., solid oxide fuel cell has soldered joints between the anodes and their current collectors
DE19609133C1 (en) Bipolar plate arrangement for high-temp. fuel-cell stack
DE19960674B4 (en) Substrate-supported electrode-electrolyte unit
EP1027743A2 (en) Method for the production of high temperature fuel cells
DE10317388B4 (en) Fuel cell and / or electrolyzer and process for their preparation
DE19605086C1 (en) High-temperature fuel cell and from such existing high-temperature fuel cell stacks
DE102008036848A1 (en) Method for producing electrically conductive connection between electrode and bipolar plate of fuel cell unit, involves integrally connecting electrode with bipolar plate or electrically conductive intermediate element
EP1614173B1 (en) Fuel cell and/or electrolyzer and method for producing the same
DE4436456C2 (en) Process for applying an electronically conductive and easily deformable functional layer
WO2002014011A1 (en) Method for producing an electroconductive contact layer on a metallic substrate for a fuel cell
DE9304984U1 (en) High temperature fuel cell stack
EP1301957B1 (en) Aluminous interconnector for fuel cells
DE10036272A1 (en) Bipolar fuel cell plate forming gas tight connection between its main outer surfaces, includes distributed, conductive, corrosion-resistant surface clusters
WO2004093211A2 (en) Fuel cell and/or electrolyser and method for the production thereof
DE102022113662A1 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
EP1665429A2 (en) Electric contact for high-temperature fuel cells and methods for the production of said contact

Legal Events

Date Code Title Description
8100 Publication of the examined application without publication of unexamined application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee