DE19625977A1 - CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic - Google Patents

CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic

Info

Publication number
DE19625977A1
DE19625977A1 DE1996125977 DE19625977A DE19625977A1 DE 19625977 A1 DE19625977 A1 DE 19625977A1 DE 1996125977 DE1996125977 DE 1996125977 DE 19625977 A DE19625977 A DE 19625977A DE 19625977 A1 DE19625977 A1 DE 19625977A1
Authority
DE
Germany
Prior art keywords
electrodes
deposition
coating
layers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1996125977
Other languages
German (de)
Inventor
Joerg Dipl Chem Arndt
Arnold Dr Ing Nuernberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1996125977 priority Critical patent/DE19625977A1/en
Publication of DE19625977A1 publication Critical patent/DE19625977A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium

Abstract

Process for chemical vapour deposition (CVD) of thin electrically poorly conductive to non-conductive layers (e.g. SiO2, Al2O3 or diamond-like carbon layers) is activated by transient glow discharges initiated by the 'Malter effect' (cf. Phys. Rev. 50 (1936) 48) at one or more contaminated negative electrodes. The contamination is maintained constant by the deposition process itself and the high energy micro-discharges occurring at the thin layers being utilised for the deposition. Also claimed are: (1) use of a modified process; and (2) an apparatus for carrying out the process.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur plasmainitiierten Gasphasenabscheidung dünner, elektrisch isolierender bis schlecht leitender Schichten auf beliebigen Substraten unter Verwendung transienter Entladungen. Die transienten Entladungen werden durch den von Malter /1/ 1936 beschriebenen Effekt, den sog. Malter-Effekt, initiiert. Das vorgestellte Verfahren gehört zur Gruppe der Chemical Vapour Deposition (CVD-Verfahren). Als Hochratenabscheidung werden Abscheideprozesse bezeichnet, in denen die Beschichtungsgeschwindigkeit bei einem Prozeßdruck um 1 mbar größer als 1 µm/h ist.The present invention relates to a method for plasma-initiated vapor deposition of thin, using electrically insulating to poorly conductive layers on any substrates transient discharges. The transient discharges are caused by the von Malter / 1/1936 described effect, the so-called Malter effect, initiated. The method presented belongs to the group Chemical Vapor Deposition (CVD). As high-rate separation Deposition processes in which the coating speed at a process pressure around 1 mbar is greater than 1 µm / h.

Technisches AnwendungsgebietTechnical application area

Keramische, glasähnliche bzw. allgemein elektrisch schlechtleitende bis isolierende Schichten werden in der Technik in großem Umfang als Schutz- oder Funktionsschichten eingesetzt. Die Schichtdicke kann dabei im Bereich von einigen nm bis mehrere µm variieren.Ceramic, glass-like or generally electrically poorly conductive to insulating layers are in of technology widely used as protective or functional layers. The layer thickness can vary in the range from a few nm to several µm.

BeispieleExamples

Diamantähnliche Kohlenstoffschichten, wie z. B. a-C:H-Schichten, können hohe Härten und einen niedrigen Reibkoeffizienten aufweisen. Zusätzlich ist diamantähnlicher Kohlenstoff biokompatibel /2, 3/.Diamond-like carbon layers, such as. B. a-C: H layers, can have high hardness and have low friction coefficients. In addition, diamond-like carbon is biocompatible / 2, 3 /.

Transparente Barriereschichten für Sauerstoff, Wasserdampf und Aromastoffe auf PE-Folien für Lebensmittel haben gegenüber kaschierten Metall/Kunststoffolien den zusätzlichen Vorteil der optischen Qualitätskontrolle. Als Material für die genannte Barriereschichten eignen sich z. B. Al₂O₃ und SiO₂.Transparent barrier layers for oxygen, water vapor and flavors on PE films for Food has the additional advantage of laminated metal / plastic films optical quality control. As a material for the barrier layers mentioned, z. B. Al₂O₃ and SiO₂.

Transprarente, kratzfeste Schichten aus SiO₂ finden in der Optik auf Gläsern aus Kunststoff ihre Anwendung.Transparent, scratch-resistant layers made of SiO₂ find their look on plastic glasses Application.

Stand der TechnikState of the art

Die Standardverfahren zur Herstellung der beschriebenen Schichten sind die PVD-Verfahren (physikalische Dampfabscheidung) im Hochvakuum im Druckbereich 10-7 bis 10-3 mbar und die CVD- Verfahren (chemische Dampfabscheidung) im Druckbereich 10-2 mbar bis Atmosphärendruck.The standard processes for producing the layers described are the PVD process (physical vapor deposition) in a high vacuum in the pressure range 10 -7 to 10 -3 mbar and the CVD process (chemical vapor deposition) in the pressure range 10 -2 mbar to atmospheric pressure.

Die PVD-Verfahren benötigen neben einer kostspieligen Pumpanlage (Vorpumpe und Hochvakuumpumpe wie z. B. Turbomolekularpumpe oder Öldiffusionspumpe) geeignete Kontainer zur Aufnahme des Hochvakuums sowie diverse Verdampferquellen wie thermische Verdampfer, Elektronenstrahlverdampfer, Magnetronanlagen oder ähnliche. Mit Ausnahme des thermischen Verdampfers, der nur eine geringe Abscheiderate (einige 100 nm/h) bewirken kann, sind die Verdampferquellen technisch aufwendig und teuer (einige DM 10.000,- bis DM 100.000,-). In addition to an expensive pump system (backing pump and High vacuum pump such. B. turbomolecular pump or oil diffusion pump) suitable containers for Recording of the high vacuum and various evaporator sources such as thermal evaporators, Electron beam evaporators, magnetron systems or the like. With the exception of the thermal Evaporators that can only achieve a low deposition rate (a few 100 nm / h) are the Evaporator sources are technically complex and expensive (some DM 10,000 to DM 100,000).  

Die CVD-Verfahren unterteilen sich in die Gruppen der thermischen Abscheidung, der plasmagestützten, der Flammenabscheidung und der photogestutzten Abscheidung. Die beiden letztgenannten Abscheideverfahren sind noch in der Entwicklungsphase.The CVD processes are divided into the groups of thermal deposition, the plasma-assisted, flame deposition and photo-assisted deposition. The two the latter deposition processes are still in the development phase.

Das thermische Verfahren hat den Nachteil, daß das Substrat geheizt werden muß und darum für viele Anwendungen, z. B. für die Beschichtung von temperaturempfindlichen Kunststoffen, nicht in Frage kommt.The thermal process has the disadvantage that the substrate has to be heated and therefore for many Applications, e.g. B. for the coating of temperature-sensitive plastics, out of the question is coming.

Die klassischen plasmagestützten Verfahren (Gleichstrom Verfahren, gleichstromgepulstes Verfahren, HF- oder Mikrowellenverfahren, z. B. mit ECR-Quelle) erlauben über eine zusätzliche Aktivierung des Abscheideprozeßes über das Plasma eine merkliche Absenkung der Substrattemperatur. Die Verfahren sind auf einen Druckbereich zwischen 10-3 mbar und 10-1 mbar beschränkt. Die Stromversorgungen und die Einkopplungen der Energie zur Plasmaerzeugung bei HF- und Mikrowelle sind technisch anspruchvoll und teuer (10.000,- DM bis 100.000,00 DM).The classic plasma-assisted processes (direct current process, direct current pulsed process, HF or microwave process, e.g. with an ECR source) allow the substrate temperature to be significantly reduced by additionally activating the plasma deposition process. The processes are limited to a pressure range between 10 -3 mbar and 10 -1 mbar. The power supplies and the coupling of the energy for plasma generation in HF and microwave are technically demanding and expensive (10,000, - DM to 100,000.00 DM).

Erzeugte Verbesserung und Vorteile gegenüber dem Stand der TechnikGenerated improvement and advantages over the prior art

Das Verfahren benötigt nicht zwingend eine höherfrequente Hochspannung.The method does not necessarily require a higher-frequency high voltage.

Das Verfahren arbeitet z. B. mit Gleichspannung von wenigen hundert Volt als auch z. B. mit einfacher Wechselspannung 230V/400V/50Hz im Druckbereich 0,1 bis 10 mbar.The method works e.g. B. with DC voltage of a few hundred volts and z. B. with simple AC voltage 230V / 400V / 50Hz in the pressure range 0.1 to 10 mbar.

Der Druckbereich, in weichem das hier vorgestellte Verfahren getestet wurde, reicht von 10-2 mbar bis 10 mbar und kann bis Atmosphärendruck ausgedehnt werden.The pressure range in which the method presented here was tested ranges from 10 -2 mbar to 10 mbar and can be extended to atmospheric pressure.

Durch die Nutzung der transienten, an der Kathode lokal konzentrierten Entladung bzw. Entladungen stehen ausreichend hohe Energiedichten zur Aktivierung der Abscheidung von z. B. SiO₂-, Al₂O₃- oder a-C:H- Schichten zur Verfügung. Die auf die Flächeneinheit bezogene Energie-Einkopplung ist niedrig. Beispielsweise liegt im Druckbereich 0,5 bis 10 mbar die Energiedichte zur Abscheidung von z. B. SiO₂-, Al₂O₃- oder a-C:H- Schichten im Bereich zwischen 0,1 bis 0,5 W/cm². Im Falle der Abscheidung von SiO₂-Schichten liegt die Abscheiderate im genannten Druckbereich bei 10 µm/h.By using the transient discharge or discharges locally concentrated at the cathode are sufficiently high energy densities to activate the deposition of e.g. B. SiO₂-, Al₂O₃- or a-C: H layers available. The energy coupling related to the unit area is low. For example, in the pressure range 0.5 to 10 mbar the energy density for the deposition of e.g. B. SiO₂-, Al₂O₃- or a-C: H layers in the range between 0.1 to 0.5 W / cm². In the case of deposition SiO₂ layers have a deposition rate in the pressure range of 10 µm / h.

Das Substrat ist nicht Teil einer Elektrode und erfährt keine direkte Heizung durch den Entladungsstrom. Das Substrat kann jedoch über eine zusätzliche Heizung geheizt werden.The substrate is not part of an electrode and is not directly heated by the Discharge current. However, the substrate can be heated by an additional heater.

Das Verfahren eignet sich im besonderen für die Beschichtung von temperaturempfindlichen Kunststoffen und Folien bei Raumtemperatur.The method is particularly suitable for the coating of temperature sensitive Plastics and foils at room temperature.

Der Abstand des Substrates zu den Elektroden wie auch die Elektrodenform ist frei wählbar bzw. den Gegebenheiten anpaßbar.The distance from the substrate to the electrodes as well as the shape of the electrodes is freely selectable or Customizable conditions.

Grundzüge des LösungswegesBasics of the solution

Das nachfolgend beschriebene Verfahren zur chemischen Gasphasenabscheidung nutzt zur Aktivierung des Abscheideprozeßes die energiereiche Phase der transienten Entladung. In der Literatur wird dieser Entladungstyp auch als Hochdruck-Glimmentladung bezeichnet. Die energiereiche Phase aktiviert den Abscheideprozeß. Die Zündung der transienten Glimmentladung erfolgt über die in situ erzeugte, dünne isolierende bis schlecht leitende Schicht (Kontamination der Elektroden) durch erleichterten Elektronenaustritt an der gerade negativen Elektrode, den sogenannten Malter-Effekt /1/:
Die Aufladung von isolierenden Oberflächenschichten oder solchen mit schlechter Leitung durch Ionen aus dem Plasma verursacht in den Schichten hohe elektrische Felder (E<10⁶ V/cm), welche es den Elektronen gestatten, die Schicht zu durchtunneln.
The process for chemical vapor deposition described below uses the high-energy phase of the transient discharge to activate the deposition process. This type of discharge is also referred to in the literature as high-pressure glow discharge. The high-energy phase activates the deposition process. The ignition of the transient glow discharge takes place via the thin insulating to poorly conductive layer generated in situ (contamination of the electrodes) by facilitating the escape of electrons at the negative electrode, the so-called Malter effect / 1 /:
The charging of insulating surface layers or those with poor conduction by ions from the plasma causes high electric fields (E <10⁶ V / cm) in the layers, which allow the electrons to tunnel through the layer.

Ein wesentliches Merkmal der transienten Glimmentladung ist der konzentrierte, kurzlebige Fußpunktansatz an der Kathode. Je nach Stromart (Gleich-/Wechselfeld), Größe und Dauer der Energieeinkopplung treten die Mikroentladungen, welche nicht im thermischen Gleichgewicht sind, als einfacher, zeitlich begrenzter Kathodenansatz/Stromfaden oder aus vielen zeitlich parallel brennenden Kathodenansätzen/Stromfäden kurzer Dauer auf. Im kathodischen Fußpunkt wird die isolierende Schicht zerstört und dient im Falle eines Wechselstrombetriebes bei Phasenumkehr als (metallisch leitende) Anode.An essential feature of the transient glow discharge is the concentrated, short-lived Base point on the cathode. Depending on the type of current (DC / AC field), size and duration of the Coupling of energy occurs as micro-discharges, which are not in thermal equilibrium simple, temporary cathode / current filament or from many burning in parallel  Cathode attachments / current threads of short duration. At the cathodic base, the isolating Layer destroys and serves in the case of AC operation with phase reversal as (metallic conductive) anode.

Das Substrat ist örtlich von den Elektroden durch einen freien Raum getrennt.The substrate is locally separated from the electrodes by a free space.

AusführungsbeispieleEmbodiments

Die Erfindung wird nachfolgend anhand zweier Ausführungsbeispiele näher erläutert.The invention is explained in more detail below using two exemplary embodiments.

Beispiel 1example 1 Anordnung zur Erzeugung einer Barriereschicht aus z. B. Al₂O₃ für z. B. Sauerstoff, Wasserdampf und Aromastoffe auf einer Kunststoffolie, z. B. PolyethylenArrangement for producing a barrier layer from z. B. Al₂O₃ for z. B. oxygen, Steam and flavorings on a plastic film, e.g. B. polyethylene Bezugszeichenliste zu Beispiel 1 (Abb. 1)Reference list for example 1 ( Fig. 1)

1 Flächenelektrode
2 Gitterelektrode
3 Entladungsraum
4 Stromquelle
5 gasförmige Precursorzuführung
6 Folie
7 Abtransport der Restprodukte
1 surface electrode
2 grid electrodes
3 discharge space
4 power source
5 gaseous precursor feed
6 slide
7 Removal of residual products

Die auf die Gitterelektroden 2 abgeschiedenen, isolierenden Al₂O₃-Schichten (Kontmination) erzwingen die Zündungen der transienten Entladungen. Die transienten Entladungen zerlegen im Entladungsraum 3 das gasförmig antransportierte Ausgangsmaterial 5 (Precursor) in die für die chemische Gasphasenabscheidung notwendigen Reaktanden. Die transienten Entladungen werden aus einer Stromquelle 4 gespeist. Die Abscheidung erfolgt sowohl auf der Flächen- 1 und Gitterelektrode 2 (Kontamination) als auch auf der temperaturempfindlichen PE-Folie 6 (Substrat). Die gasförmigen Restprodukte 7 der Reaktion werden abtransportiert. Der Abtransport erfolgt durch Absaugen über eine Pumpe, wobei ein Ausfällen des restlichen Precursors vor der Pumpe vorgesehen ist.The deposited on the grid electrodes 2 , insulating Al₂O₃ layers (coordination) force the ignition of the transient discharges. In the discharge space 3, the transient discharges decompose the gaseous starting material 5 (precursor) into the reactants necessary for chemical vapor deposition. The transient discharges are fed from a current source 4 . The deposition takes place both on the surface electrode 1 and grid electrode 2 (contamination) and on the temperature-sensitive PE film 6 (substrate). The gaseous residual products 7 of the reaction are removed. They are removed by suction via a pump, with the rest of the precursor failing in front of the pump.

Beispiel 2Example 2 Anordnung einer Abscheideapparatur für die Beschichtung von Brillengläsern, z. B. aus Acrylglas, mit transparenten kratzfesten Schichten, z. B. mit SiO₂Arrangement of a separator for the coating of glasses, e.g. B. from Acrylic glass, with transparent scratch-resistant layers, e.g. B. with SiO₂ Bezugszeichenliste zu Beispiel 2 (Abb. 2)Reference number list for example 2 ( Fig. 2)

1 Gitterelektrode(n)
2 gasförmige Precursorzuführung
3 Entladungsraum
4 Stromquelle
5 Acrylglaslinsen (Substrat)
6 rotierender Substrathalter
7 Abtransport der Restprodukte
1 grid electrode (s)
2 gaseous precursor feed
3 discharge space
4 power source
5 acrylic glass lenses (substrate)
6 rotating substrate holder
7 Removal of residual products

Analog wie in Beispiel 1 erzwingen die auf den Gitterelektroden 1 abgeschiedenen SiO₂-Schichten (Kontamination) die Zündungen der transienten Entladungen. Die transienten Entladungen zerlegen im Entladungsraum 3 das gasförmig antransportierte Ausgangsmaterial 2 (Precursor) in die für die chemische Gasphasenabscheidung notwendigen Reaktanden.Analogous to example 1, the SiO 2 layers (contamination) deposited on the grid electrodes 1 force the ignition of the transient discharges. In the discharge space 3, the transient discharges decompose the gaseous starting material 2 (precursor) into the reactants necessary for chemical vapor deposition.

Die Abscheidung erfolgt sowohl auf den Gitterelektroden 1 als auch auf den Linsen 5 des rotierenden Substrathalters 6. Die gasförmigen Restprodukte 7 werden durch Absaugen abtransportiert. The deposition takes place both on the grid electrodes 1 and on the lenses 5 of the rotating substrate holder 6 . The gaseous residual products 7 are removed by suction.

Mit der Erfindung gelöste AufgabeObject achieved with the invention

Aufgabe der vorliegenden Erfindung zur chemischen Gasphasenabscheidung dünner Schichten ist es, die Investitionskosten der Abscheidevorrichtung, wie auch die Kosten des Abscheideverfahrens gegenüber den herkömmlichen Verfahren, zur Erzeugung der beschriebenen Schichttypen, niedrig zu halten.The object of the present invention for chemical vapor deposition of thin layers is the investment costs of the separation device, as well as the costs of the separation process low compared to the conventional methods for producing the described layer types hold.

Es werden keine teuren Hochvakuumpumpen, wie z. B. Turbomolekularpumpen, oder technisch anspruchsvolle Stromversorgungen, wie das z. B. bei der Beschichtung mit HF, Mikrowelle oder Barrierenbeschichtung /3, 4, 5/ der Fall ist, benötigt.There are no expensive high vacuum pumps such. B. turbomolecular pumps, or technically sophisticated power supplies such as B. when coating with HF, microwave or Barrier coating / 3, 4, 5 / the case is needed.

Literaturliterature

/1/ Malter, L., Phys. Rev. 50 (1936) 48
/2/ Parker, T. L., Parker, K. L., McColl, I. R., Grant, D. M., Wood, J. V.,: "The biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study", Diamond and Related Materials, 3 (1994) 1120.1123,
/3/ McColl, I. R., Grant, D. M., Green S. M., Wood, J. V., Parker, T. L., Parker, K., Goruppa, A. A., and Baithwaite N. St. J.,: "Low temperature plasma-assisted chemical vapour deposition of amorphous carbon films for biomedical-polymeric substrates", Diamond and Related Materials, 3 (1993) 83-87
/4/ Reitz, U., Salge, J. G. H., Schwarz, R.: "Pulsed barrier discharges for thin film production at atmospheric pressure", Surface and Coatings Technology, 59 (1993) 144-147
/5/ Schwarz, R., Salge, J. G. H.,: "Deposition of thin films on surfaces using pulsed barrier discharges and pure reactiv gases", 11 th International Symposium on Plasma Chemistry, Symposium Proceedings, 22nd August -27th August 1993, Loughborough
/6/ Salge, J. G. H., Schwarz, R., Meiners, S.: Oberflächenbeschichtung mit transienten Glimmentladungen bei Atmosphärendruck, VDI-Technologiezentrum Physikalische Technologien, Tagungsband des Statusseminars, "Oberflächen- und Schichttechnologien", Mainz, 1995, S. 31-38
/ 1 / Malter, L., Phys. Rev. 50 (1936) 48
/ 2 / Parker, TL, Parker, KL, McColl, IR, Grant, DM, Wood, JV ,: "The biocompatibility of low temperature diamond-like carbon films: a transmission electron microscopy, scanning electron microscopy and cytotoxicity study", Diamond and Related Materials, 3 (1994) 1120.1123,
/ 3 / McColl, IR, Grant, DM, Green SM, Wood, JV, Parker, TL, Parker, K., Goruppa, AA, and Baithwaite N. St. J.,: "Low temperature plasma-assisted chemical vapor deposition of amorphous carbon films for biomedical-polymeric substrates ", Diamond and Related Materials, 3 (1993) 83-87
/ 4 / Reitz, U., Salge, JGH, Schwarz, R .: "Pulsed barrier discharges for thin film production at atmospheric pressure", Surface and Coatings Technology, 59 (1993) 144-147
/ 5 / Schwarz, R., Salge, JGH ,: "Deposition of thin films on surfaces using pulsed barrier discharges and pure reactiv gases", 11th International Symposium on Plasma Chemistry, Symposium Proceedings, 22nd August -27th August 1993, Loughborough
/ 6 / Salge, JGH, Schwarz, R., Meiners, S .: Surface coating with transient glow discharges at atmospheric pressure, VDI Technology Center for Physical Technologies, conference proceedings of the status seminar, "Surface and Layer Technologies", Mainz, 1995, pp. 31-38

Claims (10)

1. Verfahren zur chemischen Gasphasenabscheidung dünner, elektrisch schlecht bis nichtleitender Schichten z. B. SiO₂-, Al₂O₃-, diamantähnlichen C-Schichten, dadurch gekennzeichnet, daß die Zündung einer den Abscheideprozeß aktivierenden transienten Glimmentladung an der kontaminierten negativen Elektrode über den von Malter beschriebenen Effekt erfolgt, wobei die Kontamination der Elektrode(n) durch den eigenen Abscheideprozeß von isolierenden bis schlecht leitenden Schichten stetig aufrecht erhalten wird und die an den dünnen, elektrisch isolierenden bis schlecht leitenden Schichten auftretenden energiereichen Mikroentladungen für die Abscheidungen benutzt werden.1. Process for chemical vapor deposition of thin, electrically poor to non-conductive layers such. B. SiO₂-, Al₂O₃-, diamond-like C-layers, characterized in that the ignition of a transient glow discharge activating the deposition process takes place on the contaminated negative electrode via the effect described by Malter, the contamination of the electrode (s) by the own deposition process of insulating to poorly conductive layers is constantly maintained and the high-energy micro-discharges occurring on the thin, electrically insulating to poorly conductive layers are used for the deposits. 2. Verführen nach Anspruch 1, dadurch gekennzeichnet, daß das Substrat von den Elektroden örtlich getrennt ist.2. Seducing according to claim 1, characterized in that the substrate of the electrodes locally is separated. 3. Verführen nach Anspruch 1 und 2, dadurch gekennzeichnet, daß das Substrat, im Druckbereich 100 - 10-1 mbar, ohne zusätzliche Kühlmaßnahmen bei Raumtemperatur, bzw. bei Temperaturen unter 150°C beschichtet werden kann.3. Seduction according to claim 1 and 2, characterized in that the substrate, in the pressure range 100 - 10 -1 mbar, can be coated at room temperature or at temperatures below 150 ° C without additional cooling measures. 4. Verwendung des Verfahrens nach Anspruch 1 und 2, dadurch gekennzeichnet, daß verschiedene Stromversorgungsarten bzw. -Geräte zur Anwendung kommen können, wie Gleichstrom-, 50-60 Hz Wechselstrom- und höher frequente Stromversorgungen, auch mit nicht sinusförmigen Verläufen, z. B. Pulsbetrieb von Gleich- und Wechselströmen.4. Use of the method according to claim 1 and 2, characterized in that different Power supply types or devices can be used, such as DC, 50-60 Hz AC and higher frequency power supplies, even with non-sinusoidal curves, e.g. B. pulse operation of direct and alternating currents. 5. Verwendung des Verfahrens nach Anspruch 1 und 2, dadurch gekennzeichnet, daß Form, Abstand und Material der Elektroden den Gegebenheiten, wie Druckbereich des Abscheideprozesses, thermische Belastung der Elektroden oder Form des Substrates, angepaßt werden.5. Use of the method according to claim 1 and 2, characterized in that shape, distance and material of the electrodes, such as the pressure range of the deposition process, thermal stress on the electrodes or shape of the substrate. 6. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Beschichtung in einem Kontainer erfolgt, in dem eine definierte Atmosphäre wie Gasart, Druck, Temperatur und Gasführung eingestellt werden kann. Der Unterdruck wird mit entsprechenden Vakuumpumpen erzeugt.6. Device for performing the method according to claim 1 to 5, characterized in that the coating takes place in a container in which a defined atmosphere such as gas type, pressure, Temperature and gas flow can be adjusted. The vacuum is with corresponding Vacuum pumps generated. 7. Vorrichtung nach einem oder mehreren der vorherigen Ansprüche 1 bis 6 zur Beschichtung von Folien, Blechen, Stangen, Rohren oder Gewebebahnen, dadurch gekennzeichnet, daß in dem Kontainer der Transport der Folien, Blechen, Stangen, Rohren oder Gewebebahnen über angetriebene Rollen und Führungselementen erfolgt. Die Folien, Bleche, Stangen, Rohre oder Gewebebahnen werden über oder unter oder durch entsprechend geformte Beschichtungselektroden geführt.7. The device according to one or more of the preceding claims 1 to 6 for coating Foils, sheets, rods, tubes or fabric sheets, characterized in that in the Container for transporting the foils, sheets, rods, tubes or fabric webs over driven rollers and guide elements. The foils, sheets, rods, pipes or Fabric webs are placed over or under or through appropriately shaped coating electrodes guided. 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Transportgeschwindigkeit der Substrate über die Beschichtungsrate bzw. die abgeschiedene Schichtdicke gesteuert wird.8. The device according to claim 7, characterized in that the transport speed of the Substrates is controlled via the coating rate or the deposited layer thickness. 9. Vorrichtung nach einem oder mehreren der vorherigen Ansprüche 1 bis 6 zur Beschichtung von optischen Gläsern dadurch gekennzeichnet, daß in dem Kontainer die Substrathalterung karussellartig an der oder den Beschichtungselektroden rotiert.9. The device according to one or more of the preceding claims 1 to 6 for coating Optical glasses characterized in that the substrate holder in the container rotated like a carousel on the coating electrode or electrodes. 10. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine rechnergesteuerte Prozeßsteuerung vorgesehen ist, welche den Abscheidevorgang hinsichtlich Precursorzuführung, Gaszufuhr, Druckeinstellung, Temperartur der Elektroden, des Gases, des Substrates und Abscheiderate steuert.10. The device according to one or more of claims 1 to 6, characterized in that a Computer-controlled process control is provided, which with regard to the separation process Precursor supply, gas supply, pressure setting, temperature of the electrodes, the gas, the Controls substrates and deposition rate.
DE1996125977 1996-06-28 1996-06-28 CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic Withdrawn DE19625977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1996125977 DE19625977A1 (en) 1996-06-28 1996-06-28 CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1996125977 DE19625977A1 (en) 1996-06-28 1996-06-28 CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic

Publications (1)

Publication Number Publication Date
DE19625977A1 true DE19625977A1 (en) 1998-01-02

Family

ID=7798315

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1996125977 Withdrawn DE19625977A1 (en) 1996-06-28 1996-06-28 CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic

Country Status (1)

Country Link
DE (1) DE19625977A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123583A1 (en) * 2001-05-15 2002-11-28 Fraunhofer Ges Forschung Device for coating and/or surface treating substrates using a low pressure plasma comprises a cathode, an anode, and an auxiliary electrode with passages arranged between the substrate and the cathode forming an outer chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123583A1 (en) * 2001-05-15 2002-11-28 Fraunhofer Ges Forschung Device for coating and/or surface treating substrates using a low pressure plasma comprises a cathode, an anode, and an auxiliary electrode with passages arranged between the substrate and the cathode forming an outer chamber
DE10123583B4 (en) * 2001-05-15 2006-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for coating and / or surface treatment of substrates by means of low pressure plasma and use of the device

Similar Documents

Publication Publication Date Title
Alexandrov et al. Chemical vapor deposition enhanced by atmospheric pressure non‐thermal non‐equilibrium plasmas
US7282244B2 (en) Replaceable plate expanded thermal plasma apparatus and method
US6299948B1 (en) Method and device for surface treatment with a plasma at atmospheric pressure
KR20010012970A (en) Method of forming diamond-like carbon coating in vacuum
Limb et al. Molecular design of fluorocarbon film architecture by pulsed plasma enhanced and pyrolytic chemical vapor deposition
EP0791668A2 (en) Apparatus and method for depositing diamond film
WO2002025693A1 (en) Method and device for treating surfaces using a glow discharge plasma
KR102192283B1 (en) Plasma annealing method and device for same
US9401265B2 (en) Method and device for polarizing a DBD electrode
US4444805A (en) Optical coating
EP0362275A1 (en) Fabrication of a semiconductor base material.
Liu et al. Plasma-assisted CVD of hydrogenated diamond-like carbon films by low-pressure dielectric barrier discharges
JP5256694B2 (en) Production method of titanium oxide photocatalyst thin film
DE102008064134B4 (en) Process for coating objects by means of a low-pressure plasma
US3167449A (en) Method of forming carbon coating
DE19625977A1 (en) CVD of poorly conductive or non-conductive thin film, used to produce e.g. ceramic
US5431968A (en) Method for simultaneously coating a plurality of filaments
Homola et al. Large‐area open air plasma sources for roll‐to‐roll manufacture: High‐power density surface plasma generated by diffuse coplanar surface barrier discharge
EP0815283B1 (en) Deposition of diffusion blocking layers within a low pressure plasma chamber
JPH01234397A (en) Method and apparatus for producing diamond-like thin film
JPS63475A (en) Hybrid ion plating device
Fang et al. Apparatus for low-temperature growth of diamond-containing films
Miyazaki et al. Growth kinetics of amorphous and microcrystalline silicon studied by using radical beam
Chingsungnoen et al. Effect of Acetylene Concentration on Structural Properties of Hydrogenated Amorphous Carbon Films Prepared using Showerhead Plasma Chemical Vapor Deposition
JPS6357768A (en) Continuous ion plating device for high-speed moving film

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee