DE19602176C2 - High-temperature fuel cell with a cathode made of a perovskite - Google Patents

High-temperature fuel cell with a cathode made of a perovskite

Info

Publication number
DE19602176C2
DE19602176C2 DE19602176A DE19602176A DE19602176C2 DE 19602176 C2 DE19602176 C2 DE 19602176C2 DE 19602176 A DE19602176 A DE 19602176A DE 19602176 A DE19602176 A DE 19602176A DE 19602176 C2 DE19602176 C2 DE 19602176C2
Authority
DE
Germany
Prior art keywords
fuel cell
perovskite
phase
cathode
temperature fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19602176A
Other languages
German (de)
Other versions
DE19602176A1 (en
Inventor
Lambertus G J De Haart
Aristides Naoumidis
Klaus Teske
Helmut Ullmann
Nikolai Trofimenko
Jens Paulsen
Gudrun Meckel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to DE19602176A priority Critical patent/DE19602176C2/en
Publication of DE19602176A1 publication Critical patent/DE19602176A1/en
Application granted granted Critical
Publication of DE19602176C2 publication Critical patent/DE19602176C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/104Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Inert Electrodes (AREA)

Description

Die Erfindung bezieht sich auf eine Hochtemperaturbrennstoffzelle mit einer Kathode, die aus einem Perowskiten besteht.The invention relates to a high temperature fuel cell with a cathode consisting of a perovskite.

Es ist bekannt, Perowskite oder perowskitähnliche Strukturen zur Herstellung von Kathoden bei Hochtempe­ ratur-Brennstoffzellen einzusetzen.It is known to be perovskite or perovskite-like Structures for the production of cathodes at high temperature rature fuel cells.

Brennstoffzellen wandeln chemische Energie in elektri­ schen Strom um. Ein aus Anode, Elektrolyt und Kathode bestehendes System bewerkstelligt eine solche Umwand­ lung. An der Kathode wird der Sauerstoff der Luft mit Elektronen beladen und in Oxidionen umgewandelt. Die Oxidionen treten an der Dreiphasengrenze Kathode/ Luft/Elektrolyt in den Elektrolyten ein.Fuel cells convert chemical energy into electri electricity. One made of anode, electrolyte and cathode existing system accomplishes such a conversion lung. The oxygen in the air is also at the cathode Load electrons and convert them into oxide ions. The Oxide ions occur at the three-phase boundary cathode / Air / electrolyte in the electrolyte.

Um einen hohen Stromfluß zu ermöglichen, muß die Ka­ thode ein guter Elektronenleiter sein. Zur Gewährlei­ stung eines hohen Sauerstoffaustausches ist die Kathode vorteilhaft porös.To enable a high current flow, the Ka be a good electron conductor. To guarantee A high oxygen exchange is the cathode advantageously porous.

Aufgrund von unterschiedlichen Ausdehnungskoeffizienten der verschiedenen Materialien verhält sich das System Kathode/Elektrolyt mechanisch instabil. Daneben entste­ hen infolge der hohen Arbeitstemperaturen neue Phasen und chemische Verbindungen, die gleichfalls negativ auf das gewünschten Verhalten des Systems Ka­ thode/Elektrolyt einwirken. Daher sollte sich das Ka­ thodenmaterial ferner chemisch inert verhalten und einen ähnlichen Ausdehnungskoeffizienten wie der Elektrolyt aufweisen.Due to different expansion coefficients the system behaves of different materials Mechanically unstable cathode / electrolyte. Next to it hen new phases due to the high working temperatures and chemical compounds that are also negative  the desired behavior of the system Ka act on the electrolyte. Therefore, the Ka method material also be chemically inert and a coefficient of expansion similar to that Have electrolyte.

Um stabile Keramiken zu erhalten, werden einphasige Strukturen bevorzugt. Die Perowskite werden mit weite­ ren Oxiden dotiert, um katalytische Eigenschaften und elektronisches Leitfähigkeitsvermögen zu erhöhen. Bisher werden unterschiedlich dotierte AIIIBIIIO3- Perowskite, zum Beispiel Lanthan-Manganite oder Lanthan-Ferrite, dotiert mit Strontium, Eisen oder Cobalt als Kathodenmaterial bevorzugt verwendet (Lit: B. C. H. Steele, State-of-the-Art SOFC Ceramic Materials, ist Europ. SOFC Forum, Oct. 3-7, 1994, Lucerne/Swiss, Proc., p. 375; H. U. Anderson, Defect chemistry of p-type Perowskites, 14th Riso Intern. Symp. on Materials Science, 6-10 Sept. 1993; B. C. H. Steele, Isotopic exchange and optimization of SOFC Cathode materials, 14th Riso Intern. Symp. an Materials Science, 6-10 Sept. 1993).In order to obtain stable ceramics, single-phase structures are preferred. The perovskites are doped with further oxides to increase catalytic properties and electronic conductivity. So far, differently doped A III B III O 3 perovskites, for example lanthanum-manganites or lanthanum ferrites, doped with strontium, iron or cobalt, have been used with preference as the cathode material (Lit: BCH Steele, State-of-the-Art SOFC Ceramic Materials , is Europ. SOFC Forum, Oct. 3-7, 1994, Lucerne / Swiss, Proc., p. 375; HU Anderson, Defect chemistry of p-type Perowskites, 14th Riso Intern. Symp. on Materials Science, 6-10 Sept. 1993; BCH Steele, Isotopic exchange and optimization of SOFC Cathode materials, 14th Riso Intern. Symp. An Materials Science, 6-10 Sept. 1993).

Es ist jedoch bisher nicht möglich, alle genannten An­ forderungen mit einem Material im ausreichenden Maße zu gewährleisten. Bei sehr guten funktionellen Eigen­ schaften sind die bekannten Materialien chemisch reak­ tiv mit anderen in der Konstruktion erforderlichen Ma­ terialien oder im thermischen Ausdehnungskoeffizienten nicht angepaßt. However, it is not yet possible to do all of the above to a sufficient extent with one material guarantee. With very good functional properties The known materials are chemically reactive tiv with other dimensions required in the construction materials or in the coefficient of thermal expansion not adjusted.  

Aufgabe der Erfindung ist die Schaffung einer Hochtemperaturbrennstoffzelle mit einer verbesserten Kathode.The object of the invention is to create a high temperature fuel cell with an improved cathode.

Gelöst wird die Aufgabe durch eine Hochtemperaturbrennstoffzelle mit den Merk­ malen des Anspruchs.The task is solved by a high-temperature fuel cell with the mark paint the claim.

Ein Mischoxid der Zusammensetzung MIIMIVO3 als Wirtsoxid wird mit einer Dotierung von 5 bis 30 mol% Mx auf dem Platz MIV verwendet. Es entsteht ein Mischoxid der Zusammensetzung MIIMIV(MX)O3-y. Dieses Material scheidet bei erhöhter Temperatur von 600 bis 1000°C und bei erhöhtem Sauerstoffpartialdruck in seiner Umgebung eine zweite Phase, zum Beispiel das Oxid MIIMxO3-z aus. Beim Absinken des Sauerstoffpartialdrucks wird das Oxid reversibel wieder im Mischoxid aufgelöst.A mixed oxide of the composition M II M IV O 3 as the host oxide is used with a doping of 5 to 30 mol% M x on the M IV site . A mixed oxide of the composition M II M IV (M X ) O 3-y is formed . This material separates a second phase, for example the oxide M II M x O 3-z , at an elevated temperature of 600 to 1000 ° C. and at an increased oxygen partial pressure in its environment. When the oxygen partial pressure drops, the oxide is reversibly dissolved again in the mixed oxide.

Mittels des anspruchsgemäßen Kathodenmaterials lassen sich Eigen­ schaften der zwei Phasen addieren, etwa die chemische Reaktionsstabilität und thermische Ausdehnung der Wirtsphase mit der hohen elektrischen Leitfähigkeit und Sauerstoffaustauschfähigkeit der temporär auftretenden zweiten Phase. Die Wiederauflösung der zweiten Phase sorgt vorteilhaft für eine Regeneration der ka­ talytischen Fähigkeiten der zweiten Phase. Aufheiz- und Abkühlungszyklen verursachen aufgrund des Auflösungs­ vermögens keine mechanischen Probleme zwischen der Wirts- und der zweiten Phase.By means of the sophisticated cathode material you can create your own Add the properties of the two phases, for example the chemical one Reaction stability and thermal expansion of the Host phase with high electrical conductivity and Oxygen exchange ability of the temporarily occurring second phase. The redissolution of the second phase ensures regeneration of the ka  second stage analytical skills. Heating and Cooling cycles cause due to the dissolution have no mechanical problems between the Host and the second phase.

Es kommt darauf an, solche Materialzusammensetzungen zu wählen, die unter den Temperatur- und pO2-Bedingungen, unter denen sie die Funktion ausüben sollen, die gefor­ derten Eigenschaften zeigen.It is important to choose such material compositions that show the required properties under the temperature and pO 2 conditions under which they are to perform the function.

Als Wirtsmaterialien sind AIIBIVO3-Perowskite vorgese­ hen, da diese eine hohe Redoxstabilität und chemische Verträglichkeit mit anderen Materialien aufweisen. Zwar ist ihre elektronische Leitfähigkeit und katalytische Wirksamkeit für Reaktionen mit Sauerstoff relativ ge­ ring. Dieser Nachteil wird jedoch durch die temporär auftretende Phase kompensiert, da diese das gewünschte Leitfähigkeitsverhalten und die gewünschte katalytische Wirkung ergänzt.A II B IV O 3 perovskites are provided as host materials, since they have high redox stability and chemical compatibility with other materials. Their electronic conductivity and catalytic effectiveness for reactions with oxygen are relatively low. However, this disadvantage is compensated for by the temporarily occurring phase, since this complements the desired conductivity behavior and the desired catalytic effect.

Als die temporäre Phase bildende Übergangsmetallkat­ ionen eignen sich insbesondere Co, Ti, Fe oder Mn, mit denen in entsprechender Menge dotiert wird. Elektrische Leitfähigkeit und katalytische Wirksamkeit, die das Wirtsmaterial nicht im ausreichendem Maße besitzt, wer­ den bei dieser Wahl in besonders hohem Maße ergänzt. Es kann dem Fachmann überlassen bleiben, optimale Kom­ binationen für den jeweiligen Anwendungsfall mittels einiger, weniger Versuche auszuwählen. As the transition metal cat forming the temporary phase Ions are particularly suitable for Co, Ti, Fe or Mn which are endowed in the appropriate amount. Electrical Conductivity and catalytic effectiveness that the Who owns host material is not sufficient supplemented to a particularly high degree in this election. It can be left to the specialist to determine optimal com combinations for the respective application a few, fewer attempts to choose.  

Es zeigen:Show it:

Fig. 1: Röntgendiagramme für eine SrCe0,8Co0,2O3-y- Probe Fig. 1: X-ray diagrams for a SrCe 0.8 Co 0.2 O 3-y sample

Fig. 2: katalytische Wirksamkeit von SrCe0,8Co0,2O3-y Fig. 2: Catalytic activity of SrCe 0.8 Co 0.2 O 3-y

Fig. 3: Leitfähigkeitsverhalten bei Ausscheidung/ Auf­ lösung der zweiten Phase Fig. 3: Conductivity behavior in the case of excretion / solution of the second phase

Fig. 1 zeigt Röntgendiagramme für eine aus SrCe0,8Co0,2O3-y bestehende Probe. Diese wurde 30 Stunden bei 1200°C in Luft (Kurve a), dann in N2/2% H2 für 20 Stunden bei 1250°C (Kurve b) reduziert sowie 20 Stunden lang bei 1200°C in Luft reoxidiert (Kurve c). Das Diagramm verdeutlicht Bedingungen für das Auftreten bzw. Wiederauflösen der zweiten Phase. Der zugehörige Peak der zweiten Phase ist in Fig. 1 mit einem * markiert. Gemäß Kurve a tritt dieser Peak und somit die zweite Phase auf, dieser verschwindet gemäß Kurve b und tritt dann in Kurve c wieder auf. Fig. 1 shows X-ray diagrams for one of SrCe 0.8 Co 0.2 O 3-y existing sample. This was reduced for 30 hours at 1200 ° C in air (curve a), then in N2 / 2% H 2 for 20 hours at 1250 ° C (curve b) and reoxidized for 20 hours at 1200 ° C in air (curve c) . The diagram illustrates conditions for the occurrence or redissolution of the second phase. The associated peak of the second phase is marked with an * in FIG. 1. According to curve a, this peak and thus the second phase occurs, this disappears according to curve b and then reappears in curve c.

In Fig. 2, ist die O2-Abgabe des Materials SrCe0,8Co0,2O3-y unter verschiedenen Temperatur- und pO2-Bedingungen als Größe für die katalytische Wirksamkeit charakterisiert. Der Sauerstoffgehalt (3 - y) in Mol in der Probe SrCe0,8Co0,2O3-y ist als Funktion der Temperatur und des Sauerstoffpartialdrucks dargestellt. Die katalytische Wirksamkeit ist an der austauschbaren Sauerstoffmenge y gegenüber unterschiedlichen O2- Partialdrücken des Umgebungsgases erkennbar.In Fig. 2, the O 2 release of the material SrCe 0.8 Co 0.2 O 3-y under different temperature and pO 2 conditions is characterized as a parameter for the catalytic activity. The oxygen content (3 - y) in mol in the sample SrCe 0.8 Co 0.2 O 3-y is shown as a function of the temperature and the oxygen partial pressure. The catalytic effectiveness can be seen from the exchangeable amount of oxygen y in relation to different O 2 partial pressures of the ambient gas.

Fig. 3 zeigt eine sprunghafte Änderung der elektrischen Leitfähigkeit in der SrCe0,8Co0,2O3-y-Probe, die innerhalb von 30 Sekunden bei Umschaltung des umgebenden Gases von reduzierender Atmosphäre G auf oxidierende Atmosphäre L auftritt. In Luft L wird die zweite Phase ausgeschieden. In reduzierender Gasatmosphäre G bei einem Druck von 10-15 atm löst sich die zweite Phase auf. Fig. 3 shows an abrupt change in electrical conductivity in the SrCe 0.8 Co 0.2 O 3-y -probe that occurs within 30 seconds after switching of the surrounding gas of reducing atmosphere to an oxidizing atmosphere G L. The second phase is eliminated in air L. The second phase dissolves in a reducing gas atmosphere G at a pressure of 10 -15 atm.

Materialzusammensetzungen, die sich insbesondere für den Einsatz als Kathode in einer Hochtemperatur- Brennstoffzelle eignen, sind:
Material compositions that are particularly suitable for use as a cathode in a high-temperature fuel cell are:

Claims (1)

Hochtemperaturbrennstoffzelle mit einer Kathode, die aus einem Perowskiten besteht, der aus Sr oder Ba, Sauerstoff und dem vierwertigen Kation Ce besteht und der mit einem als Katalysator für die Reduzierung von Sauerstoff einsetzbaren Übergangsmetall Mx auf dem Platz MIV mit einer Dotierungskonzentration von 5 bis 30 mol% Mx dotiert ist, wobei Mx Co, Mn, Fe oder Ti ist.High-temperature fuel cell with a cathode, which consists of a perovskite, which consists of Sr or Ba, oxygen and the tetravalent cation Ce and which has a transition metal M x which can be used as a catalyst for the reduction of oxygen in place M IV with a Doping concentration of 5 to 30 mol% M x is doped, where M x is Co, Mn, Fe or Ti.
DE19602176A 1996-01-23 1996-01-23 High-temperature fuel cell with a cathode made of a perovskite Expired - Fee Related DE19602176C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19602176A DE19602176C2 (en) 1996-01-23 1996-01-23 High-temperature fuel cell with a cathode made of a perovskite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19602176A DE19602176C2 (en) 1996-01-23 1996-01-23 High-temperature fuel cell with a cathode made of a perovskite

Publications (2)

Publication Number Publication Date
DE19602176A1 DE19602176A1 (en) 1997-08-07
DE19602176C2 true DE19602176C2 (en) 1999-01-07

Family

ID=7783367

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19602176A Expired - Fee Related DE19602176C2 (en) 1996-01-23 1996-01-23 High-temperature fuel cell with a cathode made of a perovskite

Country Status (1)

Country Link
DE (1) DE19602176C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1356535T3 (en) * 2000-11-14 2006-10-02 Forskningsct Riso Dimensionally stable electronic or mixed conductive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chem. abstr. 121(1994) Ref.-Nr. 38790n *

Also Published As

Publication number Publication date
DE19602176A1 (en) 1997-08-07

Similar Documents

Publication Publication Date Title
DE60027192T2 (en) STRUCTURES AND MANUFACTURING METHODS FOR SOLID-BODY ELECTROCHEMICAL DEVICES
Yang et al. Cobalt-free Ba0. 5Sr0. 5Fe0. 8Cu0. 1Ti0. 1O3− δ as a bi-functional electrode material for solid oxide fuel cells
Jiang et al. Electrochemical reduction of oxygen on a strontium doped lanthanum manganite electrode
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
DE19782271B4 (en) Oxygen composite electrodes / electrolyte structure and method of making same
JP3786402B2 (en) Method for introducing electrode active oxide into air electrode for solid oxide fuel cell
DE10130783A1 (en) fuel cell
EP0606579B1 (en) Use of a compositon for ceramic gas supplying connected components for fuel with zirconium oxides solid electrolyte.
Jo et al. Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs
Peña-Martínez et al. SOFC test using Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ as cathode on La0. 9Sr0. 1Ga0. 8Mg0. 2O2. 85 electrolyte
WO2003092089A2 (en) High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte
Araujo et al. Changing the oxygen reaction mechanism in composite electrodes by the addition of ionic-or ambipolar-conducting phases: Series or parallel pathways
Araújo et al. A high-performance oxygen electrode for solid oxide cells: Compositional optimisation of barium cobaltite-based composites
DE19836132B4 (en) High temperature solid electrolyte fuel cell (SOFC) for a wide operating temperature range
JP3871903B2 (en) Method for introducing electrode active oxide into fuel electrode for solid oxide fuel cell
DE19602176C2 (en) High-temperature fuel cell with a cathode made of a perovskite
DE102013007637A1 (en) Cathode-electrolyte anode unit of high-temperature fuel cells
DE102006005194B4 (en) Proton conductive layer system and manufacturing method thereof
EP2210308B1 (en) Functional layer for high-temperature fuel cells and method for production
EP1481431B1 (en) Cathode for use at high temperatures
DE19514164C2 (en) Lanthanum chromite-based connecting element for high-temperature fuel cells and high-temperature electrolysis cells
DE19817615C1 (en) Strontium, magnesium and cobalt and/or iron doped lanthanum gallate material for a high temperature fuel cell
WO2008119321A1 (en) Layer system for an electrolyte of a high-temperature fuel cell, and method for producing same
DE10209791C1 (en) Anode material used in powder form in a mixture with an electrolyte powder for high temperature fuel cells, or in a gas sensor with an electrolyte powder, comprises a mixed oxide containing rare earth, alkaline earth and transition metals
DE19547701C2 (en) Electrode-electrolyte system made of oxidic material

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8181 Inventor (new situation)

Free format text: HAART, LAMBERTUS G.J. DE, DR., HEERLEN, NL NAOUMIDIS, ARISTIDES, DR., 52428 JUELICH, DE TESKE, KLAUS, DR., 01129 DRESDEN, DE ULLMANN, HELMUT, PROF.DR., 01277 DRESDEN, DE TROFIMENKO, NIKOLAI, DR., 01069 DRESDEN, DE PAULSEN, JENS, 01219 DRESDEN, DE MECKEL, GUDRUN, 01309 DRESDEN, DE

8125 Change of the main classification

Ipc: H01M 8/12

D2 Grant after examination
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee