DE1613243C - DC propulsion system as a drive system on ships - Google Patents
DC propulsion system as a drive system on shipsInfo
- Publication number
- DE1613243C DE1613243C DE19671613243 DE1613243A DE1613243C DE 1613243 C DE1613243 C DE 1613243C DE 19671613243 DE19671613243 DE 19671613243 DE 1613243 A DE1613243 A DE 1613243A DE 1613243 C DE1613243 C DE 1613243C
- Authority
- DE
- Germany
- Prior art keywords
- current
- motor
- speed
- nominal
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000001360 synchronised Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims 3
- 230000002441 reversible Effects 0.000 claims 2
- 230000000875 corresponding Effects 0.000 claims 1
- 230000003247 decreasing Effects 0.000 claims 1
- 230000002349 favourable Effects 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
Description
3 43 4
Gleichstrom-Propellermotor 13 mit konstantem Gleich- Leistung mit dem Quadrat des Stromes auf 20%, so
strom. Die Drehzahlregelung des Motors 13 erfolgt daß der Motor 13 immer genügend viel Bremsleistung
über das Motorfeld 14. Vom Regelkreis ist dargestellt aufnimmt, um den positiven Drehzahlbereich innerdie
Drehzahlerfassung 15, der Soll-Istwert-Vergleich 16 halb sehr kurzer Zeit zu durchfahren,
und ein Regelverstärker 17. Die Konstantstromrege- 5 Bei Vorgabe eines Drehzahl-Sollwertes, der größer
lung erfolgt über die Erregung 11 des Synchron- als die Grenzdrehzahl ngrem ist, wird mit dem Umgenerators
10. Von diesem Regelkreis ist gezeigt, die schalter 23 der Schwellwertbildner 22 eingeschaltet.
Stromerfassung 18, ein Soll-Istwert-Vergleich 19 und Über den Schwellwertbildner 22 wird erreicht, daß im
ein Regelverstärker 20. Die Mittel zur zusätzlichen Gleichstromkreis im generatorischen Betrieb des
Regelung bestehen im wesentlichen aus zwei Schwell- io Motors 13 der Nennstrom nicht wesentlich überwertbildnern
21 und 22, von denen mit Hilfe eines schritten wird. Der Schwellwertschalter 22 spricht
Umschalters 23 wahlweise einer mit der Strom- also etwa bei Nennstrom an. Der doppelte Nennerfassung
18 verbunden werden kann. strom kann in diesem Falle nicht zugelassen sein, daDC propeller motor 13 with constant DC power with the square of the current to 20%, so current. The speed control of the motor 13 takes place so that the motor 13 always takes up enough braking power via the motor field 14.
and a control amplifier 17. The constant current regulator 10 is used with the repeater 10 when a speed setpoint value is specified, which is greater development via the excitation 11 of the synchronous speed than the limit speed n gre m the threshold generator 22 switched on. Current detection 18, a target / actual value comparison 19 and via the threshold value generator 22 it is achieved that in a control amplifier 20 and 22, one of which is used to step. The threshold switch 22 responds to the changeover switch 23 either with the current, ie approximately at the rated current. The double nominal entry 18 can be connected. electricity cannot be permitted in this case because
Wird nun ein Drehzahl-Sollwert eingestellt, der er über längere Zeit fließen würde und die Anlage norkleiner
ist als ein vorgegebener Grenzwert, dann wird 15 malerweise dafür nicht ausgelegt ist.
das Motorfeld 14 über den Schwellwertbildner 21, Es ist nicht in jedem Fall erforderlich, daß beim
den Soll-Istwert-Vergleich 16 und den Regelverstärker Umsteuern doppelter Nennstrom im Gleichstromkreis
17 so beeinflußt, daß etwa der doppelte Nennstrom fließen muß, damit der Motor ein ausreichendes
bei generatorischem Betrieb des Motors 13 nicht Bremsmoment entwickelt. Es können auch 90 oder
überschritten wird. Der Schwellwertbildner 21 spricht 20 8O°/o des doppelten Nennstromes ausreichen. Die
etwa bei doppeltem Nennstrom im Gleichstromkreis Höhe des zulässigen Stromes im Bremsbetrieb des
an. Der Drehzahlregelung wird dadurch ein höherer Motors hängt im wesentlichen von seiner Verlust-Drehzahl-Sollwert
als der tatsächliche eingestellte leistung ab.If a speed setpoint is now set that it would flow over a longer period of time and the system is smaller than a specified limit value, then it is not designed for this purpose.
the motor field 14 via the threshold generator 21, It is not always necessary that when reversing the setpoint / actual value comparison 16 and the control amplifier, double the nominal current in the direct current circuit 17 so that about double the nominal current must flow so that the motor has a sufficient braking torque is not developed when the motor 13 is operated in generator mode. It can also exceed 90 or more. The threshold generator 21 says 20 80% of twice the nominal current are sufficient. The amount of the permissible current in the braking operation of the at approximately twice the nominal current in the direct current circuit. As a result, the speed control becomes a higher motor depends essentially on its loss speed setpoint value than the actual set power.
Wert vorgetäuscht, so daß über das Motorfeld eine Bei Schiffen, die beim Abstoppen aus voller FahrtValue pretended, so that over the motor field a case of ships that stop at full speed when stopping
Begrenzung des Stromes erfolgt. 25 wegen ihrer geringen Größe oder ihrer Bauart sehrLimitation of the current takes place. 25 because of their small size or their design
Der vorgegebene Grenzwert entspricht dabei einer schnell zum Stillstand kommen, ist für den Fall, daß Grenzdrehzahl ngrenz, bei der die durch den Brems- ein Drehzahlsollwert, der größer als die Grenzdrehzahl strom im Motor erzeugten Verluste genügen, um die ist, vorgegeben wird, eine Beeinflussung des Motorvom Propeller bei voll vorauslaufendem Schiff ab- feldes auf Nennstrom durch die zusätzliche Regegegebene Leistung aufzunehmen. Der Verlauf der 30 lungseinrichtung nicht erforderlich. Denn in diesem vom Propeller abgegebenen Leistung N, bezogen auf Fall fließt ein doppelter Nennstrom nur für die kurze Nennleistung, ist in F i g. 1 gestrichelt eingezeichnet. Zeit, die das Schiff benötigt, um von voller Fahrt Wenn die Verlustleistung bei Nennstrom 5 % ist, voraus auf die der eingestellten Drehzahl entsprechende steigt bei doppeltem Nennstrom die aufgenommene Geschwindigkeit zu kommen.The specified limit value corresponds to a quick standstill, is for the case that limit speed n gre nz, at which the losses generated by the braking, a speed setpoint that is greater than the limit speed current in the motor, is specified to take up an influence on the motor from the propeller when the ship is moving fully ahead to the nominal current through the additional power given by the rain. The course of the 30 treatment facility is not required. Because in this power N delivered by the propeller, based on the case, a double nominal current only flows for the short nominal power, is shown in FIG. 1 drawn in dashed lines. Time that the ship needs to get from full speed If the power loss at rated current is 5%, ahead of the set speed increases with twice the rated current the recorded speed.
Hierzu 1 Blatt Zeichnungen1 sheet of drawings
Claims (1)
Bremswiderstände einzusparen. Diese Aufgabe wird 65 An Hand des in F i g. 2 dargestellten Ausführungsbei einer Gleichstromantriebsanlage der eingangs beispiels soll die Erfindung weiter erläutert werden, genannten Art erfindungsgemäß dadurch gelöst, daß Ein Synchrongenerator 10 mit einer Erregerwicklung 11 der Gleichrichter und der Gleichstrommotor für kurz- speist über einen ungesteuerten Gleichrichter 12 einen'. . torque increases rapidly with decreasing speed and the invention relates »to a direct current - reaches about 35% of the propulsion system at the towing speed n s as a propulsion system on ships with min- nominal torque. The difference between the moment of at least one DC motor driven by at least the propeller according to FIG. 1 and the braking torque. one of the motor driven by a prime mover is used to brake the flywheel masses synchronous generator with a downstream uncontrolled motor. The Bremstem rectifier is fed at 30% of the speed, whereby the current torque is 66% of the nominal torque. So there is always regulation in the direct current circuit through the regulation greater than the torque of the propeller under excitation of the synchronous generator and the favorable rotational conditions that occur when reversing from number regulation over the field regulation of the direct current 40 full speed ahead. When a motor flows. The direct current develops twice the nominal current.A disadvantage of a rectifier-fed motor with reversed excitation for the reversal of DC motors, which are operated e.g. in a constant-a sufficiently large braking torque around the propeller circuit, is that they brake within a short time. The positive generator operation during a braking process 45 speed range of the reversing curve will basically not pass through any power via the rectifier within 1 to 2 seconds, although it will flow back into the network. It is now generally known that due to its inertia, the ship continues to run at almost full speed parallel to the armature of the direct current motor. The ohmic resistance to accommodate the brake rectifier is therefore only to be switched for short-term power. In this way, however, it is to be designed 50 double the nominal current. The limitation is not possible to brake down with full torque up to twice the nominal current in the same low speed, because with the circuit during the braking process there is no sufficiently high current through the field control of the DC motor, but driven by the resistor connected in parallel not redirected, but - as in will. 55 Normal case usual - only a reduced speed - It has therefore already been suggested that the setpoint should be set, then the flowing constant current circuit may switch a resistor that is bridged in normal operation at a current equal to twice the nominal current, but which is switched on. not be permitted because it is switched on as long as the direct current motor would be generating, until the ship's speed has dropped to the value corresponding to the power in the constant current circuit (German published specification 1 488 569). and the system is generally not designed for this. The object of the invention is to provide such propulsion. In this case, the field control of the DC systems as propulsion systems for ships for the braking current motor is influenced in such a way that it can be further simplified in generator operation, in particular the operation of approximately only a simple nominal current flows.
Saving braking resistors. This task is 65 With the help of the in F i g. 2 embodiment shown in a DC drive system of the example at the beginning of the invention is to be further explained, said type according to the invention achieved in that a synchronous generator 10 with an excitation winding 11 of the rectifier and the DC motor for short-fed via an uncontrolled rectifier 12 a
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEL0056700 | 1967-06-09 | ||
DEL0056700 | 1967-06-09 |
Publications (3)
Publication Number | Publication Date |
---|---|
DE1613243A1 DE1613243A1 (en) | 1970-10-08 |
DE1613243B2 DE1613243B2 (en) | 1973-01-11 |
DE1613243C true DE1613243C (en) | 1973-07-26 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69508512T2 (en) | Method and device for braking a synchronous motor | |
DE1613733A1 (en) | Emergency generator for short-term delivery of electricity | |
DE102004005169B3 (en) | Rotor blade pitch control system for wind turbine generating electricity has DC supply for motor with parallel-wound and series-wound field coils with diode bypassing series field coil during braking | |
DE1936597A1 (en) | Device for regulating the speed of a vehicle driven by a linear induction motor, in particular a hovercraft | |
DE1613243C (en) | DC propulsion system as a drive system on ships | |
DE4107362C2 (en) | Process for the bumpless connection of a converter to a three-phase asynchronous machine rotating at an unknown speed | |
DE1613243B2 (en) | DC DRIVE SYSTEM AS DRIVE SYSTEM ON SHIPS | |
DE1901389C3 (en) | Device for keeping a line taut at all times | |
DE1908968C3 (en) | Speed control and regulation device for three-phase motors with electrical DC braking using anti-parallel switched valves | |
DE966754C (en) | Device and circuit for advancing and retracting saws, especially hot iron saws | |
DE4307097C1 (en) | Method for accelerating an asynchronous motor which is controlled by a frequency converter | |
DE708338C (en) | Control for electric drives, especially for hoists | |
DE2816126C3 (en) | Method for starting and reversing a gas turbo-electric propulsion system for icebreaking vessels | |
EP1744444A1 (en) | Rotor blade pitch adjustment apparatus | |
DE1930578A1 (en) | Control system for crane hoist | |
DE1513401A1 (en) | Circuit device for controlling the speed of a commutator or induction motor | |
AT209439B (en) | Circuit arrangement for limiting the voltage of DC machines | |
DE1930560A1 (en) | Control system for crane hoist | |
DE637326C (en) | Device for the automatic capacity control of buffer machines | |
DE602342C (en) | Tow winch drive | |
DE2244763C3 (en) | Control circuit for a direct current series motor that can be operated in either lifting or lowering braking mode | |
DE279557C (en) | ||
DE759019C (en) | Circuit for braking the masses moved when moving hot iron saws | |
DE2237233C3 (en) | Circuit arrangement for a induction machine | |
DE827676C (en) | Device for the automatic initiation and removal of the rotor short-circuit when switching to counter-current braking in drives with AC asynchronous motors |