DE1571359A1 - Refractory cast iron bodies - Google Patents

Refractory cast iron bodies

Info

Publication number
DE1571359A1
DE1571359A1 DE19651571359 DE1571359A DE1571359A1 DE 1571359 A1 DE1571359 A1 DE 1571359A1 DE 19651571359 DE19651571359 DE 19651571359 DE 1571359 A DE1571359 A DE 1571359A DE 1571359 A1 DE1571359 A1 DE 1571359A1
Authority
DE
Germany
Prior art keywords
weight
carbon
metal carbide
carbide
cast body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19651571359
Other languages
German (de)
Inventor
Doman Robert Charles
Alper Allen Myron
Mcnally Robert Nicholas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Glass Works
Original Assignee
Corning Glass Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Glass Works filed Critical Corning Glass Works
Publication of DE1571359A1 publication Critical patent/DE1571359A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • C04B35/657Processes involving a melting step for manufacturing refractories
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9676Resistance against chemicals, e.g. against molten glass or molten salts against molten metals such as steel or aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

DR. JUR. DIPUCHEM. WALTER BEfIDR. JUR. DIPUCHEM. WALTER BEfI RECHTSANWJUrE IJHO NOVARELEGAL LAWYER IJHO NOVARE

DR. JUR. DIFL-CHiM. H.-J. WOLFP
DR. JUR. HANS CHR. BEiL
DR. JUR. DIFL-CHiM. H.-J. WOLFP
DR. JUR. HANS CHR. Ax

ISECHTSANWXlTeISECHTSANWXlTe

623 FRANKFURT AM MAlN-HOCHSt623 FRANKFURT AM MAlN-HOCHST

U ^^ U ^^ IRNOV.IRNOV.

Unsere Nr. 11 987Our no. 11 987

Corning Glass Works Corning, N.Y., V.St.A.Corning Glass Works Corning, N.Y., V.St.A.

Peuerfeste Schmelzgußkörper Fireproof fusible cast bodies

Die Erfindung betrifft feuerfeste keramische Gußkörper, die durch Schmelzen von feuerfestem keramischem Material und Gießen des geschmolzenen Materials in eine vorgebildete Form unter Brstarren zu einem monolithischen Gußkörper erhalten werden. Insbesondere betrifft die Erfindung neue feuerfeste Kohlenstoff /Carbid-Schmelzgußkörper mit überlegener Beständigkeit gegen Wärmeschock· Die Erfindung betrifft weiterhin neue feuerfeste Kohlenstöff/Carbid-Schmelzgußkörper mit stark überlegener Beständigkeit gegen Korrosion und Erosion durch die eisenhaltigem Kalkschlacken in einer reduzierenden AtmcJphäre, wie sie normalerweise beim basischen Sauerstoffstahl-Herstellungsverfahren, z.B. beim LD- oder Stora-Kaldo-Verfahren auftritt. Die Schlacken haben normalerweise ein Kalk-Kieselsäure-Verhältmis VO* IM bis 1,5M in den frühen Erwärmungsstadien, und dieses Verhältnis erhöht sich gegen Ende der Erhitzung auf über 2,5:1The invention relates to refractory ceramic castings which by melting refractory ceramic material and pouring the molten material into a pre-formed mold Br rigid can be obtained into a monolithic cast body. More particularly, the invention relates to novel carbon / carbide refractory fused castings having superior resistance to thermal shock Resistance to corrosion and erosion by the ferrous lime slags in a reducing atmosphere like them normally occurs in the basic oxygen steel manufacturing process, e.g. the LD or Stora-Kaldo process. the Slags usually have a lime-silica ratio VO * IM to 1.5M in the early stages of warming, and this one Ratio increases to over 2.5: 1 towards the end of heating

109812/1307109812/1307

firv-vfirv-v

für die kalkreichen Endschlacken. Die reduzierende Atmosphäre pflegt vorwiegend aus Kohlenmonoxyd zu bestehen.for the lime-rich end slag. The reducing atmosphere tends to consist mainly of carbon monoxide.

Es ist bekannt, daß man brüchige Massen von Metallcarbiden -(z.B. Titancarbid, Zirkoniumcarbid usw.) herstellen kann, indem man geeignete Rohmaterialien .bei erhöhten Temperaturen, bei denen das Material völlig oder unvollkommen schmilzt, miteinander umsetzt. Diese brüchigen Massen werden in situ in dem. elektrischen Ofen, der zu ihrer Herstellung verwendet wurde, geformt. Die Massen werden spater zu einer körnigen Masse zerkleinert, welche als Schmirgel verwendet oder nach bekannten Verfahren (jedoch ohne vollständiges Schmelzen und Erstarren zu einem monolithischen Gußkörper) zu hochfeuerfesten Körpern . für verschiedene Hochtemperaturanwendungen wieder verbunden wird. Es wurden auch bereits in einigen Fallen brüchige Massen von geschmolzenen Metallcarbiden aus Kohlenstoff im Überschuß enthaltenden Rohmaterialien erzeugt, so daß freier Kohlenstoff in diesen Massen auftrat, jedoch gingen die Anstrengungen meistens dahin, solchen freien Kohlenstoff in den körnigen Materialien zu vermeiden, weil er die Herstellung geeigneten Schirgelmaterials erschwerte oder wahrend der Vereinigung zu einem carbidgebundenem Körper mit einem carbidbildenden Element reagierte. Es wurden noch keine Schmelzgußkörper hergestellt, die im wesentlichen aus metallischen Carbidkristallen und einer entscheidenden Menge (d.U. mindestens 5 Gew.-%) freiem Kohlenstoff (Graphit) bestehen, der die im wesentlichen regellos orientierten Metallcarbidkristalle durchsetzt. Demzufolge wurden auch nie die großen technologischen Vorteile erkannt, die hierbei erzielt werden können, nämlich die stark überlegene Beständigkeit gegen Hitzeschock und die stark überlegene Beständigkeit gegen Schlackenkorrosion und -erosion in basischen Sauerstoffstahlhersteilungsöfen.It is known that brittle masses of metal carbides (e.g. titanium carbide, zirconium carbide, etc.) can be produced by using suitable raw materials at elevated temperatures which the material melts completely or imperfectly. These fragile masses are in situ in the. electric furnace used to make them. The masses are later crushed to a granular mass, which is used as emery or according to known Process (but without complete melting and solidification to form a monolithic cast body) to produce highly refractory bodies . reconnected for various high temperature applications. Also, brittle masses of molten metal carbides have been produced from raw materials containing excess carbon in some cases, so that free carbon appeared in these masses, but efforts mostly went to avoid such free carbon in the granular materials, because it made the production of suitable shearling material difficult or reacted with a carbide-forming element during the combination to form a carbide-bonded body. Fused cast bodies have not yet been produced which essentially consist of metallic carbide crystals and a decisive amount (i.e. at least 5% by weight) of free carbon (Graphite), which penetrates the essentially randomly oriented metal carbide crystals. As a result, were also never recognized the great technological advantages that can be achieved here, namely the greatly superior durability against heat shock and the greatly superior resistance to slag corrosion and erosion in basic oxygen steel making furnaces.

109812/1307109812/1307

Es besteht ein standig steigender Bedarf an Materialien, die hohen und plötzlichen Temperaturen wiederstehen. Es wurden nun Schmelzgußmassen von neuartiger Zusammensetzung und Struktur gefunden, die zur Deckung dieses Bedarfs geeignet sind. Ein Ziel dieser Erfindung ist daher die Herstellung von hochfeuerfesten Gußkörpern aus feuerfestem Metallcarbid/Kohlenstoff~ Schraeizgußmaterial, die eine Wärmeschockbeständigkeit haben, welche der der bisher bekannten feuerfesten Schmelzgußkörper überlegen ist.There is an ever increasing need for materials that withstand high and sudden temperatures. There were now melt casting compounds with a novel composition and structure found that are suitable to meet this need. A The aim of this invention is therefore to produce highly refractory Castings made of refractory metal carbide / carbon ~ Angled cast material that has thermal shock resistance, which of the previously known refractory cast iron bodies is superior.

Obwohl die Beliebtheit des basischen Sauerstoffstahlherstellungsverfahrens ständig zunimmt, stellt die relativ schnelle Abnutzung des als Auskleidung in diesen basischen Sauerstofföfen verwendeten feuerfesten Materials ein großes Hindernis auf dem Wege zu größerer Wirtschaftlichkeit und höheren Ausbeuten dar. Es wurde nun gefunden, daß dieses Problem dadurch weitgehend gemildert werden kann, daß man die Auskleidungen der basischen Sauerstofföfen aus den neuartigen Carbid/Kohlenstoff-Schmelzgußmassen der vorliegenden Erfindung herstellt, die eine Beständigkeit gegen Schlackenkorrosion und -erosion aufweisen, die der von bisher für die Auskleidungen verwendeten feuerfesten Massen weit überlegen ist. Ein anderes Ziel der vorliegenden Erfindung ist daher die Herstellung von feuerfesten Schmelzguß-r körpern mit überlegener Schlackenbeständigkeit in einer reduzierenden Atmosphäre, und zur Verwendung als Auskleidung von basischen Sauerstofföfen oder -gefäßen. Die erfindungsgemäßen Gußkörper eignen sich besonders zur Herstellung von Betriebsauskleidungen in den birnenförmigen basischen Sauerstoffgefäßen, die üblicherweise aus einem birnenförmigen Metalltank oder -gehäuse, einer die Innenpberflache dieses Tanks bedeckenden isolierenden feuerfesten Auskleidung und einer die innere Oberfläche dieser isolierenden feuerfesten Auskleidung bedeckenden feuerfesten Betriebsauskleidung, sowie aus Vorrichtungen zumAlthough the popularity of the basic oxygen steel manufacturing process steadily increasing, represents the relatively rapid wear and tear of the lining used in these basic oxygen furnaces refractory material is a major obstacle on the way to greater economy and higher yields. It it has now been found that this problem is largely alleviated can be that one of the linings of the basic oxygen furnaces from the new carbide / carbon melt casting masses of the present invention which have resistance to slag corrosion and erosion, the that of the refractory masses previously used for the linings is far superior. Another object of the present invention is therefore the production of refractory cast iron r bodies with superior slag resistance in a reducing atmosphere, and for use as the lining of basic oxygen ovens or vessels. The invention Cast bodies are particularly suitable for the production of factory linings in the pear-shaped basic oxygen vessels, which usually consist of a pear-shaped metal tank or -housing, one covering the inner surface of this tank insulating refractory lining and a covering the inner surface of this insulating refractory lining refractory lining, as well as devices for

109812/1307109812/1307

Einblasen eines Sauerstoffstranes in den feuerfest ausgekleideten Tank bestehen.Blowing an oxygen train into the refractory lined Tank exist.

Der Gegenstand der vorliegenden Erfindung kann allgemein als ein feuerfester Schmelzgußkörper bezeichnet werden, welcher aus mindestens 5 Gew.-% freiem Kohlenstoff besteht, der im wesentlichen regellos orientierte Metallcarbidkristalle durchsetzt und miteinander verriegelt, und die Gußkörper enthalten neben dem Kohlenstoff mindestens 20 Gew.-% an metallcarbidbildenden Substanzen, wie weiter unten naher erläutert wird. Obwohl dies die beiden einzigen wesentlichen analytischen Komponenten der Gußkörper sind, können gegebenenfalls andere analytische Komponenten einbezogen werden, je nach den verwendeten Rohmaterialien, den Herstellungsbedingungen und den erwünschten Eigenschaften des Endproduktes.The subject matter of the present invention can broadly as a refractory cast iron can be referred to, which consists of at least 5% by weight free carbon, which is essentially randomly oriented metal carbide crystals interspersed and locked together, and contain the cast bodies in addition to carbon, at least 20% by weight of metal carbide-forming Substances, as explained in more detail below. Although these are the only two essential analytical components are the cast body, other analytical components may optionally be included depending on those used Raw materials, the manufacturing conditions and the desired properties of the end product.

Obwohl im vorhergehenden Abschnitt zur Erzielung besserer technischer und industrieller Ergebnisse eine untere Grenze von 5 Gew.-% für den erforderlichen freien Kohlenstoff angegeben wurde, können mit dieser Grenze auch einige Schmelzgußkörper erfaßt werden, die nur eine geringfügig verbesserte Wärmeschockbeständigkeit aufweisen, und in denen der freie Kohlenstoff als Schichtenmuster oder in Plättchen zwischen Metallcarbidkristallen vorliegt. Die vorliegende Erfindung bezieht sich deshalb insbesondere auf solche feuerfeste» Schmelzgußprodukte, die mindestens 11 Gew.-% (und vorzugsweise 20 %) freien Kohlenstoff in Form einer regellosen und unzusammenhängenden Zwischenstruktur enthalten, welche die im wesentlichen regellos orientierten Metallcarbidkristalle durchsetzt und verriegelt. Dieses letztere Kennzeichen ist typisch für Schmelzgußkörper mit hervorragender Wärmeschockbeständigkeit neben anderen wünschenswerten Eigenschaften. Although a lower limit of 5% by weight for the required free carbon was given in the previous section in order to achieve better technical and industrial results, this limit can also cover some fusion castings which have only slightly improved thermal shock resistance, and in which the free carbon is present as a layer pattern or in platelets between metal carbide crystals. The present invention therefore particularly relates to such refractory »melt cast products which contain at least 11% by weight (and preferably 20 %) free carbon in the form of a random and disjointed intermediate structure which penetrates and locks the essentially randomly oriented metal carbide crystals. This latter characteristic is typical of melt castings having excellent thermal shock resistance, among other desirable properties.

109812/1307109812/1307

Das Verfahren zur Herstellung der erfindungsgemäßen Gußkörper besteht darin, daß man ein kohlenstofflieferndes Material mit metallcarbidbildenden Materialien und/oder daraus gebildeten Metallcarbiden in einem Ofen erwärmt und dieses Erwärmen bei genügend hoher Temperatur durchführt, um eine wesentliche Menge des Rohmaterials zu schmelzen und außerdem eine Umsetzung zwischen dem gesamten metallcarbidbildenden Material und dem Kohlenstoff herbeizuführen. Die Zusammensetzung des Rohmaterials, die Natur der damit in Berührung stehenden Atmesphäre und die Erhitzungszeit und -temperatur werden so ausgewählt, daß die gebildete geschmolzene Masse aus folgenden Komponenten besteht: (i) aus Kohlenstoff und aus metallischen Elementen in einer solchen Menge, daß das Schmelzgußprodukt, das in den vorhergehenden Abschnitten angegebene Minimum an freiem Kohlenstoff und metallcarbidbildenden Substanzen enthält, (2) aus metallischen Elementen einer im nachfolgenden spezifizierten ersten Gruppe in einer Menge, daß das Schmelzgußprodukt mindestens 10 Gew.-% dieser Elemente enthält, (3) aus Sauerstoff und/oder Stickstoff in einer Menge, daß das Schmelzgußprodukt analytisch insgesamt höchstens 0 bis 15 Gew.~% von beiden zusammen, von jedem jedoch nicht mehr als 10 % enthält, und (k) aus einem Rest, falls vorhanden, der analytisch aus 0 bis 5 Gew.-% an anderen Elementen oder Verunreinigungen besteht· Zum Schluß wird die geschmolzene Masse in eine Form gegossen, um einen Gußkörper mit der oben angegebenen Struktur und Zusammensetzung zu bilden. Es wird angenommen, daß die relativ schnellere Erstarrung und Abkühlung, die bei diesen Gießverfahren eintritt, (im Gegensatz zu der langsameren Erstarrung und Abkühlung, die auftritt, wenn eine große monolithische Masse in situ in dem Ofen, in dem das Schmelzen Stattfand, gebildet wird), zumindest teilweise für die einzigartige Struktur von regellos orientierten Metallcarbidkristallen mit einer regellosen und unzusammenhängenden Zwischenstruktur von freiem Kohlenstoff, der diese Kristalle durchsetzt und ver-The process for producing the cast bodies according to the invention consists in heating a carbon-supplying material with metal carbide-forming materials and / or metal carbides formed therefrom in a furnace and this heating carried out at a temperature high enough to melt a substantial amount of the raw material and also a reaction between bring about all of the metal carbide-forming material and the carbon. The composition of the raw material, the nature of the atmospheric sphere in contact therewith, and the heating time and temperature are selected so that the molten mass formed consists of: (i) carbon and metallic elements in an amount such that the cast product , contains the minimum of free carbon and metal carbide-forming substances specified in the preceding sections, (2) of metallic elements of a first group specified below in an amount that the melt-cast product contains at least 10% by weight of these elements, (3) of oxygen and / or nitrogen in an amount that the melt-cast product analytically contains a total of at most 0 to 15% by weight of both together, but of each not more than 10%, and (k) from a remainder, if any, which analytically from 0 to 5 wt -.% of other elements or impurities · Finally, the molten mass into a mold ge poured to form a molded body having the structure and composition given above. It is believed that the relatively faster solidification and cooling that occurs with these casting processes (as opposed to the slower solidification and cooling that occurs when a large monolithic mass is formed in situ in the furnace where the melting took place ), at least in part for the unique structure of randomly oriented metal carbide crystals with a random and disjointed intermediate structure of free carbon that permeates and displaces these crystals

109812/1307109812/1307

15713391571339

riegelt, verantwortlich let. Diese neuen Ergebnisse stehen im Gegensatz zu der bei der in situ-Er.starrung von solchen Materialien, wie Borcarbid/Kohlenstoff-Zusammensetzungen, bekannten Bildung von brüchigen Körpern, welche ein überwiegendes Schichtenmuster von Plattchen aus freiem Kohlenstoff aufweisen, das ein Zwischenkorngefüge bildet zwischen hochorientierten (länglichen und parallelen) Carbidkristallen.lock, let responsible. These new results are available in the In contrast to the in situ solidification of such materials, such as boron carbide / carbon compositions Formation of brittle bodies, which have a predominantly layered pattern of platelets made of free carbon, which forms an intergrain structure between highly oriented (elongated and parallel) carbide crystals.

Die analytische metallcarbidbildende Substanz kann aus einem oder mehreren der nachfolgend beschriebenen metallischen Elemente bestehen. Wenn nur ein einziges metallisches Element zur Bildung der Carbidkristalle verwendet wird, ist dieses Element Titan, Zirkonium, Hafnium, Vanadin, Niob,· Tantal, Chrom, Molyb-, dan oder Wolfram. Jedes Gemisch aus zwei oder mehreren der vorstehenden Metalle kann ebenfalls zur Bildung einer oder mehrerer Carbidphasen verwendet werden, je nach dem Ausmaß der wechsel, seitigen Löslichkeit des einen Carbids in dem anderen Carbid oder den anderen Carbiden. Die metallcarbidbildende Substanz kann auch aus Gemischen von einem oder mehreren der obengenannten Metallen der ersten Gruppe mit mindestens einem Metall der nachfolgenden zweiten Gruppe, nämlich Silizium, Mangan, Eisen, Cobalt oder Nickel bestehen, vorausgesetzt, der Gehalt des Gußköm pers an Metallen der ersten Gruppe unterschreitet niclyt 10 Gew.-%. Auch im Falle solcher Mischungen werden eine oder mehrere Metallcarbidphasen gebildet, je nach dem Ausmaß der wechselseitigen Löslichkeit des einen Carbids in dem oder den anderen Carbiden.The analytical metal carbide-forming substance can be composed of one or more of the metallic elements described below exist. If only a single metallic element is used to form the carbide crystals, that element is Titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molyb-, dan or tungsten. Any mixture of two or more of the above metals can also form one or more Carbide phases are used, depending on the degree of alternating, mutual solubility of one carbide in the other carbide or the other carbides. The metal carbide-forming substance can also consist of mixtures of one or more of the above Metals of the first group with at least one metal of the subsequent second group, namely silicon, manganese, iron, Cobalt or nickel exist, provided that the metal content of the first group in the Gußköm does not fall below 10% by weight. In the case of such mixtures, too, one or more metal carbide phases are formed formed, depending on the degree of mutual solubility of one carbide in the other carbide or carbides.

Die in den erfindungsgemäßen Gußkörpern gegebenenfalls zulassi-'gen anderen analytischen Komponenten können als Verdünnungsmittel und/oder Verunreinigungen bezeichnet werden; Sauerstoff und Stickstoff werden hier als Verdünnungsmittel angegeben, obwohl sie in manchen Fe11en als Verunreinigungen angesehen werden müssen, wahrend sie in anderen Fällen erwünschte Zusätze darstellen. Sowohl Sauerstoff als auch Stickstoff sollen analytischThe other analytical components which may be permitted in the cast bodies according to the invention can be referred to as diluents and / or impurities ; Oxygen and nitrogen are given here as diluents , although in some ferrous metals they must be regarded as impurities, while in other cases they are desirable additives. Both oxygen and nitrogen are said to be analytical

109812/1307 bad original109812/1307 bad original

10 Gew.-# des Gußkörpers nicht überschreiten, und die Gesamtmenge von Sauerstoff plus Stickstoff soll 15 Gew.-# des Gußkörpers nicht übersteigen. Die Gußkörper können auch analytisch bis ^su 5 Qew,-% an Verunreinigungen enthalten. Solche Verunreinigungen ergeben sich üblicherweise bei der Verwendung von weniger reinem Ausgangsmaterial und bestehen aus Aluminium, Alkalimetallen, Erdalkalimetallen, Seltenerdmetallen, Schwefel und Phosphor.Do not exceed 10 wt .- # of the cast body and the total amount of oxygen plus nitrogen should not exceed 15 wt .- # of the cast body. The cast bodies can also analytically contain up to 5% by weight of impurities. Such impurities usually result from the use of less pure starting material and consist of aluminum, alkali metals, alkaline earth metals, rare earth metals, sulfur and phosphorus.

Zur näheren Erläuterung der Erfindung wird auf die Abbildung verwiesen, die eine Mikrophotographie einer typischen Mikrostruktur gemäß der vorliegenden Erfindung darstellt.For a more detailed explanation of the invention, reference is made to the figure which is a photomicrograph of a typical microstructure in accordance with the present invention.

Im Gegensatz zu reinem Siliziumcarbid-Material kann das feuerfeste Material der vorliegenden Erfindung leicht ohne übermäßige Sublimation, wie sie beim Schmelzen von Siliziumcarbid auftritt, geschmolzen werden. Das liegt an dem wesentlich geringeren Dampfdruck der erfindungsgemäß verwendeten Carbidmaterialien. Die Rohmaterialien sind vorzugsweise entweder ein Gemisch aus den entsprechenden Metallcarbiden und Kohlenstoff oder Graphit, oder ein Gemisch aus den entsprechenden Metallen und/oder Metalloxyden und einer überschüssigen Menge an Kohlenstoff zur Bildung des entsprechenden Carbids und freien Kohlenstoffs (Graphit). Diese Gemische können entweder in einem herkömmlichen elektrischen Lichtbogen-Schmelzofen unter Verwendung von Graphitelektroden, oder in einem elektrischen Induktions-Schmelzofen unter Verwendung einer Graphit-Auskleidung oder eines Graphit-Einsatzes geschmolzen werden. Um eine übermäßige Oxydation des Ansatzes durch die Iftngebungsluft zu verhindern, müssen geeignete Maßnahmen zur Bedeckung des Ansatzes während des gesamten Erwärmungsvorganges getroffen werden, zum Beispiel durch Aufrechterhaltung einer neutralen oder reduzia^enden Atmosphäre über der Oberfläche der Beschickung, oder durch Anbringen eines lockeren Deckels an der Kopföffnung des Ofens. Es wird vorgezogen, dieIn contrast to pure silicon carbide material, this can be refractory Material of the present invention easily without excessive sublimation such as occurs when melting silicon carbide, be melted. This is due to the significantly lower vapor pressure of the carbide materials used according to the invention. the Raw materials are preferably either a mixture of the corresponding metal carbides and carbon or graphite, or a mixture of the corresponding metals and / or metal oxides and an excess amount of carbon to form of the corresponding carbide and free carbon (graphite). These mixtures can either be in a conventional electrical Arc melting furnace using graphite electrodes, or in an electric induction melting furnace below Can be melted using a graphite liner or a graphite insert. To avoid excessive oxidation of the approach Appropriate measures must be taken to prevent the ventilation air from occurring to cover the approach during the entire heating process, for example by maintaining a neutral or reducing atmosphere above the surface of the load, or by applying a loose Lid on the top opening of the furnace. It is preferred that

109812/1307109812/1307

Ansatzmaterialien vor der Beschickung des Ofens vorzumisehen, und wenn Gemische aus Metallen und/oder Metalloxyden verwendet werden, kann es notwendig sein, das Ansatzgemisch vor der Beschickung des Ofens zu Pellets zu agglomerisieren. Ohne diese Agglomerisierung tritt unvollkommenes Schmelzen und Auftrennung ein, wobei eine übermäßige Menge an freiem Metall und Oxyden in der Schmelze zurückbleibt. Die Pellets sollen so hoch erhitzt werden, daß Umsetzung zu den Carbiden, jedoch noch kein Schmelzen eintritt, um den Verbrauch an elektrischem Strom in wirtschaftlichen Grenzen zu halten und die Verdampfung von Ansatzmaterialien zu verringern. Wenn die Gasentwicklung und Flammenbildung weitgehend nachgelassen äjit, werden die Ansatzmaterialien in der Weise geschmolzen, wie die ursprünglichen Ansatzgemische aus Carbiden und Kohlenstoff, unter Bildung eines Schmelzbades, welches von einer Masse nichtumgesetzter Ansatzmaterialien umgeben ist, die eine gegen eine Verunreinigung des Schmelzbades schützende Auskleidung darstellen. Ein Teil des Kohlenstoffgehaltes des geschmolzenen Produktes stammt von den Graphitelektroden oder der Graphitauskleidung, und deshalb wird die Menge an Kohlenstoff in dem Ansatz niedriger gehalten als die zur Erzielung einer gewünschten Zusammensetzung erforderliche Menge.To provide preparation materials before loading the furnace, and when mixtures of metals and / or metal oxides are used it may be necessary to agglomerate the batch mixture into pellets before loading it into the furnace. Without these Agglomerization occurs imperfect melting and separation leaving an excessive amount of free metal and oxides in the melt. The pellets are said to be so high be heated so that conversion to the carbides, but no melting occurs, in order to reduce the consumption of electricity to keep economic limits and to reduce the evaporation of batch materials. If the gas evolution and Flame formation largely subsided, are the batch materials melted in the same way as the original carbides and carbon batches, to form a Molten bath, which is surrounded by a mass of unreacted batch materials, one against contamination of the weld pool represent a protective lining. Part of the carbon content of the molten product comes from the graphite electrodes or the graphite liner, and therefore the amount of carbon in the batch is kept lower than the amount required to achieve a desired composition.

Eine genaue Vorschrift für die Zusammensetzung kann nicht gegeben werden, da die Menge an Kohlenstoff aus jeder der beiden Quellen von solchen Faktoren, wie Zeit, Temperatur usw. abhängt. In jedem Falle kann das angemessene Verhältnis vom Fachmann durch ein Minimum an Vorprüfung ermittelt werden.An exact prescription for the composition cannot be given, since the amount of carbon from each of the two Sources depends on such factors as time, temperature, etc. In any case, the appropriate ratio can be determined by a specialist can be determined by a minimum of preliminary testing.

Nachdem eine angemessene Menge an geschmolzenem Ansatzmaterial gebildet worden ist, wird die geschmolzene Masse in eine Graphitform gegossen, welche in üblicher Weise von GlUhpulver, wie Aluminiumpulver, pulverisiertem Koks usw. umgeben ist, und wird After an adequate amount of molten batch material has been formed, the molten mass is poured into a graphite mold, which is surrounded in a customary manner by GlUhpulver such as aluminum powder, powdered coke, etc., and is

109812/1307109812/1307

darin zu einem monolithischen Gußkörper aus feuerfestem Schmelzgußmaterial erstarren gelassen, der die Gestalt der Gießform hat. Dieses Verfahren führt zu einer relativ schnellen Erstarrung und zu willkürlich geformten Carbidkristallen, die weitgehend (drh. mindestens 4ß Gew.-$ der Kristalle) regellos orientiert sind, und die eine mittlere bis feine Korngröße haben. Der freie Kohlenstoff, der in den meisten Fällen kristalliner Graphit ist, bildet ein regelloses und unzusammenhängendes verwobenes Muster und durchsetzt die Carbidkristalle. In vielen Fällen ist der freie Kohlenstoff oder Graphit in einer verriegelnden Weise verbunden, wie sie nur für feuerfeste Schmelzgußmassen typisch ist. Die MikroStruktur der erfindungsgemäßen Gußkörper wird durch die Abbildung besser veranschaulicht. Diese Mikrostruktur ist die von Beispiel 15 von Tabelle I. Die hellen Bereiche 10 sind die willkürlich geformten und orientierten Zirkoniumcarbidkristalle. Das regellose und unzusammenhängende verwobene Muster oder Gefüge von freiem Kohlenstoff (Graphit) ist an den dunklen Bereichen 12 zu erkennen. Kristallverbund tritt auf zwischen Graphit und Graphit 18, Carbid und Graphit 16 und Carbid und Carbid 14. In vielen Fällen bilden die Carbid-Graphit-Bindungen unregelmäßige Grenzflächen von verriegelnder Art, wie bei 20 erkenntlich ist. Die großen Graphitbereiche 22 bestehen aus Primärgraphit, der sich zwischen den Carbidkristallen gebildet hat, und die kleineren Graphitbereiche 24 scheinen eutektisch zu sein oder aus ausgeschwitztem (ausgefülltem) Graphit innerhalb der Carbidkristalle zu bestehen. Manchmal sind die kleineren Graphitbereiche von dendritischer Gestalt. Da· nachfolgende Beispiel erläutert die praktische Durchführung der Erfindung und die dabei erzielten Ergebnisse. Bs wurde ein feinzerkleinertes Ansatzgemisch hergestellt, das aus 6Ö Gew.-% Il»eniter« und 40 Gew.-% Graphit von Elektrodenqualität bestand. D44 XlMeniters hatte die folgende analytische Zusammensetzung i«··¥.-%! 63.14 TiO2, 31,7 Pe3O3, 0.5 Al2O3, 0.4 MgO, 0.3 SiO2 allowed to solidify therein to form a monolithic cast body made of refractory melt casting material, which has the shape of the casting mold. This process leads to a relatively rapid solidification and to arbitrarily shaped carbide crystals which are largely (i.e. at least 40% by weight of the crystals) oriented randomly and which have a medium to fine grain size. The free carbon, which in most cases is crystalline graphite, forms a random and incoherent interwoven pattern and permeates the carbide crystals. In many cases the free carbon or graphite is linked in an interlocking manner which is typical only of fused cast refractories. The microstructure of the cast bodies according to the invention is better illustrated by the figure. This microstructure is that of Example 15 of Table I. The light areas 10 are the randomly shaped and oriented zirconium carbide crystals. The random and incoherent interwoven pattern or structure of free carbon (graphite) can be seen in the dark areas 12. Crystal bonding occurs between graphite and graphite 18, carbide and graphite 16 and carbide and carbide 14. In many cases, the carbide-graphite bonds form irregular interfaces of an interlocking nature, as can be seen at 20. The large graphite areas 22 consist of primary graphite that has formed between the carbide crystals, and the smaller graphite areas 24 appear to be eutectic or consist of exuded (filled) graphite within the carbide crystals. Sometimes the smaller areas of graphite are dendritic in shape. The following example explains the practical implementation of the invention and the results achieved. A finely comminuted batch mixture was produced which consisted of 60% by weight of Il "eniter" and 40% by weight of graphite of electrode quality. D44 XlMeniters had the following analytical composition i «·· ¥ .-%! 63.14 TiO 2 , 31.7 Pe 3 O 3 , 0.5 Al 2 O 3 , 0.4 MgO, 0.3 SiO 2

..-',-*.,. . 109812/1307..- ', - *.,. . 109812/1307

ORIGINAL INSPECTEDORIGINAL INSPECTED

-ίο--ίο-

1 §713391 §71339

0.12 Cr2O-. Das Gemisch wurde mit einer kleinen Menge Wasser und Stärke versetzt und dann zu kleinen Pellets aggiomerisiert. Die Pellets wurden in einen elektrischen Lichtbogen-Schmelzofen gegeben, der die unteren Enden der Braphitelektroden bedeckte, zwischen denen Graphit-Verkürzungsstäbe angebracht waren. Ein locker sitzender Graphitdeckel wurde über die Ofenkammer gestülpt und der elektrische Strom/in einer solchen Stärke eingeschaltet, daß die Ansatzmaterialien miteinander reagierten, ohne daß jedoch merkliches Schmelzen eintrat. Der Beginn der Umsetzung konnte leicht an der Gasentwicklung und an dem Auftreten von Flammen ah den Offnungen des Graphitdeckels erkannt werden. Nachdem die Flammenbildung und Gasentwicklung weitgehend nachgelassen hatte, wurde die Stromstärke erhöht, um einen wesentlichen Teil der umgesetzten Beschickung, der ausreichte, um eine Graphitform von Ziegelgestalt von 7,5 x 11,5 x 33 cm und die übliche Kernmarke zu füllen, zu schmelzen. Der Ofen wurde angezapft und das geschmolzene Material schnell in die Form gegossen, die von Aluminium-Glühpulver umgeben war. Die Oberseite der Kernmarke wurde ebenfalls mit Aluminium-Pulver bedeckt, und die Form wurde stehen gelassen, bis sich der ziegeiförmige Gußkörper auf Raumtemperatur abgekühlt hätte· Der Gußkörper hatte die folgende chemische Analyse (Gew.-%)i 54.0 Titan, 17.3. Eisen, weniger als 1 Jt Sauerstoff, Rest Kohlenstoff. Die Röntgenstrahlanalyse des Gußkörpers ergab als vorwiegende Phase TiC mit einer geringeren Menge an Eisencarbidkristallen, und eine Graphit-Zwischenstruktur, welche die Carbidkristalle durchsetzte. Der Graphit wurde zu einer 5 Gew.-tf des Gußkörpers übersteigenden Menge bestimmt.0.12 Cr 2 O-. A small amount of water and starch were added to the mixture and then agglomerated into small pellets. The pellets were placed in an electric arc furnace which covered the lower ends of the braphite electrodes with graphite foreshortening rods between them. A loosely fitting graphite lid was placed over the furnace chamber and the electrical current / was switched on to such an extent that the batch materials reacted with one another without, however, noticeable melting. The beginning of the reaction could easily be recognized by the evolution of gas and the appearance of flames at the openings in the graphite lid. After the flame and gas evolution had largely subsided, the current was increased to melt a substantial portion of the converted charge, sufficient to fill a graphite form of brick shape measuring 7.5 x 11.5 x 33 cm and the usual core mark . The furnace was tapped and the molten material quickly poured into the mold, which was surrounded by aluminum glow powder. The top of the core mark was also covered with aluminum powder and the mold was allowed to stand until the goat-shaped casting had cooled to room temperature. The casting had the following chemical analysis (wt%) i 54.0 titanium, 17.3. Iron, less than 1 metric tons of oxygen, the remainder being carbon. The X-ray analysis of the casting revealed as the predominant phase of TiC with a smaller amount of Eisencarbidkristallen, and a graphite intermediate structure represented by the set Car bidkristalle. The graphite was determined to be in excess of 5 parts by weight of the cast body.

Die stark überlegene Wärmeschockbeständigkeit des .vorstehenden Beispiels wurde dadurch demonstriert, daß man eine Probe von etwa 2,5 x 1»8 χ 1,2 cm von dem Gußkörper abschnitt, auf 18OO°C j erhitzte und dann in Hasser von Raumtemperatur warf* Da· ist ! ein Cyolus dieses schweren Tests. Im vorliegenden Falle wurde The greatly superior thermal shock resistance of the above example was demonstrated by cutting a sample approximately 2.5 × 1 × 8 × 1.2 cm from the cast body, heating it to 180 ° C. and then throwing it into room temperature hater * Da · is ! a cyolus of this severe test. In the present case,

109812/1307109812/1307

der Testcyclus fünf mal wiederholt, ohne daß ein bemerkenswerter Bruch infolge Wärmeschock eintrat. Eine andere Probe desSelben Gußkörpers und von derselben Größe wurde drei Testcyclen ohne merkbar en Wärmeschockbruch unterworfen. Die mit diesen erfindungsgemäßen Proben erhaltenen Ergebnisse können verglichen werden mit den mit einer handelsüblichen Schmelzgußmasse, die den bisher höchsten Grad an Wärmebeständigkeit aufwies, erhaltenen Ergebnissen. Diese letztere Schmelzgußmasse bestand aus (Gew.-#): 98,81 Aluminiumoxyd, 0,52 Kalk und 0,67 Flußspat und eine Probe hiervon von gleicher Größe zersprang in etwa drei Stücke beim zweiten Cyclus des oben beschriebenen Wärmeschock-Tests. Eine andere Schmelzgußmasse, die früher wegen ihrer Beständigkeit gegen schweren Wärmeschock sehr bekannt war, besteht aus reinem.Magnesiumoxyd-Schmelzguß mit einer kristallinen Struktur aus mindestens 75 Vol.-% gleichförmiger, unorientierter Periklas-Kristalle, wobei die Mehrzahl dieser Kristalle eine feine bis mittlere Korngröße von 20 bis 5000 Mikron hat. Gleichgroße Proben dieser Magnesia-Gußkörper zersprangen in zwei oder drei Stücke beim ersten oder zweiten Cyclus des oben beschriebenen Wärmeschock-Tests.the test cycle was repeated five times without any noticeable breakage due to thermal shock. Another sample of the same casting and of the same size was subjected to three test cycles with no appreciable thermal shock fracture. The results obtained with these samples according to the invention can be compared with the results obtained with a commercially available hot-melt casting compound which had the highest degree of heat resistance to date. This latter fused cast composition consisted of (wt. Another melt casting compound, which was previously well known for its resistance to severe thermal shock, consists of pure magnesium oxide melt casting with a crystalline structure of at least 75 % by volume of uniform, unoriented periclase crystals, the majority of these crystals being fine to medium Has grain size from 20 to 5000 microns. Samples of the same size of these magnesia castings shattered into two or three pieces on the first or second cycle of the thermal shock test described above.

Um die verbesserte Schlackenbeständigkeit der erfindungsgemäßen Gußkörper in der reduzierenden Atmosphäre des basischen Sauerstoff-Stahlherstellungsverfahrens zu demonstrieren, wurde der folgende Versuch mit erfindungsgemäßen Proben und mit Proben herkömmlichen Materials, von denen zwei üblicherweise für Auskleidungen basischer Sauerstofföfen verwendet werden, unternommen. Der Test bestand darin, daß man 3,5 χ 2,5 χ 1,2 cm große Proben in einen Gas-Sauerstoffofen gab, in welchen die Temperatur und die reduzierende Atmosphäre eines basischen Sauerstoffofens nachgeahmt werden konnten. Bei 1700 C wurden die Proben zweieinhalb bis drei Stunden lang, mit einer ihrer größten Oberflächen nach oben ausgerichtet, durch einen herabfallenden Strom von geschmolzenen kalkreichen, basischen, ei-About the improved slag resistance of the castings according to the invention in the reducing atmosphere of the basic oxygen steelmaking process To demonstrate the following experiment with samples according to the invention and with samples conventional materials, two of which are commonly used for lining basic oxygen furnaces. The test consisted of placing 3.5 by 2.5 by 1.2 cm samples in a gas-oxygen oven in which the Temperature and the reducing atmosphere of a basic oxygen furnace could be mimicked. Were at 1700 C. the samples for two and a half to three hours, with one of their largest surfaces facing up, by a falling one Stream of molten lime-rich, basic,

109812/1307109812/1307

senhaltigen Schlackentropfen mit einer gleichmäßigen Geschwindigkeit von 60 mal/h hindurchbewegt. Die Schlacke entsprach der basischen Sauerstoffofen-Schlacke, die sich während der Stahlherstellung entwickelt, und hatte die folgende Zusammensetzung (Gew.-%): 23,75 Fe 2°3> 25,94 SiO2, 40.86 CaO, 6,2 5 MgO und 3,20 AlpO,· A"1 Ende des Versuches wurde die durchschnittliche Dicke der Probe gemessen und mit der ursprünglichen Dicke von 1,2 cm vor dem Versuch verglichen. Die Ergebnisse wurden in prozentualer Dickenänderung (als Prozent Schlakkenabrieb bezeichnet) ausgedrückt. Bei drei Proben der oben beschriebenen Titancarbid/Eisencarbid/Graphit-Gußkörper war der Schlackenabrieb 17 bis 3 5 %> Im Gegensatz hierzu zeigte efh handelsüblicher teergebundener Dolomitziegel einen Schlackenabrieb von 100 % (d.h. die Probe war vollständig in zwei Teile zerschnitten). Proben von gebräuchlichen basischen Schmelzgußmassen aus Gemischen von 55 % Magnesit und 45 % Chromerz zeigen Schlackenabriebe von 50 bis 100 %. Die erfindungsgemäßen feuerfesten Gußkörper nehmen sich wegen ihrer guten Schlackenbeständigkeit in reduzierenden Atmophären vorteilhaft neben kürzlich entwickelten basischen Schmelzgußmassen für basische Sauerstoffofen-Auskleidungen aus. Diese letzteren feuerfesten Massen sind geschmolzene und gegossene Gemische aus 90 Gew.-# Magnesit und 10 Gew.-# Rutil und zeigen eine Schlackenbeständigkeit von 2 5 bis 30 % bei dem oben beschriebenen Test. Interessant ist auch das Verhalten von Graphit (Elektrodenqualität) bei diesem Test. Eine Reihe von 10 Proben aus Graphit zeigte Schlackenabriebe von 24 bis 45 seniferous slag droplets are moved through at a constant speed of 60 times / h. The slag corresponded to the basic oxygen furnace slag that developed during steel production and had the following composition (% by weight): 23.75 Fe 2 ° 3> 2 5.94 SiO 2 , 40.86 CaO, 6.2 5 MgO and 3.20 AlpO, · A " 1 At the end of the test, the average thickness of the sample was measured and compared with the original thickness of 1.2 cm before the test. The results were expressed as a percentage change in thickness (referred to as percent slag wear). three samples of the above-described titanium carbide / carbide / graphite cast body of the slag abrasion was 17-3 5%> in contrast, efh commercial teergebundener dolomite bricks showed a slag abrasion of 100% (that is, the sample was completely into two parts cut.) samples of common Basic fused cast masses made from mixtures of 55% magnesite and 45% chrome ore show slag abrasion of 50 to 100% Resistance in reducing atmospheres is advantageous in addition to recently developed basic melt casting compounds for basic oxygen furnace linings. These latter refractories are molten and cast mixtures of 90 wt .- # magnesite and 10 wt .- # rutile and show a slag resistance of 25 to 30 % in the test described above. The behavior of graphite (electrode quality) in this test is also interesting. A series of 10 samples of graphite showed slag wear of 24 to 45 %

Die vorgenanhten Titancarbid/Eisencarbid/Graphit-Gußkörper zeigten auch eine hinreichende Beständigkeit gegen Angriff durch geschmolzenes Eisen. Eine Probe der Art, wie sie in dem oben beschriebenen Schlackenbeständigkeitstest verwendet worden war, wurde eine halbe Stunde in geschmolzenes Eisen von 175jO°C getaucht. Der Abrieb durch das geschmolzene Eisen betrug 19 % und man weiß aus Erfahrung, daß ein Eisenabrieb bei diesem Test The previously sewn titanium carbide / iron carbide / graphite castings also showed adequate resistance to attack by molten iron. A sample of the way in which they had been used in the above-described slag resistance test was immersed for half an hour in molten iron of 175jO ° C. The molten iron abrasion was 19 % and it is known from experience that there was iron abrasion in this test

109812/1307109812/1307

-13- 1071359-13- 1071359

von 20 % oder weniger ein Hinweis auf hinreichende Beständigkeit gegen Korrosion durch geschmolzenes Eisen ist.of 20 % or less is indicative of adequate resistance to corrosion from molten iron.

Die Titancarbid/Eisencarbid/Graphit-Gußkörper haben noch andere bemerkenswerte Eigenschaften. Ihr Bruchmodul (Biegung) bei 134O°C beträgt 140 bis 420 kg/cm . Proben dieser Gußkörper zeigten bei 22000C unter einer Drucklast von 1,76 kg/cm keine nennenswerte Deformation (d.h. weniger als 5 %). Die Gußkörper haben auch einen für derart hochfeuerfeste Schmelzgußmassen ziemlich niedrigen thermischen Ausdehnungskoeffizienten, nämlich weniger als 85 χ 10 /0C bei 10000C.The titanium carbide / iron carbide / graphite castings have other remarkable properties as well. Their modulus of rupture (bending) at 1340 ° C is 140 to 420 kg / cm. Samples of these castings showed at 2200 0 C under a compressive load of 1.76 kg / cm, no significant deformation (ie, less than 5%). The cast body also have a rather low for such a highly refractory Schmelzgußmassen coefficient of thermal expansion, namely less than 85 χ 10/0 C at 1000 0 C.

Der schädliche Einfluß übermäßiger Mengen an Verunreinigungen wurde während der Herstellung weiterer Gußkörper aus dem obengenannten Gemisch aus 60 Gew.-% Ilmenit und 40 Gew.-% Kohlenstoff deutlich, als einer der Gußkörper beim Gießen durch AIuminium-Glühpulver verunreinigt wurde. Die chemische Analyse ■ war wie folgt (in Gew.-%): 47,8 Titan, 16,2 Eisen, 8,8 Sauerstoff, 9,8 Aluminium, Rest Kohlenstoff. Die Korrosionsbeständigkeit gegen geschmolzene kalkreiche basische Schlacke und ge1-schmolzenes Eisen war sehr schlecht, und innerhalb einer kurzen Zeit zerfielen Proben dieses Materials beim bloßen Stehen im Regal.The harmful effect of excessive amounts of impurities became evident during the production of further castings from the above-mentioned mixture of 60% by weight ilmenite and 40% by weight carbon, when one of the castings was contaminated with aluminum glow powder during casting. The chemical analysis ■ was as follows (in% by weight): 47.8 titanium, 16.2 iron, 8.8 oxygen, 9.8 aluminum, the remainder carbon. The corrosion resistance to molten lime-rich basic slag and ge 1 -molten iron was very poor, and samples of this material disintegrated just standing on the shelf within a short time.

Weitere Beispiele von Ansätzen, die zu erfindungsgemäßen Gußkörpern geschmolzen werden können, sind zur weiteren Erläuterung der Erfindung in den Tabellen, 1,3, 5 und 7 aufgeführt. Die meisten dieser Beispiele schmolzen· zufriedenstellend in einem elektrischen Induktionsofen« Die Beispiele 1O9 11? 17, |β9 26, 31? 43, 73 und 89 stellen jedoch typische Beispiele für _4C&@he Aaaitse dfes di© sufsdedesistelXead ±a-einem elektrischemFurther examples of batches which can be melted to form cast bodies according to the invention are listed in Tables 1, 3, 5 and 7 to further explain the invention. Most of these examples · melted satisfactorily in an electric induction furnace "The examples 1O 9 11? 17, | β 9 26, 31? 43, 73 and 89 represent typical examples of _4C & @ he Aaaitse dfe s di © sufsdedesistelXead ± a-an electric

Hq jlQS'feSßdigfeQit g©g©a g©ssfeffi©ls®siQsHq jlQS'feSßdigfeQit g © g © a g © ssfeffi © ls®siQs

BAD ORIGINALBATH ORIGINAL

Bisen, wie sie oben beschrieben wurden* Alle Zusammensetzungen und analytischen Werte in diesen vier Tabellen und in den Tabellen 2, 4, 6 und 8 sind in Gew.-% angegeben. Typische Beispiele für Ansatzmaterialien haben folgende chemische Analyse (in Gew.-%)t Up to as described above * All compositions and analytical values in these four tables and in Tables 2, 4, 6 and 8 are given in% by weight. Typical examples of batch materials have the following chemical analysis (in% by weight ) t

Ti (Titanschwamm)Ti (titanium sponge)

99,3 f> Tl, 0,40 % max. Mg, 0,1 % max. Pe, 0,15 % max. Cl. TiO2 (Rutil)99.3 f> Tl, 0.40 % max. Mg, 0.1 % max. Pe, 0.15% max. Cl. TiO 2 (rutile)

96-98 % TiO2, 1 % max. Pe3O3, 0,3 % ZrO2, 0,3 % Al3O3, 0,25 f> SiO2, 0,1 % Cr2O3, 0,29 # V2O5, 0,025-0,05 % P2O5, 0,1 % S.96-98 % TiO 2 , 1 % max.Pe 3 O 3 , 0.3 % ZrO 2 , 0.3% Al 3 O 3 , 0.25 f> SiO 2 , 0.1% Cr 2 O 3 , 0 , 29 # V 2 O 5 , 0.025-0.05 % P 2 O 5 , 0.1 % S.

TiN (Titannitrid)TiN (titanium nitride)

99 + % TiN. Zr (Zirkonschwamm) 99 + % TiN. Zr (zircon sponge)

99,2 % min. Zr + Hf (Hf etwa 2 %), 0,2 % max. Cr + Pe. ZrO2 (Zirkonoxyd)99.2 % min. Zr + Hf (Hf about 2 %) , 0.2 % max. Cr + Pe. ZrO 2 (zirconium oxide)

94,15 % ZrO2, 2,00 % HfO2, 1,00 % max. Al3O3, 0,8 % max. SiO2, 0,75 % max. CaO, 0,50 % max. Fe3O3.94.15 % ZrO 2 , 2.00 % HfO 2 , 1.00 % max. Al 3 O 3 , 0.8 % max. SiO 2 , 0.75 % max. CaO, 0.50 % max. Fe 3 O 3 .

97 + % HfO. (Zr etwa 2 %)* 97 + % HfO. (Zr about 2 %) *

812/1307 BAD812/1307 BATHROOM

* 99 +* 99 +

Nb3O5 (Optische Qualität) 99,9 +Nb 3 O 5 (optical quality) 99.9 +

Ta2O5 (Optische Qualität)Ta 2 O 5 (optical quality)

99,9 + % Ta2°5· Ta (hochreines Metall) 99.9 + % Ta 2 ° 5 Ta (high purity metal)

99 + % Ta.
Cr2O3 (grünes Chromoxyd) 99,75 + % Cr2O3.
99 + % Ta.
Cr 2 O 3 (green chromium oxide) 99.75 + % Cr 2 O 3 .

Mo (hochreines Metall)Mo (high purity metal)

99 + % Mo.
W (hochreines Metall) 99 + % W.
99 + % Mo.
W (high purity metal) 99 + % W.

WO3 (Scheclit-Konzentrat) 68-72 % WO3 (Rest wahrscheinlich CaO)1 WO 3 (Scheclit concentrate) 68-72 % WO 3 (remainder probably CaO) 1

109812/1307109812/1307

Fe (reines Metall) 99 + % Fe. Fe (pure metal) 99 + % Fe.

FeTiO3 (Ilraenit)FeTiO 3 (Ilraenite)

(wie oben beschrieben) Cr (reines Metall) (as described above) Cr (pure metal)

99 + % Cr. Si (reines Metall) 99 +% Cr. Si (pure metal)

99 + % Si. Mn (reines Metall) 99 + % Si. Mn (pure metal)

99 + % Mn. Hf (reines Metall) 99 + % Hf.99 +% Mn. Hf (pure metal) 99 + % Hf.

ZrSiO, (Zirkonerz)ZrSiO, (zirconium ore)

67,23 % ZrO2 (HfO2 etwa 2 %), 32,40 % SiO2, 0,18 % FeO, 0,18 %67.23 % ZrO 2 (HfO 2 approx. 2 %) , 32.40 % SiO 2 , 0.18 % FeO, 0.18%

V (reines Metall) 99 + % V. V (pure metal) 99 + % V.

109812/1307109812/1307

Nb (reines Metall)Nb (pure metal)

99 + % Nb.
T.C*O. (Transvaal Chromerz)
99 +% Nb.
TC * O. (Transvaal chrome ore)

43,77 % Cr2O3, 23,28 % FeO + Pe2O3, 13,00 % Al2O3 11,79 % MgO, 3,24 f SiO2, 0,5 % CaO, 0,4 % TiO2,43.77% Cr 2 O 3, 23.28% FeO + Pe 2 O 3, 13.00% Al 2 O 3 11.79% MgO, 3.24 f SiO 2, 0.5% CaO, 0.4 % TiO 2 ,

Tabelle 11Table 11

Zusammensetzung des Phasenanalyse % % Hitze^ Ansatzgemisches" Schlak- Eisen- schock-Composition of the phase analysis%% heat ^ Batch mixture "slag iron shock

kenab- abrieb cyclen No. rieb +*kenab- abrasion cycle No. rubbed + *

11 85%85% Ti,Ti, 15%15% CC. 84,0%
% G
84.0%
% G
TiCTiC ,16,0 7, 16.0 7 - -
22 80%80% Ti,Ti, 20%20% CC. TiCxTiCx > 5%> 5% GG 1111 >8> 8 33 75%75% Ti,Ti, 2 5%2 5% CC. 81,0%
% G
81.0%
% G
TiC: TiC : , 19,0 2, 19.0 2 .—.— -
44th 70%70% Ti,Ti, 30%30% CC. TiC,>iTiC,> i > 5%> 5% GG 1414th - 55 60%60% Ti,Ti, 40%40% CC. TiC,>>TiC, >> * 5%* 5% GG - >8> 8 66th 40%40% Ti,Ti, 60%60% CC. TiC,>5TiC,> 5 > 5%> 5% G G - - 77th 65%65%
15%15%
Ti,
C
Ti,
C.
20%20% TiO2,TiO 2 , TiC, >TiC,> 5%5% GG - 44th
88th 49%
21%
49%
21%
Ti,
C
Ti,
C.
30%30% TiN,TiN, TiC,>^TiC,> ^ . 5%. 5% GG - -

9 75% TiO2, 25% C TiC,»5% G, CC Fe —9 75% TiO 2 , 25% C TiC, »5% G, CC Fe -

10 40% TiO2, 60% C TiC,>:> 5% G —10 40% TiO 2 , 60% C TiC,>:> 5% G -

11 70% Ti02, 30% coal TiC,2κ 5% G, TiO211 70% Ti0 2 , 30% coal TiC, 2κ 5% G, TiO 2 -

12 88% Zr, 12% C 84,5% ZrC, 15,5% 20 26 :12 88% Zr, 12% C 84.5% ZrC, 15.5% 20 26:

13 83% Zr, 17% C ZrC,» 5% G — 713 83% Zr, 17% C ZrC, »5% G - 7

14 75% Zr, 25% C 85,7% ZrC, 14,3% 29 ^ 714 75% Zr, 25% C 85.7% ZrC, 14.3% 29 ^ 7

109812/1307109812/1307

Tabelle 1 (Fortsetzung) Table 1 (continued)

No.No. Zusammensetzung
des Ansatzge
misches
composition
of the approach
mix
Phasenanalyse+ %
Schlak-
kenab-
rieb
Phase analysis + %
Slack
kenab-
rubbed
*
Bisen
abrieb
*
Bisen
abrasion
Hitze-
schock-
cyclen
Heat-
shock-
cyclen
1515th 60% Zr, 40% C60% Zr, 40% C ZrC,^5% GZrC, ^ 5% G. >8> 8 1616 50% Zr, 50% C50% Zr, 50% C 62,5% ZrC, 37,5
% G
62.5% ZrC, 37.5
% G
- -
1717th 50% ZrO2, 50% C50% ZrO 2 , 50% C ZrC^fc.5% GZrC ^ fc. 5% G - - 1818th 77,4% ZrO2,
22,6% coal
77.4% ZrO 2 ,
22.6% coal
ZrC ,> 5% G, ZrO2 ZrC,> 5% G, ZrO 2 - -
1919th 81% HfO2, 19% C81% HfO 2 , 19% C Hf C, * 5% GHf C, * 5% G - - 2020th 77,5% HfO9,
22,5% C
77.5% HfO 9 ,
22.5% C
90,1% HfC, ' —
9,9% G
90.1% HfC, '-
9.9% G.
- -
2121 70% V2O5, 30% C70% V 2 O 5, 30% C VC,^5% GVC, ^ 5% G. - - 2222nd 77,5% Nb 0 ,
22,5% C Α 5
77.5% Nb 0,
22.5% C Α 5
NbC ,2*5% GNbC, 2 * 5% G. - -
2323 66% Nb9O ,
34% C d 5
66% Nb 9 O,
34% C d 5
HbC,» 5% GHbC, »5% G. - -
2424 70% Ta9O.,
30% C * °
70% Ta 9 O.,
30% C * °
TaC,**5% GTaC, ** 5% G. - -
2525th 76% Ta, 24% C76% Ta, 24% C TaC,>5% GTaC,> 5% G. - - 2626th 50% Cr2O3,
50% C
50% Cr 2 O 3 ,
50% C
Cr3C2, Cr7C3,
^>5% G
Cr 3 C 2 , Cr 7 C 3 ,
^> 5% G.
--- -
2727 80% Cr9O-,
20% C J
80% Cr 9 O-,
20% C J
Cr3C2 ,>5% GCr 3 C 2 ,> 5% G. - -
2828 60% Mo, 40% C60% Mo, 40% C MoC, Mo2C,
»5% G
MoC, Mo 2 C,
»5% G
____ —----
2929 70% Mo, 30% C70% Mo, 30% C MoC,>5% GMoC,> 5% G. - - 3030th 80% W, 20% C80% W, 20% C WC^>5% GWC ^> 5% G - - 3131 50% WO3, 50% C50% WO 3 , 50% C WC, W2C,»5% GWC, W 2 C, »5% G -

Das Symbol G bezeichnet eine Graphit-Phase.The symbol G denotes a graphite phase.

Das Symbol>besagt, d&B der Test nach der angegebenen Anzahl von Cyclen unterbrochen wurde, ohne daß Bruch auftrat.The symbol> indicates d & B the test after the specified Number of cycles was interrupted without breaking occurred.

109812/1307109812/1307

BAD ORiGlNAj.BAD ORiGlNAj.

Die Werte in Tabelle 1 sind bezeichnend für Einmetallcarbid/ Graphit-Zusammensetzungen, und es ist leicht zu erkennen, daß eine Menge von mindestens 5 Gew.-% freiem Kohlenstoff (Graphit) in der Mikrostruktur zu einer überlegenen Wärmeschockbeständigkeit führt. Die Titancarbid/Graphit-Proben waren besonders beständig gegen Korrosion durch geschmolzene· Schlacke und Eisen. Zwar zeigen die Zirkoniumcarbid/Graphit-Proben nicht · die gleiche Korrosionsbeständigkeit wie die Titancarbid/Graphit-Proben, jedoch sind sie hinreichend beständig gegen Schlackenkorrosion. Wie bereits erwähnt wurde, stammt nicht der gesamte Kohlenstoffgehalt des Gußkörpers aus dem Ansatzgemisch, sondern ein Teil von den Graphit-Elektroden oder dem Graphit-Behälter. Die chemischen Analyse in Tabelle zeigt dies sehr deutlich. Diese Werte, zusammen mit denen von Tabelle 1, geben außerdem einen guten Hinweis für die Zusammensetzung des Ansatzgemisches, das zur Erzielung einer bestimmten gewünschten Zusammensetzung des Gußkörpers erforderlich ist.The values in Table 1 are indicative of single metal carbide / graphite compositions, and it can easily be seen that an amount of at least 5% by weight free carbon (graphite) in the microstructure for superior thermal shock resistance leads. The titanium carbide / graphite samples were particularly resistant to corrosion by molten slag and Iron. The zirconium carbide / graphite samples do not show the same corrosion resistance as the titanium carbide / graphite samples, however, they are sufficiently resistant to slag corrosion. As mentioned earlier, does not come the entire carbon content of the cast body from the batch mixture, but part of the graphite electrodes or the Graphite container. The chemical analysis in the table shows this very clearly. These values, together with those of Table 1, also give a good indication of the composition of the Mixture that is required to achieve a certain desired composition of the cast body.

Tabelle 2:Table 2:

Nr. Tatsächliche Analyse BerechneteNo Actual Analysis Calculated

Analyseanalysis

1 66,5% Ti, 33,3% C, 0,2% Fe 67,2% Ti, 32,8% C1 66.5% Ti, 33.3% C, 0.2% Fe 67.2% Ti, 32.8% C

2 69,5% Ti, 30,4% C, 0,1% Pe 2 69.5% Ti, 30.4% C, 0.1% Pe

3 64,8% Ti, 3 5,2% C3 64.8% Ti, 3 5.2% C

12 79,0% Zr, 21,0% C 74,7% Zr, 25,3% C12 79.0% Zr, 21.0% C, 74.7% Zr, 25.3% C

13 66,5% Zr, 33,5% C 13 66.5% Zr, 33.5% C

U 76,0% Zr, 24,0% CU 76.0% Zr, 24.0% C

15 76,0% Zr, 24,0% C 15 76.0% Zr, 24.0% C

16 — 55,2% Zr, 44,8% C16-55.2% Zr, 44.8% C

20 — 84,4% Hf, 15,6% C20-84.4% Hf, 15.6% C

+Auf der Grundlage der Phasenanalyse in Tabelle 1 und unter der Annahme, daß kein überschüssiger Kohlenstoff in Feststofflösung in der Carbidphase enthalten ist. + Based on the phase analysis in Table 1 and assuming that there is no excess carbon in solid solution in the carbide phase.

109812/1307109812/1307

Die in den Tabellen 3 und 5 angegebenen Beispiele sind typisch für solche Zusammensetzungen, die zwei carbidbildeiKie metallische Substanzen enthalten, was zur Bildung von einer mehreren Carbidphasen führt, wie aus den Tabellen 4 und 6 hervorgeht. Auch diese Werte bestätigen die Tatsache, d&ß mindestens 5 Gew.-% Graphit zu einer überlegenen Wärmescliockbeständigkeit in allen Fällen führt, im Gegensatz zu solchen Proben, die weniger als 5 Gew.-% freien Kohlenstoff enthalten. Wenn auch nicht alle Proben eine überlegene Beständigkeit gegen geschmolzene Schlacke und Eisen haben, so zeigen sich dAe Ti tan/Eisen/Kohlenstoff proben, Titan/Zirkonium/Kohl©©stoffe proben und Zirkonium/Chrom/Kohlenstoff-Proben in besonders auf fälliger Weise als stark korrosionsbeständig gegen geschmolzene Schlacke und Eisen. Die Titan/Eisen/Kohlenstoff-Proben von Tabelle 3 lassen klar erkennen, daß ein geeignetes ScJamelz^ gußmaterial für Auskleidungen von basischen Sauerstofföfeii aus solch relativ billigen Rohmaterialien wie Ilmenit und Graphit hergestellt werden können. Die Einbeziehung von Eisen in die Zusammensetzung reduziert auch noch den Schmelzpunkt des Gemisches und macht den Gußkörper leichter bearbeitbar, ohne daß seine überlegenen Eigenschaften verschlechtert werden. Während der ungefähre Schmelzpunkt eines Ansatzgemisches aus 80% Ti und 20% C bei über 3000°C liegt, beträgt der ungefHh1Fe Schmelzpunkt von 65% Ti-15% Fe-20% C 2 50O0C. In Bezug auf die eisenhaltigen Proben sei vermerkt, daß eine beträchtli-ehe ,Menge an Eisen wahrend des Schmelzverfahrens verloren gehtj aus den chemischen Analysewerten in Tabelle 4 entnommen kann. Diese Werte sind ein guter Hinweis für die lung eines Ansatzgemisches, das zu erfindungsgemäßen von geeigneter Analyse führt.The examples given in Tables 3 and 5 are typical of those compositions which contain two carbide-forming metallic substances, which leads to the formation of one more carbide phase, as can be seen from Tables 4 and 6 . These values also confirm the fact that at least 5% by weight of graphite leads to a superior thermal block resistance in all cases, in contrast to those samples which contain less than 5% by weight of free carbon. Although not all samples have superior resistance to molten slag and iron, the titanium / iron / carbon samples, titanium / zirconium / carbon samples, and zirconium / chromium / carbon samples are particularly well known highly corrosion resistant to molten slag and iron. The titanium / iron / carbon samples of Table 3 clearly show that a suitable ceramic casting material for linings of basic oxygen furnaces can be made from such relatively inexpensive raw materials as ilmenite and graphite. The inclusion of iron in the composition also reduces the melting point of the mixture and makes the cast body more machinable without sacrificing its superior properties. While the approximate melting point of a mixture of 80% Ti and 20% C is more than 3000 ° C, the approx. 1 Fe melting point of 65% Ti-15% Fe-20% C2 50O 0 C. With regard to the iron-containing samples It should be noted that a considerable amount of iron is lost during the smelting process, as can be seen from the chemical analyzes in Table 4. These values are a good indication for the development of a batch mixture which leads to a suitable analysis according to the invention.

109812/1307109812/1307

Tabelle 3:Table 3:

Nr. Zusammensetzung des Ansatzgemi sches Hitze-No. Composition of the batch mixture Heat

32 7 5% Ti, 5% Fe, 20% C32 7 5% Ti, 5% Fe, 20% C

33 70% Ti, 10% Fe, 20% C33 70% Ti, 10% Fe, 20% C

34 65% Ti, 15% Fe, 20% C 3 5 60% Ti, 20% Fe, 20% C34 65% Ti, 15% Fe, 20% C 3 5 60% Ti, 20% Fe, 20% C

36 50% Ti, 30% Fe, 20% C36 50% Ti, 30% Fe, 20% C

37 40% Ti, 40% Fe, 20% C37 40% Ti, 40% Fe, 20% C

38 60% Ti, 10% Fe, 30% C38 60% Ti, 10% Fe, 30% C

39 52,5% Ti, 17,5% Fe, 30% C39 52.5% Ti, 17.5% Fe, 30% C

40 40% Ti, 20% Fe, 40% C40 40% Ti, 20% Fe, 40% C

41 44% Ti, 12% Fe, 44% C41 44% Ti, 12% Fe, 44% C

42 80% FeTiO3, 20% C42 80% FeTiO 3 , 20% C

43 50% FeTiO3, .50% C43 50% FeTiO 3 , .50% C

44 80% Zr, 10% Fe, 10% C44 80% Zr, 10% Fe, 10% C

45 83% Zr, 5% Fe, 12% C45 83% Zr, 5% Fe, 12% C

46 63% Zr, 2 5% Fe, 12% C46 63% Zr, 25% Fe, 12% C

47 48% Zr, 40% Fe, 12% C47 48% Zr, 40% Fe, 12% C

48 53,5% Zr, 6,5% Fe, 40% C48 53.5% Zr, 6.5% Fe, 40% C

SchlackenSlag BisenBisen schock-shock- abriebabrasion abriebabrasion cyclencyclen ■WIM■ WIM 44th 4-184-18 2626th >8> 8 - - 55 2121 - - - - 55 3535 - - 2121 2020th - - - 88th 2222nd 2222nd - - - >8> 8 55

16
20
100
35
16
20th
100
35

Das Symbol>besagt, daß der Test nach der angegebenen Zahl von Cyelen unterbrochen wurde, ohne daß Bruch auftrat.The symbol> means that the test is after the specified number of Cyelens was interrupted without breakage occurring.

Tabelle 41Table 41

Nr. Phasen-Analyse*No. phase analysis *

.JU..JU.

83,2% TiC, 2,3% PeC. 14,5% G x y 83.2% TiC, 2.3% PeC. 14.5% G xy

71,5% TiC, 7,4% Fe C , 8,7%G x y 71.5% TiC, 7.4% Fe C, 8.7% G xy

109812/1307 Chemische Analyse 109812/1307 Chemical Analysis

67,4% Ti, 30,9% C, 1,7% Fe 67,5% Ti, 31,5% C, 1,0% Fe67.4% Ti, 30.9% C, 1.7% Fe 67.5% Ti, 31.5% C, 1.0% Fe

61,4% Ti, 34,4% C, 4,2% Fe61.4% Ti, 34.4% C, 4.2% Fe

Tabelle 4 (Fortsetzung) Table 4 (continued)

Nr. Phasen-Analyse"1"No. phase analysis " 1 "

Chemische AnalyseChemical Analysis

55,0% Ti, 38,4% C, 6,6% Fe55.0% Ti, 38.4% C, 6.6% Fe

58,0% Ti, 34,8% C, 7,2% Fe58.0% Ti, 34.8% C, 7.2% Fe

43,5% Ti, 43,6% C, 12,9% Fe43.5% Ti, 43.6% C, 12.9% Fe

TiC, Pe C i χ yTiC, Pe C i χ y

C,OC FeC, OC Fe

+ Das Symbol G bezeichnet eine Graphit-Phase. ++ Tatsachliche Werte. + The symbol G denotes a graphite phase. ++ Real values.

Tabelle 5»Table 5 »

Nr. Zusammensetzung des AnsatzgemischesNo. Composition of the batch mixture

Schlackenabrieb Eisenabrieb Slag abrasion Iron abrasion

Hitze-Heat-

schock-shock-

cyclencyclen

49 63% Ti, 10% Zr, 27% C49 63% Ti, 10% Zr, 27% C

50 56% Ti, 20% Zr, 24% C50 56% Ti, 20% Zr, 24% C

51 32% Ti, 52,8% Zr, 15,2% C51 32% Ti, 52.8% Zr, 15.2% C

52 8,0% Ti, 79,2% Zr, 12,8% C52 8.0% Ti, 79.2% Zr, 12.8% C

53 20% TiO2, 70,4% Zr, 9,6% C53 20% TiO 2 , 70.4% Zr, 9.6% C

54 30% TiN, 61,6% Zr, 8,4% C54 30% TiN, 61.6% Zr, 8.4% C

55 52,5% Ti, 25% Cr, 22,5% C55 52.5% Ti, 25% Cr, 22.5% C

56 63% Ti, 10% Cr, 27% C56 63% Ti, 10% Cr, 27% C

57 44% Ti, 15% Gr, 40% C57 44% Ti, 15% Gr, 40% C

58 3 5% Ti, 50% Cr, 15% C58 3 5% Ti, 50% Cr, 15% C

59 79,2% Ti, 1% Si, 19,8% C59 79.2% Ti, 1% Si, 19.8% C

60 77,6% Ti, 3% Si, 19,4% C60 77.6% Ti, 3% Si, 19.4% C

61 79,2% Ti, 1% Mn, 19,8% C61 79.2% Ti, 1% Mn, 19.8% C

62 77,6%'Ti, 3* Mn, 19,4% C62 77.6% Ti, 3 * Mn, 19.4% C

63 30% Ti, 40% Hf, 30* C63 30% Ti, 40% Hf, 30 * C

64 15% Ti, 60% Ta, 25* C64 15% Ti, 60% Ta, 25 * C

109812/1307109812/1307

- 66th - 66th 1212th ____ 100100 77th 5151 33 100100 1818th 1515th -»—- »-

>8> 8

>8> 8

>8> 8

>4 >4> 4> 4

Tabelle 5 (Fortsetzung) Table 5 (continued)

Nr.· Zusammensetzung des AnsatzgemischesNo. · Composition of the batch mixture

65 40% Ti, 30% W, 30% C65 40% Ti, 30% W, 30% C

66 81% Zr, 8% Cr, 11% C66 81% Zr, 8% Cr, 11% C

67 73% Zr, 15% Cr, 12% G67 73% Zr, 15% Cr, 12% G

68 63% Zr, 2 5% Cr, 12% C68 63% Zr, 25% Cr, 12% C

69 81% Zr, 8% Si, 11% C69 81% Zr, 8% Si, 11% C

70 72% Zr, 10% Si, 18% C70 72% Zr, 10% Si, 18% C

71 69% Zr, 20% Si, i6% C71 69% Zr, 20% Si, 16% C

72 48% Zr, 40% Si, 12% C72 48% Zr, 40% Si, 12% C

73 50% ZrSiO^, 50% C73 50% ZrSiO ^, 50% C

74 81% Zr, 8% Mn, 11% C74 81% Zr, 8% Mn, 11% C

75 20% Zr, 50% Hf, 30% C75 20% Zr, 50% Hf, 30% C

76 60% Zr, 10% V, 30% C '76 60% Zr, 10% V, 30% C '

77 30% Zr, 40% Ta, 30% C77 30% Zr, 40% Ta, 30% C

78 40% Zr, 30% W, 30% C78 40% Zr, 30% W, 30% C

79 3 5% Hf, 40% Ta, 2 5% C79 35% Hf, 40% Ta, 25% C

80 20% Nb, 50% Ta, 30% C80 20% Nb, 50% Ta, 30% C

81 76% Cr, 5% Fe, 19% C81 76% Cr, 5% Fe, 19% C

82 3 5% Mo, 40% W, 2 5% C82 3 5% Mo, 40% W, 2 5% C

83 5% Mo, 70% W, 2 5% C83 5% Mo, 70% W, 2 5% C

% % Hitze-Schlacken- Eisen- schockabrieb abrieb cyclen %% Heat slag iron shock abrasion abrasion cyclen

14 .14th — --- - 2424 — —- - 1111 — —- - 2424 ,— ,—, -, - 1010 66th 2222nd 7 ·7 · 2121 1313th

2020th

Das Symbole bedeutet, daß der Test nach der angegebenen Anzahl von Cyclen unterbrochen wurde, ohne dass Bruch auftrat.The symbol means that the test according to the specified Number of cycles was interrupted without breakage occurring.

109812/1307109812/1307

Tabelle 6:Table 6:

Nr. Phasen-Analyse Chemische AnalyseNo phase analysis Chemical analysis

5555 (Hf1Ti)C, :> 5% G(Hf 1 Ti) C,:> 5% G. co/ f\ co / f \
O/o Va O / o Va
CQCQ (Ta,Ti)C,^5% G(Ta, Ti) C, ^ 5% G. po
63
po
63
(Ti,W)C, (W,Ti)C,^(Ti, W) C, (W, Ti) C, ^
6464 ZrC, SiC,>7 5% GZrC, SiC,> 75% w 5% G5% G 6565 (Hf,Zr)C,?- 5% G(Hf, Zr) C,? - 5% G 7373 (V,Zr)C, (Zr,V)C,^(V, Zr) C, (Zr, V) C, ^ 5% G5% G 7575 (Ta,Zr)C, >5% G(Ta, Zr) C,> 5% G 7676 (Zr,W)C, (W,Zr)C,^(Zr, W) C, (W, Zr) C, ^ 7777 (Ta,Hf)C, 5-5% G(Ta, Hf) C, 5-5% G. ++ 7878 (Ta,Nb)e,^ 5% G(Ta, Nb) e, ^ 5% G "Of O "Of O 7979 94,4% Cr3C2, 5,6% G94.4% Cr 3 C 2 , 5.6% G 8080 (W,Mo)C, (Mo,W)C,>!(W, Mo) C, (Mo, W) C,>! 8181 (W,Mo)C, >5% G(W, Mo) C, > 5% G. 8282 8383

49,6% Ti, 21,5% Cr, 28,9% C 34,3% Ti, 46,3% Cr, 19,4% C49.6% Ti, 21.5% Cr, 28.9% C, 34.3% Ti, 46.3% Cr, 19.4% C

+ Das Symbol G bezeichnet eine Graphit-Phase. ++ Tatsächliche Werte.
+ Spuren von Eisen in Feststofflösung in Cr3C3.
+ The symbol G denotes a graphite phase. ++ Actual values.
+ Traces of iron in solid solution in Cr 3 C 3 .

Die in Tabelle 7 gezeigten Beispiele erläutern einige der komplexen Kombinationen von carbidbildenden Metallen, die in den erfindungsgemäßen Gußkörper verwendet werden können, und die in vielen Fällen komplexe Feststofflösung-Carbidkristalle in den Gußkörpern erzeugen, wie in Tabelle 8 gezeigt wird.The examples shown in Table 7 illustrate some of the complex ones Combinations of carbide-forming metals that can be used in the cast body according to the invention, and the in many cases produce complex solid solution carbide crystals in the cast bodies as shown in Table 8.

109812/1307109812/1307

Tabelle 7:Table 7:

Nr.No. Zusammensetzung des
Ansätzgemi sches
Composition of
Approach mixture
%
Schlacken
abrieb
%
Slag
abrasion
%
Eisen
abrieb
%
iron
abrasion
Hitze-
schock-
cyclen
Heat-
shock-
cyclen
8484 49% Ti, 20% Cr, 10% Fe
21% C
49% Ti, 20% Cr, 10% Fe
21% C
2929 1313th -
8585 42% Ti, 30% Cr, 10% Fe,
18% C
42% Ti, 30% Cr, 10% Fe,
18% C
6868 2727 -
8686 55% FeTiO-, 30% T.CO,,
15% C *
55% FeTiO-, 30% T.CO ,,
15% C *
- - -
8787 40% TiO9, 3 5% T.CO.,
2 5% C *
40% TiO 9 , 3 5% T.CO.,
2 5% C *
- - -
8888 30% TiO9, 45% T.CC,
2 5% C *
30% TiO 9 , 45% T.CC,
2 5% C *
- - -
8989 30% TiO0, 10% T.CO.,
60% C *
30% TiO 0 , 10% T.CO.,
60% C *
- - -
9090 52,5% Ti, 5% Cr, 20% Mn,
22,5% C
52.5% Ti, 5% Cr, 20% Mn,
22.5% C
- - 55
9191 59,9% Ti, 10% Zr, 5% Fe,
2 5,5% C
59.9% Ti, 10% Zr, 5% Fe,
2 5.5% C
2929 - -
9292 56% Ti, 10% Zr, 10% Fe,
24% C
56% Ti, 10% Zr, 10% Fe,
24% C
2121 - —'- '
9393 49% Ti, 20% Zr, 10% Fe,
21% C
49% Ti, 20% Zr, 10% Fe,
21% C
3232 - -
9494 56% Ti,' 10% Zr, 10% Mn,
24% C
56% Ti, 10% Zr, 10% Mn,
24% C
- - S 8S 8
9595 59,5% Ti, 5% Zr, 10% Mn,
2 5, 5% C
59.5% Ti, 5% Zr, 10% Mn,
2 5.5% C
3131 - -
9696 49% Ti, 10% Zr, 20% Mn,
21% C
49% Ti, 10% Zr, 20% Mn,
21% C
3939 - -
97 .97. 5% Ti, 20% Zr, 20% Hf, 20% Ta, —5% Ti, 20% Zr, 20% Hf, 20% Ta, - ■MW■ MW

5% C5% C

Das Symbol ^bedeutet, daß der Test nach der angegebenen Anzahl von Cyclen unterbrochen wurde, ohne daß Bruch auftrat.The symbol ^ means that the test is interrupted after the specified number of cycles became without breakage occurring.

ECEC

INSPEIN-LAW

109812/1307109812/1307

Tabelle 8:Table 8:

Nr. Phasen-Analyse+ No phase analysis +

86 (Ti,Cr,Fe)C,^ 5% G, OC Fe86 (Ti, Cr, Fe) C, ^ 5% G, OC Fe

87 (Ti,Cr,Fe)C,^ 5# G87 (Ti, Cr, Fe) C, ^ 5 # G

88 (Ti,Cr,Fe)C,χ5# G88 (Ti, Cr, Fe) C, χ5 # G

89 (Ti,Cr)C, 1^5% G, OC Fe 97 (Zr,Hf,Ta,Ti)C,^ 5% G89 (Ti, Cr) C, 1 ^ 5% G, OC Fe 97 (Zr, Hf, Ta, Ti) C, ^ 5% G.

+Das Symbol G bezeichnet eine Graphit-Phase. + The symbol G denotes a graphite phase.

Ze&rr erfordern die erfindungsgemäßen Güßkörper nur analytisch 20 Gew.-# an metallcarbidbildenden Substanzen (wie oben gesagt wurde), jedoch wurden für die einzelnen Metalle bevorzugte und optimale Mindestwerte bestimmt, mit denen sie allein oder in bestimmten Kombinationen verwendet werden können. Ze & rr require Güßkörper the invention only analytically 20 wt .- # metallcarbidbildenden of substances (as indicated above), but were preferred for the individual metals, and determines optimal minimum values with which they can be used alone or in certain combinations.

Diese Werte betragen (in Gew.-%):These values are (in% by weight):

Bevorzugt OptimalPreferred optimal

Titan alleinTitan alone 4040 6969 Zirkonium alleinZirconium alone 4040 65 .65. Hafnium alleinHafnium alone 4545 6060 Vanadin alleinVanadium alone 4040 6565 Niob alleinNiobium alone 4040 5555 Tantal alleinTantalum alone 4545 6060 Chrom alleinChrome alone 4040 5555 Molybdän alleinMolybdenum alone 4040 5555 Wlfram alleinWlfram alone 4040 6060 Titan-EisenTitanium iron 30-0,1
(40 insges.)
30-0.1
(40 total)
40-540-5
(60 insges>)(60 total>)
Titan-ZirkoniumTitanium zirconium 1-11-1
(40 insges.)(40 total)
2 5-252 5-25
(60 insges·)(60 total)

109812/1307109812/1307

Zirkonium-Eisen Zirk onium-Hafnium Zi rkonium-Chrom Zrikonium-Silizium Mob-Tantal Molybdän-Wolfram Chrom-Eisen Ti tan-Chrom-EisenZirconium-Iron Zirconium-Hafnium Zirconium-Chromium Zirconium-Silicon Mob-Tantalum Molybdenum-tungsten Chromium-iron Ti tan-chromium-iron

10-0,1
(40 insges.)
10-0.1
(40 total)

0,1-0,1
(40 insges.)
0.1-0.1
(40 total)

10-0,1
(40 insges.)
10-0.1
(40 total)

20-0,1
(40 insges.)
20-0.1
(40 total)

0,1-0,1
(40 insges.)
0.1-0.1
(40 total)

0,1-0,1
(40 insges.)
0.1-0.1
(40 total)

0 ,1-0,1
(30 insges.)
0.1-0.1
(30 total)

30-0,1-0,1
(40 insges.)
30-0.1-0.1
(40 total)

40-5
(45 insges.)
40-5
(45 total)

5-5
(60 insges.)
5-5
(60 total)

2 5-5
(50 insges.)
2 5-5
(50 total)

30-5
(60 insges.)
30-5
(60 total)

5-5
(55 insges.)
5-5
(55 total)

5-5
(55 insges.)
5-5
(55 total)

13-5
(40 insges.)
13-5
(40 total)

30-5-5 (60 insges.)30-5-5 (60 total)

Der Gesamtgehalt an Sauerstoff plus Stickstoff sollte 10 Gew.-% nicht übersteigen, doch wird eine optimale Korrosionsbeständigkeit gegen basische Sauerstoffofen-Schlacke dann erhalten, w wenn dieser Gesamtgehalt auf höchstens 5 Gewv-% und vorzugsweise 1 Gew.-% herabgesetzt wird. Eine Verringerung der Verunreinigungen aufi höchstens 1 Gew.-% trägt ebenfalls zur Erzielung optimaler Ergebnisse bei.The total content of oxygen plus nitrogen should be 10% by weight not exceed, but optimum corrosion resistance to basic oxygen furnace slag is then obtained, w if this total content is reduced to a maximum of 5% by weight and preferably 1% by weight. A reduction in impurities up to a maximum of 1% by weight also contributes to the achievement optimal results.

Obwohl der Ausdruck "Legierung" im üblichen Sinne auf solche Substanzen angewandt wird, die aus zwei oder mehr Metallen bestehen, welche im geschmolzenen Zustand ineinander gelöst und danach erstarrt waren, können wegen der ähnlichen oder analogen Natur der Gußkörper dieser Erfindung diese als aus einer Legierung von Kohlenstoff mit den genannten metallischen Substanzen bestehend aufgefaßt werden.Although the term "alloy" in its usual sense refers to such Substances that consist of two or more metals are used, which were dissolved in one another in the molten state and then solidified, can because of the similar or analogous The nature of the castings of this invention is that of an alloy of carbon with the aforesaid metallic substances to be understood as existing.

109812/1307109812/1307

Claims (4)

Patentansprüche:Patent claims: 1. Gußkörper aus feuerfester Schmelzgußmasse, gekennzeichnet durch einen Gehalt an mindestens 5 Gew.-% an freiem Kohlenstoff, welcher im wesentlichen regellos orientierte Metallcarbidkristalle durchsetzt und miteinander verriegelt, und folgende analytische Zusammensetzung:1. Cast body made of refractory melt casting compound, characterized by a content of at least 5 wt .-% of free Carbon, which essentially penetrates randomly oriented metal carbide crystals and locks them together, and the following analytical composition: a.) Kohlenstoff;a.) carbon; b) mindestens 20 Gew.-% einer der folgenden metallcarbidbildenden Substanzen: Titan, Zirkonium, Hafnium, Vanadin, Niob, Tantal, Chrom, Molybdän, Wolfram, Gemische dieser Metalle und Gemische dieser Metalle mit mindestens einem der folgenden Metalle: Silizium, Mangan, Eisen, Cobalt oder Nickel, wobei der Gehalt an den erstgenannten metallcarbidbildenden Substanzen 10 Gew.-% nicht unterschreitet;b) at least 20% by weight of one of the following metal carbide-forming agents Substances: titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, mixtures of these Metals and mixtures of these metals with at least one of the following metals: silicon, manganese, iron, cobalt or nickel, the content of the former metal carbide-forming Substances does not fall below 10% by weight; c.) 0 bis 15 Gew.-% mindestens eines Verdünnungsmittels, nämlich höchstens 10 Gew.-% Sauerstoff und höchstens 10 Gew.-% Stickstoff, und
d.) als Rest, falls vorhanden, 0 bis 5 Gew.-% Verunreinigungen.
c.) 0 to 15% by weight of at least one diluent, namely at most 10% by weight of oxygen and at most 10% by weight of nitrogen, and
d.) the remainder, if any, of 0 to 5% by weight impurities.
2. Gußkörper nach Anspruch 1, dadurch gekennzeichnet, daß der freie Kohlenstoff als regelloses und unzusammenhängendes Zwischengefüge vorliegt.2. Cast body according to claim 1, characterized in that the free carbon as a random and incoherent There is an intermediate structure. 3. Gußkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Menge an freiem Kohlenstoff mindestens 11 Gew.-% beträgt.3. Cast body according to claim 1 or 2, characterized in that the amount of free carbon is at least 11 wt .-% amounts to. 4. Gußkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß er die metallcarbidbildende Substanz in einer Menge von mindestens 40 Gew.-% enthält.4. Cast body according to one of the preceding claims, characterized in that it contains the metal carbide-forming substance contains in an amount of at least 40% by weight. 109812/1307109812/1307 5· Verfahren zur Herstellung eines Gußkörpers gemäß vorstehender Ansprüche, dadurch gekennzeichnet, daß man ein kohlenstofflieferndes Material mit einem metallcarbidbiidenden Material, das aus den elementaren Metallen, deren Legierungen oder Oxyden und/oder den entsprechenden Metallcarbiden besteht, in einem Ofen erhitzt, um einen wesentlichen Teil des Rohmaterials zu schmelzen und eine Umsetzung zwischen dem metallcarbidbildenden Material und dem Kohlenstoff herbeizuführen, wobei man die Zusammensetzung des Rohmaterials, die Natur der damit in Berührung stehenden Atmosphäre und die Erhitzungszeit und -temperatur derart auswählt, daß die geschmolzene Masse eine analytische Zusammensetzung gemäß Anspruch 1 aufweist, und daß man die geschmolzene Masse in einer Gießform zu einem Gußkörper erstarren läßt, in welchem mindestens 5 Gew.-% freier Kohlenstoff im wesentlichen regellos orientierte Metallcarbidkristalle durcsetzt und miteinander verriegelt.5 · A method for producing a cast body according to the preceding claims, characterized in that a carbon-supplying Material with a metal carbide-forming material that is made up of the elemental metals and their alloys or oxides and / or the corresponding metal carbides, heated in a furnace to form a substantial part of the raw material to melt and a conversion between the metal carbide-forming Material and the carbon, taking into account the composition of the raw material, the nature of the atmosphere in contact therewith and the heating time and temperature selected so that the molten mass an analytical composition according to claim 1, and that the molten mass is in a casting mold to form a cast body solidifies, in which at least 5 wt .-% free Carbon essentially randomly oriented metal carbide crystals pressed and locked together. Für: Corning Glass WorksFor: Corning Glass Works (Dr.H.J.Wolff) Rechtsanwalt(Dr H.J. Wolff) Lawyer 109812/1307109812/1307 LeerseiteBlank page
DE19651571359 1964-09-11 1965-09-10 Refractory cast iron bodies Pending DE1571359A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39584564A 1964-09-11 1964-09-11

Publications (1)

Publication Number Publication Date
DE1571359A1 true DE1571359A1 (en) 1971-03-18

Family

ID=23564773

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19651571359 Pending DE1571359A1 (en) 1964-09-11 1965-09-10 Refractory cast iron bodies

Country Status (10)

Country Link
AT (1) AT272180B (en)
BE (1) BE669497A (en)
CH (1) CH473068A (en)
DE (1) DE1571359A1 (en)
ES (1) ES317366A1 (en)
FR (1) FR1446779A (en)
GB (1) GB1117108A (en)
NL (1) NL6511775A (en)
NO (1) NO117628B (en)
SE (1) SE306492B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2517520C2 (en) * 1975-04-21 1985-06-27 Vladimir Petrovič Čviruk Process for the production of packing elements used for the decomposition of alkali amalgams
GB2063922A (en) * 1979-11-20 1981-06-10 Metallurg Inc Sintered hard metals
WO1993025859A1 (en) * 1992-06-08 1993-12-23 Ngk Insulators, Ltd. Shelf plate having anti-spalling, anti-creep and oxidation resistant properties
ATE199747T1 (en) * 1992-11-19 2001-03-15 Sheffield Forgemasters Ltd FERROUS METAL CASTING MATERIALS, ESPECIALLY FOR ROLLING ROLLS
CN112341219B (en) * 2020-11-06 2022-05-10 鞍山市和丰耐火材料有限公司 Environment-friendly converter fettling sand taking schreyerite as sintering agent and production method thereof

Also Published As

Publication number Publication date
NL6511775A (en) 1966-03-14
GB1117108A (en) 1968-06-12
ES317366A1 (en) 1966-06-01
CH473068A (en) 1969-05-31
FR1446779A (en) 1966-07-22
NO117628B (en) 1969-09-01
SE306492B (en) 1968-11-25
AT272180B (en) 1969-06-25
BE669497A (en) 1966-03-10

Similar Documents

Publication Publication Date Title
DE69208918T2 (en) Process for the production of grinding and / or toner-resistant products based on melted and solidified oxynitrides
DE102014019351A1 (en) Refractory products and their use
DE69110587T2 (en) FIRE RESISTANT COMPOSITIONS FROM MAGNESITE CARBON.
EP3237356B1 (en) Use of refractory products
DE68905030T2 (en) FIRE-RESISTANT MATERIAL MADE OF MAGNESITE AND CARBON.
AT398968B (en) CERAMIC WELDING PROCESS AND POWDER MIXTURE THEREFOR
DE1571359A1 (en) Refractory cast iron bodies
DE1471219B1 (en) Unfired refractory mass
DD201834A5 (en) HIGHLY FIRE DRYING MASK BASED ON CIRCON OXIDE FOR PUTTING OUT INDUCTION TEMPERING OVENS
DE3306955C2 (en)
DE69305454T2 (en) FIRE-RESISTANT VIBRATION MATERIAL
DE1471074C3 (en) Refractory material containing magnesium oxide and titanium oxide with improved corrosion and erosion resistance for steel melting furnaces
DE2552150C3 (en) Refractory dry ramming compound for lining induction crucibles
DE1571358A1 (en) Refractory cast compounds
DE1215569B (en) Process for the production of refractory cast materials
DE2527535C3 (en) Cover plate for casting heads
DE2644741A1 (en) FIRE-RESISTANT LINING OF STATIONARY OR MOVABLE BARRELS FOR ACCOMMODATION OF PIG IRON
DE1214588B (en) Fireproof chrome-magnesium oxide fused cast compound
DE713176C (en) Process for the production of a highly refractory building material from the slag produced in the electrometallurgical melting process
DE3344852C2 (en)
DE2632259A1 (en) CRUCIBLE FOR MELTING NICKEL BASED SUPER ALLOYS
AT220534B (en) Refractory product melted and poured into molds
DE1471219C (en) Unfired refractory mass
AT119509B (en) Process for the extraction of molten, highly refractory materials, mainly consisting of magnesium and aluminum oxide.
DE1571357A1 (en) Refractory cast compounds