DE1442773A1 - Method and device for temperature control in reaction ovens by means of superheated steam - Google Patents

Method and device for temperature control in reaction ovens by means of superheated steam

Info

Publication number
DE1442773A1
DE1442773A1 DE19631442773 DE1442773A DE1442773A1 DE 1442773 A1 DE1442773 A1 DE 1442773A1 DE 19631442773 DE19631442773 DE 19631442773 DE 1442773 A DE1442773 A DE 1442773A DE 1442773 A1 DE1442773 A1 DE 1442773A1
Authority
DE
Germany
Prior art keywords
steam
reaction
superheated steam
exchangers
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19631442773
Other languages
German (de)
Inventor
Alberto Junginger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montedison SpA
Original Assignee
Montedison SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montedison SpA filed Critical Montedison SpA
Publication of DE1442773A1 publication Critical patent/DE1442773A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/048Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/69Sulfur trioxide; Sulfuric acid
    • C01B17/74Preparation
    • C01B17/76Preparation by contact processes
    • C01B17/80Apparatus
    • C01B17/803Converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/08Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00026Controlling or regulating the heat exchange system
    • B01J2208/00035Controlling or regulating the heat exchange system involving measured parameters
    • B01J2208/00088Flow rate measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00194Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00274Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

VERFAHREN UMD VORRICHTUNG ZUR TEMPERATURREGELUNG IN REAKTIONS-ÖFEN MITTELS ÜBERHITZTEM DAMPF.PROCESS AND DEVICE FOR TEMPERATURE CONTROL IN REACTION FURNACES WITH SUPERHEATED STEAM.

Wenn Wärme aus Reaktionsöfen abgeführt werden soll, in denen exotherme chemische Reaktionen stattfinden, und wenn insbesondere die Reaktion zwischen Gasen mit Hilfe von Fixbettkatalysatoren erfolgt, wird der Katalysator im allgemeinen in verschiedene Schichten unterteilt. Aus dem Reaktionsmedium zwischen jeder Schicht wird die überschüssige Wärme so abgeführt, daß die Temperatur Werte annimmt, die für eine hohe Reaktionsgeschwindigkeit und eine gute Syntheseausbeute am geeignetsten sind. When heat is to be removed from reaction furnaces in which exothermic chemical reactions take place, and when in particular the reaction between gases takes place with the help of fixed bed catalysts, the catalyst is generally divided into different layers. From the reaction medium between each layer the excess heat is dissipated so that the temperature assumes values that most suitable for a high reaction rate and a good synthesis yield are.

Für diesen Zweck sind verschiedene Verfahren verwendet worden; entweder wurde die Wärme mit dem einströmenden Medium durch Wärme-austauscher, die auf der einen Seite von dem zu katalysierenden Medium und auf der anderen Seite von dem bereits umgesetzten Medium durchströmt wurden, oder durch von Kühlflüssigkeiten durch laufenen Wärmeaustauschern abgeführt. Various methods have been used for this purpose; either the heat was transferred to the inflowing medium through heat exchangers on the one side of the medium to be catalyzed and on the other side of that already converted medium were flowed through, or by cooling liquids dissipated by running heat exchangers.

Wenn beispielsweise Schwefelsäure aus Schwefel hergestellt wird, kann die zur Verdünnung (aus Gleichgewichtsgründen) des Besohickungsgases bestimmte trockene Luft als Kühlmittel dienen Besteht ein Interesse daran, die bei der Reaktion erzeugte Wärme zurückzugewinnen, kann eine siedende Flüssigkeit, im allgemeinen Wasser, als Mittel zur Wärmeabführung dienen, vorausgesetzt, daß die Reaktionstemperatur genügend hoch ist, um einen Dampf mit ausreichend hohem Druck für gewöhnliche Anwendungen zu erhalten. Dieses Verfahren verursacht jedoch einige Schwierigkeiten in der Temperaturregelung des Reaktionsmediums. For example, if sulfuric acid is made from sulfur, can be the one intended for dilution (for reasons of equilibrium) of the feed gas Dry air can serve as a coolant. There is an interest in this in the reaction To recover heat generated can be a boiling liquid, in general Water, serve as a means of removing heat, provided that the reaction temperature enough high is a steam of sufficiently high pressure for ordinary applications to obtain. However, this method causes some difficulties in temperature control of the reaction medium.

Wegen der konstanten Siedetemperatur der Kühlflüssigkeit, die aus offensichtlichen Gründen den Druck konstant halten muß, kann die Temperatur durch Veränderung der in den Kühler einfließenden Flüssigkeitsmenge mittels eines Kreislaufsystems eingestellt werden. Because of the constant boiling temperature of the coolant that comes from for obvious reasons the pressure has to be kept constant, the temperature can through Changing the amount of liquid flowing into the cooler by means of a circulatory system can be set.

In diesem Falle jedoch ist ein Mischer für das erneute Einströmen des Mediums in den Reaktionsofen notwendig, um die gleichmäßige Temperatur der im Kreislauf und der durch den Kühler strömenden Fraktion wiederherzustellen. Andere Systeme, die jedoch alle eine gewisse Kompliziertheit aufweisen, können ebenfalls verwendet werden, Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Abführung überschüssiger Wärme mittels überhitztem Dampf. In this case, however, there is a mixer for the re-inflow of the medium in the reaction furnace necessary to maintain the uniform temperature of the im Recycle and the fraction flowing through the cooler. Other Systems, however, all of which are somewhat complex, can also are used, the present invention is a method for removal excess heat using superheated steam.

Nach der vorliegenden Erfindung wird das gesamte Medium Kühlern zugeführt, wobei auf der anderen Seite Wasserdampf oder ein anderer Dampf mit einem Druck zirkuliert, der einer Siedetemperatur entspricht, die niedriger als jene an irgendeiner ielle des Reaktionsofens vorhandene ist. Der einströmende Dampf ist vorzugsweise gesättigt. Dieser Dampf ist auf Kosten der Reaktionswärme überhitzt Nach geraumen Durchströmen im Austauscher wird der Dampf einem Heißdampfkühler zugeleitet, wo er mit Wasser gemischt wird, dessen Verdampfung den Überhitzungsgrad verringert. According to the present invention, the entire medium is fed to coolers, where on the other hand water vapor or another steam with a pressure circulates, which corresponds to a boiling temperature lower than that at any other of the reaction furnace is present. The steam flowing in is preferably saturated. This steam is superheated at the expense of the heat of reaction after flowing through it for a long time In the exchanger, the steam is fed to a superheated steam cooler, where it is mixed with water is mixed, its evaporation reduces the degree of overheating.

Der Dampf kann vorzugsweise im Gegenstrom mit dem Reaktionsmedium durch verschiedene zwischen den zu katalysierenden Schichten angeordnete Austauscher strömen. The steam can preferably be in countercurrent with the reaction medium by various exchangers arranged between the layers to be catalyzed stream.

Zwischen zwei aufeinander folgende Schichten können sogar mehrere Austauscher parallel angeordnet werden, von denen jeder unterteilte Rohrbündel oder Spiralen aufweist, zwischen denen die überhitzer angeordnet sind. There can even be several layers between two consecutive layers Exchangers are arranged in parallel, each of which is subdivided tube bundle or Has spirals, between which the superheaters are arranged.

Die Uberhitzer zwischen den verschiedenen Austauschern sind gleiohartig angeordnet. Die Anzahl und Lage der Heißdampfkühler ist derart, daß die günstigste Reaktionstemperatur im Reaktionsmedium erhalten wird. The superheaters between the different exchangers are identical arranged. The number and location of the superheated steam cooler is such that the cheapest Reaction temperature is obtained in the reaction medium.

Werden mehrere Austauscher parallel angeordnet, ist es ratsam, den die entsprechenden Abschnitte verlassenden Dampf aufzufangen und einem einzigen Reißdampfkähler zuzuführen. Nach Ableitung der Uberhitze wird der Dampf vor dem Einströmen in den folgenden Abschnitt der parallelen Austauscher unterteilt. If several exchangers are arranged in parallel, it is advisable to use the to collect steam leaving the corresponding sections and a single one Feed steam boiler. After dissipating the superheat, the steam is in front of the Inflow divided into the following section of the parallel exchanger.

Die Fließgeschwindigkeit des Wassers in den verschiedenen Heißkühlern wird manuell oder automatisch geregelt, so daß der Dampf die geeignete Temperatur innehat, die für das Medium günstig ist. Die Überhitze des Dampfes am Auslaß des letzten Austauschers kann für weitere Verwendungszwecke auf einen entsprechend günstigen Wert verringert werden. The flow rate of the water in the various hot coolers is controlled manually or automatically so that the steam is at the appropriate temperature which is favorable to the medium. The superheat of the steam at the outlet of the The last exchanger can be used for other purposes on a correspondingly cheap Value can be reduced.

Die Vorteile der vorliegenden Erfindung sind zahlreich. Die Reaktionswäre wird zur Erzeugung von überhitztem Dampf verwendet, da das gesamte eingeführte Wasser oder die Flüssigkeit verdampft und am Auslaß als überhitzter Dampf gewonnen wird. Die Einstellung der verschiedenen Schichten des Ofens erfolgt in einer im wesentlichen unabhängigen Weise; dies ist verschieden von den Verfahren, in denen Austauscher zwischen dem- ein- und ausströmenden Medium verwendet werden, wobei die von dem ausströmenden medium ab geführte Wärme wieder in das Innere des Reaktionsofens übertragen wird. Andererseits ist die Temperaturregleung sehr einfach, da es genügt, die Fließgeschwindigkeit in den Wasserüberhitzern zu ändern und dies leicht automatisch erfolgen kann. The advantages of the present invention are numerous. The reaction would be is used to generate superheated steam, there the whole introduced water or the liquid evaporates and at the outlet as superheated Steam is obtained. The adjustment of the different layers of the furnace takes place in a substantially independent manner; this is different from the procedures in which exchangers are used between the inflowing and outflowing medium, whereby the heat carried off by the outflowing medium is returned to the interior of the Reaction furnace is transferred. On the other hand, temperature control is very simple, since it is enough to change the flow rate in the water superheaters and this can easily be done automatically.

Das reagierende Medium behält eine gleichmäßige Temperatur in dem gesamten vollständig durch die Austauscher strömenden Gut, ohne daß ein Teil davon im Gegenstrom fließen muß. The reacting medium maintains a uniform temperature in the all of the material flowing completely through the exchanger without any part of it must flow in countercurrent.

Hinsichtlich der Temperaturregelung mittels verdampfender Flüssigkeiten besteht beim Zerstören des austauschers auch der Vorteil, daß kein Katalysator überschwemmt wird, wobei dieses Überschwemmen unangenehmer als das Einströmen Ton überhitztem Dampf ist. Regarding temperature control by means of evaporating liquids If the exchanger is destroyed, there is also the advantage that no catalyst will flood this flooding becomes more uncomfortable than the influx of overheated sound Is steam.

Die Austauscher können dank ihres geringen Gewichts und Raumbedarfs, der für dieses Verfahren ausreichend ist, unmittelbar am Reaktionsofen und sogar tarin angeordnet werden sumal kein Gegenstrom-System vorhanden ist. Thanks to their low weight and space requirements, the exchangers can which is sufficient for this process, directly at the reaction furnace and even be arranged tarin sumal no countercurrent system is available.

Das Verfahren ist für Regelung von Reaktionsöfen besonders geeignet, wenn tau zu katalysierende Medium gasförmig iet ut die exetherme Reaktion bei kohen Temperaturen erfelgt, wie beispielsweise in Kontaktöfen zur Herstellung von schwefelsäure. The method is particularly suitable for controlling reaction furnaces, If the medium to be catalysed is gaseous, the exetherme reaction at kohen is used Temperatures, such as in contact furnaces for production of sulfuric acid.

Gesättigter Rekuperatorendampf ist in der gesamten Anlage im allgemeinen verfügbar. Diese äußere Quelle ist jedoch entbehrlich, falls dies erwünscht ist, wenn die Rückführung von etwas austretendem Dampf möglich ist, beispielsweise mittels einer Dampf strahlpumpe, in der der überhitzte Dampf mit dem zugeführten Wasser gemischt wird, so daß er im wesentlichen gesattigt erneut in den ersten Austauscher eintritt, Eine Ausführungsform der apparativen Einrichtung, wie sie zur erfindungsgemäßen Tem-eraturregelung verwendet werden kann, ist in Form eines Beispiels nachstehend erläutert. Natürlich beschränkt diese Anordnung den erfindungsgedanken nicht, da auch andere Ausführungsformen möglich sind. Die beiliegende Zeichnung bezieht sich lediglich auf einen Fall als Beispiels wobei Schwefeltrioxyd aus einer Mischung von Schwefeldioxyd und Luft hergestellt wird. Saturated recuperator steam is generally present throughout the facility available. However, this external source can be dispensed with, if this is desired, if the return of some escaping steam is possible, for example by means of a steam jet pump, in which the superheated steam with the supplied water is mixed so that it is essentially saturated again in the first exchanger occurs, An embodiment of the apparatus as used in accordance with the invention Temperature control can be used is in the form of an example below explained. Of course, this arrangement does not limit the inventive concept, since other embodiments are also possible. The attached drawing relates only on one case as an example where sulfur trioxide is a mixture is produced by sulfur dioxide and air.

11 wird anfgenommen, daß die Temperatur ausreicht, um die Mischung zu zu zünden. Die Mischung wird in den Reaktionsofen oben eiqeftihrt und tritt nach Durchströmen von drei Katalysatorenschichten C1, C2, C3 am Boden aus, Das Gas wird jedoch nach der Schicht C1 einem Austauscher S zugeleitet, wo SB vor Erreichen der ßohioht C2 einer Kühlung unterliegt. Nach der Schicht 2 strömt das Gas in einen Austauscher R, von dem es durch di. letzte Schicht C3 strömt und schließlich das Gefäß verläßt, um weiteren Verfahrnesschritten unterworfen in werden. 11 it is assumed that the temperature is sufficient to allow the mixture to ignite. The mixture is fed into the reaction furnace above and afterwards The gas flows through three catalyst layers C1, C2, C3 at the bottom however, after the layer C1 an exchanger S is fed, where SB before reaching the ßohioht C2 is subject to cooling. After layer 2, the gas flows into one Exchanger R, from which it is through di. last layer C3 flows and finally that Vessel leaves to be subjected to further process steps.

Die Austauscher R und 5 sind Röhrensysteme, in die der Dampf unter Druck geleitet wird. Es ist wahlweise möglich, den Wärmegehalt des austretenden Gases auszunutzen, um gesättigten Dampf zur Verwendung als Kühlmittel in den Austauschern zu erhalten. The exchangers R and 5 are tube systems in which the steam is below Pressure is directed. It is optionally possible to measure the heat content of the exiting The gas is used to generate saturated steam for use as a coolant in the exchangers to obtain.

Der gesättigte Dampf von E tritt in ein erstes Röhrenbündel R1 des Austauschers R ein, wo er durch Wärmeentug des Gases überhitzt wird. Beim Verlassen von R strömt der Dampf in den Eeißdampfkühler D1, in den Wasser von M kommend eingespritzt wird, dessen Durchflußgeschwindigkeit durch ein Ventil V1 (automatisch oder manuell geregelt) eingestellt wird. The saturated vapor from E enters a first tube bundle R1 of the Exchanger R, where it is overheated by the heat from the gas. When leaving The steam flows from R into the ice steam cooler D1, into which water coming from M is injected whose flow rate is controlled by a valve V1 (automatically or manually regulated) is set.

Das Maß der Überhitze-Abführung wird entsprechend der Gastempsratur verändert, wie am Austauscherauslaß geprüft wird. Nach dem Heißdampfkühler D1 tritt der Dampf erneut in den Austauscher ein und strömt durch das Röhrenbündel R2; dann wird die Überhitze erneut verringert. The amount of superheat dissipation is based on the gas temperature changed how it is checked at the exchanger outlet. After the superheated steam cooler D1 occurs the steam re-enters the exchanger and flows through the tube bundle R2; then the superheat is reduced again.

In der beiliegenden Zeichnung sind zwei Röhrenbündel R1, R2 vorgesehen, wohingegen drei (Sts 52 und S3) in 5 zu sehen sind. Natürlich kann die Anzahl der Röhrenbündel und Austauscher entsprechend den Anfordernungen des Verfahrens verändert werden. In the accompanying drawing, two tube bundles R1, R2 are provided, whereas three (Sts 52 and S3) can be seen in FIG. Of course, the number of Tube bundle and exchanger changed according to the requirements of the process will.

Die verschiedenen. Röhrenbündel wurden in Reihe entlang dem Dampfverlauf verbunden; sie. können natürlich auch parallel oder in kombinierter weise angeordnet werden. Am Auslaß dec Röhrenbündels S3 strömt der überhitzte Dampf durch den Heißdampfkühler D5 wo die letzte Überhitzung entsprechend den anschließenden Anforderungen an den Dampf eingestellt wird, und verläßt das System bei U. Die Menge des bei U austretenden überhitzten Dampfes ist selbstverständlich größer als die bei E eintretende. The different. Tube bundles were lined up along the steam path tied together; she. can of course also be arranged in parallel or in a combined manner will. At the outlet of the tube bundle S3, the superheated steam flows through the superheated steam cooler D5 where the last overheating according to the subsequent requirements at the steam is stopped, and leaves the system at U. The amount of exiting at U. superheated steam is of course greater than that entering at E.

Die Katalysatorenschichten und folglich auch die Überhitzer und Heißdampfkühler können natürlich von der in der Zeichnung dargestellten Zahl verschieden sein, die nur ein Beispiel darstellt und die Erfindung nicht einschränkt. The catalyst layers and consequently also the superheaters and superheated steam coolers can of course be different from the number shown in the drawing, the represents only an example and does not limit the invention.

Beispeil In einer Anlage zur Herstellung von 100 t/Tag Schwefelsäure wird das in der beiliegenden Zeichnung besohriebene System verwendet. Die Durchflußgeschwindigkeiten und Temperaturen sind in Tabelle 1 aufgeführt und sollen mit den entsprechenden Werten von Tabelle 2 verglichen werden, die sich auf ein herkömmliches Verfahren beizieht, nach dem die Reaktionswärme unter Einleiten in Anstausoher abgeführt wurde, in denen auf der anderen Seite die kalte trockene Luft zur Verdünnung der aus dem Ofen ko:aenden Reaktionsgase strönt, bevor diese in den Reaktionsraum gelangen0 Wie ein Vergleich der Tabellen zeigt, ist die bei U austretende Menge an überhitzten Dampf gemäß der vorliegenden Erfindung wesentlich größer als die bei E eintretende (Dampferzeugung); im Gegensatz dazu wird bei dem herkömmlichen Verfahren Wärme en die Lift getragen, die in den Reaktionaraum zusammen itt den Gas gelangt; sobald eine stärkere Kühlung des eintretenden dases notwandig ist, muß die Kesselflaohe vergrößert werden. Selbst wenn man die Oberfläohenvergrößerung nicht berücksichtigt, ist die Austauscherfläche viel größer als diejenige gemäß der vorliegenden Erfindung.Example In a plant for the production of 100 t / day sulfuric acid the system described in the accompanying drawing is used. The flow rates and temperatures are listed in Table 1 and should be compared with the corresponding Values from Table 2 are compared, referring to a conventional method draws in, after which the heat of reaction has been dissipated by introducing it into an accumulator, in which on the other hand the cold dry air dilutes the out of the Oven kills reaction gases before they get into the reaction chamber As a comparison of the tables shows, the amount escaping from U is superheated Vapor according to the present invention is substantially greater than that entering at E. (Steam generation); in contrast, the conventional method uses heat carried the lift that enters the reaction space together with the gas; as soon as a stronger cooling of the incoming dases is necessary, got to the Kesselflaohe are enlarged. Even if you have the surface enlargement not taken into account, the exchanger surface is much larger than that according to of the present invention.

TABELLE 1 Regelung mittels überhitzem Dampf Gas Dampf Oberfläche m2 Menge Temperatur °C Menge Temperatur °C Nm3/h eintritt Austritt Nme/h Eintritt Austritt R1 13,450 445 420 2,440 209 290 43 R2 13,450 470 445 2,570 230 308 S1 13,550 490 440 2,780 230 283 S2 13,550 540 490 3,180 230 370 110 S3 13,550 590 540 3,730 242 380 TABELLE 2 Regelung mittels Luft Gas Dampf Oberfläche m2 Menge Temperatur °C Menge Temperatur °C Nm3/h Eintritt Austritt Nm3/h Eintritt Austritt 1. Austauscher 13,450 512 420 7,000 65 254 120 2. Austauscher 13,550 590 480 7,000 254 470 300 TABLE 1 Control by means of superheated steam Gas steam surface m2 Quantity temperature ° C Quantity temperature ° C Nm3 / h inlet outlet Nme / h inlet outlet R1 13.450 445 420 2.440 209 290 43 R2 13.450 470 445 2.570 230 308 S1 13.550 490 440 2.780 230 283 S2 13.550 540 490 3.180 230 370 110 S3 13.550 590 540 3.730 242 380 TABLE 2 Control by means of air Gas steam surface m2 Quantity temperature ° C Quantity temperature ° C Nm3 / h inlet outlet Nm3 / h inlet outlet 1st exchanger 13.450 512 420 7.000 65 254 120 2nd exchanger 13,550 590 480 7,000 254 470 300

Claims (4)

Patentansprüche t Vosfahren zur Temperaturregelung in Reaktionsöfen für exotherme Reaktionen mittels Wärmeaustausch zwischen Reaktionsmedium und Kühlflüssigkeit, dadurch gekennzeichnet, daß der Austausch zwischen dem gesamten Reaktionsmedium und einem Dampf (Wasserdampf oder anderer Dampf) bei einem Druck erfolgt, dem eine 8iedetemperatur entspricht, die unter derjenigen Temperatur liegt, die in irgendeinem Punkt des Reaktionsofens besteht.Claims t Vosfahren for temperature control in reaction furnaces for exothermic reactions by means of heat exchange between the reaction medium and the cooling liquid, characterized in that the exchange between the entire reaction medium and a steam (water vapor or other steam) takes place at a pressure, the one 8 corresponds to the boiling temperature, which is below that temperature, which in any Point of the reaction furnace. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der einströmende Dampf gesättigt ist. 2. The method according to claim 1, characterized in that the inflowing Steam is saturated. 3. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 oder 2, dadurch gekennzeichnet, da Austauscher (R,B) für den Wärmeanstausch zwischen Reaktionsmedium und dem kühlenden Dampf in Form von Röhrensystemen (R1, R2 ; vorgesehen sind, wobei zwischen den Röhren Heißdampfkühler (D1, D2.......;) zur Abführung der Überhitze des Kühldampfes eingesohaltet sind, der im allgemeinen mit Wasser (M) einer einstellbaren Durchflußgeschwindigkeit (V1 v20....) gespeisst wird, und wobei die Austauscher und Heißdampfkühler in bezug auf den Reaktionsofen entweder innen oder außen vorgesehen sind.3. Apparatus for performing the method according to claim 1 or 2, characterized in that exchangers (R, B) for the heat exchange between Reaction medium and the cooling steam in the form of tube systems (R1, R2; provided are, with superheated steam cooler (D1, D2 .......;) between the tubes for discharging the Superheat of the cooling steam are included, which is generally with water (M) an adjustable flow rate (V1 v20 ....) is fed, and where the exchangers and superheated steam coolers either inside with respect to the reaction furnace or provided outside. 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß Leitflächen zwischen den aufeinanderfolgenden Reaktionsabsohnitten angeordnet sind, die das Reaktionsmedium durch die Austauscher (R,S) leiten. 4. Apparatus according to claim 3, characterized in that guide surfaces are arranged between the successive reaction units that the Pass the reaction medium through the exchangers (R, S).
DE19631442773 1962-04-13 1963-04-08 Method and device for temperature control in reaction ovens by means of superheated steam Pending DE1442773A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT736562 1962-04-13

Publications (1)

Publication Number Publication Date
DE1442773A1 true DE1442773A1 (en) 1969-03-20

Family

ID=11125011

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19631442773 Pending DE1442773A1 (en) 1962-04-13 1963-04-08 Method and device for temperature control in reaction ovens by means of superheated steam

Country Status (3)

Country Link
DE (1) DE1442773A1 (en)
FR (1) FR1355927A (en)
GB (1) GB1042455A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979183A (en) * 1974-11-25 1976-09-07 Universal Oil Products Company Heat exchange and flow control system for series flow reactors

Also Published As

Publication number Publication date
FR1355927A (en) 1964-03-20
GB1042455A (en) 1966-09-14

Similar Documents

Publication Publication Date Title
EP0101110B1 (en) Process for preparing sulfuric acid
DE1667187C3 (en) High pressure reactor with catalyst layers for exothermic catalytic reactions
DE2420949C3 (en) Process and reactor for the production of ethylene oxide by catalytic oxidation of ethylene
DE2951557C2 (en) Method for operating a thermal material separation process with integrated heat recovery and device for carrying out the method
DE69111820T2 (en) HIGH CONVERSION AMMONIA SYNTHESIS.
DE2221288C3 (en) Reaction apparatus for carrying out catalytic reactions in several stages
DE1542387B2 (en) METHOD OF SYNTHESIS OF AMMONIA
DE3520756C2 (en)
DE1442773A1 (en) Method and device for temperature control in reaction ovens by means of superheated steam
DE2602895B2 (en) Process for utilizing the heat of reaction resulting from the catalytic oxidation of o-xylene to phthalic anhydride
DE2109534A1 (en) Process for urea synthesis
DE2055997A1 (en) Process for treating gases in the synthesis of ammonia
DE2705141C2 (en) Process for the production of methane or methanol
DE2847103A1 (en) MIX FEED EVAPORATOR
DE1618867A1 (en) Process for the production of urea
DE848035C (en) Process and device for carrying out exothermic catalytic reactions in contact ovens
DE3022800A1 (en) METHOD FOR TEMPERATURE CONTROL OF EXOTHERMAL REACTIONS BY OVERHEATING WATER VAPOR
DE2659702C3 (en) Process for the mass production of ozone
DE703225C (en) Plant for carrying out the catalytic synthetic material
DE905609C (en) Process and apparatus for catalytic carbohydrate hydrogenation
AT133145B (en) Process for controlling the temperature in reactions in flowing mixtures.
DE1442750A1 (en) Method and device for controlling the operating temperatures of exothermic high pressure reactions
CH145140A (en) Process for regulating the temperature in flowing mixtures.
DE913533C (en) Device for heat exchange
DE102021213800A1 (en) Process for the synthesis of ammonia and plant for the production of ammonia

Legal Events

Date Code Title Description
SH Request for examination between 03.10.1968 and 22.04.1971