DE1114941B - Process for the production of a boron-doped region of monocrystalline semiconductor bodies - Google Patents

Process for the production of a boron-doped region of monocrystalline semiconductor bodies

Info

Publication number
DE1114941B
DE1114941B DES71692A DES0071692A DE1114941B DE 1114941 B DE1114941 B DE 1114941B DE S71692 A DES71692 A DE S71692A DE S0071692 A DES0071692 A DE S0071692A DE 1114941 B DE1114941 B DE 1114941B
Authority
DE
Germany
Prior art keywords
boron
gold
production
semiconductor bodies
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DES71692A
Other languages
German (de)
Inventor
Dr Phil Nat Norbert Schink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to NL300609A priority Critical patent/NL300609A/xx
Application filed by Siemens AG filed Critical Siemens AG
Priority to DES71692A priority patent/DE1114941B/en
Publication of DE1114941B publication Critical patent/DE1114941B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/24Alloying of impurity materials, e.g. doping materials, electrode materials, with a semiconductor body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System further characterised by the doping material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Die Bonding (AREA)

Description

Verfahren zur Herstellung eines mit Bor dotierten Bereiches von einkristallinen Halbleiterkörpern Halbleiteranordnungen wie Gleichrichter, Transistoren, Fotodioden u. dgl. bestehen meistens aus einem im wesentlichen einkristallinen Grundkörper aus Germanium, Silizium oder einer intermetallischen Verbindung von Elementen der IIl. und V. Gruppe des Periodischen Systems, auf dem Elektroden aufgebracht sind.Process for the production of a boron-doped region of monocrystalline Semiconductor bodies semiconductor arrangements such as rectifiers, transistors, photodiodes and the like mostly consist of an essentially monocrystalline base body of germanium, silicon or an intermetallic compound of elements of the IIl. and V. group of the periodic table on which electrodes are applied.

Das Aufbringen der Elektroden kann auf verschiedene Art erfolgen, beispielsweise durch Diffusion oder Legierung. Bei dem Legierungsverfahren wird gewöhnlich eine Folie aus dem Dotierungsstoff bzw. eine Folie aus einem den Dotierungsstoff enthaltenden Material auf eine Halbleiterscheibe aufgelegt und durch eine Wärmebehandlung auflegiert. Hierbei bildet sich eine flüssige Legierung, aus der beim nachfolgenden Erstarren in dem zuerst rekristallisierenden Halbleiterstoff ein kleiner Teil des Dotierungsmaterials verbleibt, während die Restschmelze als Eutektikum erstarrt. Es entsteht in dem Halbleiterkörper eine hochdotierte Rekristallisationszone mit einer auflegierten Schicht aus dem Legierungsmaterial, die etwas Halbleitermaterial gelöst enthält.The electrodes can be applied in different ways, for example by diffusion or alloy. In the alloying process, usually a foil made of the dopant or a foil made of one of the dopant containing material placed on a semiconductor wafer and subjected to a heat treatment alloyed. A liquid alloy is formed here, from which the following A small part of the solidify in the first recrystallizing semiconductor material Doping material remains while the residual melt solidifies as a eutectic. A highly doped recrystallization zone also arises in the semiconductor body an alloyed layer of the alloy material containing some semiconductor material contains dissolved.

Die Erfindung betrifft ein Verfahren zur Herstellung eines mit Bor dotierten Bereiches in einkristallinen Halbleiterkörpern, insbesondere aus Silizium, durch Auflegieren von Folien aus Bor enthaltendem Gold. Es ist gekennzeichnet durch die Verwendung einer Folie, die in der Weise hergestellt ist, daß Goldpulver und Borpulver innig miteinander gemengt, unter Druck zusammengepreßt und mehrere Tage lang bei einer für eine Diffusion des Bors genügenden Temperatur unterhalb der Schmelztemperatur des Goldes, vorzugsweise bei etwa 900° C, getempert werden, und daß der entstandene Preßling anschließend geschmolzen und danach zu einer Folie ausgewalzt wird.The invention relates to a method for producing a with boron doped area in monocrystalline semiconductor bodies, in particular made of silicon, by alloying foils of gold containing boron. It is characterized by the use of a foil made in such a way that gold powder and Boron powder intimately mixed with one another, compressed under pressure and several days long at a temperature below the melting temperature sufficient for diffusion of the boron of the gold, preferably at about 900 ° C, are annealed, and that the resulting The compact is then melted and then rolled out into a film.

Es ist bereits ein Verfahren zur Herstellung eines n-dotierten Bereiches in Körpern aus Silizium bekanntgeworden, bei dem einem aus Gold bestehenden Teil vor dessen Verbindung mit dem Silizium ein Donatorelement, z. B. Antimon, zulegiert wird.It is already a method for producing an n-doped region in bodies made of silicon, one of which is made of gold a donor element, e.g. B. antimony, added will.

Ferner ist es bekannt, zur Herstellung eines p-dotierten Bereiches in Körpern aus Halbleitermaterial auf diese ein aus Aluminium bestehendes Teil aufzulegieren. Dieses Verfahren hat den Nachteil, daß hierbei relativ hohe Temperaturen (700° C) zur Anwendung kommen müssen, wodurch die Lebensdauer der Minoritätsträger stärker herabgesetzt wird als bei der Einlegierung von Teilen aus Geld in den Halbleiterkörper (400 bis 500° C).It is also known to produce a p-doped region to alloy a part made of aluminum in bodies made of semiconductor material. This process has the disadvantage that relatively high temperatures (700 ° C) must be applied, making the life of minority carriers stronger is reduced than when alloying parts made of money in the semiconductor body (400 to 500 ° C).

Es hat deshalb nicht an Anstrengungen gefehlt, die günstigen Bedingungen beim Auflegieren von Teilen aus Gold, die das Dotierungsmaterial enthalten, auf Halbleiterkörper auch zur Herstellung. von mit Bor dotierten Bereichen auszunutzen, weil mit Bor wegen seiner hohen Löslichkeit im Silizium - der Verteilungskoeffizient ist nahezu 1 - eine hohe Dotierungskonzentration erreicht werden kann. Das Einbringen von Bor durch Diffusion gemäß einem bekannten Verfahren weist den Nachteil sehr hoher Temperaturen (900 bis 1300° C) und der damit verbundenen starken Herabsetzung der Lebensdauer der Minoritätsträger auf. Da Bor mit Gold nicht zusammengeschmolzen werden kann (es löst sich nicht im Gold, sondern treibt aus der Schmelze auf), wurde bereits der Vorschlag gemacht, festes Bor in die flüssige Gold-Silizium-Legierung in der Weise einzuführen, daß zunächst amorphes Bor in Pulverform in eine Goldfolie mechanisch eingewalzt oder fein verteilt auf diese aufgestreut wird und dann diese Goldfolie auf den Halbleiterkörper aufgelegt und das Ganze erwärmt wird. Hierbei bildet das Geld mit einem Teil des Halbleitermaterials eine flüssige Legierung, in welche Bor ein- und bis zur Legierungsfront vordringt.There has therefore been no lack of effort, the favorable conditions when alloying parts made of gold that contain the doping material Semiconductor bodies also for manufacture. to take advantage of areas doped with boron, because with boron because of its high solubility in silicon - the partition coefficient is almost 1 - a high doping concentration can be achieved. Bringing in boron by diffusion according to a known method has the disadvantage very much high temperatures (900 to 1300 ° C) and the associated strong reduction the lifetime of the minority carriers. Because boron did not melt together with gold (it does not dissolve in the gold, but drifts up from the melt), became the proposal has already been made to incorporate solid boron into the liquid gold-silicon alloy to introduce amorphous boron in powder form into a gold foil mechanically rolled in or finely scattered on this and then this Gold foil is placed on the semiconductor body and the whole is heated. Here the money forms a liquid alloy with part of the semiconductor material, in which boron penetrates and up to the alloy front.

Das Verfahren nach der Erfindung zeigt nun einen Weg, borhaltiges Gold zu erzeugen und mit Hilfe von aus diesem borhaltigen Gold hergestellten Folien einen mit Bor dotierten Bereich in Halbleiterkörpern durch einen Legierungsvorgang herzustellen. Werden Goldpulver und Borpulver innig miteinander gemengt, unter Druck zusammengepreßt und mehrere Tage lang bei einer unterhalb der Schmelztemperatur des Goldes liegenden entsprechend hohen Temperatur getempert, so diffundiert Bor in genügender Menge in das angrenzende Gold bzw. umgekehrt, so daß hierdurch in etwa eine Bor-Gold-Legierung entsteht. Das Bor liegt im Gold nicht mehr in (relativ) grobstückiger, sondern in der Hauptsache in molekularer Verteilung vor. Auch beim anschließenden. Schmelzen und Auswalzen zu einer Folie findet keine Entmischung in einem' ins Gewicht fallenden Ausmaß statt.The method according to the invention now shows a way of producing boron-containing gold and using foils produced from this boron-containing gold to produce a boron-doped region in semiconductor bodies by an alloying process. If gold powder and boron powder are intimately mixed with one another, pressed together under pressure and tempered for several days at a correspondingly high temperature below the melting temperature of the gold, then boron diffuses in sufficient quantities into the adjacent gold or vice versa, so that as a result approximately a boron Gold alloy is created. The boron is no longer present in gold in (relatively) coarse, but mainly in a molecular distribution. Even with the subsequent . Melting and rolling into a film does not take place to a significant extent.

Das Verfahren wird deshalb' in folgender Weise durchgeführt: Goldpulver und Borpulver werden innig gemengt, unter Druck zusammengepreßt und im Vakuum oder unter Schutzgas bei etwa 900° C mehrere Tage getempert und anschließend geschmolzen. Danach wird die so entstandene Goldlegierung ausgewalzt, und daraus hergestellte Scheiben werden auf den Halbleiterkörper auflegiert.The procedure is therefore carried out in the following way: Gold powder and boron powder are intimately mixed, compressed under pressure and in vacuo or tempered under protective gas at around 900 ° C for several days and then melted. Then the resulting gold alloy is rolled out and manufactured from it Disks are alloyed onto the semiconductor body.

Das erfindungsgemäße Verfahren kann zweckmäßig im Zusammenhang mit den in den deutschen Bundespatenten 1015152 und 1046198 geschützten Verfahren sowie im Zusammenhang mit dem in der deutschen Auslegeschrift 1089 074 beschriebenen Verfahren angewendet werden.The method according to the invention can be useful in connection with the processes protected in the German federal patents 1015152 and 1046198 as well as in connection with the method described in German Auslegeschrift 1089 074 be applied.

Claims (2)

PATENTANSPRÜCHE: 1. Verfahren zur Herstellung eines mit Bor dotierten Bereiches in einkristallinen Halbleiterkörpern, insbesondere aus Silizium, durch Auflegieren von Folien aus Bor enthaltendem Gold, _ gekennzeichnet . durch die Verwendung einer Folie, die in der Weise hergestellt ist, daß Goldpulver und Borpulver innig miteinander gemengt, unter Druck zusammengepreßt und mehrere Tage lang bei einer für eine Diffusion des Bors genügenden Temperatur unterhalb der Schmelztemperatur des Goldes, vorzugsweise bei etwa 900° C, getempert werden, und daß der entstandene Preßling anschließend geschmolzen und danach zu einer Folie ausgewalzt wird. PATENT CLAIMS: 1. Process for the production of a boron doped Area in monocrystalline semiconductor bodies, in particular made of silicon, through Alloying foils made of boron-containing gold, marked _. by using a foil which is made in such a way that gold powder and boron powder are intimately mixed together, compressed under pressure and with one for several days for a diffusion of the boron sufficient temperature below the melting temperature of the gold, preferably at about 900 ° C, are annealed, and that the resulting The compact is then melted and then rolled out into a film. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Preßling im Vakuum getempert wird. In Betracht gezogene Druckschriften: Deutsche Patentschriften Nr. 840 807, 461469; österreichische Patentschriften Nr. 177 475, 187556. 2. The method according to claim 1, characterized in that the compact is annealed in a vacuum. Considered publications: German Patent Specifications No. 840 807, 461469; Austrian patent specifications No. 177 475, 187556.
DES71692A 1958-06-14 1958-06-14 Process for the production of a boron-doped region of monocrystalline semiconductor bodies Pending DE1114941B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL300609A NL300609A (en) 1958-06-14
DES71692A DE1114941B (en) 1958-06-14 1958-06-14 Process for the production of a boron-doped region of monocrystalline semiconductor bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DES71692A DE1114941B (en) 1958-06-14 1958-06-14 Process for the production of a boron-doped region of monocrystalline semiconductor bodies

Publications (1)

Publication Number Publication Date
DE1114941B true DE1114941B (en) 1961-10-12

Family

ID=7502642

Family Applications (1)

Application Number Title Priority Date Filing Date
DES71692A Pending DE1114941B (en) 1958-06-14 1958-06-14 Process for the production of a boron-doped region of monocrystalline semiconductor bodies

Country Status (2)

Country Link
DE (1) DE1114941B (en)
NL (1) NL300609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1202984B (en) * 1962-07-12 1965-10-14 Siemens Ag Process for the production of metal alloys containing boron
FR2105175A1 (en) * 1970-09-02 1972-04-28 Ibm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE461469C (en) * 1928-06-21 Fischer Franz Bicycle stand
DE840807C (en) * 1949-06-25 1952-06-05 Karl Baierl Keyless box lock
AT177475B (en) * 1952-02-07 1954-02-10 Western Electric Co Process for the production of silicon switching elements of asymmetrical conductivity for signal conversion, in particular rectification
AT187556B (en) * 1954-03-05 1956-11-10 Western Electric Co Method of manufacturing a semiconductor with a PN connection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE461469C (en) * 1928-06-21 Fischer Franz Bicycle stand
DE840807C (en) * 1949-06-25 1952-06-05 Karl Baierl Keyless box lock
AT177475B (en) * 1952-02-07 1954-02-10 Western Electric Co Process for the production of silicon switching elements of asymmetrical conductivity for signal conversion, in particular rectification
AT187556B (en) * 1954-03-05 1956-11-10 Western Electric Co Method of manufacturing a semiconductor with a PN connection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1202984B (en) * 1962-07-12 1965-10-14 Siemens Ag Process for the production of metal alloys containing boron
FR2105175A1 (en) * 1970-09-02 1972-04-28 Ibm

Also Published As

Publication number Publication date
NL300609A (en) 1967-06-26

Similar Documents

Publication Publication Date Title
DE1073110B (en) Process for the production of rectifying or ohmic connection contacts on silicon carbide bodies
DE1089074B (en) Method for producing a highly doped p-region and the associated contact of a semiconductor arrangement by means of alloying
DE1166938B (en) Method for manufacturing a semiconductor device
DE2116549C3 (en) Process for the production of copper alloys, which have a high content of iron, cobalt and phosphorus, with high electrical conductivity and at the same time high strength
DE1114941B (en) Process for the production of a boron-doped region of monocrystalline semiconductor bodies
DE2654416A1 (en) PROCESS FOR MANUFACTURING SCHOTTKY DIODES WITH IMPROVED BARRIER HEIGHT
AT210479B (en) Process for the production of a highly doped area in semiconductor bodies
AT211875B (en) Process for the production of a p-doped region in bodies made of essentially monocrystalline semiconductor material
DE1106877B (en) Process for the production of a highly doped area in semiconductor bodies by alloying foils made of a gold alloy
AT213963B (en) Process for the production of electrode material for semiconducting devices
DE3116998A1 (en) "METHOD FOR PRODUCING A SEMICONDUCTOR COMPONENT"
DE2444881B2 (en) Alloying process for manufacturing a semiconductor component
DE1225393B (en) Use of a gold alloy with the usual boron contents for the production of a p-doped area in a crystalline semiconductor body
DE1191585B (en) Use of a silver alloy as a dopant to generate p-conductivity in semiconductor materials
DE1008088B (en) Method for producing a solder connection between two bodies, in particular on a surface rectifier or transistor between a system electrode and a pick-up electrode or a connection line
DE1483293C (en) Alloy for a silicon diode with an overlapping interface and variable capacitance and process for its manufacture
DE1037481B (en) Thermocouple, particularly for thermoelectric cooling, and process for its manufacture
DE880365C (en) Copper oxide dry rectifier
AT218570B (en) Method for large-area contacting of a monocrystalline silicon body
AT210480B (en) Method for producing a highly doped p-region and the associated contact of a semiconductor arrangement
DE1132340B (en) Process for the production of electrode material for semiconducting devices
DE1061907B (en) Process for the production of surface semiconductor crystal lodes with at least two fused semiconductor parts of opposite conductivity type
AT222088B (en) Process for the production of lithium aluminum hydride
DE1644015C3 (en) Process for the production of single crystals from semiconducting compounds
DE2146465B2 (en) Process for improving the mechanical properties of a copper alloy