DE1109786B - Device for protecting semiconductor elements from overload - Google Patents

Device for protecting semiconductor elements from overload

Info

Publication number
DE1109786B
DE1109786B DEA34925A DEA0034925A DE1109786B DE 1109786 B DE1109786 B DE 1109786B DE A34925 A DEA34925 A DE A34925A DE A0034925 A DEA0034925 A DE A0034925A DE 1109786 B DE1109786 B DE 1109786B
Authority
DE
Germany
Prior art keywords
transistor
protected
voltage drop
collector
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DEA34925A
Other languages
German (de)
Inventor
Marius Widakowich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Norden Holding AB
Original Assignee
ASEA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASEA AB filed Critical ASEA AB
Publication of DE1109786B publication Critical patent/DE1109786B/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/5381Parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53832Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement
    • H02M7/53835Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement in a push-pull arrangement of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53846Control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5383Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a self-oscillating arrangement
    • H02M7/53846Control circuits
    • H02M7/53862Control circuits using transistor type converters

Description

DEUTSCHESGERMAN

PATENTAMTPATENT OFFICE

KL.21d3 2KL.21d 3 2

INTERNATIONALE KL.INTERNATIONAL KL.

H02j;dH02j; d

A34925Vmb/21d3 A34925Vmb / 21d 3

ANMELDETAG: 20. JUNI 1960REGISTRATION DATE: JUNE 20, 1960

BEKANNTMACHUNG DER ANMELDUNG UNDAUSGABE DER
AUSLEGESCHRIFT: 29. JUNI 1961
NOTIFICATION OF THE REGISTRATION AND ISSUE OF THE
EDITORIAL: JUNE 29, 1961

Transistoren und andere Halbleiterelemente, wie z. B. gesteuerte und ungesteuerte Halbleiterventile, sind sehr empfindlich für Stromüberbelastung. Besonders Transistoren sind durch Schmelzsicherungen oder andere stromempfindliche Geräte, wie z. B. Überstromrelais, schwer zu schützen. Die Ursache dafür ist, daß ein Transistor, der mittels eines bestimmten Basisstromes getrieben wird, nur einen bestimmten maximalen Kollektorstrom durchlassen kann. Solange der Kollektorstrom unter diesem maximalen Wert liegt, entsteht nur ein ziemlich kleiner Spannungsabfall (Sättigungsspannungsabfall) zwischen dem Emitter und dem Kollektor, und die Erwärmung des Halbleiterkristalls ist folglich klein. Sobald indessen der Kollektorstrom durch eine Änderung der Kreisdaten diesen durch den Basisstrom bestimmten maximalen Wert zu überschreiten neigt, nimmt der Transistor eine größere Spannung zwischen dem Emitter und dem Kollektor auf, was eine Erwärmung des Kristalls verursacht. Arbeitet also ein Transistor in einem Schaltkreis, wobei der Transistor normalerweise annähernd völlig in Hinsicht auf seine Strombelastbarkeit ausgenutzt ist, verursacht eine Verminderung des Widerstandes des Belastungskreises nur eine unbeträchtliche Stromerhöhung, da der Transistor keinen größeren Kollektorstrom durchlassen kann als den durch den augenblicklichen Basisstrom bestimmten. Der Spannungsabfall zwischen dem Emitter und dem Kollektor wird indessen beträchtlich erhöht, was eine schnelle Zerstörung des Transistors infolge Überhitzung verursachen kann.Transistors and other semiconductor elements such as B. controlled and uncontrolled semiconductor valves, are very sensitive to current overload. Transistors in particular are protected by fuses or other current-sensitive devices, such as B. Overcurrent relay, difficult to protect. The cause What is in favor is that a transistor which is driven by means of a certain base current only has a certain one can let through maximum collector current. As long as the collector current is below this maximum Value, there is only a fairly small voltage drop (saturation voltage drop) between the emitter and the collector, and the heating of the semiconductor crystal is therefore small. As soon as however the collector current determined by changing the circuit data, this is determined by the base current tends to exceed the maximum value, the transistor takes a greater voltage between the Emitter and the collector, which causes the crystal to heat up. So a transistor works in a circuit, whereby the transistor is normally almost entirely in terms of its current carrying capacity is used, only causes a decrease in the resistance of the load circuit an insignificant increase in current, since the transistor does not allow a larger collector current to pass through can be as determined by the instantaneous base current. The voltage drop between however, the emitter and the collector are increased considerably, causing rapid destruction of the transistor as a result of overheating.

Nach der Erfindung wird diese bei einer Überbelastung des Transistors entstehende Erhöhung des Spannungsabfalls zwischen dem Emitter und Kollektor über den normalen Sättigungsspannungsabfall hinaus zur Auslösung einer Schutzeinrichtung verwendet, die z. B. die Stromspeisung des Transistors unterbricht oder den Transistor sperrt.According to the invention, this resulting from an overload of the transistor increase in Voltage drop between the emitter and collector above the normal saturation voltage drop also used to trigger a protective device that z. B. the current supply of the transistor interrupts or blocks the transistor.

Wenn ein Transistor z. B. in einem Schaltungskreis arbeitet, ist er während gewisser Zeitintervalle völlig leitend und während anderer Zeitintervalle gesperrt. Bei einem solchen Transistor entsteht der Sättigungsspannungsabfall zwischen dem Emitter und dem Kollektor während der Leitungsperiode, und eine viel größere Spannung während der Sperrperiode. Aus diesem Grunde ist es nicht ohne weiteres möglich, den Spannungsabfall zwischen dem Emitter und dem Kollektor zu messen und zu bestimmen, ob der Transistor überbelastet ist oder nicht, da während einer Sperrperiode ein beträchtlich größerer Spannungsabfall zwischen dem Emitter und dem Kollektor ent-When a transistor z. B. works in a circuit, it is complete during certain time intervals conductive and blocked during other time intervals. With such a transistor, the saturation voltage drop occurs between the emitter and the Collector during the conduction period, and a much larger voltage during the blocking period. the end for this reason it is not readily possible to measure the voltage drop between the emitter and the Measure collector and determine whether the transistor is overloaded or not because during a Blocking period results in a considerably larger voltage drop between the emitter and the collector.

Einrichtung zum Schutz von Halbleiterelementen vor ÜberbelastungDevice for protecting semiconductor elements from overload

Anmelder:Applicant:

Allmänna Svenska Elektriska Aktiebolaget,
Västeräs (Schweden)
Allmänna Svenska Elektriska Aktiebolaget,
Västeräs (Sweden)

Vertreter: Dipl.-Ing. H. Missling, Patentanwalt,
Gießen, Bismarckstr. 43
Representative: Dipl.-Ing. H. Missling, patent attorney,
Giessen, Bismarckstrasse. 43

Beanspruchte Priorität:
Schweden vom 22. Juni 1959
Claimed priority:
Sweden from June 22, 1959

Marius Widakowich, Bromma (Schweden),
ist als Erfinder genannt worden
Marius Widakowich, Bromma (Sweden),
has been named as the inventor

steht als bei einer Überbelastung während der Leitungsperiode. stands than with an overload during the conduction period.

Die Einrichtung nach der Erfindung ist so ausgebildet, daß sie ein Auslösegerät enthält, das von dem Spannungsabfall über dem zu schützenden Halbleiterelement während seines leitenden Intervalls beeinflußt und derart angeordnet ist, daß es das zu schützende Halbleiterelement ausschaltet oder sperrt, wenn dieser Spannungsabfall einen vorbestimmten Wert überschreitet. Als fühlendes Gerät, das zwischen diesen beiden verschiedenen Arbeitszuständen des Transistors unterscheidet, wird nach der Erfindung ein Transistor verwendet, der in Phase mit dem zu schützenden Transistor getrieben wird. Anstatt dieses fühlenden Transistors können auch andere Arten von gesteuerten Ventilen verwendet werden.The device according to the invention is designed so that it contains a trigger device of the Affected voltage drop across the semiconductor element to be protected during its conductive interval and is arranged such that it turns off or blocks the semiconductor element to be protected when it Voltage drop exceeds a predetermined value. As a sentient device between these differs between the two different working states of the transistor, a transistor is used according to the invention used, which is driven in phase with the transistor to be protected. Instead of this sentient one Other types of controlled valves can be used with the transistor.

Da ein Transistor, der völlig leitend ist, immer einen gewissen Spannungsabfall (Sättigungsspannungsabfall) hat, ist es zweckmäßig, diesen Spannungsabfall dadurch zu kompensieren, daß das Auslösegerät derart eingestellt wird, daß die Auslösung nur dann eintritt, wenn dieser Sättigungsspannungsabfall überschritten wird. Dies kann z. B. durch Reihenschaltung einer Spannungsreferenz mit dem Kollektorkreis des fühlenden Transistors durchgeführt werden.Since a transistor that is completely conductive always has a certain voltage drop (saturation voltage drop) has, it is useful to compensate for this voltage drop that the trigger device is set in such a way that tripping occurs only when this saturation voltage drop is exceeded. This can e.g. B. by connecting a voltage reference in series with the collector circuit of the sensing transistor.

An Hand der Zeichnung ist als Beispiel eine Ausführungsform der Erfindung bei einem Wechselrichter beschrieben, der eine Rechteckspannung erzeugt undThe drawing is an example of an embodiment of the invention in an inverter described, which generates a square wave voltage and

109 619/218109 619/218

der entweder selbstgetrieben oder ferngetrieben sein kann. Fig. 1 zeigt die Spannung zwischen dem Kollektor und dem Emitter eines der beiden Transistoren in der Schaltung nach Fig. 4. Aus Fig. 1 ist ersichtlich, daß während der Sperrperiode eine beträchtliche Spannung zwischen dem Kollektor und dem Emitter entsteht, genauer ausgedrückt, ungefähr gleich der doppelten Spannung der Batterie, an der der Wechselrichter angeschlossen ist. Während der Leitungsperiode entsteht dagegen nur ein kleiner Spannungs- abfall, nämlich der Sättigungsspannungsabfall, der mit Vc em bezeichnet ist. Bei einer geringen Überbelastung erhält die Spannungskurve den in Fig. 2 gezeigten Verlauf, und es ist ersichtlich, daß der Spannungsabfall während der Leitungsperiode am Ende der Periode größer wird. Fig. 3 zeigt die Spannung über dem Transistor bei einer kräftigen Überbelastung. Der Spannungsabfall während der Leitungsperiode ist dabei beträchtlich höher als bei normalem Betrieb.which can be either self-propelled or remote-propelled. Fig. 1 shows the voltage between the collector and the emitter of one of the two transistors in the circuit of Fig. 4. From Fig. 1 it can be seen that during the blocking period there is a considerable voltage between the collector and the emitter, more precisely, approximately equal to twice the voltage of the battery to which the inverter is connected. During the conduction period, on the other hand, there is only a small voltage drop, namely the saturation voltage drop, which is denoted by Vc em. In the case of a slight overload, the voltage curve has the shape shown in FIG. 2, and it can be seen that the voltage drop during the conduction period increases at the end of the period. Fig. 3 shows the voltage across the transistor at a severe overload. The voltage drop during the conduction period is considerably higher than in normal operation.

Der Wechselrichter nach Fig. 4 kann entweder selbstgetrieben (mit einer Steuerwicklung 1 auf demselben Kern wie Primärwicklung 2) oder ferngetrieben sein. In dem letzten Falle wird eine Rechteckspannung in der Wicklung 1 mit HiMe eines nicht gezeigten Steueroszillators erzeugt. Der Wechselrichter, der in bekannter Weise in push-pull arbeitet, ist mit zwei Transistoren 3 und 4 versehen. Der fühlende Transistor ist mit 5 bezeichnet und das Auslösegerät mit 6. Da die Transistoren 4 und 5 parallel betrieben werden, kann eine Spannung zwischen dem Emitter und Kollektor des Transistors 5 nur während der Leitungsperiode des Transistors 4 einen Kollektorstrom durch den Transistors verursachen, da der Transistor 5 während der Sperrperiode des Transistors 4 gesperrt ist. Eine Spannungsreferenz 7 kann im Kollektorkreis des fühlenden Transistors eingeschaltet sein, so daß ein Kollektorstrom nur dann fließen kann, wenn die Spannung über dem Emitter und dem Kollektor des Transistors 4 größer ist als der Spannungsabfall der Spannungsreferenz 7. Dieser Spannungsabfall ist zweckmäßig gleich dem Sättigungsspannungsabfall V c em. The inverter according to FIG. 4 can either be self-propelled (with a control winding 1 on the same core as primary winding 2) or be remotely operated. In the latter case, a square wave voltage is generated in the winding 1 with HiMe of a control oscillator (not shown). The inverter, which works in a known manner in push-pull mode, is provided with two transistors 3 and 4. The sensing transistor is denoted by 5 and the tripping device by 6. Since the transistors 4 and 5 are operated in parallel, a voltage between the emitter and collector of the transistor 5 can cause a collector current through the transistor only during the conduction period of the transistor 4, since the Transistor 5 is blocked during the blocking period of transistor 4. A voltage reference 7 can be switched on in the collector circuit of the sensing transistor, so that a collector current can only flow if the voltage across the emitter and collector of transistor 4 is greater than the voltage drop of voltage reference 7. This voltage drop is expediently equal to the saturation voltage drop V. c em.

Bei einer Einrichtung mit mehreren Transistoren, die unter denselben Bedingungen (bei Parallel- oder Reihenschaltung) oder wechselweise (wie die Transistoren 3 und 4 in Fig. 4) arbeiten, kann es ausreichend sein, daß nur einer der Transistoren geschützt wird, wobei zweckmäßigerweise der Transistor geschützt wird, dessen Kollektorsättigungsstrom etwas kleiner als der der übrigen Transistoren ist. Natürlich kann jeder Transistor oder jede Transistorgruppe eine Ausrüstung mit einer Schutzeinrichtung nach der Erfindung versehen werden. Bei einem brückengeschalteten Wechselrichter z. B. kann die Transistorgruppe, die während der einen Halbwelle leitend ist, mit einer Schutzeinrichtung versehen sein und die Transistorgruppe, die während der anderen Halbwelle leitend ist, mit einer anderen Schutzeinrichtung.In a device with multiple transistors operating under the same conditions (parallel or Series connection) or alternately (like transistors 3 and 4 in Fig. 4), it can be sufficient be that only one of the transistors is protected, expediently the transistor is protected, whose collector saturation current is slightly smaller than that of the other transistors. Of course, each transistor or group of transistors can be equipped with a protective device are provided according to the invention. In the case of a bridge-connected inverter, e.g. B. the transistor group, which is conductive during one half-cycle, can be provided with a protective device and the transistor group that is conductive during the other half-cycle with another Protective device.

Die Erfindung kann mit Vorteil bei Reglern und anderen Geräten verwendet werden, die mit schaltenden Transistoren und/oder gesteuerten Halbleiterventilen arbeiten. Es ist indessen auch möglich, eine Schutzeinrichtung nach der Erfindung zum Schutz solcher Transistoren zu verwenden, die nicht nur in völlig gesperrtem oder völlig leitendem Zustand arbeiten, sondern auch in einem Zustand, wo sie einen bestimmten Spannungsabfall aufnehmen, wenn man aber verhindern will, daß dieser Spannungsabfall überschritten wird.The invention can be used with advantage in regulators and other devices with switching Transistors and / or controlled semiconductor valves work. However, it is also possible to use a To use protective device according to the invention to protect those transistors that are not only used in completely blocked or completely conductive state, but also in a state where they work record a certain voltage drop, but if you want to prevent this voltage drop is exceeded.

Als Auslösegerät kann zweckmäßigerweise nach der Erfindung ein Relais verwendet werden, dessen Wicklung in dem Kollektorkreis des fühlenden Transistors eingeschaltet ist, wobei das Relais mit einer Selbsthaltewicklung versehen werden kann, so daß die geschützte Einrichtung beim Ansprechen des Relais stromlos gemacht werden kann, ohne daß das Relais wieder abfällt. Nach einer anderen Ausführungsform der Erfindung kann ein Multivibrator zum Schwingen gebracht werden, wenn der Kollektorstrom des fühlenden Transistors einen bestimmten Wert überschreitet, wobei die zu schützende Ausrüstung durch die Schwingung des Multivibrators periodisch ein- und ausgeschaltet wird. Erst wenn die Überbelastung aufhört, wird der Multivibrator abgestellt, und die geschützte Ausrüstung kann wieder stetig arbeiten.As a tripping device, a relay can expediently be used according to the invention, its Winding in the collector circuit of the sensing transistor is turned on, the relay with a Self-holding winding can be provided so that the protected device when responding to the relay can be de-energized without the relay dropping out again. According to another embodiment According to the invention, a multivibrator can be made to oscillate when the collector current of the sensing transistor exceeds a certain value, the equipment to be protected is periodically switched on and off by the vibration of the multivibrator. Only when the If the overload ceases, the multivibrator is switched off and the protected equipment can be used again work steadily.

Claims (4)

PATENTANSPRÜCHE:PATENT CLAIMS: 1. Einrichtung zum Schutz von Halbleiterelementen, besonders von Transistoren, vor Überbelastung, dadurch gekennzeichnet, daß sie ein Auslösegerät enthält, das von dem Spannungsabfall über dem zu schützenden Halbleiterelement während seines leitenden Intervalls beeinflußt und derart angeordnet ist, daß es das zu schützende Halbleiterelement ausschaltet oder sperrt, wenn dieser Spannungsabfall einen vorbestimmten Wert überschreitet.1. A device for protecting semiconductor elements, especially transistors, from overload, characterized in that it contains a tripping device which is influenced by the voltage drop across the semiconductor element to be protected during its conductive interval and is arranged such that it switches off the semiconductor element to be protected or blocks when this voltage drop exceeds a predetermined value. 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß sie einen Transistor, im folgenden fühlender Transistor genannt, enthält, der mit dem oder den zu schützenden Transistoren derart parallel geschaltet ist, daß er, wenn ein unnormaler Spannungsabfall zwischen Kollektor und Emitter des zu schützenden Transistors auftritt, einen Kollektorstrom zu leiten beginnt, der eine Sperreinrichtung beeinflußt und ihre Auslösung bewirkt.2. Device according to claim 1, characterized in that it is a transistor, hereinafter Sense transistor called, contains, with the transistor or transistors to be protected in such a way is connected in parallel that if there is an abnormal voltage drop between the collector and Emitter of the transistor to be protected occurs, a collector current begins to conduct, the one Locking device affects and causes their triggering. 3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, daß eine Spannungsreferenz in dem Kollektorkreis des fühlenden Transistors eingeschaltet und so bemessen ist, daß bei dem normalen Sättigungsspannungsabfall des zu schützenden Transistors, wenn dieser völlig leitend ist, kein Kollektorstrom durch den fühlenden Transistor fließt, sondern erst, wenn der Spannungsabfall des zu schützenden Transistors diesen Sättigungsspannungsabfall überschreitet.3. Device according to claim 2, characterized in that a voltage reference in the Collector circuit of the sensing transistor is switched on and is dimensioned so that in the normal Saturation voltage drop of the transistor to be protected, if it is completely conductive, no collector current flows through the sensing transistor, but only when the voltage drop of the transistor to be protected exceeds this saturation voltage drop. 4. Einrichtung nach Anspruch 2 zum Schutz mehrerer unter gleichen Bedingungen arbeitenden Transistoren, dadurch gekennzeichnet, daß nur einer der zu schützenden Transistoren mit einem fühlenden Transistor versehen ist, wobei dieser zu schützende Transistor einen kleineren Kollektorsättigungsstrom hat als die übrigen zu schützenden Transistoren.4. Device according to claim 2 for the protection of several working under the same conditions Transistors, characterized in that only one of the transistors to be protected with a sensing transistor is provided, which transistor to be protected has a smaller collector saturation current has than the remaining transistors to be protected. Hierzu 1 Blatt Zeichnungen1 sheet of drawings © 109 619/218 6.© 109 619/218 6.
DEA34925A 1959-06-22 1960-06-20 Device for protecting semiconductor elements from overload Pending DE1109786B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE588759 1959-06-22

Publications (1)

Publication Number Publication Date
DE1109786B true DE1109786B (en) 1961-06-29

Family

ID=20267453

Family Applications (1)

Application Number Title Priority Date Filing Date
DEA34925A Pending DE1109786B (en) 1959-06-22 1960-06-20 Device for protecting semiconductor elements from overload

Country Status (2)

Country Link
DE (1) DE1109786B (en)
GB (1) GB924717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2844201A1 (en) * 1978-10-11 1980-04-24 Krupp Gmbh Semiconductor push-pull output stage circuit - has transmitter with two primary windings, symmetrically connected to supply feeding semiconductor device
DE3138282C1 (en) * 1981-09-25 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Protection circuit for a switching transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324406A (en) * 1964-05-20 1967-06-06 Univ Oklahoma State Power conserving biasing system for a class b push-pull transistor amplifier circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2844201A1 (en) * 1978-10-11 1980-04-24 Krupp Gmbh Semiconductor push-pull output stage circuit - has transmitter with two primary windings, symmetrically connected to supply feeding semiconductor device
DE3138282C1 (en) * 1981-09-25 1982-10-28 Siemens AG, 1000 Berlin und 8000 München Protection circuit for a switching transistor

Also Published As

Publication number Publication date
GB924717A (en) 1963-05-01

Similar Documents

Publication Publication Date Title
DE3021689A1 (en) OVERLOAD PROTECTION FOR THE ENGINE, ESPECIALLY AN ELECTRIC HAND TOOL
DE2638068C3 (en) Fire alarm system with several detectors that can be operated via a message loop
DE2306013C3 (en) Circuit arrangement for limiting the power loss of electronic components
DE1109786B (en) Device for protecting semiconductor elements from overload
DE1050376B (en) Devices on bistable semiconductor flip-flops as memory elements in control and regulation systems to avoid Fch commands after a power failure
DE2360678B2 (en) Circuit arrangement for short-circuit and overload protection of an electronic power circuit with an output stage
CH648703A5 (en) Overvoltage protection device for an electronic apparatus
DE1139879B (en) Overload protection device for switching transistors
DE19540625B4 (en) Protection circuit and device for monitoring device and / or machine temperatures
DE1105972B (en) Equipment for power failure monitoring
DE741435C (en) Device for regulating the coolant supply in converter vessels
DE3204338C1 (en) Excess current protection circuit for electronic switches
DE2431167A1 (en) Monitor for overload protection circuit - has comparator comparing resistor and capacitor volts in two RC timing circuits to return supply
AT208436B (en) Protective device for switching transistor arrangements
DE1061420B (en) Protective device for switching transistor arrangements
DE2515654B2 (en) Proximity switch
DE2032632A1 (en) Overload protection circuit
DE1089051B (en) Circuit arrangement for monitoring the current or voltage in DC and AC circuits
DE3729901A1 (en) Circuit arrangement for thermostatically controlled, AC-operated heaters
DE2632612C3 (en) Overload protection arrangement for switching stages with transistors
DE1701712U (en) ARRANGEMENT FOR MONITORING ELECTRICAL SYSTEMS.
DE1074649B (en) Equipment for switching and controlling electrical circuits
DE917263C (en) Device for the automatic voltage support of self-excited synchronous machines
DE1146963B (en) Power supply system with a direct current generator and a reserve battery
DE2258898C3 (en) Arrangement for current limitation in a controlled transistor inverter