DE10326611A1 - Molded body used as alumina carriers in the manufacture of sintered and molten products contains oxides of aluminum, magnesium, silicon, calcium, iron, and potassium, and aluminum nitride - Google Patents

Molded body used as alumina carriers in the manufacture of sintered and molten products contains oxides of aluminum, magnesium, silicon, calcium, iron, and potassium, and aluminum nitride Download PDF

Info

Publication number
DE10326611A1
DE10326611A1 DE2003126611 DE10326611A DE10326611A1 DE 10326611 A1 DE10326611 A1 DE 10326611A1 DE 2003126611 DE2003126611 DE 2003126611 DE 10326611 A DE10326611 A DE 10326611A DE 10326611 A1 DE10326611 A1 DE 10326611A1
Authority
DE
Germany
Prior art keywords
weight
aluminum
alumina
production
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2003126611
Other languages
German (de)
Other versions
DE10326611B4 (en
Inventor
Reinhard Dipl.-Ing. Feige
Gerhard Dipl.-Ing. Merker
Jürgen Dipl.-Ing. Steyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Befesa Salzschlacke GmbH
Original Assignee
Aluminium Salzschalcke Aufbereitungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003100170 external-priority patent/DE10300170B9/en
Application filed by Aluminium Salzschalcke Aufbereitungs GmbH filed Critical Aluminium Salzschalcke Aufbereitungs GmbH
Priority to DE10326611.9A priority Critical patent/DE10326611B4/en
Publication of DE10326611A1 publication Critical patent/DE10326611A1/en
Application granted granted Critical
Publication of DE10326611B4 publication Critical patent/DE10326611B4/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/42Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
    • C01F7/428Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation in an aqueous solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/002Use of waste materials, e.g. slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • C04B7/323Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Composite Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Molded body contains (in weight %) 40-80 Al2O3, 2-15 MgO, 1-15 SiO2, 5-25 CaO, 0.5-2 Fe2O3, 0.5-2 Na2O, 0.1-1 metallic Al, 0.1-1 AlN, 0.1-1.5 K2O, 0.1-2 F, 0.1-0.8 Cl, maximum 5 residue and maximum 20 ignition loss. The molded body further contains aluminum monohydroxide Al2O3.H2O, and aluminum trihydroxide Al2O3.3H2O in a weight ratio of more than 0.25. CaO is present as hydrated calcium oxide compound. An independent claim is also included for a process for the production of the molded body.

Description

Hochtonerdehaltige Formkörper und Verfahren zu ihrer Herstellung High alumina moldings and methods of making them

Die Erfindung betrifft hochtonerdehaltige Formkörper, die 40–80 Gew.-% Al2O3 enthalten, mit den mineralischen Hauptbestandteilen Korund α-Al2O3, Spinell MgAl2O4, Aluminiumhydroxid und hydratisierte Calciumoxid-Verbindungen, wobei Aluminiumhydroxid als Aluminiummonohydroxid Al2O3.H2O und Aluminiumtrihydroxid Al2O3.3H2O vorliegt, und das Gewichtsverhältnis von Monohydroxid zu Trihydroxid größer als 0,25 beträgt. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung der hochtonerdehaltigen Formkörper aus einem Tonerdeprodukt aus der Aufarbeitung tonerdehaltiger Rückstände, die beim Schmelzen von Aluminium entstehen. Die hochtonerdehaltigen Formkörper sind als Tonerdeträger für die Herstellung mineralischer Sinter- und Schmelzprodukte anstelle von Bauxit einsetzbar (wie Zementklinker, Glas, Hüttenschlacke, Schmelzbasalt, Glasfasern und Mineralfasern), und besitzen im Vergleich zu dem natürlichen Rohstoff bessere Sinter- und Schmelzeigenschaften.The The invention relates to high-alumina shaped articles which contain 40-80% by weight. Contain Al2O3, with the main mineral components corundum α-Al2O3, spinel MgAl2O4, aluminum hydroxide and hydrated calcium oxide compounds, where aluminum hydroxide as aluminum monohydroxide Al2O3.H2O and Aluminum trihydroxide Al2O3.3H2O is present, and the weight ratio of Monohydroxide to trihydroxide greater than Is 0.25. The invention further relates to a method for producing the high alumina molded article from an alumina product from the processing of alumina residues that arise when aluminum is melted. The high alumina moldings are as alumina carriers for the Manufacture of mineral sintered and melted products instead of Bauxite can be used (such as cement clinker, glass, slag, smelt basalt, Glass fibers and mineral fibers), and have compared to that natural Raw material has better sintering and melting properties.

Für die Herstellung mineralischer Sinter- und Schmelzprodukte, bei denen ein Tonerdeträger benötigt wird, wird bisher natürlicher Bauxit eingesetzt. Der Bauxit wird in Steinbrüchen abgebaut und anschließend zerkleinert und klassiert. Als stückiges Material wird Bauxit bei der Gewinnung von Roheisen zur Regulierung des Al2O3-Gehaltes der Hüttenschlacke dem Hochofenmöller zugegeben. Ebenso wird stückiger Bauxit bei der Herstellung von Mineralfasern oder Tonerdeschmelzzementklinker mittels Schachtschmelzofen verwendet. Für die Herstellung von gesintertem Zementklinker (Portlandklinker, Aluminatzementklinker) wird feingemahlener Bauxit eingesetzt.For the production mineral sintered and melted products that require an alumina carrier, has become more natural so far Bauxite used. The bauxite is mined in quarries and then crushed and classified. As lumpy Material is used in the production of pig iron to regulate the bauxite Al2O3 content of the slag the furnace furnace added. It also becomes lumpier Bauxite in the production of mineral fibers or alumina cement clinker used by means of a shaft melting furnace. For the production of sintered Cement clinker (Portland clinker, aluminum cement clinker) becomes finer ground Bauxite used.

Bauxit hat eine wesentlich höhere Sinter- und Schmelztemperatur als die mineralischen Sinter- und Schmelzprodukte. Als kompaktes Gestein vorliegend, mit einer Rohdichte bis zu 3,6 g/cm3, sollte Bauxit daher einerseits auf eine möglichst kleine Teilchengröße zerkleinert werden, damit das Sintern und Aufschmelzen zusammen mit den anderen Ausgangsstoffen begünstigt wird. Andererseits sollte für die selbsttragende und von Gasen umströmbare Schüttgutsäule in einem Hochofen oder Schachtschmelzofen der Bauxit eine ausreichende Stückgröße und eine mechanisch stabile Kornstruktur aufweisen, die möglichst wenig Bruch und wenig Abrieb ergibt. Die Anpassung an die Korngrößen der anderen Möllerbestandteile (wegen der Gasdurchlässigkeit, der Wärmeübertragung und des Schmelzverhaltens) mit einer Stückgröße von etwa 1–5 cm, wie sie beispielsweise bei Bauxit als Tonerdeträger bei der Roheisengewinnung erfolgt, ist daher als Kompromiss zu sehen. Aus der Herstellung von Mineralfasern ist bekannt, dass aufgrund der begrenzten Verweilzeit im Schacht ein Teil des Bauxits nur unvollständig aufgeschmolzen und in der Schmelze gelöst wird, sich daher in der Schmelzwanne ansammelt und von Zeit zu Zeit entfernt werden muß, selbst wenn der Bauxit in feingemahlenem Zustand (beispielsweise mit einer Teilchengröße von kleiner 200 μm) als Bestandteil von Briketts eingesetzt wird.Bauxite has a much higher sintering and melting temperature than the mineral sintering and melting products. As a compact rock, with a bulk density of up to 3.6 g / cm 3 , bauxite should therefore be reduced to a particle size that is as small as possible, so that sintering and melting together with the other starting materials is promoted. On the other hand, for the self-supporting column of gas that can flow around in a blast furnace or shaft melting furnace, the bauxite should be of sufficient size and have a mechanically stable grain structure that results in as little breakage and little abrasion as possible. The adaptation to the grain sizes of the other Möller components (because of the gas permeability, the heat transfer and the melting behavior) with a piece size of about 1–5 cm, as is the case, for example, with bauxite as an alumina carrier in the production of pig iron, can be seen as a compromise. From the production of mineral fibers it is known that due to the limited dwell time in the shaft, part of the bauxite is only partially melted and dissolved in the melt, therefore it has to accumulate in the melting tank and has to be removed from time to time, even if the bauxite is in finely ground Condition (for example with a particle size of less than 200 microns) is used as a component of briquettes.

Tonerdehaltige Rückstände, die beim Schmelzen von Aluminium entstehen, sind beispielsweise Aluminiumkrätze und Aluminium-Salzschlacke. Aluminiumkrätze ist ein Gemisch aus Metalloxiden und Metall, das sich an der Oberfläche von Aluminiumschmelzen bildet. Um die Oxidation des Metalls zu Aluminium-Krätze möglichst gering zu halten und oxidische Verunreinigungen in Form einer Schlacke aufzunehmen, wird auf die Metallschmelze eine Abdeckung aus Salz (z.B. eine Mischung aus 70% NaCl, 28% KCl und 2% CaF2) aufgebracht, Die Salzschlacke enthält mindestens 5% Salz, mindesten 35% Oxide und mindestens 5% metallisches Aluminium. Der Metallgehalt von Aluminium-Krätze kann zwischen 20 bis 80% liegen. Da Aluminium beim Schmelzen an Luft nicht nur mit Sauerstoff sondern auch mit Stickstoff reagiert, enthält eine Salzschlacke oder eine Krätze neben Aluminiumoxid auch Aluminiumnitrid.alumina containing Residues that When aluminum is smelted are, for example, aluminum dross and Aluminum salt slag. Aluminum dross is a mixture of metal oxides and metal that adheres to the surface of molten aluminum forms. To the oxidation of the metal to aluminum dross as possible keep low and oxidic impurities in the form of a slag a salt cover is added to the molten metal (e.g. a mixture of 70% NaCl, 28% KCl and 2% CaF2), Contains the salt slag at least 5% salt, at least 35% oxides and at least 5% metallic aluminum. The metal content of aluminum dross can be between 20 to 80% lie. Because aluminum does not only use oxygen when melting in air but also reacts with nitrogen, contains a salt slag or scabies in addition to aluminum oxide, aluminum nitride.

Zur möglichst vollständigen Rückgewinnung der Bestandteile werden die tonerdehaltigen Rückstände, die beim Schmelzen von Aluminium-Metall entstehen, einem Aufbereitungsprozess unterworfen, bei dem der Metallinhalt durch Zerkleinern und Klassieren zum größten Teil mechanisch zurückgewonnen werden kann. Beim Zerkleinern von Krätze in Kugelmühlen entsteht der sogenannte Kugelmühlenstaub. Anschließend werden die tonerdehaltigen Rückstände mit Wasser behandelt. Dabei geht das Salz in Lösung. Nach Abtrennen der unlöslichen Bestandteile, hier "Tonerdeprodukt" genannt, wird durch Eindampfen der Lösung das Salz kristallisiert und ist damit erneut als Schmelzsalz verwendbar.to preferably complete reclamation of the constituents are the alumina residues that occur when melting Aluminum-metal are created, subjected to a preparation process, in which the metal content is largely broken down and classified mechanically recovered can be. When crushing scabies in ball mills arises the so-called ball mill dust. Subsequently the alumina residues with Water treated. The salt goes into solution. After removing the insoluble Ingredients, here called "alumina product" is by Evaporate the solution the salt crystallizes and can thus be used again as molten salt.

Das Tonerdeprodukt enthält etwa 50–80% Al2O3. Nach M. Beckmann (Aluminium 67 [1991] 586–593) liegt das Al2O3 mineralogisch in Form von Korund α-Al2O3, Spinell MgAl2O4 und Al-Trihydroxid β-Al2O3.3H2O (Bayerit) vor. Al-Trihydroxid bildet sich in der Naßaufbereitung der tonerdehaltigen Rückstände aus der Reaktion von Wasser mit Aluminium bzw. Aluminiumnitrid gemäß den folgenden Gleichungen: 2Al + 6H2O = Al2O3.3H2O + 3H2 2AlN + 6H2O = Al2O3.3H2O + 2NH3 The alumina product contains approximately 50-80% Al2O3. According to M. Beckmann (Aluminum 67 [1991] 586–593) the Al2O3 is mineralogically in the form of corundum α-Al2O3, spinel MgAl2O4 and Al-trihydroxide β-Al2O3.3H2O (bayerite). Al trihydroxide is formed in the wet processing of the residues containing alumina from the reaction of water with aluminum or aluminum nitride according to the following equations: 2Al + 6H2O = Al2O3.3H2O + 3H2 2AlN + 6H2O = Al2O3.3H2O + 2NH3

Da der Zerkleinerungsgrad und die Reaktionszeit in der Praxis der Naßaufbereitung nach wirtschaftlich optimalen Gesichtspunkten eingestellt werden, verbleiben im Tonerdeprodukt noch Restgehalte an Al-Metall und Al-Nitrid, die mehr als 1% betragen.There the degree of comminution and the reaction time in the practice of wet processing are set according to economically optimal criteria, residual aluminum metal and aluminum nitride remain in the alumina product, which are more than 1%.

Das Tonerdeprodukt wird als schlammiger Filterkuchen (meist mit einer Feuchte von etwa 30–45% Wasser, mit einer Teilchenfeinheit kleiner 500 μm, mit schlechter Förder- und Dosierbarkeit und stark nach Ammoniak riechend) aus dem Naßaufbereitungsprozess ausgeschleust. Die ungünstige Konsistenz und die Restgehalte an Aluminium-Metall und Aluminium-Nitrid sind für die Verwendbarkeit des Tonerdeprodukts, insbesondere bei der Herstellung gesinterter und geschmolzener Roh- und Werkstoffe, von erheblichem Nachteil.The Alumina product is used as a muddy filter cake (usually with a Humidity of about 30-45% water, with a particle fineness smaller than 500 μm, with poor conveyability and meterability and smelling strongly of ammonia) from the wet processing process. The unfavorable Consistency and the residual levels of aluminum metal and aluminum nitride are for the usability of the alumina product, particularly in the manufacture sintered and molten raw materials, of considerable Disadvantage.

Bei der Weiterverarbeitung des feinkörnigen Tonerdeprodukts ergeben sich die folgenden, teils schwerwiegenden Verarbeitungsprobleme:

  • • Geruchsbelästigung durch Gasentwicklung (Ammoniak) bei der Handhabung
  • • Verringerung der Formkörperfestigkeit durch Gasentwicklung (Wasserdampf, H2, NH3)
  • • Korrosion der Ausrüstungen in Folge von Gasentwicklung
  • • Explosionsgefahr in Folge von Gasentwicklung
  • • Bildung von mechanischen Anbackungen und Verstopfungen in den maschinellen Anlagen und auf den Förderwegen
  • • Schwer steuerbare örtliche Temperaturschwankungen bzw. Überhitzungen in Sinter- und Schmelzprozessen
The following, sometimes serious processing problems arise during the further processing of the fine-grained alumina product:
  • • Odor nuisance due to gas development (ammonia) during handling
  • • Reduction of the body strength through gas development (water vapor, H2, NH3)
  • • Equipment corrosion due to gas evolution
  • • Risk of explosion due to gas development
  • • Formation of mechanical caking and blockages in the machine systems and on the conveying paths
  • • Difficult to control local temperature fluctuations or overheating in sintering and melting processes

Die Verwendung des feinkörnigen Tonerdeprodukts ist nach DE-4345368 zur Herstellung von gesintertem oder geschmolzenem Aluminatzementklinker, nach DE19637848 zur Herstellung von Zement, nach DE-19727979 zur Herstellung von Tonerdezement, nach EP-0838443 zur Herstellung von gesintertem Sulfoaluminatzement, nach EP-0881200 zur Herstellung einer Bodenauskleidung für Aluminium-Elektrolysezellen, nach EP-1036044 (WO 99/28253) zur Herstellung glasiger Fasern (Steinwolle), nach US-5045506 zur Herstellung von Mineralwolle, nach US-5424260 zur Herstellung keramischer Fasern und nach US-6238633 zur Herstellung eines gesinterten Calciumaluminat-Schlackenbildners bekannt. Bei allen diesen Verwendungen treten die oben genannten Verarbeitungsprobleme auf.The use of the fine grain alumina product is after DE-4345368 for the production of sintered or melted aluminum cement clinker, according to DE19637848 for the production of cement, after DE-19727979 for the production of alumina cement, after EP-0838443 for the production of sintered sulfoaluminate cement, after EP-0881200 for the production of a floor lining for aluminum electrolysis cells, according to EP-1036044 (WO 99/28253) for the production of glassy fibers (rock wool), according to US 5045506 for the production of mineral wool, according to US 5424260 for the production of ceramic fibers and after US 6238633 for producing a sintered calcium aluminate slag former known. The processing problems mentioned above occur in all of these uses.

WO 01/14605 betrifft Briketts zur Verringerung der Viskosität metallurgischer Schlacken. Die Briketts werden aus einer Mischung geformt, die 85–98 Gew-.% einer Schlacke aus der Herstellung von Sekundäraluminium, mit bis zu 25 Gew.-% Al-Metall, 1–8 Gew.-% einer Polyvinylacetat-Dispersion als Binder, und Wasser enthält. Aufgrund der ungünstigen Eigenschaften der Schlacke im Kontakt mit Wasser (Zersetzung von AlN und Al unter Bildung von Ammoniak und Wasserstoff) müssen die Briketts bei 120–200°C getrocknet werden bis der Wassergehalt der Briketts weniger als 1,5% beträgt, und anschließend in Polyethylen verpackt und trocken gelagert werden, damit sie nicht so schnell ihre Festigkeit verlieren und zerfallen.WHERE 01/14605 relates to briquettes to reduce the viscosity of metallurgical Slags. The briquettes are formed from a mixture that is 85-98% by weight. a slag from the production of secondary aluminum, with up to 25% by weight Al metal, 1-8 % By weight of a polyvinyl acetate dispersion as binder, and contains water. by virtue of the unfavorable Properties of the slag in contact with water (decomposition of AlN and Al with the formation of ammonia and hydrogen) Briquettes dried at 120-200 ° C until the water content of the briquettes is less than 1.5%, and subsequently packed in polyethylene and stored dry so they don't lose its strength and disintegrate so quickly.

EP-1037861 (WO 99/28252) beinhaltet ein Verfahren zur Herstellung von Mineralfasern mit mindestens 14 Gew.-% Aluminium gemessen als Al2O3, wobei mindestens ein Viertel des Aluminiums in der Charge als Al2O3 enthaltendes Mineral in Brikettform eingeführt wird. Das Al2O3 enthaltende Mineral enthält 0,5 bis 10 Gew.-% metallisches Aluminium, 50 bis 90 Gew.-% Aluminiumoxid und 0 bis 49,5 Gew.-% andere Materialien und ist zerkleinerte Aluminium-Krätze oder behandelte Aluminium-Salzschlacke. Zu Gehalten an Aluminiumhydroxiden und deren Eigenschaften gibt es keine Angaben. Für die Herstellung der Briketts werden als Bindemittel Zement, Ton oder organische Binder verwendet. Die Briketts enthalten nicht mehr als 50 Gew.-% des Al2O3 enthaltenden Materials (Seite 11, Zeile 1–5). Weitere Bestandteile sind Mineralwolle-Abfall, Bauxit und Schlacken aus der Eisen- und Stahlherstellung. EP-1037861 (WO 99/28252) includes a process for the production of mineral fibers with at least 14% by weight of aluminum measured as Al2O3, at least a quarter of the aluminum in the batch being introduced as a mineral containing Al2O3 in briquette form. The mineral containing Al2O3 contains 0.5 to 10% by weight of metallic aluminum, 50 to 90% by weight of aluminum oxide and 0 to 49.5% by weight of other materials and is crushed aluminum dross or treated aluminum salt slag. There is no information on the levels of aluminum hydroxides and their properties. Cement, clay or organic binders are used as binders for the production of the briquettes. The briquettes contain no more than 50% by weight of the material containing Al2O3 (page 11, lines 1-5). Other components are mineral wool waste, bauxite and slags from iron and steel production.

Der Erfindung liegt die Aufgabe zu Grunde, für die Herstellung mineralischer Sinter- und Schmelzprodukte (wie Zementklinker, Glas, Hüttenschlacke, Schmelzbasalt, Glasfasern und Mineralfasern) einen geeigneten stückigen Tonerdeträger zu finden, der im Vergleich zu stückigem Bauxit bereits bei tieferen Temperaturen sintert, und damit ermöglicht, dass zusammen mit den anderen stückigen Reaktionspartnern die Bildung gemeinsamer homogener Sinter- und Schmelzprodukte bereits bei tieferen Temperaturen erfolgt.The invention is based on the object of finding a suitable lumpy alumina carrier for the production of mineral sintered and melted products (such as cement clinker, glass, slag, smelt basalt, glass fibers and mineral fibers), which sinters at lower temperatures than lumpy bauxite, and This enables the formation together with the other lumpy reaction partners common homogeneous sintered and melted products take place at lower temperatures.

Die Erfindung hat weiterhin die Aufgabe, das – aufgrund hoher Restgehalte an Al-Metall, Al-Nitrid, Ammoniak und Feuchte – in seiner direkten Verwendbarkeit beeinträchtigte feinkörnige Tonerdeprodukt aus dem Prozess der Aufbereitung tonerdehaltiger Rückstande des Schmelzens von Aluminium in einen Zustand zu bringen, in dem das Tonerdeprodukt zur Herstellung mineralischer Sinter- und Schmelzprodukte besser verarbeitbar ist.The The invention also has the task of - due to high residual contents of Al metal, Al nitride, ammonia and moisture - in its direct usability impaired fine-grained Alumina product from the process of processing alumina residues of melting aluminum into a state in which the alumina product for the production of mineral sinter and melting products is easier to process.

Die Aufgabe wird dadurch gelöst, dass ein aus dem Prozess der Aufarbeitung tonerdehaltiger Rückstände des Schmelzens von Aluminium gewonnenes Tonerdeprodukt, mit schlammiger Konsistenz, deutlichem Geruch nach Ammoniak, mit einer Feuchte bis zu 35 Gew.-%, einer Teilchengröße von 90 Gew.-% kleiner 500 μm, enthaltend (bezogen auf Trockensubstanz) Al2O3 50–80 Gew.-% MgO 2–15 Gew.-% SiO2 1–15 Gew.-% Al-metallisch 1–5 Gew.-% CaO 0,5–5 Gew.-% Fe2O3 0,5–2 Gew.-% Na2O 0,5–2 Gew.-% AlN 0,1–2 Gew.-% K2O 0,1–1,5 Gew.-% F 0,1–2 Gew.-% Cl 0,1–0,8 Gew.-% Rest zusammen max. 5 Gew.-% Glühverlust max. 15 Gew.-% mit den mineralischen Hauptbestandteilen Korund α-Al2O3, Spinell MgAl2O4 und Aluminiumtrihydroxid Al2O3.3H2O in feuchtem Zustand unter Zusatz von 2 bis 25 Gew.-% eines CaO-haltigen Bindemittels gemischt wird, wodurch aufgrund der exothermen Bildung hydratisierter CaO-Verbindungen durch Reaktion mit dem amoniakalischen Feuchtewasser und dessen Verdampfung feuchtwarme bis hydrothermale Bedingungen entstehen, unter denen die Bildung von weiterem Aluminiumtrihydroxid aus metallischem Aluminium und Aluminiumnitrid, und die Umwandlung von Aluminiumtrihydroxid in Aluminiummonohydroxid erfolgt, dass das Mischgut zu Formkörpern (Pellets oder Briketts) mit einer Rohdichte von mehr als 1,1 g/cm3 (bezogen auf Trockenmasse) mechanisch verdichtet wird, und dass die feuchtwarmen bis hydrothermalen Bedingungen so lange aufrecht erhalten werden, bis das Gewichtsverhältnis von Aluminiummonohydroxid zu Aluminiumtrihydroxid mehr als 0,25 beträgt.The object is achieved in that an alumina product obtained from the process of processing alumina-containing residues from the melting of aluminum, with muddy consistency, distinct smell of ammonia, with a moisture content of up to 35% by weight, a particle size of 90% by weight. less than 500 μm, containing (based on dry matter) Al2O3 50-80% by weight MgO 2-15% by weight SiO2 1-15% by weight Al-metallic 1-5% by weight CaO 0.5-5% by weight Fe2O3 0.5-2% by weight Na2O 0.5-2% by weight AlN 0.1-2% by weight K2O 0.1-1.5% by weight F 0.1-2% by weight Cl 0.1-0.8% by weight Rest together Max. 5% by weight loss on ignition Max. 15% by weight mixed with the main mineral constituents corundum α-Al2O3, spinel MgAl2O4 and aluminum trihydroxide Al2O3.3H2O in the wet state with the addition of 2 to 25% by weight of a CaO-containing binder, which due to the exothermic formation of hydrated CaO compounds by reaction with the ammoniacal damp water and its evaporation arise from warm to hydrothermal conditions under which the formation of further aluminum trihydroxide from metallic aluminum and aluminum nitride, and the conversion of aluminum trihydroxide into aluminum monohydroxide takes place so that the mixture to form bodies (pellets or briquettes) with a bulk density of more than 1 , 1 g / cm 3 (based on dry matter) is mechanically compressed, and that the warm, humid to hydrothermal conditions are maintained until the weight ratio of aluminum monohydroxide to aluminum trihydroxide is more than 0.25.

Das CaO-haltige Bindemittel kann Branntkalk, Calciumsilikat- oder Calciumaluminatzement sein, oder Mischungen dieser Bindemittel. Durch die Reaktion des CaO-haltigen Bindemittels mit der Mischgutfeuchte bilden sich hydratisierte CaO-Verbindungen in Form von Calciumhydroxid, Calciumsilikathydrat und Calciumaluminathydrat.The CaO-containing binders can be quicklime, calcium silicate or calcium aluminate cement be, or mixtures of these binders. By the reaction of the Hydrated CaO-containing binders with the moisture content of the mix are formed CaO connections in the form of calcium hydroxide, calcium silicate hydrate and calcium aluminate hydrate.

Vorteilhaft für die Dichte und mechanische Festigkeit der Formkörper und die Vermeidung von Rissen – aufgrund des erhöhten Dampfdruckes, der sich im Inneren der Formkörper einstellt – ist ein mehrstufiges Verdichten, beim dem bereits im Mischer ein Kneten und Kollern der Mischung erfolgt, dann in einer Granuliervorrichtung (Trommel oder Teller) Pellets mit einer Rohdichte im getrockneten Zustand von 1,1 bis 1,4 g/cm3 geformt werden und daran anschließend in einer Brikettiervorrichtung Formkörper mit einer Rohdichte im getrockneten Zustand von 1,4 bis 1,8 g/cm3 gepresst, gerüttelt oder vibriert werden. Durch das mehrstufige Verdichten lassen sich eventuelle Risse, die beim einstufigen Verdichten in den Formkörpern durch die Verdampfung des Feuchtewassers entstehen können, in der zweiten Stufe wieder ausheilen.Advantageous for the density and mechanical strength of the moldings and the avoidance of cracks - due to the increased vapor pressure that arises in the interior of the moldings - is a multi-stage compression, in which the mixture is kneaded and tumbled in the mixer, then in a granulating device (Drum or plate) pellets with a bulk density in the dried state of 1.1 to 1.4 g / cm 3 and then molded in a briquetting device with a bulk density in the dry state of 1.4 to 1.8 g / cm 3 pressed, shaken or vibrated. Due to the multi-stage compression, any cracks that can occur in the molded bodies during single-stage compression due to the evaporation of the damp water can be healed in the second stage.

Um die feuchtwarmen bis hydrothermalen Bedingungen aufrecht zu erhalten, erfolgt erfindungsgemäß eine Lagerung der Formkörper als möglichst kompaktes Haufwerk, wodurch die Wärmeabfuhr reduziert wird. Aufgrund der fortschreitenden exothermen Reaktion kann sich somit das Haufwerk von innen heraus aufheizen und die Reaktion von restlichem Al-Metall und Al-Nitrid mit dem Feuchtewasser zu Aluminiumhydroxid und die Umwandlung von Al-Trihydroxid (Bayerit) in das an Kristallwasser ärmere Al-Monohydroxid (Böhmit) kann weiter fortschreiten.Around to maintain the humid to hydrothermal conditions, storage takes place according to the invention the molded body than possible compact pile, which reduces heat dissipation. by virtue of The progressive exothermic reaction can thus accumulate heat up from the inside and the reaction of residual Al metal and Al nitride with the damp water to aluminum hydroxide and the Conversion of Al trihydroxide (Bayerit) into the Al monohydroxide (Boehmite), which is poorer in water of crystallization, can continue progress.

Die Vorteile des Al-Monohydroxids Böhmit gegenüber dem Al-Trihydroxid Bayerit beim Sintern und Schmelzen sind der geringere Kristallwassergehalt und der geringere – und dadurch weniger Sinter- und Schmelzenergie verbrauchende – endotherme Effekt der Kristallwasserabspaltung, der breitere Temperaturbereich der Abspaltung des Kristallwassers und die höhere Kristalldichte. Damit die Vorteile des Gehaltes an Böhmit spürbar werden, sollte das Al-Monohydrat mindestens 20% der Al-Hydroxidphasen ausmachen, das Verhältnis von Böhmit zu Bayerit also größer als 20:80 = 0,25 ist. Das Phasenverhältnis wird dabei durch Röntgenbeugung und Vergleich der Peakintensitäten von Böhmit (d = 6,11 Å) und Bayerit (d = 4,72 Å) ermittelt. Frisch gebildete Aluminiumhydroxide, die noch feinkristallin oder kolloidal sind, zeigen eine Peakverbreiterung. Mit zunehmender Alterung tritt ein Kristallwachstum ein und die Peakhöhen nehmen zu.The advantages of the Al monohydroxide boehmite over the Al trihydroxide bayerite for sintering and Melting is the lower crystal water content and the lower - and therefore less sintering and melting energy - endothermic effect of the crystal water elimination, the broader temperature range of the elimination of the crystal water and the higher crystal density. So that the advantages of the boehmite content can be felt, the Al monohydrate should make up at least 20% of the Al hydroxide phases, i.e. the ratio of boehmite to bayerite is greater than 20:80 = 0.25. The phase ratio is determined by X-ray diffraction and comparison of the peak intensities of boehmite (d = 6.11 Å) and bayerite (d = 4.72 Å). Freshly formed aluminum hydroxides that are still fine crystalline or colloidal show a peak broadening. With increasing aging, crystal growth occurs and the peak heights increase.

Die folgende Tabelle zeigt die Eigenschaften der beiden Aluminiumhydroxid-Phasen im Vergleich:

Figure 00080001
The following table shows the properties of the two aluminum hydroxide phases in comparison:
Figure 00080001

Die Beispiele 1 und 2 sind Vergleichsbeispiele, die Beispiele 3 bis 5 veranschaulichen die Erfindung. Dazu wurden Formkörper hergestellt und einem Sintertest unterworfen. Die Formkörper wurden dabei in einem elektrisch beheizten Laborkammerofen mit einer Geschwindigkeit von 300°C/h aufgeheizt und im Temperaturbereich von 1.000 bis 1.400°C, in Stufen von jeweils 100 K, jeweils mit einer Haltezeit von 1 h gebrannt. Die Abkühlung der Formkörper erfolgte im abgeschalteten Ofen. Durch Ausmessen mittels Schublehre wurde die Temperatur ermittelt, bei der aufgrund von Sinterschwindung eine Abnahme der linearen Abmessungen der Probekörper um mehr als 0,5% eintrat (Sinterbeginn). Wie die Beispiele zeigen, haben die erfindungsgemäßen Formkörper im Vergleich zu Bauxit einen deutlich niedrigeren Sinterbeginn. Die bei der Verarbeitung von Tonerdeprodukt im ursprünglichen Zustand (Filterschlamm) vorhandenen Probleme sind durch die Bildung von Formkörpern und deren feuchtwarme bis hydrothermale Behandlung beseitigt.The Examples 1 and 2 are comparative examples, Examples 3 to 5 illustrate the invention. Shaped bodies were produced for this and subjected to a sintering test. The moldings were electrical in one heated laboratory chamber furnace heated at a speed of 300 ° C / h and in the temperature range from 1,000 to 1,400 ° C, in steps of 100 K, each fired with a holding time of 1 h. The cooling of the moldings took place in the switched off oven. By measuring using a caliper the temperature was determined at which due to sintering shrinkage the linear dimensions of the test specimens decreased by more than 0.5% (Sinter beginning). As the examples show, the moldings according to the invention have Compared to bauxite, the start of sintering is significantly lower. The when processing alumina product in its original state (filter sludge) existing problems are due to the formation of moldings and their moist warm to hydrothermal treatment eliminated.

Vergleichsbeispiel 1Comparative Example 1

Aus einem stückigen Bauxit, wie er üblicherweise für die Regulierung des Al2O3-Gehalts von Hochofenschlacke eingesetzt wird, wurden 5 Probestücke mit größten Abmessungen von etwa 5 cm aussortiert, und dem Sintertest unterworfen. Der Bauxit hatte die folgenden Eigenschaften:

Figure 00090001
5 pieces with the largest dimensions of about 5 cm were sorted out from a piece of bauxite, as is usually used to regulate the Al2O3 content of blast furnace slag, and subjected to the sintering test. The bauxite had the following properties:
Figure 00090001

Der Sintertest ergab einen Sinterbeginn bei 1.300°C.The Sintering test showed a start of sintering at 1,300 ° C.

Vergleichsbeispiel 2Comparative Example 2

In den folgenden Beispielen wurde als Ausgangsstoff ein aus der Aufarbeitung tonerdehaltiger Rückstände, die beim Schmelzen von Aluminium entstehen, gewonnenes Tonerdeprodukt verwendet, mit schlammiger Konsistenz, deutlichem Geruch nach Ammoniak, einer Feuchte von 30 Gew.-%, einer Teilchengröße von 90 Gew.-% kleiner 0,5 mm, der chemischen Zusammensetzung (bezogen auf getrocknete Substanz in Gew.-%) Al2O3 61 Al-Metall 2,4 AlN 1,1 SiO2 7,0 MgO 7,7 CaO 3,1 Fe2O3 1,4 F 1,5 Cl 0,3 Glühverlust 600°C 11,6 Rest 2,9 und den mineralischen Hauptbestandteilen Bayerit Al2O3.3H2O ca. 34 Gew.-% Spinell MgA12O4 ca. 28 Gew.-%. Korund α-Al2O3 ca. 19 Gew.-%. In the following examples, an alumina product obtained from the processing of alumina-containing residues, which result from the melting of aluminum, was used, with a muddy consistency, distinct odor of ammonia, a moisture content of 30% by weight, a particle size of 90% by weight. % less than 0.5 mm, the chemical composition (based on the dried substance in% by weight) Al2O3 61 Al metal 2.4 AlN 1.1 SiO2 7.0 MgO 7.7 CaO 3.1 Fe2O3 1.4 F 1.5 Cl 0.3 Loss on ignition 600 ° C 11.6 rest 2.9 and the main mineral components Bayerite Al2O3.3H2O approx. 34% by weight Spinel MgA12O4 approx. 28% by weight. Corundum α-Al2O3 approx. 19% by weight.

Zur Herstellung von Formkörpern wurde das Tonerdeprodukt mit Zugabe von 15 Gew.-% Portlandzement etwa 2 Minuten lang in einem Zwangsmischer gemischt und unmittelbar darauf mittels einer Brikettpresse, wie sie zur Herstellung von Beton-Plastersteinen üblich ist, verdichtet. Beim Mischen und Brikettieren wurde Ammoniak freigesetzt, wodurch eine Absaugung erforderlich wurde. Danach wurden die Briketts (sechseckig, Höhe ca. 10 cm, Durchmesser ca. 10 cm) entformt und einzeln auf Regalbrettern zur Aushärtung bei Raumtemperatur gelagert. Die Briketts hatten nach einer Lagerdauer von einer Woche, wie sie zu einer ausreichenden Aushärtung von Portlandzement benötigt wird, jeweils bezogen auf getrocknete Substanz, eine Rohdichte von 1,4 g/cm3, einen Restgehalt an metallischem Aluminium von 2,1 Gew.-%, ein Gewichtsverhältnis von Al-Monohydroxid zu Al-Trihydroxid von 0,1 und einen Sinterbeginn von 1300°C.To produce moldings, the alumina product was mixed with the addition of 15% by weight of Portland cement for about 2 minutes in a compulsory mixer and immediately thereafter compacted using a briquette press, as is customary for the production of concrete paving stones. Ammonia was released during mixing and briquetting, which made suction necessary. The briquettes (hexagonal, height approx. 10 cm, diameter approx. 10 cm) were then removed from the mold and stored individually on shelves for curing at room temperature. After a storage period of one week, as required for sufficient hardening of Portland cement, the briquettes had a bulk density of 1.4 g / cm 3 , based on the dried substance, and a residual content of metallic aluminum of 2.1% by weight. %, a weight ratio of Al monohydroxide to Al trihydroxide of 0.1 and a start of sintering of 1300 ° C.

Erfindungsbeispiel 1Inventive Example 1

Zur Herstellung von Pellets wurde das feuchte Tonerdeprodukt nach Vergleichsbeispiel 2 mit Zugabe von 5 Gew.-% Branntkalk etwa 10 Minuten lang in einem Zwangsmischer gemischt und durch Kollern vorverdichtet. Durch die exotherme Reaktion von Branntkalk mit Wasser wurden im Mischgut feuchtwarme bis hydrothermale Bedingungen eingestellt, erkennbar an einer Erwärmung des Mischguts auf mehr als 70°C und einer Entwicklung von Wasserdampf, Wasserstoff und Ammoniak. Es erfolgte eine Absaugung der Gase. Das Mischgut wurde unmittelbar danach in einer Granuliertrommel, unter Besprühen mit Wasser, zu kugelförmigen Pellets von etwa 2–3 cm mittlerem Durchmesser verdichtet. Die Formkörper hatten eine Rohdichte von 1,3 g/cm3 (bezogen auf getrockneten Zustand). Bei einer anschließenden einwöchigen Lagerung als kompaktes Haufwerk in Metallkübeln von 1 m3 Inhalt wurden die Entwicklung von Wärme und Gasen in den Pellets fortgesetzt und im Inneren feuchtwarme bis hydrothermale Bedingungen aufrecht erhalten, unter denen weiteres Aluminium-Metall und Aluminiumnitrid in Aluminiumhydroxide umgewandelt wurden. Durch Reaktion von Calciumhydroxid und Aluminiumhydroxid erfolgte auch eine Bildung von Calciumaluminathydrat. Die Feuchte verringerte sich auf 10%, der Al-Gehalt auf 0,5% und der AlN-Gehalt auf 0,3%. Es wurde ein Gewichtsverhältnis von Al-Monohydroxid (Böhmit) zu Al-Trihydroxid (Bayerit) von 0,6 bestimmt. Der Sintertest ergab einen Sinterbeginn bei 1.200°C.To produce pellets, the moist alumina product according to Comparative Example 2 was mixed with the addition of 5% by weight of quicklime in a compulsory mixer for about 10 minutes and pre-compacted by pulping. Due to the exothermic reaction of quicklime with water, warm to hydrothermal conditions were set in the mix, recognizable by a warming of the mix to more than 70 ° C and a development of water vapor, hydrogen and ammonia. The gases were extracted. Immediately afterwards, the material to be mixed was compacted in a pelletizing drum while spraying with water to give spherical pellets of about 2-3 cm in average diameter. The moldings had a bulk density of 1.3 g / cm 3 (based on the dried state). During a subsequent one-week storage as a compact heap in metal buckets of 1 m 3 content, the development of heat and gases in the pellets was continued and the interior maintained warm and humid to hydrothermal conditions, under which further aluminum metal and aluminum nitride were converted into aluminum hydroxides. The reaction of calcium hydroxide and aluminum hydroxide also led to the formation of calcium aluminate hydrate. The moisture decreased to 10%, the Al content to 0.5% and the AlN content to 0.3%. A weight ratio of Al monohydroxide (boehmite) to Al trihydroxide (bayerite) was determined to be 0.6. The sintering test showed that sintering started at 1,200 ° C.

Erfindungsbeispiel 2Inventive Example 2

Zur Herstellung von Briketts wurden Pellets nach Erfindungsbeispiel 1 mit Zugabe von 10 Gew.-% Calciumsilikatzement etwa 2 Minuten lang in einem Zwangsmischer gemischt und durch Kollern vorverdichtet. Das Mischgut wurde anschließend mittels einer Brikettpresse, wie sie zur Herstellung von Beton-Pflastersteinen üblich ist, verdichtet. Es trat nur eine geringe Ammoniakentwicklung ein, so dass keine Absaugung erforderlich war. Danach wurden die Briketts (sechseckig, Höhe ca. 10 cm, Durchmesser ca. 10 cm) entformt und als kompaktes Haufwerk in Metallkübeln von etwa 1 m3 Inhalt gelagert. Dadurch wurden im Inneren der Briketts feuchtwarme bis hydrothermale Bedingungen eingestellt, unter denen sich weiteres restliches Al-Metall in Aluminiumhydroxide umwandeln konnte. Nach einer Woche Lagerzeit betrug der Restgehalt an metallischem Aluminium 0,4%. Das Verhältnis von Al-Monohydroxid (Böhmit) zu Al-Trihydroxid (Bayerit) war 2,1. Durch die Abbindereaktion des Calciumsilikatzements erfolgte die Bildung von Calciumsilikathydrat. Die Briketts hatten eine Rohdichte von 1,5 g/cm3 (bezogen auf getrockneten Zustand). Der Sintertest ergab einen Sinterbeginn bei 1.100°C.For the production of briquettes, pellets according to invention example 1 were mixed with addition of 10% by weight calcium silicate cement for about 2 minutes in a compulsory mixer and pre-compacted by means of pulping. The mix was then using a briquette press, such as for the production of concrete paving stone NEN is compressed. There was only a slight evolution of ammonia, so that no suction was necessary. The briquettes (hexagonal, height approx. 10 cm, diameter approx. 10 cm) were then removed from the mold and stored as a compact pile in metal buckets of about 1 m 3 content. As a result, moist-warm to hydrothermal conditions were set in the interior of the briquettes, under which further residual Al metal could convert into aluminum hydroxides. After one week of storage, the residual content of metallic aluminum was 0.4%. The ratio of Al monohydroxide (boehmite) to Al trihydroxide (bayerite) was 2.1. The setting reaction of the calcium silicate cement led to the formation of calcium silicate hydrate. The briquettes had a bulk density of 1.5 g / cm 3 (based on the dried state). The sintering test showed that sintering started at 1,100 ° C.

Erfindungsbeispiel 3Inventive Example 3

Zur Herstellung von Briketts wurden Pellets nach Erfindungsbeispiel 1 mit Zugabe von 10 Gew.-% Calciumaluminatzement etwa 2 Minuten lang in einem Zwangsmischer gemischt und durch Kollern vorverdichtet. Das Mischgut wurde anschließend mittels einer Brikettpresse, wie sie zur Herstellung von Beton-Pflastersteinen üblich ist, verdichtet. Es trat nur eine geringe Ammoniakentwicklung ein, so dass keine Absaugung erforderlich war. Danach wurden die Briketts (sechseckig, Höhe ca. 10 cm, Durchmesser ca. 10 cm) entformt und als kompaktes Haufwerk in Metallkübeln von etwa 1 m3 Inhalt gelagert. Dadurch wurden im Inneren der Briketts feuchtwarme bis hydrothermale Bedingungen eingestellt, unter denen sich weiteres restliches Al-Metall in Aluminiumhydroxide umwandeln konnte. Nach einer Woche Lagerzeit betrug der Restgehalt an metallischem Aluminium 0,2%. Das Verhältnis von Al-Monohydroxid (Böhmit) zu Al-Trihydroxid (Bayerit) war 3,2. Durch die Abbindereaktion des Calciumaluminatzements erfolgte die Bildung von Calciumaluminathydrat. Die Briketts hatten eine Rohdichte von 1,6 g/cm3 (bezogen auf getrockneten Zustand). Der Sintertest ergab einen Sinterbeginn bei 1.100°C.To produce briquettes, pellets according to Inventive Example 1 were mixed with the addition of 10% by weight of calcium aluminate cement for about 2 minutes in a compulsory mixer and pre-compacted by pulping. The mix was then compacted using a briquette press, as is customary for the production of concrete paving stones. There was only a slight evolution of ammonia, so that no suction was necessary. The briquettes (hexagonal, height approx. 10 cm, diameter approx. 10 cm) were then removed from the mold and stored as a compact pile in metal buckets of about 1 m 3 content. As a result, moist-warm to hydrothermal conditions were set in the interior of the briquettes, under which further residual Al metal could convert into aluminum hydroxides. After a storage period of one week, the residual content of metallic aluminum was 0.2%. The ratio of Al monohydroxide (boehmite) to Al trihydroxide (bayerite) was 3.2. The setting reaction of the calcium aluminate cement led to the formation of calcium aluminate hydrate. The briquettes had a bulk density of 1.6 g / cm 3 (based on the dried state). The sintering test showed that sintering started at 1,100 ° C.

Claims (12)

Hochtonerdehaltige Formkörper bestehend aus (bezogen auf die Trockensubstanz) Al2O3 40–80 Gew.-% MgO 2–15 Gew.-% SiO2 1–15 Gew.-% CaO 5–25 Gew.-% Fe2O3 0,5–2 Gew.-% Na2O 0,5–2 Gew.-% Al-metallisch 0,1–1 Gew.-% AlN 0,1–1 Gew.-% K2O 0,1–1,5 Gew.-% F 0,1–2 Gew.-% Cl 0,1–0,8 Gew.-% Rest zusammen max. 5 Gew.-% Glühverlust max. 20 Gew.-%
und den mineralischen Hauptbestandteilen Korund α-Al2O3, Spinell MgA12O4 und Aluminiumhydroxid, dadurch gekennzeichnet, dass Aluminiumhydroxid als Aluminiummonohydroxid Al2O3.H2O und Aluminiumtrihydroxid Al2O3.3H2O im Gewichtsverhältnis von größer als 0,25 und CaO als hydratisierte Calciumoxid-Verbindungen vorliegen.
Moldings containing high alumina consisting of (based on the dry substance) Al2O3 40-80% by weight MgO 2-15% by weight SiO2 1-15% by weight CaO 5–25% by weight Fe2O3 0.5-2% by weight Na2O 0.5-2% by weight Al-metallic 0.1-1% by weight AlN 0.1-1% by weight K2O 0.1-1.5% by weight F 0.1-2% by weight Cl 0.1-0.8% by weight Rest together Max. 5% by weight loss on ignition Max. 20% by weight
and the main mineral constituents corundum α-Al2O3, spinel MgA12O4 and aluminum hydroxide, characterized in that aluminum hydroxide is present as aluminum monohydroxide Al2O3.H2O and aluminum trihydroxide Al2O3.3H2O in a weight ratio greater than 0.25 and CaO as hydrated calcium oxide compounds.
Hochtonerdehaltige Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass das Aluminiummonohydroxid die Kristallmodifikation Böhmit besitzt.High-alumina molded articles according to claim 1, characterized characterized that the aluminum monohydroxide the crystal modification boehmite has. Hochtonerdehaltige Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass Aluminiummonohydroxid und Aluminiumtrihydroxid im Gewichtsverhältnis von größer als 2,0 vorliegen.High-alumina molded articles according to claim 1, characterized characterized that aluminum monohydroxide and aluminum trihydroxide in weight ratio of greater than 2.0 are present. Hochtonerdehaltige Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den hydratisierten CaO-Verbindungen um mindestens eine der Verbindungen Calciumhydroxid, Calciumsilikathydrat und Calciumaluminathydrat handelt.High-alumina molded articles according to claim 1, characterized characterized that it is the hydrated CaO compounds at least one of the compounds calcium hydroxide, calcium silicate hydrate and calcium aluminate hydrate. Hochtonerdehaltige Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an metallischem Aluminium kleiner als 0,5 Gew.-% beträgt.High-alumina molded articles according to claim 1, characterized characterized that the content of metallic aluminum is smaller than 0.5% by weight. Hochtonerdehaltige Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass die Formkörper im getrockneten Zustand eine Rohdichte von 1,1 bis 1,8 g/cm3 aufweisen.High-alumina shaped bodies according to claim 1, characterized in that the shaped bodies have a bulk density of 1.1 to 1.8 g / cm 3 in the dried state. Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass ein aus der Aufarbeitung tonerdehaltiger Rückstände, die beim Schmelzen von Aluminium entstehen, gewonnenes Tonerdeprodukt, mit einer Feuchte bis zu 35 Gew.-%, einer Teilchengröße von 90 Gew.-% kleiner 500 μm, enthaltend (bezogen auf Trockensubstanz) Al2O3 50–80 Gew.-% MgO 2–15 Gew.-% SiO2 1–15 Gew.-% Al-metallisch 1–5 Gew.-% CaO 0,5–5 Gew.-% Fe2O3 0,5–2 Gew.-% Na2O 0,5–2 Gew.-% AlN 0,1–2 Gew.-% K2O 0,1–1,5 Gew.-% F 0,1–2 Gew.-% Cl 0,1–0,8 Gew.-% Rest zusammen max. 5 Gew.-% Glühverlust max. 15 Gew.-%
mit den mineralischen Hauptbestandteilen Korund α-Al2O3, Spinell MgA12O4 und Aluminiumtrihydroxid Al2O3.3H2O in feuchtem Zustand unter Zusatz von 2 bis 25 Gew.-% eines CaO-haltigen Bindemittels gemischt wird und feuchtwarme bis hydrothermale Bedingungen eingestellt werden, unter denen sich aus metallischem Aluminium und Aluminiumnitrid Aluminiumtrihydroxid bildet und eine Umwandlung von Aluminiumtrihydroxid in Aluminiummonohydroxid und die Bildung hydratisierter CaO-Verbindungen erfolgt, dass das Mischgut zu Formkörpern mit einer Rohdichte von mehr als 1,1 g/cm3 (bezogen auf Trockenmasse) mechanisch verdichtet wird, und dass die feuchtwarmen bis hydrothermalen Bedingungen so lange aufrecht erhalten werden, bis der Gehalt an metallischem Aluminium kleiner als 1 Gew.-% ist und das Gewichtsverhältnis von Aluminiummonohydroxid zu Aluminiumtrihydroxid mehr als 0,25 beträgt.
A process for the production of high-alumina moldings according to claim 1, characterized in that an alumina product obtained from the processing of alumina-containing residues which arise when aluminum is melted, with a moisture content of up to 35% by weight and a particle size of 90% by weight smaller 500 μm, containing (based on dry matter) Al2O3 50-80% by weight MgO 2-15% by weight SiO2 1-15% by weight Al-metallic 1-5% by weight CaO 0.5-5% by weight Fe2O3 0.5-2% by weight Na2O 0.5-2% by weight AlN 0.1-2% by weight K2O 0.1-1.5% by weight F 0.1-2% by weight Cl 0.1-0.8% by weight Rest together Max. 5% by weight loss on ignition Max. 15% by weight
is mixed with the main mineral constituents corundum α-Al2O3, spinel MgA12O4 and aluminum trihydroxide Al2O3.3H2O in the wet state with the addition of 2 to 25% by weight of a CaO-containing binder and moist-warm to hydrothermal conditions are set, under which metallic aluminum and aluminum nitride forms aluminum trihydroxide and a conversion of aluminum trihydroxide into aluminum monohydroxide and the formation of hydrated CaO compounds takes place that the mixture is mechanically compacted into shaped bodies with a bulk density of more than 1.1 g / cm 3 (based on dry matter), and that Warm, moist to hydrothermal conditions are maintained until the content of metallic aluminum is less than 1% by weight and the weight ratio of aluminum monohydroxide to aluminum trihydroxide is more than 0.25.
Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass das CaO-haltige Bindemittel mindestens eines der Bindemittel Branntkalk, Calciumaluminatzement und Calciumsilikatzement ist.Process for the production of high alumina moldings Claim 7, characterized in that the CaO-containing binder at least one of the binders quicklime, calcium aluminate cement and calcium silicate cement. Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass das Mischgut zu Pellets verdichtet wird, mit einer Rohdichte im getrockneten Zustand von 1,1 bis 1,4 g/cm3.A process for the production of high-alumina shaped bodies according to claim 7, characterized in that the mixture is compressed into pellets with a bulk density in the dried state of 1.1 to 1.4 g / cm 3 . Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass das Mischgut zu Briketts verdichtet wird, mit einer Rohdichte im getrockneten Zustand von 1,4 bis 1,8 g/cm3 und einem Gewichtsverhältnis von Aluminiummonohydroxid zu Aluminiumtrihydroxid von mehr als 1,0.A process for the production of high-alumina moldings according to claim 7, characterized in that the mixture is compressed into briquettes with a bulk density in the dried state of 1.4 to 1.8 g / cm 3 and a weight ratio of aluminum monohydroxide to aluminum trihydroxide of more than 1. 0th Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass das Verdichten zweistufig erfolgt, zuerst zu Pellets mit einer Rohdichte im getrockneten Zustand von 1,1 bis zu 1,4 g/cm3 und daran anschließend zu Briketts mit einer Rohdichte im getrockneten Zustand von 1,4 bis 1,8 g/cm3 und einem Gewichtsverhältnis von Aluminiummonohydroxid zu Aluminiumtrihydroxid von mehr als 2,0.A process for the production of high alumina moldings according to claim 7, characterized in that the compression is carried out in two stages, first to pellets with a bulk density in the dried state of 1.1 to 1.4 g / cm 3 and then to briquettes with a bulk density in the dried State of 1.4 to 1.8 g / cm 3 and a weight ratio of aluminum monohydroxide to aluminum trihydroxide of more than 2.0. Verfahren zur Herstellung hochtonerdehaltiger Formkörper nach Anspruch 7, dadurch gekennzeichnet, dass zur möglichst langen Aufrechterhaltung der feuchtwarmen bis hydrothermalen Bedingungen die Formkörper als kompaktes Haufwerk gelagert werden und die Lagerung mindestens 7 Tage lang dauert.Process for the production of high alumina moldings Claim 7, characterized in that for the longest possible maintenance the moist warm to hydrothermal conditions the moldings as compact pile and storage at least 7 Lasts for days.
DE10326611.9A 2003-01-08 2003-06-13 High alumina shaped bodies and process for their preparation Expired - Lifetime DE10326611B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10326611.9A DE10326611B4 (en) 2003-01-08 2003-06-13 High alumina shaped bodies and process for their preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003100170 DE10300170B9 (en) 2003-01-08 2003-01-08 Process for the production of high alumina raw material
DE10326611.9A DE10326611B4 (en) 2003-01-08 2003-06-13 High alumina shaped bodies and process for their preparation

Publications (2)

Publication Number Publication Date
DE10326611A1 true DE10326611A1 (en) 2004-12-30
DE10326611B4 DE10326611B4 (en) 2016-03-10

Family

ID=33491619

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10326611.9A Expired - Lifetime DE10326611B4 (en) 2003-01-08 2003-06-13 High alumina shaped bodies and process for their preparation

Country Status (1)

Country Link
DE (1) DE10326611B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092632A3 (en) * 2010-01-27 2012-02-23 Bumatech (Pty) Limited Agglomerated alumina containing product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4319163C2 (en) * 1993-06-09 1997-01-23 Feige Reinhard Spinel-containing, cement-bound solid
DE19727979C2 (en) * 1997-07-01 1999-09-02 Rheinische Kalksteinwerke Process for the production of alumina cement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092632A3 (en) * 2010-01-27 2012-02-23 Bumatech (Pty) Limited Agglomerated alumina containing product
US20120297926A1 (en) * 2010-01-27 2012-11-29 Bumatech (Pty) Limited Agglomerated alumina containing product
US9051187B2 (en) 2010-01-27 2015-06-09 Bumatech (Pty) Limited Agglomerated alumina containing product

Also Published As

Publication number Publication date
DE10326611B4 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
DE10300170B9 (en) Process for the production of high alumina raw material
DE102017121452B9 (en) Process for producing a porous sintered magnesia, batch for producing a coarse ceramic refractory product with a grain of sintered magnesia, use of the batch for producing the product and process for producing the product
EP2307315B1 (en) Raw material having a high alumina content and method for its manufacture
EP2438203B1 (en) Method of producing agglomerates from metal oxide bearing mineral fines for use as blast furnace feed
EP2877437A1 (en) Flame-retardant product and use thereof
US6548436B2 (en) Cristobalite-free mullite grain having reduced reactivity to molten aluminum and method of producing the same
DE102016109254B4 (en) Refractory spinel granules suitable for elastinating heavy clay refractory products, process for its production, refractory product with the spinel granules, use of the refractory product, lining of an industrial furnace with the refractory product
DE102017128626B4 (en) Synthesis process for producing a calcium zirconate-containing material as well as batch and coarse ceramic refractory product with a pre-synthesized calcium zirconate-containing grain and their uses
DE10326611B4 (en) High alumina shaped bodies and process for their preparation
DE2517543C2 (en) Process for producing hardened agglomerates from metallurgical dust
US3817765A (en) Single pass prereacted grain and method of making
JP2000239057A (en) Production of artificial dolomite
DE2306245A1 (en) FIREPROOF MAGNESIA
EP3919461B1 (en) Dry offset and offset fresh mass for the production of a coarse-ceramic fired refractory product, in particular of a pipe protection plate, from nitride-bonded silicon carbide, such product and method for its manufacture and refuse incineration plant, flue gas desulfurization system and melting tank with such a product
RU2470880C2 (en) Method of producing cement
EP4313905A1 (en) Batch for producing a refractory unfired molded body, molded body of this type, method for producing the molded body, lining of a furnace, and furnace
DE897845C (en) Process for the extraction of pure clay
DE2556626C3 (en) Process for the production of highly burned, directly bonded, basic, refractory chromite-magnesia shaped bricks
DE600170C (en) Process for the production of products containing spinel
DE102019220085A9 (en) Offset for the production of a coarse ceramic refractory basic product, such product and method for its production, lining of an industrial furnace and industrial furnace
AT345144B (en) METHOD OF MANUFACTURING PRE-REACTED MAGNESIA-CHROMERZ GRAIN
AT354328B (en) METHOD FOR PRODUCING FIREPROOF, DIRECTLY BONDED MAGNESITE CHROME AND CHROME MAGNESITE STONES
DE4331761A1 (en) Process for producing refractory products based on magnesium oxide
DE1088403B (en) Refractory material
DD301901A9 (en) Process for the preparation of hydraulically setting mixtures

Legal Events

Date Code Title Description
AF Is addition to no.

Ref document number: 10300170

Country of ref document: DE

Kind code of ref document: P

AF Is addition to no.

Ref document number: 10300170

Country of ref document: DE

Kind code of ref document: P

8110 Request for examination paragraph 44
R082 Change of representative

Representative=s name: THOMAS MUELLER-WOLFF, 53115 BONN, DE

Representative=s name: THOMAS MUELLER-WOLFF, DE

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C04B0032000000

Ipc: C04B0035100000

R081 Change of applicant/patentee

Owner name: BEFESA SALZSCHLACKE GMBH, DE

Free format text: FORMER OWNER: ALUMINIUM-SALZSCHLACKE AUFBEREITUNGS GMBH, 30179 HANNOVER, DE

Effective date: 20120229

R082 Change of representative

Representative=s name: THOMAS MUELLER-WOLFF, 53115 BONN, DE

Representative=s name: THOMAS MUELLER-WOLFF, DE

Effective date: 20120229

Representative=s name: MUELLER-WOLFF, THOMAS, DIPL.-ING., DE

Effective date: 20120229

Representative=s name: FLACCUS, ROLF DIETER, DIPL.-CHEM. DR.RER.NAT., DE

Effective date: 20120229

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C04B0032000000

Ipc: C04B0035100000

Effective date: 20120403

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R082 Change of representative

Representative=s name: FLACCUS, ROLF DIETER, DIPL.-CHEM. DR.RER.NAT., DE

R020 Patent grant now final
R071 Expiry of right