DE10324315A1 - Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas - Google Patents
Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas Download PDFInfo
- Publication number
- DE10324315A1 DE10324315A1 DE2003124315 DE10324315A DE10324315A1 DE 10324315 A1 DE10324315 A1 DE 10324315A1 DE 2003124315 DE2003124315 DE 2003124315 DE 10324315 A DE10324315 A DE 10324315A DE 10324315 A1 DE10324315 A1 DE 10324315A1
- Authority
- DE
- Germany
- Prior art keywords
- burner
- reformate
- fuel
- reformed gas
- reformer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000007789 gas Substances 0.000 title claims abstract description 27
- 239000000446 fuel Substances 0.000 title claims abstract description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 19
- 239000001257 hydrogen Substances 0.000 title claims abstract description 19
- 238000012544 monitoring process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims description 17
- 238000011109 contamination Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 230000035945 sensitivity Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract 2
- 230000004888 barrier function Effects 0.000 abstract 1
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract 1
- 239000001569 carbon dioxide Substances 0.000 abstract 1
- 238000000605 extraction Methods 0.000 abstract 1
- 239000012535 impurity Substances 0.000 description 8
- 238000002407 reforming Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04447—Concentration; Density of anode reactants at the inlet or inside the fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00164—Controlling or regulating processes controlling the flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00186—Controlling or regulating processes controlling the composition of the reactive mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00193—Sensing a parameter
- B01J2219/00195—Sensing a parameter of the reaction system
- B01J2219/00198—Sensing a parameter of the reaction system at the reactor inlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00211—Control algorithm comparing a sensed parameter with a pre-set value
- B01J2219/00213—Fixed parameter value
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00222—Control algorithm taking actions
- B01J2219/00227—Control algorithm taking actions modifying the operating conditions
- B01J2219/0024—Control algorithm taking actions modifying the operating conditions other than of the reactor or heat exchange system
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0816—Heating by flames
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1217—Alcohols
- C01B2203/1223—Methanol
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1604—Starting up the process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1642—Controlling the product
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/16—Controlling the process
- C01B2203/1642—Controlling the product
- C01B2203/1671—Controlling the composition of the product
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/626—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/22—Fuels; Explosives
- G01N33/225—Gaseous fuels, e.g. natural gas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
Die Erfindung betrifft gemäss dem Oberbegriff des Anspruchs 1 ein Verfahren zur Überwachung der Qualität eines von einem Reformer für den Betrieb einer Brennstoffzelle gelieferten Gasgemisches.The According to the invention the preamble of claim 1 a method for monitoring the quality one from a reformer for the operation of a gas mixture supplied by a fuel cell.
Ein
Verfahren der eingangsgenannten Art ist beispielsweise aus der
Die
Verwendung eines Kohlenmonoxid-Sensors, wie dieser auch in Verbindung
mit
Auch kann die Lebensdauer des Sensors durch Verunreinigungen im Gas stark herabgesetzt werden. Ein frühzeitiger Ausfall des Sensors aufgrund von z.B. CO-Verunreinigungen im Reformat kann daher nicht ausgeschlossen werden.Also the life of the sensor can be strong due to impurities in the gas be reduced. An early one Failure of the sensor due to e.g. CO contaminants in the reformate can therefore cannot be excluded.
Aus der Druckschrift WO 01/27596 ist ein CO-Sensor zur Messung der Kohlenstoffmonoxikonzentration in dem Reformat bekannt. Das Messprinzip dieses Sensors basiert auf der Infrarotspektroskopie, die eine genaue Messung der Kohlenstoffmonoxidkonzentration ermöglicht. Ein solcher Sensor ist jedoch teuer. Somit stellt die Verwendung dieses Sensors keine sehr kostengünstige Lösung zur Überwachung der Qualität des Reformats dar.Out WO 01/27596 is a CO sensor for measuring the carbon monoxy concentration known in the reformate. The measuring principle of this sensor is based on infrared spectroscopy, which gives an accurate measurement of the carbon monoxide concentration allows. However, such a sensor is expensive. Thus, the use this sensor is not a very inexpensive solution for monitoring the quality of the reformate represents.
In
Zusammenhang mit der Flammenüberwachung
ist es bereits bekannt eine sogenannte Ionisationselektrode als
Sensor zu verwenden. Diese ist z.B. in der Druckschrift
Der Erfindung liegt somit die Aufgabe zugrunde eine zuverlässige und kostengünstige Überwachung der Qualität des Reformats für Brennstoffzellen vorzuschlagen.The The invention is therefore based on the object of a reliable and inexpensive monitoring of quality of the reformate for Propose fuel cells.
Die Überwachung der Qualität des Gasgemisches hinsichtlich eventueller Verunreinigungen, insbesondere mit CO, ist für die Lebensdauer der Brennstoffzellen wichtig.The supervision of quality the gas mixture with regard to possible impurities, in particular with CO, is for the lifespan of the fuel cells is important.
Die eingangs genannte Aufgabe wird erfindungsgemäss durch die Merkmale des Patentanspruches 1 gelöst.The The task mentioned at the outset is achieved according to the invention by the features of the patent claim 1 solved.
Das erfindungsgemässe Verfahren zeichnet sich dadurch aus, dass das vom Reformer gelieferte Gasgemisch zur Bestimmung der Qualität dem Brennerraum des Reformers zugeführt wird und das die Zündung des Reformats im Brennerraum automatisch erfolgt, sobald ausreichend Wasserstoff im Gasgemisch vorhanden ist. In Abhängigkeit von der hierbei gebildeten Flamme wird dann ein Messsignal erhalten, dessen Grösse zur Bestimmung der Qualität des Reformats ausgewertet wird. Beispielsweise kann die Zündung dann erfolgen, wenn der Anteil des Wasserstoffes im Gasgemisch wenigstens 95 Prozent beträgt.The invention The process is characterized in that the gas mixture supplied by the reformer to determine the quality the burner chamber of the reformer and the ignition of the Reformates in the burner room are carried out automatically as soon as sufficient Hydrogen is present in the gas mixture. Depending on the formed here A flame signal is then received, the size of which is used for Determination of quality of the reformate is evaluated. For example, the ignition can then take place when the proportion of hydrogen in the gas mixture at least Is 95 percent.
Vorzugsweise wird das Messsignal von einem Flammenionisationsdetektor erzeugt und zur Bestimmung der Verunreinigung des Reformats ausgewertet. Beispielsweise wird der Flammenionisationsstrom einer Ionisationselektrode in eine dem gemessenen Strom proportionale Spannung umgesetzt, die dann in einen digitalen Messwert gewandelt wird, der mit einem Referenzwert verglichen wird. Der Referenzwert kann z. B. bei der ersten Inbetriebnahme der Anlage unter Berücksichtigung von Fertigungstoleranzen des Brenners, des Sensors und der Empfindlichkeit der Brennstoffzellen in Bezug auf Verunreinigungen festgelegt werden. Eine Kontrolle des Referenzwertes kann beispielsweise in Verbindung mit der routinemässigen Wartung der Energieversorgungsanlage erfolgen.Preferably the measurement signal is generated by a flame ionization detector and evaluated to determine the contamination of the reformate. For example, the flame ionization current of an ionization electrode converted into a voltage proportional to the measured current, the is then converted into a digital measured value with a reference value is compared. The reference value can e.g. B. at the first start-up the facility taking into account of manufacturing tolerances of the burner, the sensor and the sensitivity of the fuel cells with respect to impurities. A control of the reference value can, for example, in connection with the routine Maintenance of the energy supply system take place.
Vorzugsweise wird das Reformat am Reformerausgang über eine Zuleitung mit ausgleichender Wirkung gegen Druckschwankungen z.B. mit Hilfe einer Kapillare in den Brennerraum geführt. Dadurch kann eine weitgehende Unabhängigkeit von Druckschwankungen des Gasgemisches am Refomerausgang erreicht werden. Dies bewirkt, dass eine möglichst konstante Gasmenge in den Brennerraum hineinströmt, wodurch eine gleichmässige Flamme erhalten wird.Preferably is the reformate at the reformer output via a supply line with a balancing effect against pressure fluctuations e.g. with the help of a capillary in the burner chamber guided. This allows a large degree of independence from pressure fluctuations of the gas mixture can be reached at the refomer outlet. This causes, that one if possible constant amount of gas flows into the burner chamber, creating a uniform flame is obtained.
In Abhängigkeit von der Gasmenge am Reformerausgang kann auch eine Korrektur des Messsignales unter Berücksichtigung der jeweiligen mechanischen Gegebenheiten der Anlage erfolgen.In dependence The amount of gas at the reformer outlet can also correct the Measurement signals under consideration the respective mechanical conditions of the system.
Da die Überwachung der Qualität des Reformats auch Rückschlüsse auf mögliche Fehler im Reformer selbst erlaubt, stellt das erfindungsgemässe Verfahren somit auch eine ergänzende sicherheitstechnische Massnahme zur Funktionskontrolle des Reformers dar. Beispielsweise kann dadurch eine Degradation der Katalysatoren oder eine Verkokung während des Betriebes des Reformers frühzeitig erkannt werden. Folgeschäden, z.B. Zerstörung der Brennstoffzellen und ein dadurch bedingter Ausfall der Anlage können somit rechtzeitig verhindert werden.There The supervision of quality of the reformate possible The method according to the invention allows errors in the reformer itself thus also a supplementary one Safety-related measure to check the functionality of the reformer For example, this can result in a degradation of the catalysts or a coking while the operation of the reformer early be recognized. Consequential, e.g. destruction of the fuel cells and a consequent failure of the system can thus be prevented in time.
Das erfindungsgemässe Verfahren hat auch den Vorteil, dass durch die Einbeziehung der in der Regel in Verbindung mit der Ionisationselektrode bereits vorhandenen fehlersicheren Flammenüberwachung und Brennersteuerung des Reformers auf eine zusätzliche, fehlersichere Überwachung der Wasserstoffflame und auf eine gesonderte Zündeinrichtung verzichtet werden kann. Dadurch kann eine hohe Fehlersicherheit ohne nennenswerten zusätzlichen Aufwand erzielt werden. Beispielsweise kann bei einer Störung des Reformers die bereits vorhandene Brennersteuerung eine Inbetriebnahme der Anlage verhindern bzw. diese abschalten. Auch hat die Verwendung der Ionisationselektrode als Detektor zur Bestimmung der Qualtiät des Reformats den Vorteil, das diese keine Degradation der Nachweisempfindlichkeit aufgrund der Verunreinigungen im Reformat zeigt. Weiterhin verfügt die Ionisationselektrode über eine hohe Lebensdauer und weist eine hohe Langzeitstabilität im Messverhalten auf.The method according to the invention also has the advantage that the inclusion of the in the In connection with the ionization electrode already existing fail-safe flame monitoring and burner control of the reformer, additional, fail-safe monitoring of the hydrogen flame and a separate ignition device can be dispensed with. As a result, a high level of error security can be achieved without any significant additional effort. For example, if the reformer malfunctions, the existing burner control system can prevent the system from being started up or switch it off. The use of the ionization electrode as a detector for determining the quality of the reformate also has the advantage that it shows no degradation in the sensitivity of detection due to the impurities in the reformate. Furthermore, the ionization electrode has a long service life and high long-term stability in the measurement behavior.
Das erfindungsgemässe Verfahren ermöglicht somit eine zuverlässige, fehlersichere, langzeitstabile und wartungsfreundliche Überwachung der Qualität des Reformats mit geringem technischen Aufwand.The invention Procedure allows thus a reliable, Fail-safe, long-term stable and maintenance-friendly monitoring of quality the reformate with little technical effort.
Da der detektierte Ionisationsstrom z.B. bei einer reinen Wasserstofflamme im wesentlichen gleich Null ist und in Abhängigkeit vom Grad der Verunreinigung des Wasserstoffs durch Kohlen- bzw. Kohlenwasserstoffe mit zunehmender Verunreingung bis zu einem Maximum und danach nicht mehr ansteigt (Sättigung), sollte die Auswertung im linearen Arbeitsbereich erfolgen.There the detected ionization current e.g. with a pure hydrogen flame is substantially zero and depending on the level of contamination of hydrogen by carbon or hydrocarbons with increasing Impurity up to a maximum and then no longer increases (Saturation), the evaluation should take place in the linear work area.
Die konstruktive Auslegung des Reformerbrenners z.B. des Düsendurchmessers und des Sensors z.B. Geometrie der Ionisationselektrode sind hierbei entsprechend zu berücksichtigen.The constructive design of the reformer burner e.g. of the nozzle diameter and the sensor e.g. Here are the geometry of the ionization electrode to take into account accordingly.
Weitere Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung anhand der Figur und aus den Patentansprüchen.Further Advantages of the invention result from the following description based on the figure and from the claims.
Die
einzige Figur zeigt schematisch in einem Funktionsblockbild beispielhaft
eine Hausenergieversorgungsanlage (HEVA), welche einen Reformer
Bei störungsfreiem Betrieb der Anlage erhält man am Ausgang des Reformers das als Brennstoff für die Brennstoffzelle vorgesehene Wasserstoffgas. Das Wasserstoffgas kann hierbei jedoch Verunreinigungen zum Beispiel durch Kohlenstoffe bzw. durch Kohlenwasserstoffe (CO, CO2, CH4, etc.) aufweisen. Der Grad der Verunreinigung ist dabei beispielsweise abhängig von der Temperatur des Reformierungsprozesses, vom Katalysator und auch vom Volumenverhältnis des dem Reformer zugeführten Erdgases und Wasserdampfes. Insbesondere beim Start der Anlage muss deshalb zunächst gewartet werden, bis die optimale Betriebstemperatur zur Erzeugung des Wasserstoffgases erreicht wird.at trouble-free Operation of the plant is obtained at the exit of the reformer that is intended as fuel for the fuel cell Hydrogen gas. However, the hydrogen gas can contaminate it for example through carbons or through hydrocarbons (CO, CO2, CH4, etc.). The degree of contamination is included for example dependent the temperature of the reforming process, the catalyst and also on the volume ratio of the fed to the reformer Natural gas and water vapor. Especially when starting the system therefore first be waited until the optimal operating temperature for generation of the hydrogen gas is reached.
Wenn dies der Fall ist und auch die notwendige Reinheit des Wasserstoffgases festgestellt worden ist, erst dann wird das Reformat der Brennstoffzelle zugeführt. Dies ist notwendig, da ansonsten die Verunreinigungen im Reformat zu irreversiblen Schäden der Brennstoffzellen und damit zu einem Ausfall der Anlage führen können.If this is the case and also the necessary purity of the hydrogen gas has been determined, only then will the reformate of the fuel cell fed. This is necessary because otherwise the impurities in the reformate irreversible damage of the fuel cells and thus lead to system failure.
Zur Überwachung der Qualtiät des Reformats wird vorzugsweise nur ein geringer Anteil des am Ausgang des Reformers bereitgestellten Reformats z.B. über eine entsprechende Ausleitung mit Kapillare in den Brennerraum geführt.For surveillance the quality of the reformate is preferably only a small proportion of that at the exit of the reformate provided e.g. via a corresponding diversion led into the burner chamber with capillary.
Vorzugsweise
ist die Gasausleitung so konstruiert, dass trotz Druckschwankungen
am Reformerausgang eine möglichst
konstante Gasmenge in den Brennerraum hineinströmt. Dadurch kann eine gleichmässige, ruhige
Flamme erhalten werden. Die Zündung
der entnommenen Probe des Reformats erfolgt automatisch durch den
Brenner, sobald ausreichend z.B. wenigstens 95 Prozent Wasserstoffgas
im Gasgemisch vorhanden ist. Anhand der gebildeten Wasserstoffflamme
Dies
kann beispielsweise über
ein hier nur schematisiertes Trennelement
Der Referenzwert kann z.B. bei der ersten Inbetriebnahme der Anlage in einer hier nicht dargestellten Steuereinheit der Anlage gespeichert werden. Die Steuereinheit vergleicht dann z.B. den gespeicherten Referenzwert mit dem vom Flammenionisationsdetektor gelieferten Messwert. Der Vergleich kann hierbei kontinuierlich oder auch nur in definierten Zeitintervallen erfolgen. Durch den Vergleich wird dann festgestellt, ob der gemessene Grad der Verunreinigung des Reformats innerhalb der zulässigen Grenzen liegt. Übersteigt der festgestellte Grad der Verunreinigung das zulässige Mass, so wird beispielsweise die Zufuhr des Reformats bzw. des Wasserstoffs zu der Brennstoffzelle unterbunden. Dies kann z. B. mit Hilfe eines hier nicht dargestellten Stellgliedes erfolgen, welches von der Steuereinheit in Abhängigkeit von dem Vergleichsergebnis entsprechend gesteuert wird.The Reference value can e.g. when the system is started up for the first time stored in a control unit of the system, not shown here become. The control unit then compares e.g. the saved Reference value with that supplied by the flame ionization detector Reading. The comparison can be continuous or just at defined time intervals. By comparison then determined whether the measured level of contamination of the Reformats within the allowable Limits. exceeds the determined degree of contamination the permissible level, for example, the supply of the reformate or hydrogen to the fuel cell prevented. This can e.g. B. with the help of a Actuator not shown here, which of the Control unit depending is controlled accordingly by the comparison result.
Bei der routinemässigen Wartung der Energieversorgungsanlage kann auch der Referenzwert überprüft und bei Bedarf neu festgelegt werden. Dies ist jedoch nur in längeren Wartungsintervallen notwendig.at the routine Maintenance of the energy supply system can also check the reference value and at Needs to be redefined. However, this is only in longer maintenance intervals necessary.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003124315 DE10324315A1 (en) | 2003-05-27 | 2003-05-27 | Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003124315 DE10324315A1 (en) | 2003-05-27 | 2003-05-27 | Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10324315A1 true DE10324315A1 (en) | 2004-12-16 |
Family
ID=33441444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE2003124315 Ceased DE10324315A1 (en) | 2003-05-27 | 2003-05-27 | Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE10324315A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061228A1 (en) * | 2004-12-10 | 2006-06-15 | European Fuel Cell Gmbh | Method for determining an air ratio in a burner for a fuel cell heater, and fuel cell heater |
DE102007040923A1 (en) * | 2007-08-30 | 2009-03-05 | Sinde, Matthias | Vehicle e.g. electromobile, refueling method, involves utilizing electrical energy at place of refueling for charging electrical batteries and/or accumulators in vehicle, and locally producing energy by stationary high-temperature fuel cell |
CN1908641B (en) * | 2005-08-01 | 2011-07-06 | 本田技研工业株式会社 | Gas sensor and gas sensor system |
WO2021018465A1 (en) | 2019-07-30 | 2021-02-04 | Anton Paar Provetec Gmbh | Flame monitoring in flash point determination or fire point determination |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19502901C2 (en) * | 1995-01-31 | 2000-02-24 | Stiebel Eltron Gmbh & Co Kg | Control device for a gas burner |
US6309604B1 (en) * | 1998-01-22 | 2001-10-30 | Proengin S.A. | Apparatus combining spectrophotometry and flame ionisation detection for analysing a gas composition |
DE10039797A1 (en) * | 2000-08-16 | 2002-03-07 | Bosch Gmbh Robert | Fuel cell system with a reformer unit |
EP0710996B1 (en) * | 1994-11-02 | 2002-04-24 | Toyota Jidosha Kabushiki Kaisha | Fuel cell generator with control and measuring system of the carbon monoxide amount in the fuel gas |
EP1246287A1 (en) * | 2001-03-31 | 2002-10-02 | OMG AG & Co. KG | Combined heat and power apparatus with gas producing system and fuel cells and method of operation |
US6501383B1 (en) * | 1997-10-10 | 2002-12-31 | Siemens Building Technologies Ag | Method and device for monitoring a flame |
-
2003
- 2003-05-27 DE DE2003124315 patent/DE10324315A1/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0710996B1 (en) * | 1994-11-02 | 2002-04-24 | Toyota Jidosha Kabushiki Kaisha | Fuel cell generator with control and measuring system of the carbon monoxide amount in the fuel gas |
DE19502901C2 (en) * | 1995-01-31 | 2000-02-24 | Stiebel Eltron Gmbh & Co Kg | Control device for a gas burner |
US6501383B1 (en) * | 1997-10-10 | 2002-12-31 | Siemens Building Technologies Ag | Method and device for monitoring a flame |
US6309604B1 (en) * | 1998-01-22 | 2001-10-30 | Proengin S.A. | Apparatus combining spectrophotometry and flame ionisation detection for analysing a gas composition |
DE10039797A1 (en) * | 2000-08-16 | 2002-03-07 | Bosch Gmbh Robert | Fuel cell system with a reformer unit |
EP1246287A1 (en) * | 2001-03-31 | 2002-10-02 | OMG AG & Co. KG | Combined heat and power apparatus with gas producing system and fuel cells and method of operation |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006061228A1 (en) * | 2004-12-10 | 2006-06-15 | European Fuel Cell Gmbh | Method for determining an air ratio in a burner for a fuel cell heater, and fuel cell heater |
US7931467B2 (en) | 2004-12-10 | 2011-04-26 | Baxi Innotech Gmbh | Method for determining an air ratio in a burner for a fuel cell heater, a fuel cell heater |
CN1908641B (en) * | 2005-08-01 | 2011-07-06 | 本田技研工业株式会社 | Gas sensor and gas sensor system |
DE102007040923A1 (en) * | 2007-08-30 | 2009-03-05 | Sinde, Matthias | Vehicle e.g. electromobile, refueling method, involves utilizing electrical energy at place of refueling for charging electrical batteries and/or accumulators in vehicle, and locally producing energy by stationary high-temperature fuel cell |
WO2021018465A1 (en) | 2019-07-30 | 2021-02-04 | Anton Paar Provetec Gmbh | Flame monitoring in flash point determination or fire point determination |
DE102019120512A1 (en) * | 2019-07-30 | 2021-02-04 | Anton Paar Provetec Gmbh | Flame monitoring for flash point determination or fire point determination |
DE102019120512B4 (en) * | 2019-07-30 | 2021-02-25 | Anton Paar Provetec Gmbh | Flame monitoring for flash point determination or fire point determination |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006036563A1 (en) | Monitoring combustion processes in one location by fast oxygen sensor | |
DE102019101329A1 (en) | Method and device for controlling the mixing ratio of combustion air and fuel gas in a combustion process | |
DE69718964T2 (en) | Regulating device for regenerative combustion | |
EP3663648B1 (en) | Method for regulating the mixing ratio of combustion air and combustion gas in a combustion process | |
DE10302487A1 (en) | Real time determination of the alkane and carbon dioxide content of fuel gas comprises using an infrared absorption measuring system having measuring channels which acquire the infrared adsorption in different wavelength regions | |
EP0862234A1 (en) | Fuel cell plant with reformer and carbon monoxide sensor | |
EP2304320A2 (en) | Method and device for controlling or monitoring firing systems and for monitoring buildings having gas burners | |
DE2836895A1 (en) | GAS FLARE MONITORING DEVICE | |
EP3985306A1 (en) | Method and device for safe operation of a burner operated with a high proportion of hydrogen | |
WO2006061228A1 (en) | Method for determining an air ratio in a burner for a fuel cell heater, and fuel cell heater | |
DE10324315A1 (en) | Fuel processing system for supplying hydrogen to fuel cell has control system with flame ionization sensor and burner for raw fuel and reformed gas for monitoring quality of reformed gas | |
EP1597518B1 (en) | Operating method for a gas turbine | |
EP2083405A1 (en) | Fire alarm | |
EP0829009A1 (en) | Sensor arrangement for detecting a gas | |
EP3775865B1 (en) | Flame ionisation detector and method for analysis of an oxygen-containing gas to be analysed | |
EP1293728B1 (en) | Method for controlling the power of a gas cooking appliance as well as a cooking appliance using this method | |
DE102020204089B3 (en) | Method for operating a gas burner | |
EP0655583B1 (en) | Method for controlling and monitoring combustion | |
EP3173784A1 (en) | Gas measuring arrangement with test gas generation unit | |
EP1054214B1 (en) | Analyzing apparatus, using an analyzing apparatus and method for measuring flue gas | |
DE10153643A1 (en) | Process for monitoring of a combustion system having a burner supplied with fuel comprises simultaneous monitoring of the flame, the oxidizable components of the exhaust gas, and its temperature using a sensor | |
EP4141322A1 (en) | Method and device for reliably operating and regulating a combustion process in a heating apparatus for the combustion of hydrogen | |
DE102011110821A1 (en) | fuel cell plant | |
DE2510717B2 (en) | Device for burners to regulate the fuel-air ratio | |
EP4174377A1 (en) | Method for operating a heating device, computer program, storage medium, regulating and control device, heating device and use of a signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
8127 | New person/name/address of the applicant |
Owner name: SIEMENS SCHWEIZ AG, ZUERICH, CH |
|
8141 | Disposal/no request for examination | ||
8110 | Request for examination paragraph 44 | ||
8170 | Reinstatement of the former position | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |
Effective date: 20120522 |