DE102023117976A1 - Elektromechanischer Aktuator - Google Patents
Elektromechanischer Aktuator Download PDFInfo
- Publication number
- DE102023117976A1 DE102023117976A1 DE102023117976.4A DE102023117976A DE102023117976A1 DE 102023117976 A1 DE102023117976 A1 DE 102023117976A1 DE 102023117976 A DE102023117976 A DE 102023117976A DE 102023117976 A1 DE102023117976 A1 DE 102023117976A1
- Authority
- DE
- Germany
- Prior art keywords
- weight
- threaded spindle
- planets
- electromechanical actuator
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 26
- 239000010959 steel Substances 0.000 claims abstract description 26
- 238000005096 rolling process Methods 0.000 claims abstract description 16
- 238000005482 strain hardening Methods 0.000 claims abstract description 12
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000005516 engineering process Methods 0.000 claims abstract description 6
- 238000004881 precipitation hardening Methods 0.000 claims abstract description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 14
- 229910000617 Mangalloy Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 239000011572 manganese Substances 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 239000007858 starting material Substances 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0075—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/38—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for roll bodies
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
- F16H25/22—Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
- F16H25/2247—Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with rollers
- F16H25/2252—Planetary rollers between nut and screw
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
- C21D2221/01—End parts (e.g. leading, trailing end)
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
- C21D2221/10—Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H25/00—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
- F16H25/18—Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
- F16H25/20—Screw mechanisms
- F16H25/24—Elements essential to such mechanisms, e.g. screws, nuts
- F16H2025/249—Special materials or coatings for screws or nuts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Transmission Devices (AREA)
Abstract
Die Erfindung betrifft einen elektromechanischen Aktuator (1), umfassend einen Gewindetrieb (2, 8) in Form eines Planetenwälzgewindetriebes (2, 8), wobei als Planetenwälzgewindetrieb (2, 8) ein steigungstreuer Gewindetrieb mit angetriebenem, eine Mehrzahl an Planeten (4) führenden Käfig (5) vorgesehen ist, und mit einer Gewindespindel (2), wobei die Gewindespindel (2) und/oder die Planeten (4) aus einem Stahl folgender Zusammensetzung gebildet ist/sind:an dessen Oberfläche zumindest im Bereich eines umformtechnisch hergestellten Gewindes (3) an der Gewindespindel (2) und/oder den Planeten (4) eine Martensitausscheidung und Kaltverfestigung vorliegt.
Description
- Die Erfindung betrifft einen elektromechanischen Aktuator mit einem Gewindetrieb und einer Gewindespindel.
- Die
WO 2012/048917 A1 WO 2012/048917 A1 - Hiervon ausgehend wird in der
WO 2012/048917 A1 WO 2012/048917 A1 - Ein aus der
DE 10 2017 121 942 A1 bekannter Kugelgewindetrieb, welcher zur Verwendung in einem Bremskraftverstärker vorgesehen ist, weist eine Gewindemutter auf, die aus einem in Bezug auf Bremsflüssigkeit nicht rostenden martensitisch gehärteten Stahl gefertigt ist. Der Stahl enthält mindestens 12 Gew.-% Chrom. Darüber hinaus kann der Stahl unter anderem 0,4 % bis 1,3 % Kohlenstoff, bis zu 2 % Silizium, sowie bis zu 2 % Mangan und bis zu 2 % Molybdän enthalten. Insbesondere kann es sich hierbei um Stahl mit der Werkstoffnummer 1.4108 handeln. Als erzielbare Härte der Gewindemutter ist in derDE 10 2017 121 942 A1 der Wert 55 HRC angegeben. - Die
EP 2 832 876 A1 beschreibt einen hochfesten rostfreien Stahldraht, welcher eine hervorragende Wärmeverformungsbeständigkeit aufweisen soll. Der Stahldraht sei insbesondere für die Herstellung einer hochfesten Feder geeignet. Bei der Herstellung der Feder wird von Gussstahl ausgegangen, wobei eine verformungsinduzierte Martensitbildungskennzahl in einem vorgegebenen Bereich zu liegen hat. In einer Matrix des Stahldrahts, aus welchem die hochfeste Feder gebildet ist, können NiAl-basierte Verbundpartikel mit Partikelgrößen von 50 nm oder weniger enthalten sein. - Die
EP 2 465 964 A1 beschreibt eine Hadfield-Stahlzusammensetzung umfassend 0,9 bis 1,35 Gew.-% Kohlenstoff, 11 bis 14 Gew.-% Mangan, maximal 0,8 Gew.-% Silizium, maximal 0,07 Gew.-% Phosphor, maximal 0,05 Gew.-% Schwefel, mindestens 0,01 Gew.-% Hafnium, Rest Eisen und Verunreinigungen. Derartige Stähle sind nicht magnetisch, weisen eine niedrige Leitfähigkeit auf und zeigen eine Verbesserung ihrer Kerbschlagzähigkeit durch eine Kaltverformung. - Die
EP 0 142 873 A1 offenbart einen austenitischen Manganhartstahl mit 0,8 bis 1,8 Gew.-% Kohlenstoff, 6 bis 18 Gew.-% Mangan, 0 bis 3 Gew.-% Chrom, 0 bis 2 Gew.-% Nickel, 0 bis 2,5 Gew.-% Molybdän, 0 bis 1 Gew.-% Silizium, mindestens 0,01 Gew.-% Titan, mindestens 0,01 Gew.-% Vanadium, in Summe 0,05 bis 0,08 Gew.-% Titan und Vanadium, und Rest Eisen, wobei ein Verhältnis von Kohlenstoff zu Mangan im Bereich von 1:8 bis 1: 14 liegt. Derartiger Stahl weist eine Verfestigungsfähigkeit bei Kaltverformung auf. - Die
DE 28 53 582 A1 beschreibt eine nichtmagnetische Stahllegierung mit nicht mehr als 1,5 Gew.-% Kohlenstoff, 0,1 bis 1,5 Gew.-% Silizium, 5 bis 30 Gew.-% Mangan, 0,005 bis 0,5 Gew.-% Stickstoff und mindestens einem Element der Gruppe umfassend 0,05 bis 1 Gew.-% Schwefel, 0,05 bis 1 Gew.-% Blei, 0,05 bis 1 Gew.-% Selen, 0,01 bis 0,5 Gew.-% Tellur, 0,001 bis 0,05 Gew.-% Kalzium und Rest Eisen. - Die
GB 276 048 A - Das „Werkstoff Datenblatt 1.3401 / X120Mn12“, Team Edelstahl, 2020, offenbart eine Zusammensetzung eines Manganstahls mit 1,1 bis 1,3 Gew.-% Kohlenstoff, 12 bis 13 Gew.-% Mangan, 0,3 bis 0,5 Gew.-% Silizium, maximal 0,1 Gew.-% Phosphor, maximal 0,04 Gew.-% Schwefel und maximal 1,5 Gew.-% Chrom.
- Die Dissertation „Höchstfeste nichtrostende austenitische CrMn-Stähle“, Sascha Riedner, Ruhr-Universität Bochum, 2010, beschreibt unter anderem eine Untersuchung an austenitischem Stahl der Sorte X120Mn12, der durch eine lokale Kaltverfestigung unter prallender oder stoßender Belastung eine Oberflächenhärte von bis zu 700 HV erreicht.
- Weiter wird auf folgende Dissertation hingewiesen, in welcher insbesondere die Blechumformung für automobiltechnische Anwendungen thematisiert ist:
- „Verformungsinduzierte Martensitbildung bei mehrstufiger Umformung und deren Nutzung zur Optimierung der HCF- und VHCF-Eigenschaften von austenitischem Edelstahlblech“, Dipl.-Wirt.-Ing. Carsten Müller-Bollenhagen, Department Maschinenbau an der Fakultät IV der Universität Siegen, April 2011
- In der Dissertation wird unter anderem auf Phasenumwandlungen von metastabilem Austenit eingegangen.
- Was bekannte Zusammensetzungen und Eigenschaften von Manganstahl betrifft, wird beispielhaft auf die Dokumente
DE 28 46 930 A1 ,EP 2 803 736 A1 ,DE 866 893 B ,WO 2017/021459 A1 EP 0 205 869 A1 hingewiesen. Allgemein zeichnet sich Manganstahl durch einen hohen Verschleißwiderstand, insbesondere bei stoß- oder schlagartiger Beanspruchung, aus. - Der Erfindung liegt die Aufgabe zugrunde, für einen elektromechanischen Aktuator werkstofftechnische Fortschritte gegenüber dem genannten Stand der Technik zu erzielen, wobei insbesondere der Aspekt des bei Gewindetrieben, beispielsweise in elektrischen Stellantrieben, auftretenden Verschleißes berücksichtigt werden soll.
- Diese Aufgabe wird erfindungsgemäß gelöst durch einen mit einem Gewindetrieb arbeitenden elektromechanischen Aktuator mit den Merkmalen des Anspruchs 1. Der elektromechanische Aktuator umfasst einen Gewindetrieb in Form eines Planetenwälzgewindetriebes, wobei als Planetenwälzgewindetrieb ein steigungstreuer Gewindetrieb mit angetriebenem, eine Mehrzahl an Planeten führenden Käfig vorgesehen ist, und mit einer Gewindespindel, wobei die Gewindespindel und/oder die Planeten aus einem Stahl folgender Zusammensetzung gebildet ist/sind:
○ C: 0,4 bis 1,5 Gew.-% ◯ Mn: 12,0 bis 22,0 Gew.-% ◯ Cr: bis 4,0 Gew.-% ◯ Ni: bis 0,5 Gew.-% ○ Cu: bis 0,3 Gew.-% ○ V: bis 0,3 Gew.-% ○ S: bis 0,3 Gew.-% ○ P: bis 0,1 Gew.-% ○ Si: bis 4,0 Gew.-% ◯ Al: bis 0,05 Gew.-% ◯ Rest: Eisen und erschmelzungsbedingte Verunreinigungen, - Aus Ausgangsprodukt zur Herstellung der Gewindespindel und/oder der Planeten wird also ein Stahl folgender Zusammensetzung gewählt:
○ C: 0,4 bis 1,5 Gew.-% ◯ Mn: 12,0 bis 22,0 Gew.-% ◯ Cr: bis 4,0 Gew.-% ◯ Ni: bis 0,5 Gew.-% ○ Cu: bis 0,3 Gew.-% ○ V: bis 0,3 Gew.-% ○ S: bis 0,3 Gew.-% ○ P: bis 0,1 Gew.-% ○ Si: bis 4,0 Gew.-% ◯ Al: bis 0,05 Gew.-% ◯ Rest: Eisen und erschmelzungsbedingte Verunreinigungen - Insbesondere liegt der Gehalt an Mangan im Bereich von 12,0 bis 14,0 Gew.-% und der Gehalt an Chrom bei maximal 1,8 Gewichtsprozent.
- Dieses Ausgangsprodukt, welches als stangenförmiges Material vorliegt, wird im Zuge der Herstellung der Gewindespindel und/oder Planeten derart verformt, dass es an dessen Oberfläche zumindest im Bereich eines unter Anwendung umformtechnischer Verfahren herzustellenden Gewindes zu Martensitausscheidung und Kaltverfestigung kommt.
- Als besonders geeignet zur Herstellung der Gewindespindel und/oder der Planeten hat sich der austenitische Manganstahl mit der Werkstoffnummer 1.3401 (X120Mn12) herausgestellt. Es handelt sich hierbei um einen Stahl, welcher 1,1 % bis 1,3 % Kohlenstoff, 12 bis 13 % Mangan, 0,3 bis 4,0 % Silizium, bis zu 0,1 % Phosphor, bis zu 0,04 % Schwefel und bis zu 1,5 % Chrom, Rest Eisen und erschmelzungsbedingte Verunreinigungen, jeweils angegeben in Gewichtsprozent, enthält und einen hohen Verschleißwiderstand, besonders bei stoß- oder schlagartiger Beanspruchung, aufweist. Der genannte Manganstahl, welcher auch als Manganhartstahl bezeichnet wird, hat sich ansonsten beispielsweise als Werkstoff zur Herstellung von Baggerzähnen oder Backenbrechern bewährt und ist insbesondere für eine Warmformgebung im Temperaturbereich von 850 °C bis 1050 °C geeignet.
- Überraschenderweise hat sich gezeigt, dass ein abgesenkter Kohlenstoffgehalt, verglichen mit dem Stahl mit der Werkstoffnummer 1.3401, positive Effekte mit sich bringt. So sorgt ein Kohlenstoffgehalt im unteren Bereich des angegebenen Intervalls, beispielsweise ein C-Gehalt (in Gew.-%) im Bereich von 0,4% bis 0,8%, im Bereich von 0,4% bis 0,6%, oder im weiter eingeengten Bereich von minimal 0,4% und maximal 0,5% dafür, dass die Aufhärtung weniger schroff wirkt und damit größere Umformgrade erreichbar sind. In diesen Fällen wird auch von einem abgeschwächten Manganhartstahl gesprochen.
- Die Verformung des stangenförmigen Ausgangsmaterials, bei welcher es zu Martensitausscheidung und Kaltverfestigung kommt, kann zunächst einen Ziehprozess umfassen. Bei diesem Ziehprozess kann eine als Vorprodukt vorliegende Stange gedehnt werden, welche noch keine Gewindestruktur aufweist. Dies hat den Vorteil, dass durch den Ziehprozess entstehende Zwischenprodukte einheitlicher Form und Beschaffenheit für die Weiterverarbeitung zu unterschiedlichen Endprodukten, das heißt insbesondere Gewindespindeln und/oder Planeten mit verschiedenen Gewindeprofilen, bereitgestellt werden können. Von einer Gewindespindel wird auch in Fällen gesprochen, in welchen eine Spindel eine steigungslose, das heißt rillenförmige, Profilierung aufweist.
- In allen Fällen kommt der anfängliche Ziehprozess der mechanischen Belastbarkeit des Endproduktes, das heißt der Gewindespindel und/oder der Planeten, zu Gute. Auf die Gewindespindel wirken innerhalb des Aktuators im Zusammenspiel mit dem vorhandenen Gegenpart, insbesondere in Form einer Mutter, einer Walze oder einer Schnecke, insbesondere beträchtliche Axialkräfte, wobei steile Kraftanstiege auftreten können.
- Sowohl in Verfahrensvarianten mit anfänglichem Ziehprozess als auch in Varianten ohne eine solche plastische Dehnung des stangenförmigen Ausgangsmaterials kommt eine Formung des Gewindes durch Gewindewalzen in Betracht. Optional kommt zusätzlich zur Kaltverfestigung eine Wärmebehandlung in Betracht, wobei in jedem Fall die Formung des Gewindes eine wesentliche Rolle bei der Martensitausscheidung und Kaltverfestigung spielt. Die Wärmebehandlung kann mehrstufig gestaltet sein und insbesondere eine nachgeschaltete Temperaturbeaufschlagung, das heißt ein Anlassen, beinhalten. Auch eine Tiefkühlung des stangenförmigen Materials in einem Zwischenschritt kann vorgesehen sein.
- Durch derartige Schritte, die dem Erhitzen des Materials auf eine Temperatur von mehr als 1.000 °C und dem Abschrecken nachgeschaltet sind, können insbesondere Spannungen im Umformbereich reduziert und das Gefüge stabilisiert werden. Was die Umformung des stangenförmigen Ausgangsmaterials betrifft, kann auch ein Schmieden, insbesondere eines Endabschnitts dieses Materials, vorgesehen sein. Zumindest eine Fertigbearbeitung des Gewindes kann auch in prinzipiell bekannter Weise durch spanabhebende Bearbeitung erfolgen.
- Das beschriebene plastische Umformverfahren ist in verschiedenen Varianten besonders zur Herstellung von Gewindespindeln mit einem praktisch nicht nachweisbaren, äußerst geringen Verzug, sowie von Planeten geeignet. Es ist eine Kernfestigkeit des Werkstücks von 800 MPa bis 1080 MPa und eine Oberflächenhärte von 650 HV und mehr erzielbar. Dies gilt sowohl für Fälle, in denen es sich bei dem Werkstück um eine Gewindespindel handelt, als auch für Fälle, in denen mit einer Gewindespindel direkt oder indirekt zusammenwirkende Komponenten, beispielsweise Muttern, Bolzen, Rollen oder Planeten, als Werkstücke bearbeitet werden.
- Bei der Gewindespindel handelt es sich um eine Spindel eines Planetenwälzgewindetriebes handeln, wobei auch dessen Planeten profilierte Wellen darstellen, die ausgehend von stangenförmigem Ausgangsmaterial der oben angegebenen Zusammensetzung herstellbar sind.
- Bevorzugt wird der elektromechanische Aktuator als Lenkungsaktuator eines Kraftfahrzeugs, das heißt als Aktuator einer Vorderachs- oder Hinterachslenkung, eingesetzt. Beispielhaft wird in diesem Zusammenhang auf die Dokumente
DE 10 2019 103 385 A1 undDE 10 2011 082 514 A1 hingewiesen. Alternativ ist der anmeldungsgemäße Aktuator beispielsweise in einem Stellmechanismus einer stationären Industrieanlage verwendbar. - Der Gewindetrieb ist als Planetenwälzgetriebe ausgebildet und es erfolgt ein rotatorischer Antrieb des die Planeten des Gewindetriebs führenden Käfigs. Das Planetenwälzgetriebe ist als steigungstreuer Gewindetrieb aufgebaut, wobei ein weniger extremes Übersetzungsverhältnis im Vergleich zu Planetenwälzgetrieben mit angetriebener Gewindespindel oder mit angetriebener Spindelmutter in Kauf genommen wird.
- Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen:
-
1 ausschnittsweise einen zur Verwendung in einer Hinterachslenkung vorgesehenen Lenkungsaktuator mit einem Planetenwälzgewindetrieb, -
2 in einem Flussdiagramm Schritte der Herstellung einer Gewindespindel des Lenkungsaktuators, -
3 in einem Diagramm die Abhängigkeit der Härte des Werkstücks vom Abstand von der Werkstückoberfläche bei der anmeldungsgemäßen Gewindespindel sowie bei einem nicht beanspruchten Vergleichsbeispiel, -
4 in einem weiteren Diagramm bei einem Zugversuch an der Gewindespindel aufgenommene Daten. - Ein insgesamt mit dem Bezugszeichen 1 gekennzeichneter Aktuator ist im vorliegenden Fall als elektromagnetischer Lenkungsaktuator für eine Hinterachslenkung eines Kraftfahrzeugs ausgebildet.
- Der Aktuator 1 umfasst eine Gewindespindel 2, welche in ihrer Längsrichtung verschiebbar ist, um den Lenkeinschlag von Hinterrädern eines nicht weiter dargestellten Kraftfahrzeugs zu variieren. Die Gewindespindel 2 ist in Fahrzeugquerrichtung ausgerichtet. Hinsichtlich des prinzipiellen Aufbaus und der Funktion des Aktuators 1 wird auf den zitierten Stand der Technik verwiesen.
- Auf dem mit 3 bezeichneten, im vorliegenden Fall eingängigen Gewinde der Gewindespindel 2 rollen mehrere Planeten 4 ab, die in einem Käfig 5 geführt sind. Dem Käfig 5 sind Käfigscheiben 6 an beiden Stirnseiten der Planten 4 sowie eine Käfighülse 7 zuzurechnen, die die Gesamtheit der Planeten 4 ringförmig umgibt und konzentrisch zu der mit MA bezeichneten Mittelachse der Gewindespindel 2 und damit des gesamten Aktuators 1 angeordnet ist. Die Planeten 4 und der Käfig 5 sind Komponenten einer insgesamt mit 8 bezeichneten Mutteranordnung. An der Außenumfangsfläche der Käfighülse 7 ist eine Außenverzahnung 9 ausgebildet, die den Antrieb des gesamten Käfigs 5 mittels eines nicht dargestellten Umschlingungsgetriebes, nämlich Riementriebs, ermöglicht. Der Käfig 5 wird als rotierendes Antriebselement verwendet, wobei der aus der Gewindespindel 2 und der Mutteranordnung 8 gebildete Planetenwälzgewindetrieb des Aktuators 1 als steigungstreuer Planetenwälzgewindetrieb (SPWG) ausgebildet ist.
- Jeder Planet 4 weist einen mittleren Abschnitt 10 und zwei an diesen anschließende, vergleichsweise dünne Endabschnitte 11 auf. Jeder der Abschnitte 10, 11 weist eine Profilierung 12, 13 auf, welche im Unterschied zum Gewinde 3 in Form steigungsloser Rillen ausgebildet ist. Ausschließlich die mittleren Abschnitte 10 der Planeten 4 kontaktieren die Gewindespindel 2. Die Endabschnitte 11 der Planeten 4 sind dagegen vom Gewinde 3 abgehoben und greifen stattdessen in Profilierungen 17 ein, die durch Mutterteile 14, 15 gebildet sind. Die Mutterteile 14, 15, welche der Mutteranordnung 8 zuzurechnen sind, sind derart eingestellt, dass eine Vorspannung zwischen den Mutterteilen 14, 15, den Planeten 4 und der Gewindespindel 2 gegeben ist.
- Die relative Positionierung der Mutterteile 14, 15 zueinander ist mittels einer Kontermutter 16 fixiert. Die in sich starre Anordnung aus den miteinander verschraubten Mutterteilen 14, 15 und der Kontermutter 16 ist mit Hilfe zweier Axiallager 18 drehbar im Käfig 5 gelagert. In die Mutterteile 14, 15 wird keine Antriebsleistung eingespeist. Die gesamte Mutteranordnung 8 ist mittels zweier Schrägrollenlager 19 in einer nicht dargestellten Umgebungskonstruktion, das heißt einem Aktuatorgehäuse, gelagert. An dem Aktuatorgehäuse ist unter anderem ein Elektromotor befestigt, welcher den Riementrieb, der den Käfig 5 in Rotation versetzt, antreibt. Alternativ kann der Elektromotor in das Aktuatorgehäuse eingebaut sein.
- Beim Betrieb des elektromechanischen Aktuators 1, das heißt Lenkungsaktuators, können schnell ansteigende, nahezu schlagartige Belastungen, die in Längsrichtung der Gewindespindel 2 wirken, auftreten. Diesen Belastungen muss insbesondere das Gewinde 3 gewachsen sein.
- Im Folgenden wird auf das Flussdiagramm nach
2 Bezug genommen, in welchem Schritte S1 bis S5 einzelne Herstellungsschritte bei der Fertigung der Gewindespindel 2 bezeichnen. Alternativ oder zusätzlich kann die Herstellung der Planeten 4 analog dazu erfolgen. - Im Schritt S1 wird Rundstahl als Ausgangsprodukt bereitgestellt. Es handelt sich hierbei um Manganstahl X120Mn12 (Werkstoffnummer 1.3401). Bevor der Rundstahl weiterverarbeitet wird, kann er - noch im Schritt S1 - plastisch gedehnt werden, was bereits einen positiven Effekt hinsichtlich der gewünschten Verfestigung des Stahls hat.
- Das im Schritt S1 bereitgestellte Ausgangsprodukt wird in den Schritten S2 und S3 geschliffen und gewalzt. Durch das Walzen entsteht insbesondere das Gewinde 3. Maßgeblich für die Verfestigung ist die bei der Umformung erfolgende Martensitausscheidung.
- Ferner findet im Schritt S3 eine Wärmebehandlung statt. Im Schritt S4 schließt sich eine spanabhebende Bearbeitung der Gewindespindel 2 durch Drehen an. Die spanabhebende Bearbeitung kann auch sonstige Zerspanungstechnologien, insbesondere Fräsen, umfassen. Im abschließenden Schritt S5 wird das Werkstück, das heißt die Gewindespindel 2, gewaschen.
- Mechanische Eigenschaften der durch das Verfahren nach
2 hergestellten Gewindespindel 2 gehen aus den3 und4 hervor. Die3 zeigt den Härteverlauf im kaltverfestigten Zustand (fett gezeichnete Linie) sowie im kaltverfestigten und wärmebehandelten Zustand (oberste, dünn gezeichnete Linie). Zum Vergleich ist die Härte (300 HV) im lösungsgeglühten Zustand eingezeichnet. Wie aus3 hervorgeht, wird bereits durch die Kaltverfestigung eine Oberflächenhärte von ca. 550 HV erreicht. Die gestrichelte Linie bezieht sich auf eine Kaltverfestigung mit erhöhtem Umformgrad. Durch die zusätzliche Wärmebehandlung wird die Oberflächenhärte auf mindestens 650 HV erhöht. - Im vereinfachten Diagramm nach
4 sind die mittels eines Zugversuchs ermittelbare Streckgrenze бE (zugehörige Kraft: F) und Zugfestigkeit бB (zugehörige Kraft: Z) erkennbar. Wie aus4 hervorgeht, ist eine mit zunehmender Dehnung des Manganstahls, aus welchem die Gewindespindel 2 gefertigt ist, stetig ansteigende Kraft gegeben. Die Kernfestigkeit des bearbeiteten, in der Gewindespindel 2 zum Einsatz kommenden Manganstahls liegt im Bereich von 800 MPa bis 1.080 MPa. - Bezugszeichenliste
-
- 1
- Aktuator
- 2
- Gewindespindel
- 3
- Gewinde
- 4
- Planet
- 5
- Käfig
- 6
- Käfigscheibe
- 7
- Käfighülse
- 8
- Mutteranordnung
- 9
- Außenverzahnung
- 10
- mittlerer Abschnitt eines Planeten
- 11
- Endabschnitt eines Planeten
- 12
- Profilierung des mittleren Abschnitts
- 13
- Profilierung des Endabschnitts
- 14
- Mutterteil
- 15
- Mutterteil
- 16
- Kontermutter
- 17
- Profilierung eines Mutterteils
- 18
- Axiallager
- 19
- Schrägrollenlager
- бE
- Streckgrenze
- бB
- Zugfestigkeit
- F
- Kraft
- MA
- Mittelachse
- S1, ... S5
- Schritte
- Z
- Kraft
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Patentliteratur
-
- WO 2012/048917 A1 [0002, 0003]
- DE 102017121942 A1 [0004]
- EP 2832876 A1 [0005]
- EP 2465964 A1 [0006]
- EP 0142873 A1 [0007]
- DE 2853582 A1 [0008]
- GB 276048 A [0009]
- DE 2846930 A1 [0014]
- EP 2803736 A1 [0014]
- DE 866893 B [0014]
- WO 2017/021459 A1 [0014]
- EP 0205869 A1 [0014]
- DE 102019103385 A1 [0028]
- DE 102011082514 A1 [0028]
Claims (8)
- Elektromechanischer Aktuator (1), umfassend einen Gewindetrieb (2, 8) in Form eines Planetenwälzgewindetriebes (2, 8), wobei als Planetenwälzgewindetrieb (2, 8) ein steigungstreuer Gewindetrieb mit angetriebenem, eine Mehrzahl an Planeten (4) führenden Käfig (5) vorgesehen ist, und mit einer Gewindespindel (2), wobei die Gewindespindel (2) und/oder die Planeten (4) aus einem Stahl folgender Zusammensetzung gebildet ist/sind:
○ C: 0,4 bis 1,5 Gew.-% ◯ Mn: 12,0 bis 22,0 Gew.-% ◯ Cr: bis 4,0 Gew.-% ◯ Ni: bis 0,5 Gew.-% ○ Cu: bis 0,3 Gew.-% ○ V: bis 0,3 Gew.-% ○ S: bis 0,3 Gew.-% ○ P: bis 0,1 Gew.-% ○ Si: bis 4,0 Gew.-% ◯ Al: bis 0,05 Gew.-% ◯ Rest: Eisen und erschmelzungsbedingte Verunreinigungen, - Elektromechanischer Aktuator (1) nach
Anspruch 1 , wobei die Gewindespindel (2) und/oder die Planeten (4) aus Manganstahl (Werkstoffnummer 1.3401) hergestellt ist/sind. - Elektromechanischer Aktuator (1) nach
Anspruch 1 oder2 , wobei die Gewindespindel aus einem stangenförmigen Ausgangsmaterial aus dem Stahl gebildet ist. - Elektromechanischer Aktuator (1) nach
Anspruch 3 , wobei das stangenförmige Ausgangsmaterial in einem Ziehprozess umgeformt ist. - Elektromechanischer Aktuator (1) nach
Anspruch 3 oderAnspruch 4 , wobei zumindest ein Abschnitt, insbesondere Endabschnitt, des stangenförmigen Ausgangsmaterials geschmiedet ist. - Elektromechanischer Aktuator (1) nach einem der
Ansprüche 1 bis5 , wobei die Kaltverfestigung der Gewindespindel (2) und/oder der Planeten (4) zumindest teilweise durch ein Gewindewalzen erzeugt ist. - Elektromechanischer Aktuator (1) nach einem der
Ansprüche 1 bis6 , wobei die Gewindespindel und/oder der Planeten (4) weiterhin wärmebehandelt ist/sind. - Elektromechanischer Aktuator (1) nach einem der
Ansprüche 1 bis7 , welcher als Lenkungsaktuator ausgebildet ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/DE2023/100519 WO2024041687A1 (de) | 2022-08-23 | 2023-07-10 | Elektromechanischer aktuator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022121221.1 | 2022-08-23 | ||
DE102022121221 | 2022-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102023117976A1 true DE102023117976A1 (de) | 2024-02-29 |
Family
ID=89844506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102023117976.4A Pending DE102023117976A1 (de) | 2022-08-23 | 2023-07-07 | Elektromechanischer Aktuator |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102023117976A1 (de) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB276048A (en) | 1926-05-11 | 1927-08-11 | Robert Abbott Hadfield | Improvements in or relating to manganese steel |
DE866893C (de) | 1941-06-27 | 1953-02-12 | Nordberg Manufacturing Co | Verschleisskoerper aus Manganstahl oder einem wesensaehnlichen Werkstoff fuer Kreiselbrecher |
DE2846930A1 (de) | 1977-11-03 | 1979-05-17 | Creusot Loire | Giess- und schweissbarer austenitischer manganstahl |
DE2853582A1 (de) | 1977-12-12 | 1979-06-13 | Sumitomo Metal Ind | Nichtmagnetische stahllegierung mit verbesserter spanender bearbeitbarkeit |
EP0142873A1 (de) | 1983-09-09 | 1985-05-29 | Gist-Brocades N.V. | Verfahren und Anlage zur anaerobischen Gärung von festen Abfallmaterialien in Wasser in zwei Stufen |
EP0205869A1 (de) | 1985-05-21 | 1986-12-30 | Amalloy Corp. | Manganstahl |
WO2012048917A1 (de) | 2010-10-11 | 2012-04-19 | Schaeffler Technologies AG & Co. KG | Vergütungsstahl, seine verwendung als stangenmaterial, gewindespindel, zahnstange, zahnstangenelemente und verfahren zu deren herstellung |
EP2465964A1 (de) | 2010-12-14 | 2012-06-20 | Fundacion Inasmet | Hadfield-Stahl mit Hafnium |
DE102011082514A1 (de) | 2011-09-12 | 2013-03-14 | Schaeffler Technologies AG & Co. KG | Kugelgewindetrieb |
EP2803736A1 (de) | 2013-05-13 | 2014-11-19 | Sandvik Intellectual Property AB | Verschleißfester Manganstahl |
EP2832876A1 (de) | 2012-03-29 | 2015-02-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Hochfester rostfreier stahldraht mit hervorragender wärmeverformungsbeständigkeit, hochfeste feder und verfahren zur herstellung davon |
WO2017021459A1 (de) | 2015-08-05 | 2017-02-09 | Salzgitter Flachstahl Gmbh | Hochfester aluminiumhaltiger manganstahl, ein verfahren zur herstellung eines stahlflachprodukts aus diesem stahl und hiernach hergestelltes stahlflachprodukt |
DE102017121942A1 (de) | 2017-09-21 | 2019-03-21 | Schaeffler Technologies AG & Co. KG | Kugelgewindetrieb |
DE102019103385A1 (de) | 2019-02-12 | 2020-08-13 | Schaeffler Technologies AG & Co. KG | Planetenwälzgewindetrieb und Aktuator für eine Hinterachslenkung eines Kraftfahrzeuges mit einem derartigen Planetenwälzgewindetrieb |
-
2023
- 2023-07-07 DE DE102023117976.4A patent/DE102023117976A1/de active Pending
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB276048A (en) | 1926-05-11 | 1927-08-11 | Robert Abbott Hadfield | Improvements in or relating to manganese steel |
DE866893C (de) | 1941-06-27 | 1953-02-12 | Nordberg Manufacturing Co | Verschleisskoerper aus Manganstahl oder einem wesensaehnlichen Werkstoff fuer Kreiselbrecher |
DE2846930A1 (de) | 1977-11-03 | 1979-05-17 | Creusot Loire | Giess- und schweissbarer austenitischer manganstahl |
DE2853582A1 (de) | 1977-12-12 | 1979-06-13 | Sumitomo Metal Ind | Nichtmagnetische stahllegierung mit verbesserter spanender bearbeitbarkeit |
EP0142873A1 (de) | 1983-09-09 | 1985-05-29 | Gist-Brocades N.V. | Verfahren und Anlage zur anaerobischen Gärung von festen Abfallmaterialien in Wasser in zwei Stufen |
EP0205869A1 (de) | 1985-05-21 | 1986-12-30 | Amalloy Corp. | Manganstahl |
WO2012048917A1 (de) | 2010-10-11 | 2012-04-19 | Schaeffler Technologies AG & Co. KG | Vergütungsstahl, seine verwendung als stangenmaterial, gewindespindel, zahnstange, zahnstangenelemente und verfahren zu deren herstellung |
EP2465964A1 (de) | 2010-12-14 | 2012-06-20 | Fundacion Inasmet | Hadfield-Stahl mit Hafnium |
DE102011082514A1 (de) | 2011-09-12 | 2013-03-14 | Schaeffler Technologies AG & Co. KG | Kugelgewindetrieb |
EP2832876A1 (de) | 2012-03-29 | 2015-02-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Hochfester rostfreier stahldraht mit hervorragender wärmeverformungsbeständigkeit, hochfeste feder und verfahren zur herstellung davon |
EP2803736A1 (de) | 2013-05-13 | 2014-11-19 | Sandvik Intellectual Property AB | Verschleißfester Manganstahl |
WO2017021459A1 (de) | 2015-08-05 | 2017-02-09 | Salzgitter Flachstahl Gmbh | Hochfester aluminiumhaltiger manganstahl, ein verfahren zur herstellung eines stahlflachprodukts aus diesem stahl und hiernach hergestelltes stahlflachprodukt |
DE102017121942A1 (de) | 2017-09-21 | 2019-03-21 | Schaeffler Technologies AG & Co. KG | Kugelgewindetrieb |
DE102019103385A1 (de) | 2019-02-12 | 2020-08-13 | Schaeffler Technologies AG & Co. KG | Planetenwälzgewindetrieb und Aktuator für eine Hinterachslenkung eines Kraftfahrzeuges mit einem derartigen Planetenwälzgewindetrieb |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005027259B4 (de) | Verfahren zur Herstellung von metallischen Bauteilen durch Halbwarm-Umformung | |
EP1837415B1 (de) | Legierung für Wälzlager | |
DE1508416A1 (de) | Verfahren zur Herstellung von Stahlteilen | |
DE102015206455A1 (de) | Aktuator für eine Hinterradlenkung sowie Hinterradlenkung eines Kraftfahrzeuges | |
EP3323902B1 (de) | Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil | |
EP2111475B1 (de) | Bauteile aus ultrahochkohlenstoffhaltigen stählen mit reduzierter dichte und hoher zunderbeständigkeit | |
DE102016203022A1 (de) | Verfahren zum Wärmebehandeln einer Stahllegierung | |
WO2006103021A2 (de) | Geschweisster wälzlagerring aus wälzlagerstahl | |
DE69225466T2 (de) | Kaliberwalze | |
DE102008032024B4 (de) | Dichtereduzierte UHC-Stähle | |
EP2414552B1 (de) | Kugelzapfen aus bainitischen stählen für pkw und leichte lkw | |
WO2019057234A1 (de) | Gewindemutter eines kugelgewindetriebes | |
DE102013106990B4 (de) | Kettenglied oder Kettenbauteil für Bergbauanwendungen | |
DE102009029407A1 (de) | Verfahren zum Herstellen eines bewegungsübertragenden Lenkbauteils in einem Lenksystem eines Fahrzeugs | |
EP3356077B1 (de) | Verwendung eines stahlwerkstücks mit verbesserter oberflächenqualität | |
DE102008060161B4 (de) | Verfahren zur Herstellung einer Fahrwerkskomponente mit erhöhter Dauerfestigkeit und Fahrwerkskomponente | |
DE102023117976A1 (de) | Elektromechanischer Aktuator | |
WO2024041687A1 (de) | Elektromechanischer aktuator | |
WO2012048917A1 (de) | Vergütungsstahl, seine verwendung als stangenmaterial, gewindespindel, zahnstange, zahnstangenelemente und verfahren zu deren herstellung | |
EP1201775B1 (de) | Verfahren zur Herstellung zylindrischer Hohlkörper und Verwendung derselben | |
EP1681365B1 (de) | Verfahren zur Herstellung hochbeanspruchter Maschinenbauteile | |
WO2018095610A1 (de) | Pulvermetallurgisch hergestellter stahlwerkstoff, verfahren zur herstellung eines bauteils aus einem solchen stahlwerkstoff und aus dem stahlwerkstoff hergestelltes bauteil | |
DE112009002418B4 (de) | Stählerner Spurstangenkopf und Verfahren zum Herstellen eines stählernen Spurstangenkopfes | |
DE2355894C3 (de) | Verfahren zum Halbwarmschmieden von Kohlenstoffstahl oder niedriglegiertem Stahl | |
DE102007019980B4 (de) | Herstellung von superplastischen UHC-Leichtbaustählen und deren Verarbeitung durch Warmumformung |