-
Die vorliegende Erfindung betrifft ein Verfahren zur Abbildung eines Fahrerverhaltens in einer Fahrzeugsimulation sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung.
-
Hintergrund der Erfindung
-
Simulationen und Modellierungen sind bei der Entwicklung und Ansteuerung von Fahrzeugen mittlerweile unverzichtbar. Dabei können einerseits Einzelkomponenten modelliert werden, beispielsweise um nicht direkt messbare Größen zu bestimmen und in die Steuerung mit einfließen zu lassen; ebenso können aber auch größere Teilsysteme eines Fahrzeugs simuliert oder Gesamtfahrzeugsimulationen vorgenommen werden. Solche Simulationen werden beispielsweise verwendet, um den Energieverbrauch eines Fahrzeugs, reale Emissionen oder thermische Bedingungen zu modellieren.
-
Ebenso ist es möglich, Modellierungen zu nutzen, um damit realistische Bedingungen für Tests an realen Komponenten zu schaffen. Insbesondere können mit der sogenannten Hardware-in-the-Loop oder auch Engine-in-the-Loop-Technik Simulationsdaten mit realen Komponenten, z.B. einem realen elektronischen Steuergerät, kombiniert werden, um die Funktionen unter verschiedenen und möglichst exakt definierbaren Bedingungen zu prüfen.
-
Ein wesentlicher Teil für solche Simulationen und Komponententests ist daher die möglichst realistische Abbildung des menschlichen Fahrerverhaltens im Modell. Zwar ist es grundsätzlich möglich, zu diesem Zweck gemessene Geschwindigkeitsprofile direkt mit einem einfachen Regler nachzufahren. Diese Methode hat jedoch den Nachteil, dass sie immer nur eine spezielle Kombination aus Fahrzeug, Fahrstil, Verkehrssituation und Strecke wiedergibt. Wenn eine andere Strecke, Veränderungen am Fahrzeuggewicht oder andere Fahrstile berücksichtigt werden sollen, muss eine neue Messung mit den veränderten Parametern erfolgen.
-
Offenbarung der Erfindung
-
Erfindungsgemäß werden ein Verfahren zur Abbildung eines Fahrerverhaltens in einer Fahrzeugsimulation sowie eine Recheneinheit und ein Computerprogramm zu dessen Durchführung mit den Merkmalen der unabhängigen Patentansprüche vorgeschlagen. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche sowie der nachfolgenden Beschreibung. Die Erfindung schafft eine verbesserte Modellierung des Fahrerverhaltens in einer Fahrzeugsimulation.
-
Im Einzelnen wird ein Verfahren vorgeschlagen, bei dem eine derzeitige kombinierte Sollgeschwindigkeit für einen Wegpunkt einer simulierten Fahrstrecke ermittelt wird, wobei die derzeitige kombinierte Sollgeschwindigkeit als Führungsgröße eines Geschwindigkeitsreglers genutzt wird, wobei der Geschwindigkeitsregler eine simulierte Pedalstellung eines Gaspedals als Stellgröße ausgibt. Dabei wird die derzeitige kombinierte Sollgeschwindigkeit aus bis zu drei Komponenten gebildet: eine erste Komponente der kombinierten Sollgeschwindigkeit umfasst eine Grundgeschwindigkeit bei relativ störungsfreiem Verkehr auf einer vorgegebenen simulierten Fahrtstrecke, eine zweite Komponente der kombinierten Sollgeschwindigkeit bildet ein fahrerspezifisches Beschleunigungsverhalten bzw. „Nervositätsverhalten“ ab. Es simuliert ein wechselhaftes Verhalten eines Fahrers (d.h. z.B. Abbremsen, Auffahren, Häufigkeit der Veränderungen der Fahrgeschwindigkeit), beispielsweise in Abhängigkeit vom theoretischen Abstand zum vorausfahrenden Fahrzeug; und eine dritte Komponente der Sollgeschwindigkeit bildet einen Einfluss von Verkehrsbedingungen auf die Grundgeschwindigkeit ab, wie z.B. Stau, Stop-and-Go-Verkehr, häufige Überholvorgänge. Dabei sind die erste Komponente, die zweite Komponente und die dritte Komponente unabhängig voneinander vorgegeben.
-
Durch diese Dreiteilung des Fahrerverhaltens als Anpassung der Sollgeschwindigkeit kann im Gegensatz zu einem einfachen Geschwindigkeitsregler, der eine fest vorgegebene Sollgeschwindigkeit verfolgt, verschiedenes Fahrerverhalten realistisch nachgebildet und einzeln eingestellt werden. Der Regler wird nicht gestört, da die Änderungen nur auf die Sollgeschwindigkeit gegeben werden.
-
Gemäß einer möglichen Ausführungsform kann die kombinierte Sollgeschwindigkeit gebildet werden, indem zunächst die erste Komponente (Grundgeschwindigkeit) als derzeitige kombinierte Sollgeschwindigkeit bestimmt wird, dann eine Auslösebedingung für die dritte Komponente (Verkehrsbedingungen) geprüft wird, und falls die Auslösebedingung für den aktuell simulierten Wegpunkt zutrifft, die dritte Komponente als derzeitige kombinierte Sollgeschwindigkeit verwendet wird, d.h. die erste Komponente durch die dritte Komponente ersetzt wird. Alternativ kann die dritte Komponente auch so ausgebildet sein, dass bei einer zutreffenden Auslösebedingung die erste Komponente mit der dritten Komponente überlagert wird und die so gebildete Überlagerung als derzeitige kombinierte Sollgeschwindigkeit verwendet wird. Damit können einfache Triggerbedingungen, wie z.B. feste Wegpunkte an einer simulierten Strecke, zum „Ein- und Ausschalten“ der dritten Komponente genutzt werden, um vorübergehend veränderte Verkehrsbedingungen auf beliebigen Strecken und mit beliebigen simulierten Fahrern zu modellieren. Dadurch können sehr spezifische Herausforderungen für Streckenabschnitte in Datenbanken abgelegt werden.
-
Zusätzlich oder alternativ kann die kombinierte Sollgeschwindigkeit gebildet werden durch Modulieren der ersten Komponente und/oder der dritten Komponente mit der zweiten Komponente (Nervosität) und Verwenden der modulierten ersten bzw. der modulierten dritten Komponente als derzeitige kombinierte Sollgeschwindigkeit. Optional ist auch möglich, dass dieses Modulieren nur durchgeführt wird, falls eine Auslösebedingung für diese zweite Komponente zutrifft, insbesondere falls die jeweilige erste oder dritte Komponente derzeit eine im wesentlichen konstante Geschwindigkeit zeigt. Hier kann also durch Modulierung, d.h. Überlagerung der anderen Komponenten mit der zweiten Komponente, die das charakteristische Fahrerverhalten beschreibt, eine realistische Sollgeschwindigkeit gebildet werden, deren Parameter (z.B. Bremsprofile, Beschleunigungsverhalten, Auffahrverhalten) getrennt von der eigentlichen Fahrstrecke und den Verkehrsbedingungen auf der Strecke festgelegt werden können. Insbesondere kann diese Modulation mit der zweiten Komponente auch mit der zuvor beschriebenen Kombination oder Auswahl aus der ersten und dritten Komponente kombiniert werden. Für den Fall, dass die Auslösebedingung für die dritte Komponente (Verkehrsbedingungen) zutrifft und somit die erste Komponente durch die dritte Komponente ersetzt wird, kann entsprechend dann die dritte Komponente ebenfalls mit der zweiten Komponente überlagert bzw. moduliert werden, falls die zweite Auslösebedingung (konstante Geschwindigkeit) zutrifft.
-
In beispielhaften Ausführungsformen kann das Verfahren weiter das Ausgeben der simulierten Pedalstellung über ein oder mehrere software- und/oder hardwaretechnische Schnittstellen und das Erhalten einer aktuellen Ist-Geschwindigkeit über ein oder mehrere software- und/oder hardwaretechnische Schnittstellen umfassen. Dabei kann es sich bei den Schnittstellen beispielsweise um eine Schnittstelle für ein Teilfahrzeugmodell, eine Schnittstelle für ein Gesamtfahrzeugmodell, eine Schnittstelle zu einer oder mehreren realen Fahrzeugkomponenten oder eine beliebige Kombination von mehreren gleichen oder verschiedenen Schnittstellen handeln. Die jeweiligen Modelle und Fahrzeugkomponenten bilden damit die Regelstrecke des Geschwindigkeitsreglers. Auf diese Weise kann das simulierte Fahrerverhalten über die Pedalstellung sowohl in Gesamtfahrzeugmodellierungen als auch in Prüfverfahren und Messungen im Sinne von Hardware-in-the-Loop-Verfahren genutzt werden, bei denen simulierte Bedingungen als Eingangswerte für reale Komponenten genutzt werden, um beispielsweise realistische Lastanforderungen abzubilden.
-
Die beschriebenen Komponenten der Sollgeschwindigkeit, d.h. mindestens eine aus der ersten Komponente, der zweiten Komponente und der dritten Komponente, können beispielsweise aus einem oder mehreren Geschwindigkeits-Zeit-Profilen gebildet werden, die bei einer oder mehreren Fahrten für ein Fahrzeug kontinuierlich oder in vorgegebenen Abständen gemessen wurden. Insbesondere kann die erste Komponente als Grundgeschwindigkeit zum Beispiel aus Fahrtabschnitten mit im Wesentlichen gleichförmig fließendem bzw. störungsfreiem Verkehr gebildet werden. Optional kann dabei die erste Komponente durch Glättung und/oder Filterung eines Geschwindigkeits-Zeit-Profils gebildet werden, um zunächst kleine Einflüsse des spezifischen Verhaltens einzelner Fahrer auszublenden. Dabei kann die erste Komponente für jeden Zeitpunkt durch einen oder mehrere der folgenden Parameter definiert sein: eine Grundgeschwindigkeit, eine aktuelle Kurvenbeschleunigung, eine aktuelle Bremsbeschleunigung, eine geschwindigkeitsabhängige maximale Beschleunigung.
-
Auch charakteristisches Fahrerverhalten für die zweite Komponente kann durch solche Messungen erfasst werden, indem z.B. mehrere Fahrer (oder ein Fahrer mit mehreren Fahrstilen) dieselbe Teststrecke abfahren und die Unterschiede zwischen den gemessenen Profilen ausgewertet werden. Anstelle von Fahrten auf Teststrecken können solche Daten auch zumindest teilweise aus Datensammlungen z.B. einer Fahrzeugflotte im realen Betrieb gebildet werden.
-
Eine erfindungsgemäße Recheneinheit, z.B. ein Steuergerät eines Kraftfahrzeugs, ist, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.
-
Auch die Implementierung eines erfindungsgemäßen Verfahrens in Form eines Computerprogramms oder Computerprogrammprodukts mit Programmcode zur Durchführung aller Verfahrensschritte ist vorteilhaft, da dies besonders geringe Kosten verursacht, insbesondere wenn ein ausführendes Steuergerät noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Schließlich ist ein maschinenlesbares Speichermedium vorgesehen mit einem darauf gespeicherten Computerprogramm wie oben beschrieben. Geeignete Speichermedien bzw. Datenträger zur Bereitstellung des Computerprogramms sind insbesondere magnetische, optische und elektrische Speicher, wie z.B. Festplatten, Flash-Speicher, EEPROMs, DVDs u.a.m. Auch ein Download eines Programms über Computernetze (Internet, Intranet usw.) ist möglich. Ein solcher Download kann dabei drahtgebunden bzw. kabelgebunden oder drahtlos (z.B. über ein WLAN-Netz, eine 3G-, 4G-, 5G- oder 6G-Verbindung, etc.) erfolgen.
-
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
-
Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung beschrieben.
-
Figurenliste
-
- 1 zeigt ein System, in dem beispielhafte Ausführungen des Verfahrens zur Anwendung kommen können; und
- 2 zeigt schematisch ein regeltechnisches Strukturbild einer beispielhaften Ausführungsform zur Modellierung des Fahrerverhaltens.
-
Ausführungsformen der Erfindung
-
Sowohl für eine Gesamtfahrzeugsimulation als auch für die Erzeugung von modellierten Daten für z.B. Prüfstände und Freigabefunktionen ist es wichtig, reales Fahrerverhalten möglichst wirklichkeitsgetreu nachzubilden. 1 zeigt als Beispiel ein System, in dem modelliertes bzw. simuliertes Fahrerverhalten verwendet werden kann. Dabei kann es sich beispielsweise um einen Aufbau zur Überprüfung von realen Komponenten 20 im Antriebsstrang handeln, z.B. um einen Motor auf einem Motorprüfstand. Für diesen können Daten, die im realen Fahrzeug eine Pedalstellung anzeigen, beispielsweise an ein Motorsteuergerät 20 übermittelt werden und dort den Motorbetrieb steuern. Für die hier gezeigte Teilsimulation werden jedoch keine Daten eines tatsächlichen Pedals genutzt, sondern stattdessen durch eine geeignete Modellierung 100 ein Wert für die aktuelle Pedalstellung für einen simulierten Fahrer auf einer simulierten Fahrtstrecke erzeugt. Die Modellierung kann in einer geeigneten Recheneinheit 10, z.B. einem lokalen oder entfernten PC stattfinden, wobei auch - anders als hier gezeigt - Teile der Modellierung auf unterschiedliche Recheneinheiten verteilt werden können. Das Resultat der Motoransteuerung 20, z.B. die damit erzeugte Drehzahl, Drehmoment und/oder ein erfasster Emissionswert usw. kann dann wieder erfasst werden und in eine Fahrzeugsimulation 102 eingebracht werden, welche die übrigen Komponenten des Fahrzeugs modelliert. Damit ergibt sich eine simulierte aktuelle Ist-Fahrgeschwindigkeit, die wiederum der Modellierung 100 für das Fahrerverhalten und die Pedalstellung zugeführt werden kann und einen neuen Wert für die Pedalstellung ergibt.
-
Das in 1 gezeigte System soll jedoch nur als Beispiel dienen. Ebenso könnte die reale Testkomponente 20 ausgelassen werden, so dass die erzeugten Simulationsdaten direkt in ein Gesamtfahrzeugmodell 102 eingegeben werden. Auch andere Test- oder Prüfsituationen als die hier beschriebene sind möglich. Eine Simulation 100 eines Fahrerverhaltens könnte auch genutzt werden, um nur einzelne Teile eines Fahrzeugsystems zu prüfen, entwickeln oder testen.
-
Im Folgenden wird anhand beispielhafter Ausführungsformen erläutert, wie in einer Fahrzeugsimulation reales Fahrerverhalten abgebildet werden kann und damit ein verbessertes Simulationsergebnis erhalten werden kann. Dabei soll sich das modellierte Verhalten innerhalb von physikalischen und gesetzlichen Grenzen (real driving emissions) bewegen. Das hier vorgestellte Modell betrifft insbesondere die Modellierung der längsdynamischen Eingriffe, während die querdynamischen Eingriffe beispielsweise durch ein externes Modell oder vorherige Modellierungsstufen vorgegeben werden können und hier nicht weiter betrachtet werden.
-
Zu diesem Zweck kann das Fahrerverhalten in verschiedene Teile zerlegt werden, die einzeln in das Modell 100 einfließen. Ein solches dreigeteiltes Modell kann auf Grundlage von Messungen in einem Fahrzeug 30 auf vorgegebenen Fahrstrecken gebildet werden, wobei bevorzugt mehrere Fahrten mit unterschiedlichen Fahrstilen bzw. unterschiedlichem Fahrverhalten auf derselben Strecke gemessen werden. Dazu kann beispielsweise als Messreihe die gleiche Fahrstrecke durch unterschiedliche Fahrer bzw. mit unterschiedlichen Fahrstilen im gleichen Fahrzeug 30 mehrmals befahren werden, oder es können unterschiedliche Vorgaben für die Messfahrt gemacht werden.
-
Bei diesen Messungen können eine Vielzahl von Fahrzeugparametern (wie Geschwindigkeit, Beschleunigung, Fahrstrecke usw.), Bedienparameter des Fahrers (wie Bremsverhalten, Schaltverhalten, Momentenanforderung über das Gaspedal usw.) und weitere gemessen werden. Zur Modellierung hier ist aber insbesondere das gemessene Geschwindigkeits-Zeit-Profil von Interesse. Es versteht sich, dass dabei auch mehrere unterschiedliche Strecken vermessen und zur Modellierung genutzt werden können, z.B. Strecken unterschiedlicher Länge, mit verschiedenen Umgebungsbedingungen wie unterschiedlichen Straßenverhältnissen, Verkehrsführungen oder Verkehrssituationen und ähnliches. Anschließend können aus den Messdaten drei Komponenten 110, 120, 130 zur Simulation gebildet werden:
- Alternativ dazu ist es aber auch möglich, einen Teil der Komponenten 110, 120, 130 aus anderen Daten abzuleiten bzw. als externe Quelle zur Verfügung zu stellen, z.B. aus übermittelten Bewegungsdaten einer Fahrzeugflotte oder empirischen Modellen.
-
Als eine erste Komponente 110 können verschiedene kombinierte Beschleunigungswerte des Fahrzeugs abhängig von der aktuellen Fahrzeuggeschwindigkeit berücksichtigt werden und daraus jeweils eine aktuelle Grundgeschwindigkeit berechnet werden. Diese Beschleunigungswerte werden bevorzugt aus Fahrsequenzen erfasst, die so weit wie möglich ohne Verkehrseinfluss stattfinden, d.h. das Fahrverhalten auf freier Strecke.
-
Als zweite Komponente 120 kann ein fahrerspezifisches Beschleunigungsverhalten betrachtet werden, welches zu Abweichungen oder Schwankungen bei der Fahrzeuggeschwindigkeit und/oder der Fahrzeugbeschleunigung führt. Solche Abweichungen können beispielsweise ein reales Fahrverhalten abbilden, das durch Nervosität eines Fahrers bedingt ist. Ebenso kann es das Fahrerverhalten im atmenden Verkehr, d.h. leichte Schwankungen durch Reaktionen auf andere Fahrzeuge und Fahrsituationen, nachbilden. Diese Abweichungen oder Schwankungen der zweiten Komponente können als Störungen mit vorgegebener Amplitude der Fahrzeugsollgeschwindigkeit aus der ersten Komponente überlagert werden. Es kann beispielsweise in Abhängigkeit von einem Abstand zu einem vorausfahrenden Fahrzeug modelliert werden.
-
Schließlich können als dritte Komponente 130 streckenspezifische Elemente wie Abschnitte mit unterschiedlichen Geschwindigkeiten, Stop-and-Go-Verkehr, Ampelstrecken und ähnliche Gegebenheiten aus den gemessenen Geschwindigkeitsprofilen auf einer Fahrstrecke extrahiert und modelliert werden.
-
Beispielsweise kann die übliche Geschwindigkeit 110 auf einem Streckenstück bei fließendem Verkehr mit der bzw. durch die reduzierte(n) und schwankende(n) Geschwindigkeit in einem Stop-and-Go-Verkehr aus der dritten Komponente 130 auf einem vielbefahrenen Stück kombiniert bzw. ersetzt werden, während das fahrerspezifische Auffahrverhalten im Stop-and-Go-Verkehr durch die Überlagerung mit der zweiten Komponente 120 berücksichtigt wird.
-
Diese Komponenten können verwendet werden, um eine Pedalsteuerung bzw. Pedal-Modellierung zu bilden, welche jeweils eine Pedalstellung simuliert, die während einer Fahrt vorliegt, wenn das Gaspedal (bzw. alternativ auch Gas- und Bremspedale) durch den Fahrer bedient wird.
-
In 2 ist beispielhaft ein regeltechnisches Strukturbild für eine mögliche Ausführungsform eines Fahrerverhaltensmodells 200 und der jeweiligen Regelungen für eine Gesamtfahrzeugsimulation dargestellt. Dabei wird ein Pedalsteuerungsblock 260 mit einem hier z.B. als PI-Regler 262 ausgebildeten Regelglied durch einen zusätzlichen Block 200 ergänzt, der das spezifische Fahrerverhalten und die zusätzlichen Verkehrseinflüsse als Teil einer resultierenden Soll-Geschwindigkeit 250 modelliert. Die Sollgeschwindigkeit 250 wird anhand der zuvor beschriebenen drei Komponenten gebildet und als Führungsgröße für den Pedalsteuerungsblock 260 verwendet. Als Regelgröße der Pedalsteuerung ergibt sich eine tatsächliche bzw. Ist-Fahrzeuggeschwindigkeit 280, die aus der von dem Regler als Stellgröße ausgegebenen Pedalstellung 264 anhand eines Gesamtfahrzeugmodells 202 bestimmt wird. Die Ist-Fahrzeuggeschwindigkeit 280 wird dann wieder für die weitere Simulation kontinuierlich genutzt. Wie bereits zuvor beschrieben, könnten alternativ in Block 202 auch noch reale Komponenten eingebunden werden, die z.B. die aus dem Pedalsteuerungsblock 260 gewonnene Pedalstellung als Eingangsgröße erhalten.
-
Zunächst werden verschiedene Eingangsgrößen verwendet, die etwa aus einem anderen Simulationsmodell 240 gewonnen werden können. Hier kann beispielsweise fachübliche Modellierungssoftware für Fahrzeuge genutzt werden, die in der Lage ist, die erforderlichen Daten für das hier gezeigte Teilmodell zu liefern. Ebenso sind aber auch andere Möglichkeiten und z.B. dedizierte Einzelmodelle denkbar, um diese Werte bereitzustellen.
-
Als eine Eingangsgröße wird eine beispielsweise Grundgeschwindigkeit 241 eingebracht, die sich z.B. aus dem aktuellen Geschwindigkeitslimit auf der simulierten Fahrstrecke und einer prädikativen Geschwindigkeitsanpassung vor kleineren Kurvenradien ergeben kann. Als weitere Eingangsgrößen können dann beispielsweise der Abstand 242 zu einem nächsten Haltepunkt auf der Strecke, z.B. eine Ampel, sowie ein momentaner Kurvenradius 243 verwendet werden.
-
Der Abstand 242 zum nächsten Haltepunkt kann genutzt werden, um ein Bremsgeschwindigkeitsprofil 244 zu berechnen, während mit dem vorgegebenen momentanen Kurvenradius 243 anhand einer Grenzquerbeschleunigung in der Kurve ein weiteres Geschwindigkeitsprofil 245 berechnet wird. Aus diesen drei Geschwindigkeitsprofilen 241, 244, 245 kann dann ein Minimalwert 246 gebildet werden, um ein effektives Geschwindigkeitsprofil zu erhalten. Nach Bildung eines Gradienten 247 dieses Geschwindigkeitsprofils, d.h. Erhalten eines ersten Beschleunigungsprofils, kann im nächsten Schritt eine geschwindigkeitsabhängige maximale Längsbeschleunigung 212 berücksichtigt werden, indem in einem Minimalglied 248 ein Minimum aus dem maximalen Gradienten 247 und der maximalen Längsbeschleunigung 212 gebildet wird. Die maximale Längsbeschleunigung 212 wird dabei abhängig von der derzeitigen Ist-Geschwindigkeit 280 des Gesamtfahrzeugmodells bestimmt. Der minimale Beschleunigungswert 248 wird in Schritt 216 mit der Zeitschrittlänge multipliziert und zu einem vorherigen Sollgeschwindigkeitswert 214 aus dem letzten Modellierungsdurchlauf bzw. am letzten Zeitpunkt hinzuaddiert. Auf diese Weise kann als erste Komponente eine Grund-Sollgeschwindigkeit 210 gebildet werden, die als Grundlage für den Eingangswert des Pedalsteuerungsblocks verwendet werden kann.
-
Um nun auch Verkehrsbedingungen und charakteristisches Fahrerverhalten einzubringen, können die bereits beschriebenen zusätzlichen Komponenten in die Sollgeschwindigkeit mit aufgenommen werden.
-
Dazu kann zum einen gemäß der zweiten Komponente des Modells charakteristisches Fahrerverhalten 220 eingebracht werden, das z.B. nervöses, dynamisches oder kraftstoffsparendes Fahren wiedergibt. Diese zweite Komponente 220 wird durch eine Frequenzüberlagerung realisiert. Optional kann diese auch auf Strecken mit konstanter Geschwindigkeit beschränkt werden, so dass in Block 222 geprüft wird, ob die derzeitige Grund-Sollgeschwindigkeit aus der ersten Komponente 210 konstant ist. Die Amplitudenschwankungen 220 werden dann in einem Block 250 auf die Grund-Sollgeschwindigkeit aufmoduliert bzw. dieser überlagert. Dabei weist diese überlagerte Komponente üblicherweise Veränderungen mit höherer Frequenz auf als die Grund-Sollgeschwindigkeit 210, die sich nach der freien Fahrtstrecke richtet. Durch das Oszillieren der resultierenden Geschwindigkeit wird das Auffahren auf andere Verkehrsteilnehmer und Beschleunigungsmanöver realistischer dargestellt. Dieses Fahrverhalten für die zweite Komponente 220 kann beispielsweise aus einer Analyse mehrerer, unterschiedlicher gemessener Fahrprofile abgeleitet werden. Damit können dann zum Beispiel typische Frequenzen für ruhiges Verhalten im fließenden Verkehr und starkes Auffahrverhalten abgebildet werden.
-
Außerdem kann entsprechend der dritten Komponente 230 ein zusätzliches Geschwindigkeits-Zeit-Profil verwendet werden, das beispielsweise einen Stop&Go-Verkehr als Gegensatz zum fließenden Verkehr wiedergibt und zur Anpassung der zuvor bestimmten Sollgeschwindigkeit genutzt werden kann. Dieses Verkehrsprofil kann beispielsweise durch eine Auslösebedingung 234 an einem festgelegten Wegpunkt der simulierten Fahrstrecke in einem Block 232 aktiviert werden und an einem zweiten Wegpunkt wieder deaktiviert werden, so dass das Geschwindigkeitsprofil zurück zum fließenden Verkehr geht. Um solche Verkehrsprofile 230 zu gewinnen, können beispielsweise empirisch bestimmte, typische Staugeschwindigkeiten verwendet werden. Ebenso ist es möglich, solche verkehrsbedingten Geschwindigkeits-Zeitverläufe durch Auswertung der bereits beschriebenen Fahrtmessungen zu gewinnen. Während hier nur ein Geschwindigkeitsprofil 230 mit zugehöriger Auslösebedingung 234 gezeigt ist, können auch mehrere unterschiedliche verkehrsbedingte Geschwindigkeitsprofile vorgesehen sein, die z.B. an unterschiedlichen Wegpunkten oder durch andere Auslösebedingungen aktiviert werden oder die manuell in der Simulation ausgewählt werden können, um verschiedene Fahrsituationen mit denselben Grunddaten zu modellieren. Außerdem ist es grundsätzlich auch möglich, verkehrsbedingte Geschwindigkeitsprofile unabhängig von festen Wegpunkten mit in die Simulation einfließen zu lassen, z.B. randomisiert mit einer vorgegebenen Wahrscheinlichkeit für das Auftreten. Die Auslösebedingungen 234 können wiederum aus einem anderen Modell 240 stammen, welches beispielsweise die Fahrtstrecke beinhaltet.
-
Wie aus dem Strukturbild zu sehen ist, können alle drei Komponenten 210, 220, 230 kombiniert werden. Falls beispielsweise derzeit die Auslösebedingung 234 für die dritte Komponente 230 nicht erfüllt ist, entspricht die endgültige kombinierte Soll-Geschwindigkeit einer Überlagerung 250 aus der zweiten Komponente 220 und der ersten Komponente 210. Es ist auch möglich, dass durch die Prüfung 222 auf konstante Geschwindigkeit auch die zweite Komponente 220 in einem Durchlauf nicht überlagert wird, so dass die kombinierte Sollgeschwindigkeit dann nur der ersten Komponente 210 entsprechen würde. Falls dagegen die Auslösebedingung für die dritte Komponente 230 zutrifft und die erste Komponente deshalb durch die dritte Komponente ersetzt oder mit dieser überlagert wird, kann die Überlagerung der zweiten Komponente 220 auf diese dritte Komponente gelegt werden und so eine kombinierte Sollgeschwindigkeit aus der zweiten und dritten Komponente (oder alternativ auch aus allen drei) ergeben.
-
Aus der beschriebenen Kombination der drei Modellbereiche ergibt sich dann die kombinierte Sollgeschwindigkeit, die als Führungsgröße in die Pedalsteuerung 260 eingeht. Da sowohl das Fahrerverhalten 220 als auch die Verkehrsbedingungen 230 nur als Veränderung der Sollgeschwindigkeit angewendet werden und nicht in den Regelkreis eingreifen, wird die Stabilität des PI-Reglers 262 der Pedalsteuerung 260 nicht beeinflusst. Als Stellgröße des Reglers wird dann eine Pedalstellung erhalten, die in Block 264 auf die maximal möglichen Auslenkungswerte begrenzt werden kann. Diese wird beispielsweise an ein Gesamtfahrzeugmodell 202 übergeben, dessen Inhalte hier nicht näher beschrieben werden. Mit dieser Pedalstellung wird in der Fahrzeugmodellierung eine simulierte Geschwindigkeit 280 erreicht, die als Ist-Geschwindigkeit dann in Schritt 266 wieder dem Regler 262 der Pedalsteuerung 260 zugeführt wird.
-
Optional kann in der Pedalsteuerung 260 außerdem eine Vorsteuerung vorgesehen sein, die ebenfalls die kombinierte Sollgeschwindigkeit 250 als Eingangsgröße erhält und ein Aufziehen des integrierenden Anteils des PI-Reglers 262 durch quasi-konstante Störungen reduzieren kann. Diese Vorsteuerung kann beispielsweise aus der Fahrstrecke abgeleitete Steigungen 276 und aus dem aktuellen Gang 278 eine Pedalstellung prädizieren, indem die Beschleunigung, d.h. ein Gradient 270 der kombinierten Sollgeschwindigkeit 250, mit Kennfeldern oder Look-Up-Tabellen 272 für den aktuellen Gang kombiniert wird. Ebenso können Steigungen auf der simulierten Fahrstrecke durch Kennfelder oder Funktionen berücksichtigt werden, die eine Wirkung auf das durch eine bestimmte Pedalstellung erreichte Drehmoment und damit die Geschwindigkeit haben. Die Steigungsdaten 276 und die Gangwahl 278 können wie schon die Eingangsgeschwindigkeit und andere Daten auch aus einem externen Simulationsmodell 240 stammen. Die so gewonnene Pedalstellung aus der Vorsteuerung wird dann in Glied 274 mit der Pedalstellung aus der Regelung 262 verrechnet.
-
Falls keine Berücksichtigung der zusätzlichen Komponenten wie Verkehrsbedingungen und Fahrervariation gewünscht ist, kann bei der beschriebenen Modellierung auch einfach die Grund-Sollgeschwindigkeit 210 als Führungsgröße bzw. Eingangswert für den Regler der Pedalsteuerung genutzt werden, in dem die übrigen Komponenten beispielsweise durch Auswahl bestimmter Parameter deaktiviert werden. Ebenso könnte auch nur der Fahrstil oder nur die Verkehrsbedingungen einzeln zur Bestimmung der Sollgeschwindigkeit verwendet werden. Durch die separate Modellierung der drei Komponenten und durch die Art und Weise der Bildung der kombinierten Sollgeschwindigkeit wird es sehr einfach möglich, ohne neue Messungen fast beliebige Kombinationen aus Fahrstrecke, Fahrzeug und Fahrverhalten realitätsgetreu zu modellieren.
-
Da die Komponenten Grundbeschleunigung, Fahrerverhalten und Verkehrseinflüsse entkoppelt modelliert werden, kann damit auch ein realistischeres Modell bei unterschiedlichen Fahrzeugeigenschaften gebildet werden, wie etwa für Fahrzeuge mit unterschiedlicher Masse, Leistung oder unterschiedlichem dynamischem Verhalten. Je nach Charakter (zweite Komponente der Sollgeschwindigkeit) des simulierten Fahrverhaltens wird das Fahrzeug in Abhängigkeit von seinen Eigenschaften unterschiedlich bewegt. Beispielsweise könnte ein sportliches Fahrzeug mit geringem Leergewicht und hoher Leistung (PS) sowie ein Fahrzeug wie z.B. ein Transporter mit hohem Leergewicht und wenig Leistung einstellbar sein. Auch bei identischem Fahrstil des Fahrers werden die beiden Fahrzeuge sich real deutlich verschieden verhalten, z.B. durch trägeres Ansprechen beim Beschleunigen oder unterschiedliches Schaltverhalten. Durch die Trennung der Modellkomponenten können solche Gegebenheiten möglichst realistisch und ohne Schwierigkeiten simuliert werden, ohne dafür jeweils eigene Messungen mit allen Parametern zu benötigen.
-
Die Ergebnisse können auch zur Erzeugung von realistischen Lastanforderungen an Komponenten im Antriebsstrang, z.B. bei Hardware-in-the-Loop-Teststrecken am Motor- oder Rollenprüfstand zum Messen von Emissionswerten. Außerdem können realistische Lastanforderungen an die Komponenten im Antriebsstrang für die Auslegung und Entwicklung von Komponenten wie Elektromotoren, Batterie oder Inverter ebenso genutzt werden wie für die Ableitung von Lastprofilen im Dauergebrauch der entwickelten Komponenten. Generell ist die Verwendung des modellierten bzw. simulierten Fahrerverhaltens nicht auf bestimmte Anwendungen beschränkt, sondern kann in einer Vielzahl von Fragestellungen bei der Fahrzeugentwicklung und -prüfung eingesetzt werden.
-
Die vorstehend beschriebenen Funktionen zur Modellierung des Fahrerverhaltens, zur Auswertung der Fahrdaten und zur Aufteilung in Komponenten, sowie die weitere Auswertung des Simulationsergebnisses für das Fahrerverhalten können insbesondere softwaretechnisch umgesetzt werden. Beispielsweise kann ein solches Fahrermodell als Teilmodul einer Software zur Gesamtfahrzeugsimulation vorgesehen oder in diese integriert sein. Ebenso ist aber möglich, das Fahrerverhalten als eigenständiges Modul zu umzusetzen und die erforderlichen Eingangsdaten und die Ergebnisse über geeignete software- oder hardwaretechnische Schnittstellen bereitzustellen, z.B. zur Verwendung an einem Prüfstand.
-
Im Gegensatz zu einem einfachen Regler für die Pedalsteuerung, der rein einem gemessenen Geschwindigkeits-Zeit-Profil folgt, können mit der vorliegenden Lösung die jeweiligen Komponenten getrennt voneinander parametriert werden, so dass ganz spezifische Varianten getestet werden können. Auch streckenabhängige Unregelmäßigkeiten lassen sich positionieren, ohne von einer Veränderung des Fahrstils beeinflusst zu werden. Auf komplexe Simulationen mehrerer Fahrzeuge zur Nachbildung von Verkehrsflusssituationen kann verzichtet werden, da das Fahrerverhalten in solchen Situationen durch die verschiedenen Komponenten eingestellt und variiert werden kann. Ebenso bleibt das simulierte Fahrverhalten vollständig reproduzierbar, auch wenn Veränderungen an einem Motor, an Motorsteuerungssoftware, Abgasnachbehandlung oder anderen Komponenten vorgenommen werden. Dies gilt sowohl für virtuelle Komponenten im Fall einer Komplettsimulation als auch bei Hardware-in-the-Loop-Anwendungen, bei denen die Fahrersimulation zur Erzeugung von Eingangsdaten für Prüfstandsmessungen zusammen mit realen Komponenten genutzt wird. Durch die getrennte Sammlung und Auswertung von Fahrstrecken und Fahrerverhalten können auch mit vergleichsweise wenigen Datensätzen durch Kombination eine Vielzahl realer Fahrsituationen simuliert werden, die dann wiederum für Freigabefunktionen oder Tests angewendet werden können.