DE102021205333A1 - Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen - Google Patents

Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen Download PDF

Info

Publication number
DE102021205333A1
DE102021205333A1 DE102021205333.5A DE102021205333A DE102021205333A1 DE 102021205333 A1 DE102021205333 A1 DE 102021205333A1 DE 102021205333 A DE102021205333 A DE 102021205333A DE 102021205333 A1 DE102021205333 A1 DE 102021205333A1
Authority
DE
Germany
Prior art keywords
gear
shaft
transmission
pair
hybrid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021205333.5A
Other languages
English (en)
Inventor
Stefan Beck
Fabian Kutter
Matthias Horn
Michael Wechs
Thomas Martin
Johannes Kaltenbach
Martin Brehmer
Ingo Pfannkuchen
Mladjan Radic
Peter Ziemer
Christian Michel
Max Bachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102021205333.5A priority Critical patent/DE102021205333A1/de
Priority to PCT/EP2021/075555 priority patent/WO2022248071A1/de
Publication of DE102021205333A1 publication Critical patent/DE102021205333A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/111Stepped gearings with separate change-speed gear trains arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/113Stepped gearings with two input flow paths, e.g. double clutch transmission selection of one of the torque flow paths by the corresponding input clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4816Electric machine connected or connectable to gearbox internal shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears

Abstract

Die vorliegende Erfindung betrifft ein Hybridgetriebe (18) für einen Kraftfahrzeug-Antriebsstrang (12) eines Kraftfahrzeugs (10), mit: einer ersten Getriebeeingangswelle (24) zum Wirkverbinden des Hybridgetriebes mit einer Verbrennungsmaschine (16) des Kraftfahrzeugs; einer zweiten Getriebeeingangswelle (26) zum Wirkverbinden des Hybridgetriebes mit einer ersten elektrischen Antriebsmaschine (14) des Kraftfahrzeugs; einer ersten Zwischenwelle (30); einer zweiten Zwischenwelle (32), die antriebswirksam mit der ersten Getriebeeingangswelle verbunden ist; einer Abtriebswelle (28) zum Wirkverbinden des Hybridgetriebes mit einem Abtrieb (38); einem ersten Planetenradsatz (RS1), der mit der zweiten Getriebeeingangswelle, der ersten Zwischenwelle und der Abtriebswelle verbunden ist; einer Vorgelegewelle (34); in mehreren Radsatzebenen angeordneten Stirnradpaaren (ST1, ST2, ST3) umfassend ein erstes Stirnradpaar, ein zweites Stirnradpaar und ein drittes Stirnradpaar zum Bilden von Gangstufen; und mehreren Gangschaltvorrichtungen mit Schaltelementen (A, B, C, D, E) zum Einlegen der Gangstufen; wobei ein Zahnrad eines ersten Stirnradpaars (ST1) und ein Zahnrad eines dritten Stirnradpaars (ST3) antriebswirksam miteinander verbunden sind; und die zweite Zwischenwelle und ein weiteres Zahnrad des dritten Stirnradpaars antriebswirksam miteinander verbunden sind.

Description

  • Die vorliegende Erfindung betrifft ein Hybridgetriebe, einen Kraftfahrzeug-Antriebsstrang mit einem solchen Hybridgetriebe, ein Kraftfahrzeug mit einem solchen Kraftfahrzeug-Antriebsstrang sowie ein Verfahren zum Betreiben eines solchen Kraftfahrzeug-Antriebsstrangs.
  • Fahrzeuge werden zunehmend mit Hybridantrieben, d. h. mit wenigstens zwei verschiedenen Antriebsquellen ausgestattet. Hybridantriebe können zur Verminderung des Kraftstoffverbrauchs und der Schadstoffemissionen beitragen. Es haben sich weitgehend Antriebsstränge mit einem Verbrennungsmotor und einem oder mehreren Elektromotoren als Parallelhybrid oder als Mischhybrid durchgesetzt. Derartige Hybridantriebe weisen im Kraftfluss eine im Wesentlichen parallele Anordnung des Verbrennungsmotors und des Elektroantriebs auf. Hierbei können sowohl eine Überlagerung der Antriebsmomente als auch eine Ansteuerung mit rein verbrennungsmotorischem Antrieb oder rein elektromotorischem Antrieb ermöglicht werden. Da sich die Antriebsmomente des Elektroantriebs und des Verbrennungsmotors je nach Ansteuerung addieren können, ist eine vergleichsweise kleinere Auslegung des Verbrennungsmotors und/oder dessen zeitweise Abschaltung möglich. Hierdurch kann eine signifikante Reduzierung der CO2-Emissionen ohne nennenswerte Leistungs- bzw. Komforteinbußen erreicht werden. Die Möglichkeiten und Vorteile eines Elektroantriebs können somit mit den Reichweiten-, Leistungs- und Kostenvorteilen von Brennkraftmaschinen verbunden werden.
  • Ein Nachteil der oben genannten Hybridantriebe besteht in einem im Allgemeinen komplexeren Aufbau, da beide Antriebsquellen vorzugsweise mit nur einem Getriebe Antriebsleistung auf eine Antriebswelle übertragen. Hierdurch sind derartige Getriebe meist aufwendig und kostenintensiv in der Produktion. Eine Reduzierung der Komplexität im Aufbau eines Hybridgetriebes geht meistens mit einer Einbuße an Variabilität einher.
  • Dieser Nachteil kann zumindest teilweise mittels dedizierter Hybridgetriebe oder „Dedicated Hybrid Transmissions“ (DHT) überwunden werden, bei denen eine elektrische Maschine in das Getriebe integriert wird, um den vollen Funktionsumfang darzustellen. Beispielsweise kann im Getriebe insbesondere der mechanische Getriebeteil vereinfacht werden, etwa durch Entfall des Rückwärtsgangs, wobei stattdessen mindestens eine elektrische Maschine genutzt wird.
  • Dedizierte Hybridgetriebe können aus bekannten Getriebekonzepten hervorgehen, also aus Doppelkupplungsgetrieben, Wandler-Planetengetrieben, stufenlosen Getrieben (CVT) oder automatisierten Schaltgetrieben. Die elektrische Maschine wird dabei zum Teil des Getriebes.
  • Die Offenlegungsschrift DE 10 2011 005 562 A1 betrifft ein Schaltgetriebe eines Hybridantriebs für ein Kraftfahrzeug, mit zwei Eingangswellen und einer gemeinsamen Ausgangswelle. Die erste Eingangswelle ist über eine steuerbare Trennkupplung mit der Triebwelle eines Verbrennungsmotors verbindbar und über eine erste Gruppe selektiv schaltbarer Gangradsätze mit der Ausgangswelle in Triebverbindung bringbar. Die zweite Eingangswelle steht über ein als Planetengetriebe ausgebildetes Überlagerungsgetriebe mit dem Rotor einer als Motor und als Generator betreibbaren Elektromaschine sowie mit der ersten Eingangswelle in Triebverbindung und ist über eine zweite Gruppe selektiv schaltbarer Gangradsätze mit der Ausgangswelle in Triebverbindung bringbar. Beide Eingangswellen sind über eine schaltbare Koppelvorrichtung miteinander in Triebverbindung bringbar. Zur kostengünstigen Herstellung ist vorgesehen, dass das Schaltgetriebe aus einem Doppelkupplungsgetriebe mit zwei koaxialen Eingangswellen abgeleitet ist, dessen erste Eingangswelle zentral angeordnet ist, dessen zweite Eingangswelle als eine Hohlwelle ausgebildet und koaxial über der ersten Eingangswelle angeordnet ist und dessen Koppelvorrichtung eine Getriebestufe und/oder eine schaltbare Kupplung umfasst, die anstelle desjenigen Gangradsatzes und seiner zugeordneten Gangkupplung vorgesehen sind, der in dem zugrunde liegenden Doppelkupplungsgetriebe der ersten Eingangswelle zugeordnet und axial benachbart zu dem getriebeseitigen Ende der zweiten Eingangswelle angeordnet ist.
  • Vor diesem Hintergrund stellt sich einem Fachmann die Aufgabe, ein Hybridgetriebe mit einfachem mechanischem Aufbau zu schaffen. Insbesondere soll ein Hybridgetriebe geschaffen werden, mit dem elektrodynamisches Anfahren sowie elektrodynamische Schaltungen möglich sind. Weiterhin soll bevorzugt eine Antriebstrangkonfiguration realisiert werden, bei der das Hybridgetriebe koaxial zu den Abtriebswellen positioniert ist und die Verbrennungsmaschine achsparallel dazu angeordnet werden kann.
  • Gelöst wird diese Aufgabe durch ein Hybridgetriebe für einen Kraftfahrzeug-Antriebsstrang eines Kraftfahrzeugs, mit:
    • einer ersten Getriebeeingangswelle zum Wirkverbinden des Hybridgetriebes mit einer Verbrennungsmaschine des Kraftfahrzeugs;
    • einer zweiten Getriebeeingangswelle zum Wirkverbinden des Hybridgetriebes mit einer ersten elektrischen Antriebsmaschine des Kraftfahrzeugs;
    • einer ersten Zwischenwelle;
    • einer zweiten Zwischenwelle, die antriebswirksam mit der ersten Getriebeeingangswelle verbunden ist;
    • einer Abtriebswelle zum Wirkverbinden des Hybridgetriebes mit einem Abtrieb;
    • einem ersten Planetenradsatz, der mit der zweiten Getriebeeingangswelle, einer ersten Zwischenwelle und der Abtriebswelle verbunden ist;
    • einer Vorgelegewelle;
    • in mehreren Radsatzebenen angeordneten Stirnradpaaren umfassend ein erstes Stirnradpaar, ein zweites Stirnradpaar und ein drittes Stirnradpaar zum Bilden von Gangstufen; und
    • mehreren Gangschaltvorrichtungen mit Schaltelementen zum Einlegen der Gangstufen; wobei
    • ein Zahnrad des ersten Stirnradpaars und ein Zahnrad des dritten Stirnradpaars antriebswirksam miteinander verbunden sind; und
    • die zweite Zwischenwelle und ein weiteres Zahnrad des dritten Stirnradpaars antriebswirksam miteinander verbunden sind.
  • Die obige Aufgabe wird ferner gelöst durch einen Kraftfahrzeug-Antriebsstrang für ein Kraftfahrzeug, mit:
    • einem Hybridgetriebe wie zuvor definiert;
    • einer Verbrennungsmaschine, die mit der ersten Getriebeeingangswelle verbindbar ist; und
    • einer ersten elektrischen Antriebsmaschine, die mit der zweiten Getriebeeingangswelle antriebswirksam verbunden ist.
  • Die obige Aufgabe wird zudem gelöst von einem Verfahren zum Betrieb eines Kraftfahrzeug-Antriebsstrangs wie zuvor definiert.
  • Die obige Aufgabe wird schließlich gelöst von einem Kraftfahrzeug mit:
    • einem Kraftfahrzeug-Antriebsstrang wie zuvor definiert; und
    • einem Energiespeicher zum Speichern von Energie zum Versorgen der ersten elektrischen Antriebsmaschine und/oder der zweiten elektrischen Antriebsmaschine.
  • Bevorzugte Ausgestaltungen der Erfindung werden in den abhängigen Ansprüchen beschrieben. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. Insbesondere können der Kraftfahrzeug-Antriebsstrang, das Kraftfahrzeug sowie das Verfahren entsprechend den für das Hybridgetriebe in den abhängigen Ansprüchen beschriebenen Ausgestaltungen ausgeführt sein.
  • Durch eine erste Getriebeeingangswelle zum Wirkverbinden des Hybridgetriebes mit einer Verbrennungsmaschine und einer zweiten Getriebeeingangswelle zum Wirkverbinden des Hybridgetriebes mit einer elektrischen Antriebsmaschine kann technisch einfach ein kompaktes Hybridgetriebe geschaffen werden. Eine Wirkverbindung kann sowohl schaltbar als auch nicht schaltbar ausgeführt sein. Insbesondere kann ein Hybridgetriebe geschaffen werden, das um eine der Fahrzeugwellen an der Vorderachse angeordnet ist, wobei die Verbrennungsmaschine und die erste elektrische Antriebsmaschine achsparallel dazu angeordnet sind. Durch einen ersten Planetenradsatz, der mit der ersten Getriebeeingangswelle, einer ersten Zwischenwelle und einer Abtriebswelle verbunden ist, kann technisch einfach ein EDA-Modus geschaffen werden, der elektrodynamisches Anfahren und elektrodynamische Schaltungen ermöglicht. Ferner kann wenigstens ein ECVT-Modus eingerichtet werden. Dadurch, dass ein Zahnrad des ersten Stirnradpaars und ein Zahnrad des dritten Stirnradpaars antriebswirksam miteinander verbunden sind, kann ein kompaktes und schaltelementarmes Hybridgetriebe geschaffen werden. Durch eine zweite Zwischenwelle, die mit einem weiteren Zahnrad des dritten Stirnradpaars antriebswirksam verbunden ist, kann die Kompaktheit und Funktionalität des Hybridgetriebes weiter erhöht werden. Insbesondere kann so technisch einfach eine Vorübersetzung der Antriebsleistung der elektrischen Antriebsmaschine erfolgen. Durch die drehfeste Verbindung der Zahnräder zweier Stirnradpaare können diese beiden verbundenen Stirnradpaare technisch einfach zum Einrichten von Übersetzungen verwendet werden, ohne zur Verbindung der beiden Stirnradpaare ein Schaltelement einlegen zu müssen. Die Kompaktheit des Getriebes wird weiter verbessert.
  • In einer bevorzugten Ausgestaltung umfasst ein Differential des Abtriebs eine Differentialwelle, die als Vollwelle ausgebildet ist und von den Getriebewellen, insbesondere der Abtriebswelle, zumindest abschnittsweise umgeben ist. Eine axiale Länge der Differentialwelle ist größer als eine axiale Länge der Abtriebswelle. Die Differentialwelle durchdringt die Abtriebswelle vollständig. Hierdurch kann das Hybridgetriebe vorteilhaft um die Differentialwelle herum angeordnet werden. Es kann ein kompakter Antriebsstrang geschaffen werden.
  • In einer weiteren vorteilhaften Ausgestaltung umfasst das Hybridgetriebe einen zweiten Planetenradsatz, der antriebswirksam mit der Abtriebswelle und einem Differential des Abtriebs verbunden ist. Vorzugsweise ist im zweiten Planetenradsatz ein Hohlrad festgesetzt, ein Planetenradträger mit dem Differential des Abtriebs und ein Sonnenrad mit der Abtriebswelle antriebswirksam verbunden. Durch einen zweiten Planetenradsatz kann technisch einfach eine Ausgangsübersetzung der vom Hybridgetriebe auf die Differentialwelle übertragenen Leistung erfolgen. Insbesondere ermöglicht eine Abtriebsübersetzung in Form eines zweiten Planetenradsatzes eine vorteilhafte kompakte Anordnung auch des Radsatzes zum Bilden der Abtriebsübersetzung um die Differentialwelle herum. Der Funktionsumfang des Hybridgetriebes kann erhöht werden, ohne dabei den Bauraumbedarf für das Hybridgetriebe wesentlich zu erhöhen.
  • In einer weiteren vorteilhaften Ausgestaltung ist ein Planetenradträger des ersten Planetenradsatzes mit der Abtriebswelle verbunden, wobei das Sonnenrad des ersten Planetenradsatzes mit der zweiten Getriebeeingangswelle verbunden ist und das Hohlrad des ersten Planetenradsatzes mit der ersten Zwischenwelle verbunden ist. Alternativ ist der Planetenradträger des ersten Planetenradsatzes mit der Abtriebswelle verbunden, wobei das Hohlrad des ersten Planetenradsatzes mit der zweiten Getriebeeingangswelle verbunden ist und das Sonnenrad des ersten Planetenradsatzes mit der ersten Zwischenwelle verbunden ist. Durch ein Verbinden des Sonnenrads mit der zweiten Getriebeeingangswelle und des Hohlrads mit der ersten Zwischenwelle muss vorzugsweise von der ersten elektrischen Antriebsmaschine nur ein geringes Stützmoment beim elektrodynamischen Anfahren und bei elektrodynamischen Schaltungen aufgebracht werden. Ferner kann die erste elektrische Antriebsmaschine bei einem elektrodynamischen Anfahren länger generatorisch betrieben werden, da mit zunehmender Fahrtgeschwindigkeit der generatorische Betrieb länger erhalten werden kann. Durch ein Verbinden des Hohlrads mit der zweiten Getriebeeingangswelle und des Sonnenrads mit der ersten Zwischenwelle, kann die erste elektrische Antriebsmaschine mit geringer Ausgleichsdrehzahl bei einem elektrodynamischen Anfahren oder elektrodynamischen Schaltungen betrieben werden.
  • In einer weiteren vorteilhaften Ausgestaltung sind die zweite Getriebeeingangswelle, die erste Zwischenwelle, die zweite Zwischenwelle und die Abtriebswelle koaxial zueinander angeordnet. Ergänzend sind die erste Getriebeeingangswelle, die zweite Getriebeeingangswelle, die erste Zwischenwelle, die zweite Zwischenwelle und die Abtriebswelle als Hohlwellen ausgebildet. Weiterhin ergänzend umgeben die zweite Getriebeeingangswelle, die erste Zwischenwelle und die zweite Zwischenwelle die Abtriebswelle zumindest abschnittsweise. Durch die Ausbildung der vorgenannten Wellen als Hohlwellen und die koaxiale Anordnung kann eine Kompaktheit des Hybridgetriebes weiter verbessert werden. Insbesondere ermöglichen die vorteilhafte koaxiale Anordnung und die Ausbildung der Wellen als Hohlwellen ein Anordnen des Hybridgetriebes um die Differentialwelle herum, wobei das Hybridgetriebe und die Differentialwelle koaxial angeordnet sind.
  • In einer weiteren vorteilhaften Ausgestaltung umfasst das Hybridgetriebe genau drei gangbildende Stirnradpaare. Hierdurch kann ein leichtes, kompaktes und hocheffizientes Hybridgetriebe geschaffen werden, mit dem wenigstens drei, insbesondere vier Gangstufen, also Übersetzungen, für die Verbrennungsmaschine geschaffen werden können.
  • In einer weiteren vorteilhaften Ausgestaltung umfasst die erste Getriebeeingangswelle eine Verbrennungsmaschinenkupplung zum lösbaren antriebswirksamen Verbinden der ersten Getriebeeingangswelle mit der Verbrennungsmaschine. Es versteht sich, dass die Verbrennungsmaschinenkupplung als Klauenschaltelement oder Reibschaltelement ausgebildet sein kann. Durch eine Verbrennungsmaschinenkupplung kann die Verbrennungsmaschine komplett vom Hybridgetriebe entkoppelt werden und so ein hocheffizienter, rein elektrischer Fahrmodus mittels des Hybridgetriebes eingerichtet werden. Eine Reibkupplung ermöglicht zudem einen sogenannten Schwungstart der Verbrennungsmaschine und kann als Anfahrelement für die Verbrennungsmaschine dienen. Durch eine Verbrennungsmaschinenkupplung kann die Variabilität und die Effizienz des Hybridgetriebes erhöht werden.
  • In einer weiteren vorteilhaften Ausgestaltung ist an der Vorgelegewelle ein Festrad des zweiten Stirnradpaars angeordnet. Das Zahnrad des ersten Stirnradpaars und das Zahnrad des dritten Stirnradpaars sind mittels einer an der Vorgelegewelle angeordneten Hohlwelle antriebswirksam miteinander verbunden. Alternativ ist an der Vorgelegewelle ein Losrad des zweiten Stirnradpaars angeordnet und das Zahnrad des ersten Stirnradpaars und das Zahnrad des dritten Stirnradpaars mittels der Vorgelegewelle antriebswirksam miteinander verbunden. Weiterhin alternativ ist an der Vorgelegewelle jeweils ein Festrad des ersten Stirnradpaars, des zweiten Stirnradpaars und des dritten Stirnradpaars angeordnet. Durch diese vorteilhafte Anordnung der Zahnräder an der Vorgelegewelle können durch Einlegen nur eines Schaltelements alle an der Vorgelegewelle angeordneten Zahnräder drehfest miteinander verbunden werden und antriebswirksam mit der Abtriebswelle verbunden werden.
  • In einer weiteren vorteilhaften Ausgestaltung ist ein erstes Schaltelement dazu ausgebildet, das erste Stirnradpaar antriebswirksam mit der ersten Zwischenwelle zu verbinden. Ergänzend oder alternativ ist ein zweites Schaltelement dazu ausgebildet, alle an der Vorgelegewelle angeordneten Zahnräder antriebswirksam mit der Abtriebswelle zu verbinden. Weiterhin ergänzend oder alternativ ist ein drittes Schaltelement dazu ausgebildet, die zweite Zwischenwelle antriebswirksam mit der ersten Zwischenwelle zu verbinden. Ergänzend oder alternativ ist ein viertes Schaltelement dazu ausgebildet, den ersten Planetenradsatz zu verblocken. Weiterhin ergänzend oder alternativ ist ein fünftes Schaltelement dazu ausgebildet, das erste Stirnradpaar antriebswirksam mit der zweiten Getriebeeingangswelle zu verbinden. Durch diese vorteilhafte Anordnung der Schaltelemente können mit dem Hybridgetriebe vier Hybrid- oder Verbrennungsgangstufen, eine Elektrogangstufe, zwei elektrische CVT-Modi und ein Modus Laden-in-Neutral eingerichtet werden. Es kann ein variables und kompaktes Hybridgetriebe geschaffen werden, mit dem ein elektrodynamisches Anfahren sowie elektrodynamische Schaltungen für die Verbrennungsmaschine möglich sind. Mit den elektrodynamischen Schaltungen kann die Last aufrechterhalten werden und die Verbrennungsmaschine mithilfe der ersten elektrischen Antriebsmaschine auf eine neue Gangstufe synchronisiert werden.
  • In einer weiteren vorteilhaften Ausgestaltung sind die Schaltelemente als formschlüssige Schaltelemente ausgebildet. Ergänzend oder alternativ sind wenigstens zwei der Schaltelemente als Doppelschaltelement ausgebildet und von einem doppeltwirkenden Aktor betätigbar. Formschlüssige Schaltelemente ermöglichen ein hocheffizientes und kostengünstiges Hybridgetriebe. Der technische Aufbau und der Betrieb des Hybridgetriebes kann durch ein Doppelschaltelement weiter vereinfacht werden. Insbesondere kann ein Doppelschaltelement mittels eines einzigen Aktors geschaltet werden.
  • In einer weiteren vorteilhaften Ausgestaltung ist die erste elektrische Antriebsmaschine als Startergenerator zum Starten der Verbrennungsmaschine ansteuerbar. Ergänzend oder alternativ ist die erste elektrische Antriebsmaschine als Ladegenerator zum Laden eines Energiespeichers ansteuerbar. Hierdurch kann ein effizienter Kraftfahrzeug-Antriebsstrang geschaffen werden. Insbesondere kann der Kraftstoffverbrauch reduziert werden. Es versteht sich, dass auf einen zusätzlichen Anlasser für die Verbrennungsmaschine verzichtet werden kann, da die erste elektrische Antriebsmaschine die Verbrennungsmaschine anschleppen kann.
  • In einer weiteren vorteilhaften Ausgestaltung ist ein Abtrieb des Hybridgetriebes mit einer ersten Kraftfahrzeugachse antriebswirksam verbindbar, wobei eine zweite Kraftfahrzeugachse eine elektrische Achse mit einer zweiten elektrischen Antriebsmaschine umfasst. Hierdurch kann technisch einfach ein Hybrid-Antriebsstrang mit Allradantrieb geschaffen werden. Ferner kann durch den Kraftfahrzeug-Antriebsstrang ein zugkraftunterbrechungsfreies Schalten technisch einfach ermöglicht werden, da die elektrische Achse bei Schaltungen im Hybridgetriebe die Zugkraft aufrechterhalten kann. Zudem kann ein ausfallsicherer Antriebsstrang für ein Kraftfahrzeug geschaffen werden, da im Falle eines aufgebrauchten Energiespeichers für die zweite elektrische Antriebsmaschine ein sogenannter serieller Fahrmodus einrichtbar ist. Bei dem seriellen Fahrmodus wird vorzugsweise die elektrische Antriebsmaschine von der Verbrennungsmaschine generatorisch betrieben und die so erzeugte Energie der zweiten elektrischen Antriebsmaschine zur Verfügung gestellt.
  • In einer weiteren vorteilhaften Ausgestaltung ist die erste elektrische Antriebsmaschine als Generator zum Versorgen der zweiten elektrischen Antriebsmaschine ansteuerbar, um einen seriellen Fahrmodus einzurichten. Hierdurch kann ein hoch variabler Kraftfahrzeug-Antriebsstrang geschaffen werden, bei dem insbesondere auch bei leerem Energiespeicher elektrisch gefahren und insbesondere elektrisch angefahren werden kann.
  • In einer weiteren vorteilhaften Ausgestaltung bewirkt ein Zustand Laden-in-Neutral einen vom Abtrieb entkoppelten Leistungsfluss zwischen der ersten elektrischen Antriebsmaschine und der Verbrennungsmaschine und wird durch Einlegen eines fünften Schaltelements eingerichtet. Ergänzend wird aus dem Zustand Laden-in-Neutral in eine von wenigstens drei Hybridgangstufen jeweils durch Einlegen eines weiteren Schaltelements gewechselt. Hierdurch kann insbesondere aus einem seriellen Fahrbetrieb in Kombination mit einer elektrischen Achse die Verbrennungsmaschine in einem bevorzugten Drehzahlniveau und der entsprechenden Hybridgangstufe direkt zugestartet werden.
  • Ein Festsetzen eines Elements eines Planetenradsatzes ist insbesondere als ein Blockieren einer Drehung des Elements um seine Rotationsachse zu verstehen. Vorzugsweise wird dabei das Element mittels eines Schaltelements drehfest mit einem statischen Bauteil wie einem Rahmen und/oder einem Getriebegehäuse verbunden. Es ist auch denkbar, das Element bis zu einem Stillstand zu bremsen.
  • Ein Verblocken eines Planetenradsatzes umfasst ein antriebswirksames Verbinden zweier Zahnräder und/oder des Planetenradträgers und eines Zahnrads des Planetenradsatzes, sodass diese gemeinsam mit der gleichen Umdrehungszahl um denselben Punkt, vorzugsweise den Mittelpunkt des Planetenradsatzes, rotieren. Beim Verblocken zweier Zahnräder und/oder eines Planetenradträgers und eines Zahnrads des Planetenradsatzes wirkt der Planetenradsatz vorzugsweise wie eine Welle, es findet insbesondere keine Übersetzung im Planetenradsatz statt.
  • Unter „antriebswirksam verbunden“ soll in diesem Zusammenhang insbesondere eine nicht schaltbare Verbindung zwischen zwei Bauteilen verstanden werden, welche zu einer permanenten Übertragung einer Drehzahl, eines Drehmoments und/oder Antriebsleistung vorgesehen ist. Die Verbindung kann dabei sowohl direkt oder über eine Festübersetzung erfolgen. Die Verbindung kann beispielsweise über eine feste Welle, eine Verzahnung, insbesondere eine Stirnradverzahnung und/oder ein Umschlingungsmittel, insbesondere ein Zugmittelgetriebe, erfolgen.
  • Unter „antriebswirksam verbindbar“, „kann antriebswirksam verbunden werden“ oder „ist zum antriebswirksamen Verbinden ausgebildet“ soll in diesem Zusammenhang insbesondere ein schaltbares Verbinden zwischen zwei Bauteilen verstanden werden, welches in einem geschlossenen Zustand zu einer temporären Übertragung einer Drehzahl, eines Drehmoments und/oder einer Antriebsleistung vorgesehen ist. In einem geöffneten Zustand überträgt das schaltbare Verbinden vorzugsweise temporär im Wesentlichen keine Drehzahl, kein Drehmoment und/oder keine Antriebsleistung.
  • Unter Standladen bzw. Laden-in-Neutral ist insbesondere das Betreiben der elektrischen Antriebsmaschine als Generator zu verstehen, vorzugsweise bei einem Stillstand mit laufender Verbrennungsmaschine, um einen Energiespeicher zu befüllen und/oder eine Bordelektronik zu speisen.
  • Ein Aktor ist vorliegend insbesondere ein Bauteil, das ein elektrisches Signal in eine mechanische Bewegung umsetzt. Vorzugsweise führen Aktoren, die mit Doppelschaltelementen verwendet werden, Bewegungen in zwei entgegengesetzte Richtungen aus, um in der ersten Richtung ein Schaltelement des Doppelschaltelements zu schalten und in der zweiten Richtung das andere Schaltelement zu schalten.
  • Ein Gangstufenwechsel erfolgt insbesondere durch Abschalten eines Schaltelements und/oder einer Kupplung und gleichzeitiges Aufschalten des Schaltelements und/oder der Kupplung für die nächsthöhere oder -niedrigere Gangstufe. Das zweite Schaltelement und/oder die zweite Kupplung übernimmt also Stück für Stück das Drehmoment vom ersten Schaltelement und/oder von der ersten Kupplung, bis am Ende des Gangstufenwechsels das gesamte Drehmoment vom zweiten Schaltelement und/oder der zweiten Kupplung übernommen wird. Bei vorheriger Synchronisation kann ein Gangwechsel schneller erfolgen, vorzugsweise können dabei formschlüssige Schaltelemente Anwendung finden.
  • Eine Verbrennungsmaschine kann insbesondere jede Maschine sein, die durch Verbrennen eines Antriebsmittels, wie Benzin, Diesel, Kerosin, Ethanol, Flüssiggas, Autogas etc. eine Drehbewegung erzeugen kann. Eine Verbrennungsmaschine kann beispielsweise ein Ottomotor, ein Dieselmotor, ein Wankelmotor oder ein Zweitaktmotor sein.
  • Beim seriellen Fahren oder Kriechen wird eine elektrische Antriebsmaschine eines Kraftfahrzeugs generatorisch von einer Verbrennungsmaschine des Kraftfahrzeugs betrieben. Die so erzeugte Energie wird dann einer weiteren elektrischen Antriebsmaschine des Kraftfahrzeugs zur Verfügung gestellt, um Antriebsleistung bereitzustellen.
  • Eine elektrische Fahrzeugachse, oder kurz elektrische Achse, ist vorzugsweise eine Nicht-Haupt-Antriebsachse eines Kraftfahrzeugs, bei der mittels einer elektrischen Antriebsmaschine Antriebsleistung auf Räder des Kraftfahrzeugs übertragen werden kann. Es versteht sich, dass die elektrische Antriebsmaschine auch mittels eines Getriebes angebunden sein kann. Mittels einer elektrischen Achse kann ganz oder teilweise eine Zugkraft aufrechterhalten werden, wenn im Getriebe für eine Haupt-Antriebsachse ein Gangwechsel erfolgt. Ferner kann mittels einer elektrischen Achse zumindest teilweise eine Allrad-Funktionalität eingerichtet werden.
  • Ein elektrodynamisches Anfahrelement (EDA) bewirkt, dass über einen oder mehrere Planetenradsätze eine Drehzahlüberlagerung von Verbrennungsmaschinen-Drehzahl und elektrischer Antriebsmaschinen-Drehzahl stattfindet, sodass ein Anfahren eines Kraftfahrzeugs aus dem Stillstand bei laufender Verbrennungsmaschine, vorzugsweise ohne Reibkupplung, möglich ist. Dabei stützt die elektrische Antriebsmaschine ein Drehmoment ab. Vorzugsweise ist die Verbrennungsmaschine nicht mehr durch eine Anfahrkupplung oder dergleichen vom Getriebe trennbar. Durch Verwenden eines EDAs können vorzugsweise Anlasser, Generator und Anfahrkupplung beziehungsweise hydrodynamischer Wandler entfallen. Dabei baut ein EDA insbesondere so kompakt, dass alle Komponenten im serienmäßigen Kupplungsgehäuse ohne Verlängerung des Getriebes Platz finden. Das elektrodynamische Anfahrelement kann beispielsweise über einen weich abgestimmten Torsionsdämpfer fest mit einer Verbrennungsmaschine und insbesondere einem Schwungrad einer Verbrennungsmaschine verbunden sein. Somit können die elektrische Antriebsmaschine und die Verbrennungsmaschine wahlweise gleichzeitig oder alternativ betrieben werden. Hält das Kraftfahrzeug an, können elektrische Antriebsmaschine und Verbrennungsmaschine abgeschaltet werden. Aufgrund einer guten Regelbarkeit der elektrischen Antriebsmaschine wird eine sehr hohe Anfahrqualität erreicht, die der eines Antriebs mit Wandlerkupplung entsprechen kann.
  • Bei einer sogenannten elektrodynamischen Schaltung (EDS) findet wie beim EDA-Anfahren über einen oder mehrere Planetenradsätze eine Drehzahlüberlagerung von Verbrennungsmaschinen-Drehzahl und elektrischer Antriebsmaschinen-Drehzahl statt. Zum Schaltungsbeginn werden die Drehmomente der elektrischen Antriebsmaschine und der Verbrennungsmaschine angepasst, sodass das auszulegende Schaltelement lastfrei wird. Nach dem Öffnen dieses Schaltelements erfolgt eine Drehzahlanpassung unter Erhaltung der Zugkraft, sodass das einzulegende Schaltelement synchron wird. Nach dem Schließen des Schaltelements erfolgt die Lastaufteilung zwischen der Verbrennungsmaschine und der elektrischen Antriebsmaschine beliebig je nach Hybrid-Betriebsstrategie. Das elektrodynamische Schaltverfahren hat den Vorteil, dass das zu schaltende Schaltelement des Zielgangs durch das Zusammenspiel der elektrischen Antriebsmaschine und der Verbrennungsmaschine synchronisiert wird, wobei die elektrische Antriebsmaschine vorzugsweise präzise regelbar ist. Ein weiterer Vorteil des EDS-Schaltverfahrens ist, dass eine hohe Zugkraft erreicht werden kann, da sich die Drehmomente der Verbrennungsmaschine und der elektrischen Maschine im Hybridgetriebe summieren.
  • Die Erfindung wird nachfolgend anhand einiger ausgewählter Ausführungsbeispiele im Zusammenhang mit den beiliegenden Zeichnungen näher beschrieben und erläutert. Es zeigen:
    • 1 eine schematische Draufsicht auf ein Kraftfahrzeug mit einem erfindungsgemäßen Kraftfahrzeug-Antriebsstrang;
    • 2 eine schematische Darstellung des erfindungsgemäßen Hybridgetriebes;
    • 3 schematisch die Schaltzustände des Hybridgetriebes gemäß der 2;
    • 4 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes;
    • 5 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes;
    • 6 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes;
    • 7 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes;
    • 8 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes; und
    • 9 eine weitere Variante eines erfindungsgemäßen Hybridgetriebes.
  • In 1 ist schematisch ein Kraftfahrzeug 10 mit einem Kraftfahrzeug-Antriebsstrang 12 gezeigt. Der Kraftfahrzeug-Antriebsstrang 12 weist eine erste elektrische Antriebsmaschine 14 und eine Verbrennungsmaschine 16 auf, die mittels eines Hybridgetriebes 18 mit einer Vorderachse des Kraftfahrzeugs 10 verbunden sind. Der Kraftfahrzeug-Antriebsstrang 12 umfasst in dem gezeigten Beispiel ferner eine optionale elektrische Achse mit einer zweiten elektrischen Antriebsmaschine 20, die mit einer Hinterachse des Kraftfahrzeugs 10 verbunden ist. Es versteht sich, dass auch eine umgekehrte Anbindung erfolgen kann, sodass das Hybridgetriebe 18 mit der Hinterachse des Kraftfahrzeugs 10 verbunden ist und die Vorderachse des Kraftfahrzeugs 10 die elektrische Achse umfasst. Mittels des Kraftfahrzeug-Antriebsstrangs 12 wird Antriebsleistung der ersten elektrischen Antriebsmaschine 14, der Verbrennungsmaschine 16 und/oder der optionalen zweiten elektrischen Antriebsmaschine 20 den Rädern des Kraftfahrzeugs 10 zugeführt. Das Kraftfahrzeug 10 weist ferner einen Energiespeicher 22 auf, um Energie zu speichern, die zum Versorgen der ersten elektrische Antriebsmaschine 14 und/oder der zweiten elektrischen Antriebsmaschine 20 dient.
  • 2 zeigt eine Variante eines erfindungsgemäßen Hybridgetriebes 18. Das Hybridgetriebe 18 weist eine erste Getriebeeingangswelle 24 und eine zweite Getriebeeingangswelle 26 auf, die dazu ausgebildet sind, Antriebsleistung der Antriebsmaschinen in das Hybridgetriebe 18 zu übertragen.
  • Das Hybridgetriebe 18 weist ferner eine Abtriebswelle 28, eine erste Zwischenwelle 30 und eine zweite Zwischenwelle 32 auf. Die vorgenannten Getriebewellen 24, 26, 28, 30, 32 sind als Hohlwellen ausgebildet. Das Hybridgetriebe 18 weist ferner eine Vorgelegewelle 34 und einen ersten Planetenradsatz RS1 sowie einen zweiten Planetenradsatz RS2 auf. Im Hybridgetriebe 18 sind insgesamt drei gangbildende Stirnradpaare angeordnet, die mit ST1 bis ST3 bezeichnet sind. Zur besseren Übersicht sind die einzelnen Getriebewellen zusätzlich mit WO bis W7 durchnummeriert.
  • Das Hybridgetriebe weist fünf Schaltelemente A bis E auf.
  • Die erste Getriebeeingangswelle 24 weist einen Torsionsschwingungsdämpfer auf und ist mit einer Kurbelwelle 36 der nicht gezeigten Verbrennungsmaschine 16 über den Torsionsschwingungsdämpfer antriebswirksam verbunden. Die zweite Getriebeeingangswelle 26 ist über ein Festrad und eine Kette antriebswirksam mit der ersten elektrischen Antriebsmaschine 14 verbunden.
  • Die erste Getriebeeingangswelle 24 ist antriebswirksam, vorzugsweise mittels einer Kette, mit einem an der zweiten Zwischenwelle 32 angeordneten Festrad verbunden.
  • Ein Sonnenrad des ersten Planetenradsatzes RS1 ist antriebswirksam mit der zweiten Getriebeeingangswelle 26 verbunden. Ein Planetenradträger des ersten Planetenradsatzes RS1 ist antriebswirksam mit der Abtriebswelle 28 verbunden. Ein Hohlrad des ersten Planetenradsatzes RS1 ist antriebswirksam mit der ersten Zwischenwelle 30 verbunden. Die Anbindung der zweiten Getriebeeingangswelle 26 an das Sonnenrad verläuft radial außen um den ersten Planetenradsatz RS1 herum.
  • Ein Hohlrad des zweiten Planetenradsatzes RS2 ist festgesetzt, also mit einem gehäusefesten Bauteil verbunden, sodass das Hohlrad des zweiten Planetenradsatzes RS2 keine Drehbewegung durchführen kann. Ein Planetenradträger des zweiten Planetenradsatzes RS2 ist antriebswirksam mit einem Differential eines Abtriebs 38 verbunden. Ein Sonnenrad des zweiten Planetenradsatzes RS2 ist antriebswirksam mit der Abtriebswelle 28 verbunden.
  • Ein erstes Stirnradpaar ST1 weist ein Festrad auf, das antriebswirksam an einer Hohlwelle 40 angeordnet ist, wobei die Hohlwelle 40 an der Vorgelegewelle 34 angeordnet ist. Ein Losrad des ersten Stirnradpaars ST1 ist an der ersten Zwischenwelle 30 angeordnet und durch Einlegen eines ersten Schaltelements A antriebswirksam mit der ersten Zwischenwelle 30 verbindbar.
  • Das zweite Stirnradpaar ST2 umfasst in dem gezeigten Beispiel zwei Festräder, von denen eines an der Vorgelegewelle 34 und eines an der Abtriebswelle 28 angeordnet ist. Das dritte Stirnradpaar ST3 umfasst zwei Festräder, von denen eines an der Hohlwelle 40 angeordnet ist und eines an der zweiten Zwischenwelle 32 angeordnet ist. Folglich ist die Verbrennungsmaschine 16 über die erste Getriebeeingangswelle 24 mit der zweiten Zwischenwelle 32 und weiter mit der Hohlwelle 40 antriebswirksam verbunden. Die Hohlwelle 40 kann durch ein zweites Schaltelement B antriebswirksam mit der Vorgelegewelle 34 verbunden werden.
  • Durch Einlegen eines dritten Schaltelements C kann die zweite Zwischenwelle 32 antriebswirksam mit der ersten Zwischenwelle 30 verbunden werden.
  • Durch Einlegen eines vierten Schaltelements D kann das Losrad der ersten Stirnradstufe ST1 antriebswirksam mit der ersten Zwischenwelle 30 verbunden werden. Der erste Planentenradsatz RS1 wird somit verblockt.
  • Durch Einlegen eines fünften Schaltelements E kann das Losrad der ersten Stirnradstufe ST1 antriebswirksam mit der zweiten Getriebeeingangswelle 26 und folglich mit der ersten elektrischen Antriebsmaschine 14 und dem Sonnenrad des ersten Planetenradsatzes RS1 verbunden werden.
  • Die Schaltelemente A bis E sind vorzugsweise als unsynchronisierte, beispielsweise Klauenschaltelemente ausgebildet. Ferner sind das erste Schaltelement A und das dritte Schaltelement C zu einem Doppelschaltelement zusammengefasst. Zudem sind das vierte Schaltelement D und das fünfte Schaltelement E zu einem Doppelschaltelement zusammengefasst.
  • Das Hybridgetriebe 18 umfasst zwei Planetenradsätze RS1, RS2, drei Stirnradpaare ST1 bis ST3, fünf Schaltelemente A bis E, vier mechanische Vorwärtsgangstufen, die vorzugsweise für die Verbrennungsmaschine 16 verwendbar sind, eine elektrische Vorwärtsgangstufe, zwei EDA-Modi und eine erste elektrische Antriebsmaschine 14.
  • Von besonderem Vorteil sind bei der Getriebestruktur des offenbarten Hybridgetriebes 18 ein einfacher technischer Aufbau mit nur drei Stirnradstufen ST1 bis ST3 und zwei Planetenradsätzen RS1, RS2. Ferner sind vorzugsweise nur drei Aktoren notwendig zur Steuerung des Hybridgetriebes 18. Das Hybridgetriebe 18 weist eine kompakte Bauweise, eine geringe Bauteilbelastung und geringe Getriebeverluste auf. Ferner wird ein guter Verzahnungswirkungsgrad sowohl verbrennungsmotorisch als auch elektrisch sowie eine gute Übersetzungsreihe erreicht. Es sind elektrodynamische Schaltungen sowie elektrodynamisches Anfahren und ein Laden-in-Neutral möglich. Ferner sind durch die Anordnung der Getriebebauteile die Schaltelemente vorteilhaft mit entsprechenden Aktoren erreichbar.
  • Es versteht sich, dass das Differential des Abtriebs 38 als Kugeldifferential oder Stirnraddifferential ausgebildet sein kann.
  • Ferner kann mit dem Hybridgetriebe 18 eine achsparallele Anbindung der Verbrennungsmaschine 16 und der ersten elektrischen Antriebsmaschine 14 erfolgen, wobei die achsparallele Anbindung über eine Kette oder ein oder mehrere Stirnräder erfolgen kann.
  • In der 3 sind schematisch die Schaltzustände des Hybridgetriebes 18 gemäß der 2 in einer Schaltmatrix 42 gezeigt.
  • In einer ersten Spalte der Schaltmatrix 42 sind die Hybridgangstufen H1 bis H4, eine Elektrogangstufe E1, zwei elektrodynamische Überlagerungszustände ECVT1, ECVT2 und der Zustand Laden-in-Neutral gezeigt. In der zweiten bis sechsten Spalte sind die Schaltzustände der Schaltelemente A bis E gezeigt, wobei ein „X“ bedeutet, dass das jeweilige Schaltelement geschlossen ist, also die zugeordneten Getriebebauteile antriebswirksam miteinander verbindet. Sofern kein Eintrag vorhanden ist, ist davon auszugehen, dass das entsprechende Schaltelement offen ist, also keine Antriebsleistung überträgt.
  • Zum Einrichten der ersten Hybridgangstufe H1 sind das erste Schaltelement A und das fünfte Schaltelement E zu schließen.
  • Eine erste Variante der zweiten Hybridgangstufe H2.1 kann durch Schließen des ersten Schaltelements A und des zweiten Schaltelements B eingerichtet werden.
  • Eine zweite Variante der zweiten Hybridgangstufe H2.2 kann durch Schließen des zweiten Schaltelements B und des fünften Schaltelements E eingerichtet werden.
  • Eine dritte Variante der zweiten Hybridgangstufe H2.3 kann durch Schließen des zweiten Schaltelements B und des dritten Schaltelements C eingerichtet werden.
  • Ein Schließen des dritten Schaltelements C und des fünften Schaltelements E richtet eine dritte Hybridgangstufe H3 ein.
  • Eine vierte Hybridgangstufe H4 kann durch Schließen des dritten Schaltelements C und des vierten Schaltelements D eingerichtet werden.
  • Eine Elektrogangstufe E1 wird durch Schließen des vierten Schaltelements D eingerichtet.
  • Ein erster elektrodynamischer Überlagerungszustand ECVT1 kann durch Schließen des ersten Schaltelements A eingerichtet werden.
  • Ein zweiter elektrodynamischer Überlagerungszustand ECVT2 kann durch Schließen des dritten Schaltelements C eingerichtet werden.
  • Ein Zustand Laden-in-Neutral LiN, bei dem die Verbrennungsmaschine 16 antriebswirksam mit der ersten elektrischen Antriebsmaschine 14 verbunden ist, kann durch Schließen des fünften Schaltelements E eingerichtet werden.
  • Zum verbrennungsmotorischen bzw. hybriden Fahren stehen vier mechanische Hauptfahrgänge zur Verfügung. Die dritte Hybridgangstufe H3 ist ein leistungsverzweigter Gang, bei dem der erste Planetenradsatz RS1 als Summationsgetriebe fungiert. In den übrigen Hybridgangstufen H1, H2 und H4 ist das nicht der Fall. Die erste Hybridgangstufe H1 wird über die zweite Stirnradstufe ST2 und die erste Stirnradstufe ST1 eingerichtet, wobei der erste Planetenradsatz RS1 verblockt ist. Die zweite Hybridgangstufe H2 wird über die zweite Stirnradstufe ST2 und die dritte Stirnradstufe ST3 erzeugt. Die vierte Hybridgangstufe H4 wird durch ein Verblocken des ersten Planetenradsatzes RS1 eingerichtet und überträgt folglich Antriebsleistung der zweiten Zwischenwelle 32 direkt an das Differential des Abtriebs 38. Die vierte Hybridgangstufe H4 kann folglich als Direktgang angesehen werden.
  • In der Elektrogangstufe E1 ist das vierte Schaltelement D geschlossen. Der erste Planetenradsatz RS1 ist folglich verblockt. Die Antriebsleistung der ersten elektrischen Antriebsmaschine 14 wird folglich durch eine Vorübersetzung der ersten elektrischen Antriebsmaschine 14 und eine Übersetzung des Abtriebsradsatzes, in dem gezeigten Beispiel des zweiten Planetenradsatzes RS2, übersetzt.
  • Ist das erste Schaltelement A geschlossen, entsteht ein EDA-Zustand ECVT1 am ersten Planetenradsatz RS1. Die Verbrennungsmaschine 16 ist dann mittels des dritten Stirnradpaars ST3 und des ersten Stirnradpaars ST1 mit dem Hohlrad des ersten Planetenradsatzes RS1 verbunden. Die erste elektrische Antriebsmaschine 14 stützt am Sonnenrad des ersten Planetenradsatzes RS1 das Drehmoment der Verbrennungsmaschine 16 ab, wobei der Planetenradträger des ersten Planetenradsatzes RS1 über den zweiten Planetenradsatz RS2 mit dem Abtrieb 38 verbunden ist. Hierdurch ist ein Anfahren mittels eines EDA-Modus vorwärts möglich. Aus dem ECVT1-Modus kann die Verbrennungsmaschine 16 in die Hybridgangstufen H1 und H2.2 gelangen, da in diesen Schaltzuständen das erste Schaltelement A geschlossen ist.
  • Ein weiterer EDA-Zustand, ECVT2, entsteht durch Schließen des dritten Schaltelements C. Die Verbrennungsmaschine 16 ist dann direkt mit dem Hohlrad des ersten Planetenradsatzes RS1 verbunden, wobei die erste elektrische Antriebsmaschine 14 am Sonnenrad des ersten Planetenradsatzes RS1 das Drehmoment der Verbrennungsmaschine 16 abstützt und der Planetenradträger des ersten Planetenradsatzes RS1 über den zweiten Planetenradsatz RS2 mit dem Abtrieb 38 verbunden ist. Hierdurch ist ein weiterer EDA-Zustand, der vorwärtsgerichtet ist, möglich. Aus dem ECVT2-Modus kann die Verbrennungsmaschine 16 in die Hybridgangstufen H2.3, H3 und H4 gelangen, weil das dritte Schaltelement C in diesen Schaltzuständen jeweils geschlossen ist.
  • Folgende EDS-Lastschaltungen sind möglich. Eine Schaltung von der ersten Gangstufe in die zweite Gangstufe kann elektrodynamisch durch die erste elektrische Antriebsmaschine 14 erfolgen, wobei das erste Schaltelement A geschlossen bleibt und von der ersten Hybridgangstufe H1 in die erste Variante der zweiten Hybridgangstufe H2.1 gewechselt wird.
  • Eine Schaltung von der zweiten in die dritte Gangstufe kann ebenfalls elektrodynamisch durch die erste elektrische Antriebsmaschine 14 erfolgen, wobei das dritte Schaltelement C geschlossen bleibt. Hierbei wird von der dritten Variante der zweiten Hybridgangstufe H2.3 in die dritte Hybridgangstufe H3 gewechselt.
  • Eine Schaltung von der dritten Gangstufe in die vierte Gangstufe ist ebenfalls elektrodynamisch durch die erste elektrische Antriebsmaschine 14 möglich, wobei das dritte Schaltelement C geschlossen bleibt. Hierbei wird von der dritten Hybridgangstufe H3 in die vierte Hybridgangstufe H4 gewechselt.
  • Der erste elektrodynamische Überlagerungszustand ECVT1 wird folglich zum Anfahren und für die Lastschaltung von der ersten Hybridgangstufe in die erste Variante der zweiten Hybridgangstufe H2.1 genutzt. Der zweite elektrodynamische Überlagerungszustand ECVT2 wird für die Lastschaltung von der dritten Variante der zweiten Hybridgangstufe H2.3 in die dritte Hybridgangstufe H3 und für die Schaltung der dritten Hybridgangstufe H3 in die vierte Hybridgangstufe H4 genutzt.
  • In der zweiten Gangstufe findet zum Weiterschalten eine Vorwahlschaltung von der ersten Variante der zweiten Hybridgangstufe H2.1 in die dritte Variante der zweiten Hybridgangstufe H2.3 statt. Die zweite Variante der zweiten Hybridgangstufe H2.2 wird als Fahrgangstufe verwendet, da in diesem Schaltzustand das bevorzugte Drehzahlniveau sowie ein hoher Wirkungsgrad für die erste elektrische Antriebsmaschine 14 erreicht wird.
  • Im Folgenden wird ein Schaltablauf einer Schaltung von der dritten Hybridgangstufe H3 in die vierte Hybridgangstufe H4 detailliert beschrieben. Im Ausgangszustand, also dem Schaltzustand der dritten Hybridgangstufe H3, sind das dritte Schaltelement C und das fünfte Schaltelement E geschlossen. Die Momente der Verbrennungsmaschine 16 und der ersten elektrischen Antriebsmaschine 14 werden so eingestellt, dass einerseits das gewünschte Abtriebsmoment bereitgestellt wird und andererseits das auszulegende fünfte Schaltelement E lastfrei wird. Sodann wird das fünfte Schaltelement E geöffnet. Die Momente der Verbrennungsmaschine 16 und der ersten elektrischen Antriebsmaschine 14 werden so eingestellt, dass einerseits das gewünschte Abtriebsmoment bereitgestellt wird und andererseits eine Drehzahl der Verbrennungsmaschine 16 absinkt. Wenn das einzulegende vierte Schaltelement D synchron wird, wird es geschlossen. Dadurch ist die vierte Hybridgangstufe H4 für die Verbrennungsmaschine 16 mechanisch geschaltet, also das dritte Schaltelement C und das vierte Schaltelement D geschlossen.
  • Rückschaltungen erfolgen analog zu Hochschaltungen, nur in umgekehrter Ablaufreihenfolge. Es versteht, dass auch Schubschaltungen möglich sind, da die erste elektrische Antriebsmaschine 14 auch Moment am ersten Planetenradsatz RS1 bremsend abstützen kann.
  • Ein Laden-in-Neutral bzw. ein Start der Verbrennungsmaschine 16 kann wie folgt erfolgen. Ist nur das fünfte Schaltelement E geschlossen, kann die erste elektrische Antriebsmaschine 14 mit der Verbrennungsmaschine 16 unabhängig vom Abtrieb 38 verbunden werden. Die erste elektrische Antriebsmaschine 14 und die Verbrennungsmaschine 16 drehen dann in einem festen Verhältnis zueinander. In diesem Zustand ist einerseits ein Start der Verbrennungsmaschine 16 mittels der ersten elektrischen Antriebsmaschine 14 möglich. Andererseits kann die erste elektrische Antriebsmaschine 14 von der Verbrennungsmaschine 16 als Generator betrieben werden und den elektrischen Energiespeicher 22 laden oder elektrische Verbraucher versorgen. Es versteht sich, dass ein Verbraucher auch eine elektrische Hinterachse mit einer zweiten elektrischen Antriebsmaschine 20 sein kann, die vorzugsweise an der nicht dem Hybridgetriebe 18 zugeordneten Fahrzeugachse angeordnet ist. Ein Übergang aus dem Zustand Laden-in-Neutral LiN ist in die erste Hybridgangstufe H1, die zweite Variante der zweiten Hybridgangstufe H2.2 und die dritte Hybridgangstufe H3 möglich, weil in diesen Schaltzuständen das fünfte Schaltelement E jeweils geschlossen ist.
  • Wird das Hybridgetriebe 18 mit einer elektrischen Achse kombiniert, sind die beiden elektrodynamischen Überlagerungszustände ECVT1, ECVT2 leistungsverzweigte ECVT-Fahrbereiche für die Verbrennungsmaschine 16, bei denen auch ein batterieneutraler Betrieb möglich ist.
  • Ferner kann seriell gefahren werden, wobei das Hybridgetriebe 18 in den Schaltzustand Laden-in-Neutral LiN versetzt wird und die Verbrennungsmaschine 16 die erste elektrische Antriebsmaschine 14 generatorisch betreibt. Die so erzeugte elektrische Energie kann der zweiten elektrischen Antriebsmaschine 20 zur Verfügung gestellt werden.
  • Ferner kann eine Zugkraftunterstützung mittels der zweiten elektrischen Antriebsmaschine 20 erfolgen. Die zweite elektrische Antriebsmaschine 20 kann die Zugkraft stützen, wenn im Hybridgetriebe 18 Umschaltungen notwendig sind, bei denen der Abtrieb 38 des Hybridgetriebes 18 lastfrei wird. Beispiele für solche Übergänge sind: Ein rein elektrisches Fahren mit der ersten elektrischen Antriebsmaschine 14 und/oder der zweiten elektrischen Antriebsmaschine 20, bei dem ein Start der Verbrennungsmaschine 16 mittels der ersten elektrischen Antriebsmaschine 14 erfolgen soll. Ein serielles Schalten, wobei bei einem geschlossenen fünften Schaltelement E ein beliebiger Wechsel zwischen der ersten Hybridgangstufe H1, der zweiten Variante der zweiten Hybridgangstufe H2.2 und der dritten Hybridgangstufe H3 erfolgt. Besonders vorteilhaft dabei ist, dass die erste elektrische Antriebsmaschine 14 unterbrechungsfrei generatorisch arbeiten kann und so sowohl das Bordnetz als auch die zweite elektrische Antriebsmaschine 20 mit elektrischer Leistung versorgen kann.
  • In 4 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes 18 gezeigt. Im Unterschied zu der in 2 gezeigten Ausführungsform sind Anbindungen des ersten Planetenradsatzes RS1 geändert, wobei die übrigen Anbindungen der Getriebewellen 24, 26, 28, 30, 32, 34 identisch bleiben. Die zweite Getriebeeingangswelle 26 ist in dem gezeigten Beispiel mit dem Sonnenrad des ersten Planetenradsatzes RS1 verbunden. Die erste Zwischenwelle 30 ist mit dem Hohlrad des ersten Planetenradsatzes RS1 verbunden. Die Anbindung der Abtriebswelle 28 an den Planetenradträger verläuft radial außen um den ersten Planetenradsatz RS1 herum.
  • In 5 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes gezeigt. Im Unterschied zu den in den 2 und 4 gezeigten Ausführungsformen sind die Anbindungen am ersten Planetenradsatz RS1 getauscht, wobei die zweite Getriebeeingangswelle 26 antriebswirksam mit dem Hohlrad des ersten Planetenradsatzes RS1 verbunden ist und die erste Zwischenwelle 30 antriebswirksam mit dem Sonnenrad des ersten Planetenradsatzes RS1 verbunden ist. Hierdurch ist die erste elektrische Antriebsmaschine 14 am Hohlrad des ersten Planetenradsatzes RS1 mit geringer Ausgleichsdrehzahl bei den elektrodynamischen Überlagerungszuständen, insbesondere den EDA-, EDS-Modi angebunden. Nachteilig hierbei ist, dass die erste elektrische Antriebsmaschine 14 am Hohlrad des ersten Planetenradsatzes RS1 ein hohes Stützmoment bei den EDA- und EDS-Modi aufbringen muss. Ferner kann der EDA-Modus weniger lang generatorisch betrieben werden, da mit zunehmender Fahrgeschwindigkeit der generatorische Betrieb früher verlassen wird als in einer Ausführungsform, in der die erste elektrische Antriebsmaschine 14 am Sonnenrad des ersten Planetenradsatzes RS1 angebunden ist.
  • In 6 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes 18 gezeigt. Im Unterschied zu der in 2 gezeigten Ausführungsform umfasst die erste Getriebeeingangswelle 24 eine Verbrennungsmaschinenkupplung K0. Es versteht sich, dass das Hybridgetriebe 18 prinzipiell auch ohne Verbrennungsmaschinenkupplung K0 betrieben werden kann. Aus funktionssicherheitstechnischen Gründen kann es jedoch vorteilhaft sein, eine Verbrennungsmaschinenkupplung K0 vorzusehen. In der in 6 gezeigten Ausführungsform ist die Verbrennungsmaschinenkupplung K0 als formschlüssiges Schaltelement ausgeführt.
  • In 7 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes 18 gezeigt. Im Unterschied zu der in 6 gezeigten Ausführungsform ist die Verbrennungsmaschinenkupplung KO als Reibkupplung ausgeführt. Hierdurch kann insbesondere ein sogenannter Schwungstart der Verbrennungsmaschine 16 erfolgen, bei der die Verbrennungsmaschinenkupplung K0 schlupfend betrieben wird und so die Verbrennungsmaschine 16 ankurbeln kann.
  • In 8 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes 18 gezeigt. Im Unterschied zu der in 2 gezeigten Ausführungsform ist das an der Vorgelegewelle 34 angeordnete Zahnrad des zweiten Stirnradpaars ST2 als Losrad ausgebildet und mittels des zweiten Schaltelements B antriebswirksam mit der Vorgelegewelle 34 verbindbar. Ferner umfasst das Hybridgetriebe 18 keine Hohlwelle 40 an der Vorgelegewelle 34. Die Zahnräder des ersten Stirnradpaars ST1 und des dritten Stirnradpaars ST3, die in der Ausführungsform gemäß der 2 an der Hohlwelle 40 angeordnet sind, sind als Festräder ausgebildet und der Vorgelegewelle 34 zugeordnet.
  • In 9 ist eine weitere Variante eines erfindungsgemäßen Hybridgetriebes 18 gezeigt. Im Unterschied zu der in 8 gezeigten Ausführungsform sind das Losrad und das Festrad des zweiten Stirnradpaars ST2 getauscht, sodass an der Vorgelegewelle 34 ausschließlich Festräder angeordnet sind. Das zweite Schaltelement B ist an der Abtriebswelle 28 angeordnet und dazu ausgebildet, das Losrad des zweiten Stirnradpaars ST2 antriebswirksam mit der Abtriebswelle 28 zu verbinden.
  • Es versteht sich, dass die Schaltzustände aller gezeigten Ausführungsformen von Hybridgetrieben 18 der Schaltmatrix 42 gemäß der 3 entnommen werden können.
  • Die Erfindung wurde anhand der Zeichnungen und der Beschreibung umfassend beschrieben und erklärt. Die Beschreibung und Erklärung sind als Beispiel und nicht einschränkend zu verstehen. Die Erfindung ist nicht auf die offenbarten Ausführungsformen beschränkt. Andere Ausführungsformen oder Variationen ergeben sich für den Fachmann bei der Verwendung der vorliegenden Erfindung sowie bei einer genauen Analyse der Zeichnungen, der Offenbarung und der nachfolgenden Patentansprüche.
  • In den Patentansprüchen schließen die Wörter „umfassen“ und „mit“ nicht das Vorhandensein weiterer Elemente oder Schritte aus. Der undefinierte Artikel „ein“ oder „eine“ schließt nicht das Vorhandensein einer Mehrzahl aus. Ein einzelnes Element oder eine einzelne Einheit kann die Funktionen mehrerer der in den Patentansprüchen genannten Einheiten ausführen. Die bloße Nennung einiger Maßnahmen in mehreren verschiedenen abhängigen Patentansprüchen ist nicht dahingehend zu verstehen, dass eine Kombination dieser Maßnahmen nicht ebenfalls vorteilhaft verwendet werden kann. Bezugszeichen in den Patentansprüchen sind nicht einschränkend zu verstehen. Ein Verfahren zum Betrieb eines Kraftfahrzeug-Antriebsstrangs 12 kann beispielsweise in Form eines Computerprogramms realisiert werden, das auf einem Steuergerät für den Kraftfahrzeug-Antriebsstrangs 12 ausgeführt wird. Ein Computerprogramm kann auf einem nichtflüchtigen Datenträger gespeichert/vertrieben werden, beispielsweise auf einem optischen Speicher oder auf einem Halbleiterlaufwerk (SSD). Ein Computerprogramm kann zusammen mit Hard-ware und/oder als Teil einer Hardware vertrieben werden, beispielsweise mittels des Internets oder mittels drahtgebundener oder drahtloser Kommunikationssysteme. Bezugszeichen in den Patentansprüchen sind nicht einschränkend zu verstehen.
  • Bezugszeichenliste
  • 10
    Kraftfahrzeug
    12
    Kraftfahrzeug-Antriebsstrang
    14
    erste elektrische Antriebsmaschine
    16
    Verbrennungsmaschine
    18
    Hybridgetriebe
    20
    zweite elektrische Antriebsmaschine
    22
    Energiespeicher
    24
    erste Getriebeeingangswelle
    26
    zweite Getriebeeingangswelle
    28
    Abtriebswelle
    30
    erste Zwischenwelle
    32
    zweite Zwischenwelle
    34
    Vorgelegewelle
    36
    Kurbelwelle
    38
    Abtrieb
    40
    Hohlwelle
    42
    Schaltmatrix
    A-E
    Schaltelemente
    K0
    Verbrennungsmaschinenkupplung
    RS1
    erster Planetenradsatz
    RS2
    zweiter Planetenradsatz
    ST1-ST3
    Stirnradpaare
    W0-W7
    ergänzende Bezeichnung für Getriebewellen
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102011005562 A1 [0006]

Claims (17)

  1. Hybridgetriebe (18) für einen Kraftfahrzeug-Antriebsstrang (12) eines Kraftfahrzeugs (10), mit: einer ersten Getriebeeingangswelle (24) zum Wirkverbinden des Hybridgetriebes mit einer Verbrennungsmaschine (16) des Kraftfahrzeugs; einer zweiten Getriebeeingangswelle (26) zum Wirkverbinden des Hybridgetriebes mit einer ersten elektrischen Antriebsmaschine (14) des Kraftfahrzeugs; einer ersten Zwischenwelle (30); einer zweiten Zwischenwelle (32), die antriebswirksam mit der ersten Getriebeeingangswelle verbunden ist; einer Abtriebswelle (28) zum Wirkverbinden des Hybridgetriebes mit einem Abtrieb (38); einem ersten Planetenradsatz (RS1), der mit der zweiten Getriebeeingangswelle, der ersten Zwischenwelle und der Abtriebswelle verbunden ist; einer Vorgelegewelle (34); in mehreren Radsatzebenen angeordneten Stirnradpaaren (ST1, ST2, ST3) umfassend ein erstes Stirnradpaar, ein zweites Stirnradpaar und ein drittes Stirnradpaar zum Bilden von Gangstufen; und mehreren Gangschaltvorrichtungen mit Schaltelementen (A, B, C, D, E) zum Einlegen der Gangstufen; wobei ein Zahnrad eines ersten Stirnradpaars (ST1) und ein Zahnrad eines dritten Stirnradpaars (ST3) antriebswirksam miteinander verbunden sind; und die zweite Zwischenwelle und ein weiteres Zahnrad des dritten Stirnradpaars antriebswirksam miteinander verbunden sind.
  2. Hybridgetriebe (18) nach Anspruch 1, wobei ein Differential des Abtriebs (38) eine Differentialwelle umfasst, die als Vollwelle ausgebildet ist und von den Getriebewellen (26, 28, 30, 32), insbesondere der Abtriebswelle (28), zumindest abschnittsweise umgeben ist, wobei eine axiale Länge der Differentialwelle größer ist als eine axiale Länge der Abtriebswelle und die Differentialwelle die Abtriebswelle vollständig durchdringt.
  3. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei das Hybridgetriebe einen zweiten Planetenradsatz (RS2) umfasst, der antriebswirksam mit der Abtriebswelle (28) und einem Differential des Abtriebs (38) verbunden ist, wobei vorzugsweise im zweiten Planetenradsatz ein Hohlrad festgesetzt ist, ein Planetenradträger mit dem Differential des Abtriebs und ein Sonnenrad mit der Abtriebswelle antriebwirksam verbunden ist.
  4. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei ein Planetenradträger des ersten Planetenradsatzes (RS1) mit der Abtriebswelle (28) verbunden ist; das Sonnenrad des Planetenradsatzes mit der zweiten Getriebeeingangswelle (26) verbunden ist und das Hohlrad des Planetenradsatzes mit der ersten Zwischenwelle (30) verbunden ist; oder das Hohlrad des Planetenradsatzes mit der zweiten Getriebeeingangswelle verbunden ist und das Sonnenrad des Planetenradsatzes mit der ersten Zwischenwelle verbunden ist.
  5. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei die zweite Getriebeeingangswelle (26), die erste Zwischenwelle (30), die zweite Zwischenwelle (32) und die Abtriebswelle (28) koaxial zueinander angeordnet sind; die erste Getriebeeingangswelle (24), die zweite Getriebeeingangswelle, die erste Zwischenwelle, die zweite Zwischenwelle und die Abtriebswelle als Hohlwellen ausgebildet sind; und die zweite Getriebeeingangswelle, die erste Zwischenwelle und die zweite Zwischenwelle die Abtriebswelle zumindest abschnittsweise umgeben.
  6. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei das Hybridgetriebe genau drei gangbildende Stirnradpaare (ST1, ST2, ST3) umfasst.
  7. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei die erste Getriebeeingangswelle (24) eine Verbrennungsmaschinenkupplung (K0) zum lösbaren antriebswirksamen Verbinden der ersten Getriebeeingangswelle mit der Verbrennungsmaschine (16) umfasst.
  8. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei an der Vorgelegewelle (34) ein Festrad des zweiten Stirnradpaars (ST2) angeordnet ist und das Zahnrad des ersten Stirnradpaars (ST1) und das Zahnrad des dritten Stirnradpaars (ST3) mittels einer an der Vorgelegewelle angeordneten Hohlwelle (40) antriebswirksam miteinander verbunden sind; an der Vorgelegewelle ein Losrad des zweiten Stirnradpaars angeordnet ist und das Zahnrad des ersten Stirnradpaars und das Zahnrad des dritten Stirnradpaars mittels der Vorgelegewelle antriebswirksam miteinander verbunden sind; oder an der Vorgelegewelle jeweils ein Festrad des ersten Stirnradpaars, des zweiten Stirnradpaars und des dritten Stirnradpaars angeordnet ist.
  9. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei ein erstes Schaltelement (A) dazu ausgebildet ist, das erste Stirnradpaar (ST1) antriebswirksam mit der ersten Zwischenwelle (30) zu verbinden; ein zweites Schaltelement (B) dazu ausgebildet ist, alle an der Vorgelegewelle (34) angeordneten Zahnräder antriebswirksam mit der Abtriebswelle (28) zu verbinden; ein drittes Schaltelement (C) dazu ausgebildet ist, die zweite Zwischenwelle (32) antriebswirksam mit der ersten Zwischenwelle (30) zu verbinden; ein viertes Schaltelement (D) dazu ausgebildet ist, den ersten Planetenradsatz (RS1) zu verblocken; und/oder ein fünftes Schaltelement (E) dazu ausgebildet ist, das erste Stirnradpaar antriebswirksam mit der zweiten Getriebeeingangswelle (26) zu verbinden.
  10. Hybridgetriebe (18) nach einem der vorstehenden Ansprüche, wobei die Schaltelemente (A, B, C, D, E) als formschlüssige Schaltelemente ausgebildet sind; und/oder wenigstens zwei der Schaltelemente als Doppelschaltelement ausgebildet sind und von einem doppeltwirkenden Aktor betätigbar sind.
  11. Kraftfahrzeug-Antriebsstrang (12) für ein Kraftfahrzeug (10), mit: einem Hybridgetriebe (18) nach einem der vorstehenden Ansprüche; einer Verbrennungsmaschine (16), die mit der ersten Getriebeeingangswelle (24) verbindbar ist; und einer ersten elektrischen Antriebsmaschine (14), die mit der zweiten Getriebeeingangswelle (26) antriebswirksam verbunden ist.
  12. Kraftfahrzeug-Antriebsstrang (12) nach Anspruch 11, wobei die erste elektrische Antriebsmaschine (14) als Startergenerator zum Starten der Verbrennungsmaschine (16) ansteuerbar ist; und/oder als Ladegenerator zum Laden eines Energiespeichers (22) ansteuerbar ist.
  13. Kraftfahrzeug-Antriebsstrang (12) nach Anspruch 11 oder 12, wobei ein Abtrieb (38) des Hybridgetriebes (18) mit einer ersten Kraftfahrzeugachse antriebswirksam verbindbar ist und eine zweite Kraftfahrzeugachse eine elektrische Achse mit einer zweiten elektrischen Antriebsmaschine (20) umfasst.
  14. Kraftfahrzeug-Antriebsstrang (12) nach Anspruch 13, wobei die erste elektrische Antriebsmaschine (14) als Generator zum Versorgen der zweiten elektrischen Antriebsmaschine (20) ansteuerbar ist, um einen seriellen Fahrmodus einzurichten.
  15. Verfahren zum Betrieb eines Kraftfahrzeug-Antriebsstrangs (12) nach einem der Ansprüche 11 bis 1314
  16. Verfahren nach Anspruch 15, wobei ein Zustand Laden-in-Neutral (LiN) einen vom Abtrieb entkoppelten Leistungsfluss zwischen der ersten elektrischen Antriebsmaschine (14) und der Verbrennungsmaschine (16) bewirkt und durch Einlegen eines fünften Schaltelements (E) eingerichtet wird; und aus dem Zustand Laden-in-Neutral in eine von wenigstens drei Hybridgangstufen jeweils durch Einlegen eines weiteren Schaltelements gewechselt wird.
  17. Kraftfahrzeug (10) mit: einem Kraftfahrzeug-Antriebsstrang (12) nach einem der Ansprüche 11 bis 14; und einem Energiespeicher (22) zum Speichern von Energie zum Versorgen der ersten elektrischen Antriebsmaschine (14) und/oder der zweiten elektrischen Antriebsmaschine (20).
DE102021205333.5A 2021-05-26 2021-05-26 Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen Pending DE102021205333A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102021205333.5A DE102021205333A1 (de) 2021-05-26 2021-05-26 Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen
PCT/EP2021/075555 WO2022248071A1 (de) 2021-05-26 2021-10-05 Hybridgetriebe, kraftfahrzeug-antriebsstrang, verfahren zu dessen betrieb und kraftfahrzeug damit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021205333.5A DE102021205333A1 (de) 2021-05-26 2021-05-26 Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen

Publications (1)

Publication Number Publication Date
DE102021205333A1 true DE102021205333A1 (de) 2022-12-01

Family

ID=83997001

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021205333.5A Pending DE102021205333A1 (de) 2021-05-26 2021-05-26 Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen

Country Status (1)

Country Link
DE (1) DE102021205333A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236603A2 (de) 2001-03-01 2002-09-04 Hitachi, Ltd. Antriebsvorrichtung zur Steuerung des Gangwechsels in einem Hybridfahrzeug
DE102008037408A1 (de) 2007-10-05 2009-04-16 Ford Global Technologies, LLC, Dearborn Fahrzeugkriechsteuerung für ein Hybrid-Elektrofahrzeug
DE102011005562A1 (de) 2011-03-15 2012-09-20 Zf Friedrichshafen Ag Schaltgetriebe eines Hybridantriebs für ein Kraftfahrzeug
DE102018008886A1 (de) 2018-11-12 2019-05-16 Daimler Ag Gruppengetriebevorrichtung mit einer Umschaltvorrichtung
DE102018116613A1 (de) 2018-07-10 2020-01-16 Voith Patent Gmbh Überlagerungsgetriebe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236603A2 (de) 2001-03-01 2002-09-04 Hitachi, Ltd. Antriebsvorrichtung zur Steuerung des Gangwechsels in einem Hybridfahrzeug
DE102008037408A1 (de) 2007-10-05 2009-04-16 Ford Global Technologies, LLC, Dearborn Fahrzeugkriechsteuerung für ein Hybrid-Elektrofahrzeug
DE102011005562A1 (de) 2011-03-15 2012-09-20 Zf Friedrichshafen Ag Schaltgetriebe eines Hybridantriebs für ein Kraftfahrzeug
DE102018116613A1 (de) 2018-07-10 2020-01-16 Voith Patent Gmbh Überlagerungsgetriebe
DE102018008886A1 (de) 2018-11-12 2019-05-16 Daimler Ag Gruppengetriebevorrichtung mit einer Umschaltvorrichtung

Similar Documents

Publication Publication Date Title
DE102021213660A1 (de) Kompaktes Hybridgetriebe in Mischbauweise
DE102021213669A1 (de) Schleppverlustarmes Hybridgetriebe in Mischbauweise
DE102021205344A1 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe
DE102021203414A1 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe
DE102020203803A1 (de) Hybridgetriebe mit elektrischer Zugkraftunterstützung
DE102021211237B4 (de) Dreigang-Hybridgetriebe in Planetenbauweise
DE102021211236B4 (de) Kompaktes Hybridgetriebe in Planetenbauweise
DE102021211238B4 (de) Mehrgängiges Hybridgetriebe in Planetenbauweise
DE102021206260B4 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe mit generatorischer Stützung
DE102021211239B4 (de) Dreigang-Hybridgetriebe
DE102021206520B4 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe mit einfachem Aufbau
DE102022201810B4 (de) Kompaktes Hybridgetriebe in Planetenbauweise, Kraftfahrzeug-Antriebsstrang sowie Verfahren
DE102021205333A1 (de) Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen
DE102021208101A1 (de) Hybrid-Antriebsstrang mit achsparallelen Antriebsmaschinen
DE102021209702A1 (de) Hybrid-Antriebsstrang in Mischbauweise
DE102021213652A1 (de) Viergang-Hybridgetriebe
DE102022201154A1 (de) Dreigang-Hybridgetriebe
DE102021205343A1 (de) Lastschaltbares Hybridgetriebe
DE102021213312A1 (de) Hybrid-Antriebsstrang in Mischbauweise
DE102021214535A1 (de) Elektromotorisch und elektrodynamisch schaltbares Hybridgetriebe
DE102021213667A1 (de) Viergang-Hybridgetriebe in Mischbauweise
DE102022201155A1 (de) Kompaktes Dreigang-Hybridgetriebe
DE102021206517A1 (de) Lastschaltbares 5-Gang-Hybridgetriebe
DE102021205930A1 (de) Lastschaltbares DHT-Hybridgetriebe
DE102022201151A1 (de) Kompaktes Hybridgetriebe

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: HENTRICH PATENT- & RECHTSANWALTSPARTNERSCHAFT , DE