DE102021124778A1 - Maschinensteuerung mithilfe einer prädiktiven karte - Google Patents

Maschinensteuerung mithilfe einer prädiktiven karte Download PDF

Info

Publication number
DE102021124778A1
DE102021124778A1 DE102021124778.0A DE102021124778A DE102021124778A1 DE 102021124778 A1 DE102021124778 A1 DE 102021124778A1 DE 102021124778 A DE102021124778 A DE 102021124778A DE 102021124778 A1 DE102021124778 A1 DE 102021124778A1
Authority
DE
Germany
Prior art keywords
map
predictive
agricultural
control
pest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021124778.0A
Other languages
English (en)
Inventor
Bhanu Kiran Palla
Nathan R. Vandike
Noel W. Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deere and Co
Original Assignee
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/066,887 external-priority patent/US20220110253A1/en
Priority claimed from US17/067,350 external-priority patent/US11946747B2/en
Application filed by Deere and Co filed Critical Deere and Co
Publication of DE102021124778A1 publication Critical patent/DE102021124778A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Es werden eine oder mehrere Informationskarten von einer landwirtschaftlichen Arbeitsmaschine erhalten. Die eine oder mehreren Informationskarten bilden einen oder mehrere landwirtschaftliche Merkmalswerte an verschiedenen geografischen Positionen eines Feldes ab. Ein In-situ-Sensor an der landwirtschaftlichen Arbeitsmaschine erfasst ein landwirtschaftliches Merkmal, während sich die landwirtschaftliche Arbeitsmaschine durch das Feld bewegt. Ein prädiktiver Kartengenerator erzeugt eine prädiktive Karte, die ein prädiktives landwirtschaftliches Merkmal an verschiedenen Positionen in dem Feld auf Grundlage einer Beziehung zwischen den Werten in der einen oder den mehreren Informationskarten und des landwirtschaftlichen Merkmals, das durch den In-situ-Sensor erfasst wird, vorhersagt. Die prädiktive Karte kann ausgegeben und in der automatisierten Maschinensteuerung verwendet werden.

Description

  • GEBIET DER BESCHREIBUNG
  • Die vorliegende Beschreibung bezieht sich auf landwirtschaftliche Maschinen, Forst-, Bau- und Rasenpflegemaschinen.
  • HINTERGRUND
  • Es gibt eine Vielzahl verschiedener Arten von landwirtschaftlichen Maschinen. Einige landwirtschaftliche Maschinen beinhalten Erntemaschinen, wie etwa Mähdrescher, Zuckerrohrerntemaschinen, Baumwollerntemaschinen, selbstfahrende Feldhäcksler und Schwader. Einige Erntemaschinen können mit verschiedenen Arten von Vorsätzen ausgestattet werden, um verschiedene Arten von Erntegut zu ernten.
  • Auf Feldern vorhandene Schädlinge haben eine Reihe von nachteiligen Auswirkungen auf den Erntevorgang. Wenn beispielsweise eine Erntemaschine auf einen von Schädlingen betroffenen Bereich in einem Feld trifft, kann die Maschinenleistung der Erntemaschine beeinträchtigt werden. Daher kann ein Bediener versuchen, die Steuerung der Erntemaschine zu modifizieren, wenn er während des Erntevorgangs auf einen von Schädlingen betroffenen Bereich trifft.
  • KURZDARSTELLUNG
  • Es werden eine oder mehrere Informationskarten von einer landwirtschaftlichen Arbeitsmaschine erhalten. Die eine oder mehreren Informationskarten bilden einen oder mehrere landwirtschaftliche Merkmalswerte an verschiedenen geografischen Positionen eines Feldes ab. Ein In-situ-Sensor an der landwirtschaftlichen Arbeitsmaschine erfasst ein landwirtschaftliches Merkmal, während sich die landwirtschaftliche Arbeitsmaschine durch das Feld bewegt. Ein prädiktiver Kartengenerator erzeugt eine prädiktive Karte, die ein prädiktives landwirtschaftliches Merkmal an verschiedenen Positionen in dem Feld auf Grundlage einer Beziehung zwischen den Werten in der einen oder den mehreren Informationskarten und des landwirtschaftlichen Merkmals, das durch den In-situ-Sensor erfasst wird, vorhersagt. Die prädiktive Karte kann ausgegeben und in der automatisierten Maschinensteuerung verwendet werden.
  • Figurenliste
    • 1 ist eine teilweise bildliche, teilweise schematische Darstellung für ein Beispiel eines Mähdreschers.
    • 2 ist ein Blockdiagramm, das einige Abschnitte einer landwirtschaftlichen Erntemaschine gemäß einiger Beispiele der vorliegenden Offenbarung detaillierter zeigt.
    • Die 3a-3b (hierin gemeinsam als 3 bezeichnet) zeigen ein Flussdiagramm, das ein Beispiel für den Betrieb einer landwirtschaftlichen Erntemaschine beim Erzeugen einer Karte veranschaulicht.
    • 4 ist ein Blockdiagramm, das ein Beispiel für einen prädiktiven Modellgenerator und einen prädiktiven Kartengenerator zeigt.
    • 5 ist ein Flussdiagramm, das ein Beispiel für einen Betrieb einer landwirtschaftlichen Erntemaschine beim Empfangen einer Informationskarte, Erkennen eines Schädlingsmerkmals und Erzeugen einer funktionellen prädiktiven Schädlingskarte zur Verwendung beim Steuern der landwirtschaftlichen Erntemaschine während eines Erntevorgangs zeigt.
    • 6A ist ein Blockdiagramm, das ein Beispiel für einen prädiktiven Modellgenerator und einen prädiktiven Kartengenerator zeigt.
    • 6B ist ein Blockdiagramm, das beispielhafte In-situ-Sensoren zeigt.
    • 7 zeigt ein Flussdiagramm, das ein Beispiel für den Betrieb einer landwirtschaftlichen Erntemaschine veranschaulicht, das das Erzeugen einer funktionellen prädiktiven Karte mithilfe einer Vorabinformationskarte und einer In-situ-Sensoreingabe beinhaltet.
    • 8 ist ein Blockdiagramm, das ein Beispiel für einen Steuerzonengenerator zeigt.
    • 9 ist ein Flussdiagramm, das ein Beispiel für den Betrieb des in 8 gezeigten Steuerzonengenerators veranschaulicht.
    • 10 veranschaulicht ein Flussdiagramm, das ein Beispiel für den Betrieb eines Steuersystems bei der Auswahl eines Zieleinstellungswerts zeigt, um eine landwirtschaftliche Erntemaschine zu steuern.
    • 11 ist ein Blockdiagramm, das ein Beispiel für eine Bedienerschnittstellensteuerung zeigt.
    • 12 ist ein Flussdiagramm, das ein Beispiel für eine Bedienerschnittstellensteuerung darstellt.
    • 13 ist eine bildliche Darstellung, die ein Beispiel für eine Bedienerschnittstellenanzeige zeigt.
    • 14 ist ein Blockdiagramm, das ein Beispiel für eine landwirtschaftliche Erntemaschine in Kommunikation mit einer Remote-Serverumgebung zeigt.
    • Die 15-17 zeigen Beispiele für mobile Vorrichtungen, die in einer landwirtschaftlichen Erntemaschine verwendet werden können.
    • 18 zeigt ein Blockdiagramm eines Beispiels einer Computerumgebung, die in einer landwirtschaftlichen Erntemaschine verwendet werden kann.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Für ein besseres Verständnis der Prinzipien der vorliegenden Offenbarung wird nun auf die in den Zeichnungen dargestellten Beispiele Bezug genommen, und es wird eine spezifische Sprache verwendet, um diese zu beschreiben. Es versteht sich jedoch, dass keine Einschränkung des Schutzumfangs der Offenbarung beabsichtigt ist. Jegliche Abänderungen und weiteren Modifikationen der beschriebenen Vorrichtungen, Systeme, Verfahren und jede weitere Anwendung der Prinzipien der vorliegenden Offenbarung werden vollständig in Betracht gezogen, wie sie normalerweise Fachleute auf dem Gebiet, auf das sich die Offenbarung bezieht, bemerken würden. Insbesondere wird vollständig in Betracht gezogen, dass die Merkmale, Komponenten und/oder Schritte, die in Bezug auf ein Beispiel beschrieben sind, mit den Merkmalen, Komponenten und/oder Schritten kombiniert werden können, die in Bezug auf andere Beispiele der vorliegenden Offenbarung beschrieben sind.
  • Die vorliegende Beschreibung bezieht sich auf die Verwendung von In-situ-Daten, die gleichzeitig mit einem landwirtschaftlichen Vorgang in Kombination mit vorherigen Daten aufgenommen wurden, um eine prädiktive Karte wie etwa eine prädiktive Schädlingskarte zu erzeugen. In einigen Beispielen kann die prädiktive Karte verwendet werden, um eine landwirtschaftliche Arbeitsmaschine, wie etwa eine landwirtschaftliche Erntemaschine, zu steuern. In einigen Beispielen kann die prädiktive Schädlingskarte verwendet werden, um eine zusätzliche prädiktive Karte zu erzeugen. Wie vorstehend erörtert, kann die Leistung einer landwirtschaftlichen Erntemaschine beeinträchtigt werden, wenn die landwirtschaftliche Erntemaschine in einen von Schädlingen betroffenen Bereich eintritt.
  • Die Leistung einer landwirtschaftlichen Erntemaschine kann aufgrund einer Reihe verschiedener Kriterien nachteilig beeinflusst werden. Beispielsweise kann die Intensität von Schädlingen in einem betroffenen Bereich schädliche Auswirkungen auf den Betrieb der landwirtschaftlichen Erntemaschine haben.
  • Schädlinge können Krankheitserreger wie bakterielle und virale Krankheiten, Pilze, Protozoenwürmer, Wirbeltiere wie Vögel, Rehe, Elche, Wildschweine, andere Säugetiere usw., wirbellose Tiere wie Nematoden, Würmer, Insekten usw. beinhalten. Verbreitete Schädlinge sind beispielsweise Armeewürmer im Mais, Hessenfliegen im Winterweizen, Maiszünsler, Fusarium in Bohnen, Aflatoxin in Erdnüssen. Beachten Sie, dass dies nur Beispiele sind und diese Schädlinge auch für andere Erntegüter relevant sein können.
  • Das Maß für die Schädlingsintensität kann ein binärer Wert (wie etwa Schädlingsanwesenheit oder Schädlingsabwesenheit) oder ein kontinuierlicher Wert (wie etwa ein Prozentsatz von Schädlingen in einem definierten Bereich oder Volumen) oder ein Satz diskreter Werte (wie etwa niedrige, mittlere oder hohe Schädlingsintensitätswerte) sein. Ebenso können verschiedene Arten von Schädlingen, denen eine landwirtschaftliche Erntemaschine begegnet, die landwirtschaftliche Erntemaschine unterschiedlich beeinflussen. Beispielsweise können verschiedene Schädlingsarten die physischen Strukturen von Pflanzen in der Nähe beeinflussen (z. B. dünnere Stiele, weniger breite Blätter usw.). Diese Variationen der Pflanzenstruktur können auch dazu führen, dass die Leistung der landwirtschaftlichen Erntemaschine variiert, wenn die landwirtschaftliche Erntemaschine mit Pflanzen in der Nähe solcher Schädlingen in Berührung kommt.
  • Eine vegetative Indexkarte bildet veranschaulichend vegetative Indexwerte, die auf vegetatives Wachstum hinweisen können, über verschiedene geografische Positionen in einem Feld von Interesse ab. Ein Beispiel eines vegetativen Index beinhaltet einen normalisierten Differenzvegetationsindex (NDVI). Es gibt viele andere vegetative Indizes und alle diese vegetativen Indizes liegen innerhalb des Umfangs der vorliegenden Offenbarung. In einigen Beispielen kann ein vegetativer Index aus Sensormesswerten eines oder mehrerer Bänder elektromagnetischer Strahlung abgeleitet werden, die von den Pflanzen reflektiert werden. Ohne Einschränkungen können diese Bänder im Mikrowellen-, Infrarot-, sichtbaren oder ultravioletten Teil des elektromagnetischen Spektrums liegen.
  • Eine vegetative Indexkarte kann somit verwendet werden, um das Vorhandensein und die Position der Vegetation zu identifizieren. In einigen Beispielen ermöglicht eine vegetative Indexkarte, dass Erntegut in Gegenwart von nacktem Boden, Erntegutrückständen oder anderen Pflanzen, einschließlich Erntegut oder Unkraut, identifiziert und georeferenziert wird. Zum Beispiel kann der vegetative Index zu Beginn einer Vegetationsperiode, wenn sich ein Erntegut in einem Wachstumszustand befindet, den Fortschritt der Entwicklung des Ernteguts anzeigen. Wenn daher eine vegetative Indexkarte zu Beginn der Wachstumsperiode oder in der Mitte der Wachstumsperiode erstellt wird, kann die vegetative Indexkarte den Fortschritt der Entwicklung der Erntegutpflanzen anzeigen. Zum Beispiel kann die vegetative Indexkarte angeben, ob die Pflanze unterentwickelt ist, ob ein ausreichender Bewuchs aufgebaut wurde oder ob andere Pflanzenattribute auf die Pflanzenentwicklung hinweisen.
  • Scoutingkarten können automatisch von einem landwirtschaftlichen Scoutingroboter oder manuell von einer oder mehreren Personen erzeugt werden. Zum Beispiel kann ein Scoutingroboter in einem Feld während einer Vegetationsperiode entlang der Erntegutreihen ohne signifikante Auswirkungen auf die wachsenden Pflanzen navigieren. Der Roboter kann unter anderem beschädigte Erntegutpflanzen, kranke Pflanzen, Anzeichen von Tieren, Tierpräsenz, gefressenes Erntegut, entwurzelte Pflanzen, die Anzahl der Hülsen, Maiskolben, Köpfe usw. erfassen.
  • Tieraktivitätskarten können automatisch oder manuell von einer oder mehreren Personen erstellt werden. Zum Beispiel kann eine Tieraktivitätskarte durch eine Kamera erzeugt werden, die das Feld überwacht und in der Lage ist, Tierbewegungen über das Feld zu erkennen. Oder zum Beispiel kann eine Person manuell Positionen identifizieren, an denen sie tierische Aktivitäten entdeckt hat. Einige beispielhafte Tiere beinhalten Wildschweine, Vögel, Waschbären, Rehe, Elche usw. Die Positionen, an denen Tiere erkannt werden, können auf der Karte aufgetragen werden. Diese Positionen können auch für die Zeit, in der die Tiere gesichtet wurden, zeitlich referenziert werden. Dies kann beispielsweise nützlich sein, da Tiere in frühen Wachstumsstadien Erntegutpflanzen vollständig entwurzeln können und eine gewisse Tierpräsenz in späteren Wachstumsstadien hat weniger Auswirkungen auf die Erntegutpflanzen. In einigen Fällen können Tiere minimalen Schaden an einer Ernte im späten Stadium verursachen, aber den Getreideertrag der gegebenen Pflanze umfassend verschlechtern (z. B. Rehe, die Maiskolben fressen). Die Zeitreferenz kann auch aggregiert werden, um Hotspots tierischer Aktivitäten in einem Feld im Laufe der Zeit zu identifizieren. Dies kann beispielsweise deshalb nützlich sein, weil ein Tier wahrscheinlichen Schaden an Erntegut verursacht, je länger es sich an einer bestimmten Stelle im Feld aufhält.
  • Historische Schädlingskarten zeigen veranschaulichend frühere Positionen von Schädlingen aus vergangenen Jahren oder der aktuellen Wachstumsperiode. Historische Schädlingskarten können basierend auf den Berichten des Bedieners vom letzten Jahr manuell erstellt werden. Beispielsweise kann, wenn der Bediener Schädlinge oder von Schädlingen betroffene Bereiche in einem Feld beobachtet, eine Schnittstelle bereitgestellt werden, die es dem Bediener ermöglicht, diese geografischen Positionen als solche zu markieren, die Schädlinge enthalten oder von Schädlingen betroffen sind. In anderen Beispielen kann die historische Schädlingskarte durch Erkundung, Modellierung oder auf andere Weise aus Daten erzeugt werden, die in der aktuellen Wachstumsperiode zuvor erfasst wurden.
  • Eine optische Merkmalkarte bildet veranschaulichend elektromagnetische Strahlungswerte an verschiedenen geografischen Positionen in einem Feld von Interesse ab. Elektromagnetische Strahlungswerte können aus dem gesamten elektromagnetischen Spektrum stammen. Diese Offenbarung verwendet nur Beispiele für elektromagnetische Strahlungswerte von Infrarotlicht, sichtbarem Licht und ultravioletten Teilen des elektromagnetischen Spektrums, andere Teile des Spektrums sind ebenfalls vorgesehen. Eine optische Merkmalkarte kann Datenpunkte nach Wellenlänge abbilden (z. B. einen vorstehend beschriebenen vegetativen Index). In anderen Beispielen identifiziert eine optische Merkmalkarte Texturen, Muster, Farbe, Form oder andere Beziehungen von Datenpunkten. Texturen, Muster oder andere Beziehungen von Datenpunkten können indikativ für das Vorhandensein oder die Identifizierung eines Objekts auf dem Feld sein, wie etwa den Erntezustand (z. B. umgeknicktes/festgesetztes oder stehendes Erntegut), das Vorhandensein von Pflanzen, den Pflanzentyp, das Vorhandensein von Tieren, das Vorhandensein von Insekten, die Insektenart, die Säugetierart, die Vogelart usw. Beispielsweise kann die Pflanzenart durch ein bestimmtes Blattmuster identifiziert werden, das zur Identifizierung der Pflanze verwendet werden kann. Oder es kann beispielsweise eine Insektensilhouette oder ein Bissmuster in einem Blatt verwendet werden, um das Insekt zu identifizieren. Oder zum Beispiel kann eine Krankheit auf Pflanzen entdeckt werden.
  • Die vorliegende Erörterung fährt somit in Bezug auf Systeme fort, die eine Vorabinformationskarte eines Feldes oder eine Karte empfangen, die während eines Vorabbetriebs erzeugt wurde, und auch einen In-situ-Sensor verwenden, um eine Variable zu erkennen, die ein oder mehrere landwirtschaftliche Merkmale angibt. Die Systeme erzeugen ein Modell, das eine Beziehung zwischen den Werten auf der Vorabinformationskarte und den Ausgabewerten von dem In-situ-Sensor modelliert. Das Modell wird verwendet, um eine funktionelle prädiktive Karte zu erzeugen, die landwirtschaftliche Merkmale an verschiedenen Positionen in dem Feld vorhersagt. Die funktionelle prädiktive Karte, die während des Erntevorgangs erzeugt wird, kann einem Bediener oder einem anderen Benutzer dargestellt werden oder zum automatischen Steuern einer landwirtschaftlichen Erntemaschine während des Erntevorgangs verwendet werden oder beides. Die funktionelle prädiktive Karte kann verwendet werden, um die landwirtschaftliche Erntemaschine zu steuern.
  • 1 ist eine teilweise bildliche, teilweise schematische Veranschaulichung einer selbstfahrenden landwirtschaftlichen Erntemaschine 100. Im veranschaulichten Beispiel ist die landwirtschaftliche Erntemaschine 100 ein Mähdrescher. Obwohl ferner Mähdrescher als Beispiele in der gesamten vorliegenden Offenbarung bereitgestellt werden, versteht es sich, dass die vorliegende Beschreibung auch auf andere Arten von Erntemaschinen anwendbar ist, wie etwa Baumwollerntemaschinen, Zuckerrohrerntemaschinen, selbstfahrende Feldhäcksler, Schwader oder andere landwirtschaftliche Arbeitsmaschinen. Folglich soll die vorliegende Offenbarung die verschiedenen Arten von beschriebenen Erntemaschinen umfassen und ist somit nicht auf Mähdrescher beschränkt. Darüber hinaus richtet sich die vorliegende Offenbarung auf andere Arten von Arbeitsmaschinen, wie etwa landwirtschaftliche Sämaschinen und Sprüher, Baumaschinen, Forstmaschinen und Rasenpflegemaschinen, bei denen die Erzeugung einer prädiktiven Karte anwendbar sein kann. Folglich soll die vorliegende Offenbarung diese verschiedenen Arten von Erntemaschinen und andere Arbeitsmaschinen umfassen und ist somit nicht auf Mähdrescher beschränkt.
  • Wie in 1 gezeigt, beinhaltet die landwirtschaftliche Erntemaschine 100 veranschaulichend eine Bedienerkabine 101, die eine Vielzahl von verschiedenen Bedienerschnittstellenmechanismen zum Steuern der landwirtschaftlichen Erntemaschine 100 aufweisen kann. Die landwirtschaftliche Erntemaschine 100 beinhaltet Vorsatzgeräte, wie etwa einen Erntevorsatz 102 und eine Schneidevorrichtung, im Allgemeinen angezeigt bei 104. Im veranschaulichten Beispiel ist die Schneidvorrichtung 104 an dem Erntevorsatz 102 enthalten. Die landwirtschaftliche Erntemaschine 100 beinhaltet auch ein Zuführgehäuse 106, einen Zuführbeschleuniger 108 und einen Drescher, im Allgemeinen angezeigt bei 110. Das Zuführgehäuse 106 und der Zuführbeschleuniger 108 bilden einen Teil eines Materialhandhabungs-Teilsystems 125. Der Erntevorsatz 102 ist entlang der Schwenkachse 105 schwenkbar mit einem Rahmen 103 des landwirtschaftlichen Erntevorsatzes 100 gekoppelt. Ein oder mehrere Stellglieder 107 treiben die Bewegung des Erntevorsatzes 102 um die Achse 105 in die Richtung an, die im Allgemeinen durch Pfeil 109 angezeigt wird. Somit ist eine vertikale Position des Erntevorsatzes 102 (die Erntevorsatzhöhe) über dem Boden 111, über den der Erntevorsatz 102 fährt, durch Betätigen des Stellglieds 107 steuerbar. Obwohl in 1 nicht gezeigt, kann die landwirtschaftliche Erntemaschine 100 auch ein oder mehrere Stellglieder beinhalten, die betrieben werden, um einen Neigungswinkel, einen Rollwinkel oder beides auf den Erntevorsatz 102 oder Abschnitte des Erntevorsatzes 102 anzuwenden. Neigung bezieht sich auf einen Winkel, in dem die Schneidvorrichtung 104 in das Erntegut eingreift. Der Neigungswinkel wird beispielsweise dadurch vergrößert, dass der Erntevorsatz 102 so gesteuert wird, dass eine distale Kante 113 der Schneidevorrichtung 104 mehr auf den Boden gerichtet ist. Der Neigungswinkel wird verringert, indem der Erntevorsatz 102 so gesteuert wird, dass die distale Kante 113 der Schneidevorrichtung 104 weiter vom Boden weg gerichtet wird. Der Rollwinkel bezieht sich auf die Ausrichtung des Erntevorsatzes 102 um die von vorne nach hinten verlaufende Längsachse der landwirtschaftlichen Erntemaschine 100.
  • Der Drescher 110 beinhaltet veranschaulichend einen Dreschrotor 112 und einen Satz von Dreschkörben 114. Ferner beinhaltet die landwirtschaftliche Erntemaschine 100 auch einen Abscheider 116. Die landwirtschaftliche Erntemaschine 100 beinhaltet auch ein Reinigungs-Teilsystem oder einen Siebkasten (gemeinsam als Reinigungs-Teilsystem 118 bezeichnet), das ein Reinigungsgebläse 120, einen Häcksler 122 und ein Sieb 124 beinhaltet. Das Materialhandhabungs-Teilsystem 125 beinhaltet außerdem eine Auswurftrommel 126, einen Überkehrelevator 128, einen Reinkornelevator 130 sowie eine Entladeschnecke 134 und den Auswurf 136. Der Reinkornelevator befördert reines Korn in den Reinkorntank 132. Die landwirtschaftliche Erntemaschine 100 beinhaltet auch ein Rückstands-Teilsystem 138, das einen Häcksler 140 und einen Verteiler 142 beinhalten kann. Die landwirtschaftliche Erntemaschine 100 beinhaltet auch ein Antriebs-Teilsystem, das einen Motor beinhaltet, der Bodeneingriffskomponenten 144, wie etwa Räder oder Raupenketten, antreibt. In einigen Beispielen kann ein Mähdrescher innerhalb des Umfangs der vorliegenden Offenbarung mehr als eines der oben genannten Teilsysteme aufweisen. In einigen Beispielen kann die landwirtschaftliche Erntemaschine 100 linke und rechte Reinigungs-Teilsysteme, Abscheider usw. aufweisen, die in 1 nicht gezeigt sind.
  • Im Betrieb und zur Übersicht bewegt sich die landwirtschaftliche Erntemaschine 100 veranschaulichend durch ein Feld in der durch Pfeil 147 angezeigten Richtung. Während der Bewegung der landwirtschaftlichen Erntemaschine 100 greift der Erntevorsatz 102 (und die zugehörige Haspel 164) in das zu erntende Erntegut ein und sammelt das Erntegut in Richtung der Schneidevorrichtung 104. Ein Bediener der landwirtschaftlichen Erntemaschine 100 kann ein lokaler menschlicher Bediener, ein entfernter menschlicher Bediener oder ein automatisiertes System sein. Ein Bedienerbefehl ist ein Befehl eines Bedieners. Der Bediener der landwirtschaftlichen Erntemaschine 100 kann eine oder mehrere Höheneinstellungen, Neigungswinkeleinstellungen oder Rollwinkeleinstellungen für den Erntevorsatz 102 bestimmen. Zum Beispiel gibt der Bediener eine Einstellung oder Einstellungen in ein Steuersystem ein, das im Folgenden genauer beschrieben wird und das das Stellglied 107 steuert. Das Steuersystem kann auch eine Einstellung vom Bediener zum Einrichten des Neigungswinkels und Rollwinkels des Erntevorsatzes 102 empfangen und die eingegebenen Einstellungen implementieren, indem zugeordnete Stellglieder, die nicht gezeigt sind, gesteuert werden, die arbeiten, um den Neigungswinkel und Rollwinkel des Erntevorsatzes 102 zu ändern. Das Stellglied 107 hält den Erntevorsatz 102 auf einer Höhe über dem Boden 111 auf Grundlage einer Höheneinstellung und gegebenenfalls auf gewünschten Neigungs- und Rollwinkeln. Jede der Höhen-, Roll- und Neigungseinstellungen kann unabhängig von den anderen implementiert werden. Das Steuersystem reagiert auf Erntevorsatzfehler (z. B. die Differenz zwischen der Höheneinstellung und der gemessenen Höhe des Erntevorsatzes 104 über dem Boden 111 und in einigen Beispielen Neigungswinkel- und Rollwinkelfehler) mit einer Reaktionsfähigkeit, die auf Grundlage einer ausgewählten Empfindlichkeitsstufe bestimmt wird. Wenn die Empfindlichkeitsstufe auf eine größere Empfindlichkeitsstufe eingestellt ist, reagiert das Steuersystem auf kleinere Erntevorsatz-Positionsfehler und versucht, die erkannten Fehler schneller zu reduzieren, als wenn die Empfindlichkeit auf einer niedrigeren Empfindlichkeitsstufe ist.
  • Zurückkehrend zur Beschreibung des Betriebs der landwirtschaftlichen Erntemaschine 100 wird das abgetrennte Erntegutmaterial, nachdem das Erntegut durch die Schneidevorrichtung 104 geschnitten wurde, durch einen Förderer im Zuführgehäuse 106 in Richtung des Zuführbeschleunigers 108 bewegt, der das Erntegutmaterial in den Drescher 110 beschleunigt. Das Erntegut wird durch den Rotor 112 gedroschen, der das Erntegut gegen die Dreschkörbe 114 dreht. Das gedroschene Erntegutmaterial wird durch einen Abscheiderrotor im Abscheider 116 bewegt, wobei ein Teil des Rückstands durch die Auswurftrommel 126 in Richtung des Rückstands-Teilsystems 138 bewegt wird. Der Teil des Rückstands, der an das Rückstands-Teilsystem 138 übertragen wird, wird vom Rückstandhäcksler 140 zerkleinert und vom Verteiler 142 auf dem Feld verteilt. In anderen Konfigurationen wird der Rückstand in einer Schwade von der landwirtschaftlichen Erntemaschine 100 freigegeben. In anderen Beispielen kann das Rückstands-Teilsystem 138 Unkrautbeseitigungsmittel (nicht gezeigt) beinhalten, wie etwa Samenabsackanlagen oder andere Samensammler oder Samenzerkleinerer oder andere Saatzerstörer.
  • Das Korn fällt auf das Reinigungs-Teilsystem 118. Der Häcksler 122 trennt einen Teil gröberer Materialstücke vom Korn und das Sieb 124 trennt einen Teil feinerer Materialstücke vom Reinkorn. Das Reinkorn fällt auf eine Schnecke, die das Korn zu einem Einlassende des Reinkornelevators 130 bewegt und der Reinkornelevator 130 bewegt das Reinkorn nach oben, wodurch das Reinkorn im Reinkorntank 132 abgeschieden wird. Rückstände werden aus dem Reinigungs-Teilsystem 118 durch den Luftstrom des Reinigungsgebläses 120 entfernt. Das Reinigungsgebläse 120 leitet Luft entlang eines Luftstrompfads nach oben durch die Siebe und Häcksler. Der Luftstrom trägt Rückstände in der landwirtschaftlichen Erntemaschine 100 nach hinten in Richtung des Rückstandhandhabungs-Teilsystems 138.
  • Der Überkehrelevator 128 führt die Überkehr zum Drescher 110 zurück, wo die Überkehr erneut gedroschen wird. Alternativ kann die Überkehr auch einem separaten Nachdresch-Mechanismus durch einen Überkehrelevator oder eine andere Transportvorrichtung zugeführt werden, wo die Überkehr ebenfalls nachgedroschen wird.
  • 1 zeigt auch, dass in einem Beispiel die landwirtschaftliche Erntemaschine 100 den Maschinengeschwindigkeitssensor 146, einen oder mehrere Abscheider-Verlustsensoren 148, eine Reinkornkamera 150, einen nach vorne gerichteten Bilderfassungsmechanismus 151, der in Form einer Stereo- oder Monokamera vorliegen kann, und einen oder mehrere Verlustsensoren 152, die in dem Reinigungs-Teilsystem 118 bereitgestellt sind, beinhaltet.
  • Der Maschinengeschwindigkeitssensor 146 erfasst die Fahrgeschwindigkeit der landwirtschaftlichen Erntemaschine 100 über den Boden. Der Maschinengeschwindigkeitssensor 146 kann die Fahrgeschwindigkeit der landwirtschaftlichen Erntemaschine 100 durch Erfassen der Umdrehungsgeschwindigkeit der Bodeneingriffskomponenten (wie etwa Räder oder Raupenketten), einer Antriebswelle, einer Achse oder anderer Komponenten erfassen. In einigen Fällen kann die Fahrgeschwindigkeit mithilfe eines Ortungssystems, wie etwa eines globalen Positionierungssystems (GPS), eines Koppelnavigationssystems, eines Fernnavigationssystems (LORAN) oder einer Vielzahl anderer Systeme oder Sensoren, die eine Anzeige der Fahrgeschwindigkeit vorsehen, erfasst werden.
  • Die Verlustsensoren 152 stellen veranschaulichend ein Ausgabesignal bereit, das die Menge des Kornverlustes anzeigt, die sowohl auf der rechten als auch auf der linken Seite des Reinigungs-Teilsystems 118 auftritt. In einigen Beispielen sind die Sensoren 152 Schlagsensoren, die Kornschläge pro Zeiteinheit oder pro Entfernungseinheit zählen, um einen Hinweis auf den Kornverlust vorzusehen, der an dem Reinigungs-Teilsystem 118 auftritt. Die Schlagsensoren für die rechte und linke Seite des Siebkastens 118 können einzelne Signale oder ein kombiniertes oder aggregiertes Signal vorsehen. In einigen Beispielen können die Sensoren 152 einen einzelnen Sensor beinhalten, im Gegensatz zu separaten Sensoren, die für jedes Reinigungs-Teilsystem 118 bereitgestellt sind.
  • Der Abscheider-Verlustsensor 148 stellt ein Signal bereit, das den Kornverlust im linken und rechten Abscheider anzeigt, in 1 nicht separat gezeigt. Die Abscheider-Verlustsensoren 148 können den linken und rechten Abscheidern zugeordnet sein und können separate Kornverlustsignale oder ein kombiniertes oder aggregiertes Signal vorsehen. In einigen Fällen kann das Erfassen des Kornverlusts in den Abscheidern auch mithilfe einer Vielzahl verschiedener Arten von Sensoren durchgeführt werden.
  • Die landwirtschaftliche Erntemaschine 100 kann auch andere Sensoren und Messmechanismen beinhalten. Die landwirtschaftliche Erntemaschine 100 kann beispielsweise einen oder mehrere der folgenden Sensoren beinhalten: einen Erntevorsatzhöhensensor, der eine Höhe des Erntevorsatzes 102 über dem Boden 111 erfasst; Stabilitätssensoren, die eine Oszillations- oder Prellbewegung (und Amplitude) der landwirtschaftlichen Erntemaschine 100 erfassen; einen Rückstandeinstellungssensor, der konfiguriert ist, um zu erfassen, ob die landwirtschaftliche Erntemaschine 100 konfiguriert ist, den Rückstand zu zerkleinern, eine Schwade zu erzeugen usw.; einen Siebkasten-Gebläsedrehzahlsensor, um die Drehzahl des Gebläses 120 zu erfassen; einen Dreschkorbspaltensensor, der den Spalt zwischen dem Rotor 112 und den Dreschkörben 114 erfasst; einen Dreschrotor-Drehzahlsensor, der eine Rotordrehzahl des Rotors 112 erfasst; einen Häckselspaltensensor, der die Größe der Öffnungen im Häcksler 122 erfasst; einen Siebspaltensensor, der die Größe der Öffnungen im Sieb 124 erfasst; einen Feuchtigkeitssensor für anderes Material als Korn (MOG), der einen Feuchtigkeitsgehalt des MOG erfasst, das die landwirtschaftliche Erntemaschine 100 passiert; einen oder mehrere Maschineneinstellsensoren, die konfiguriert sind, um verschiedene konfigurierbare Einstellungen der landwirtschaftlichen Erntemaschine 100 zu erfassen; einen Maschinenausrichtungssensor, der die Ausrichtung der landwirtschaftlichen Erntemaschine 100 erfasst; und Ernteguteigenschaftssensoren, die eine Vielzahl verschiedener Arten von Ernteguteigenschaften erfassen, wie etwa die Art des Ernteguts, die Feuchtigkeit des Ernteguts und andere Eigenschaften des Ernteguts. Die Ernteguteigenschaftssensoren können auch konfiguriert werden, um die Merkmale des abgetrennten Ernteguts während der Verarbeitung durch die landwirtschaftliche Erntemaschine 100 zu erfassen. Beispielsweise können die Ernteguteigenschaftssensoren in einigen Fällen die Kornqualität erfassen, wie etwa gebrochenes Korn, MOG-Werte; Kornbestandteile, wie etwa Stärken und Protein; und Kornzufuhrmenge, wenn sich das Korn durch das Zuführgehäuse 106, den Reinkornelevator 130 oder anderswo in der landwirtschaftlichen Erntemaschine 100 bewegt. Die Ernteguteigenschaftssensoren können auch die Vorschubgeschwindigkeit von Biomasse durch das Zuführgehäuse 106, durch den Abscheider 116 oder an anderer Stelle in der landwirtschaftlichen Erntemaschine 100 erfassen. Die Ernteguteigenschaftssensoren können die Vorschubgeschwindigkeit auch als Massendurchsatz von Korn durch den Elevator 130 oder durch andere Abschnitte der landwirtschaftlichen Erntemaschine 100 erfassen oder andere Ausgangssignale bereitstellen, die auf andere erfasste Größen hinweisen. Die Ernteguteigenschaftssensoren können einen oder mehrere Ertragssensoren beinhalten, die den Erntegutertrag erfassen, der von der landwirtschaftlichen Erntemaschine geerntet wird.
  • Der/die Ertragssensor(en) kann/können einen Kornflusssensor beinhalten, der einen Fluss von Erntegut, wie etwa Korn, im Materialhandhabungs-Teilsystem 125 oder anderen Abschnitten der landwirtschaftlichen Erntemaschine 100 erkennt. Beispielsweise kann ein Ertragssensor einen Gammastrahlendämpfungssensor beinhalten, der die Durchflussrate des geernteten Korns misst oder eine andere Art von Strahlungssensor, der ein Strahlungsmerkmal nutzt, um den Ertrag zu bestimmen. In einem weiteren Beispiel beinhaltet ein Ertragssensor einen Prallplattensensor, der den Aufprall von Korn auf eine Sensorplatte oder Oberfläche erfasst, um den Massendurchsatz des geernteten Korns zu messen. In einem weiteren Beispiel beinhaltet ein Ertragssensor eine oder mehrere Wägezellen, die eine Last oder Masse von geerntetem Korn messen oder erkennen. Beispielsweise können sich eine oder mehrere Wägezellen an einem Boden des Korntanks 132 befinden, wobei Änderungen des Gewichts oder der Masse des Korns innerhalb des Korntanks 132 während eines Messintervalls den Gesamtertrag anzeigen. Das Messintervall kann zur Mittelwertbildung verlängert oder für momentane Messungen verringert werden. In einem weiteren Beispiel beinhaltet ein Ertragssensor Kameras oder optische Erfassungsvorrichtungen, die die Größe oder Form einer aggregierten Masse von geerntetem Korn erkennen, wie etwa die Form des Hügels oder die Höhe eines Hügels von Korn in dem Korntank 132. Die Änderung der Form oder Höhe des Hügels während des Messintervalls gibt einen Gesamtertrag während des Messintervalls an. In anderen Beispielen werden andere Ertragserfassungstechnologien verwendet. Beispielsweise beinhaltet ein Ertragssensor in einem Beispiel zwei oder mehrere der oben beschriebenen Sensoren, und den Ertrag für ein Messintervall wird aus Signalen bestimmt, die von jedem der mehreren verschiedenen Arten von Sensoren ausgegeben werden. Zum Beispiel wird der Ertrag auf der Grundlage von Signalen von einem Gammastrahlendämpfungssensor, einem Aufprallplattensensor, Wägezellen im Korntank 132 und optischen Sensoren entlang des Korntanks 132 bestimmt.
  • Bevor beschrieben wird, wie die landwirtschaftliche Erntemaschine 100 eine funktionelle prädiktive Schädlingskarte erzeugt und die funktionelle prädiktive Schädlingskarte zur Steuerung oder weiteren Verarbeitung verwendet, erfolgt zunächst eine kurze Beschreibung einiger Elemente der landwirtschaftlichen Erntemaschine 100 und deren Betrieb. Die Beschreibung der 2 und 3 beschreibt das Empfangen einer allgemeinen Art von Vorabinformationskarte und das Kombinieren von Informationen von der Vorabinformationskarte mit einem georeferenzierten Sensorsignal, das von einem In-situ-Sensor erzeugt wird, wobei das Sensorsignal ein Merkmal auf dem Feld angibt, wie etwa Merkmale von Schädlingen, die auf dem Feld vorhanden sind. Merkmale des Feldes können unter anderem Merkmale eines Feldes, wie Neigung, Schädlingsintensität, Schädlingsart, Bodenfeuchtigkeit, Oberflächenqualität; Merkmale von Ernteguteigenschaften, wie Ernteguthöhe, Erntegutfeuchtigkeit, Erntegutdichte, Erntegutzustand; Merkmale von Korneigenschaften, wie Kornfeuchte, Korngröße, Korntestgewicht; und Merkmale der Maschinenleistung, wie etwa Verlustniveaus, Auftragsqualität, Kraftstoffverbrauch und Leistungsverbrauch, sein. Es wird eine Beziehung zwischen den aus In-situ-Sensorsignalen erhaltenen Merkmalswerten und den Vorabinformationskartenwerten identifiziert und diese Beziehung wird zur Erzeugung einer neuen funktionellen prädiktiven Karte verwendet. Eine funktionelle prädiktive Karte sagt Werte an verschiedenen geografischen Positionen in einem Feld vorher, und einer oder mehrere dieser Werte können zum Steuern einer Maschine verwendet werden, wie etwa ein oder mehrere Teilsysteme einer landwirtschaftlichen Erntemaschine. In einigen Fällen kann eine funktionelle prädiktive Karte einem Benutzer präsentiert werden, wie etwa einem Bediener einer landwirtschaftlichen Arbeitsmaschine, die eine landwirtschaftliche Erntemaschine sein kann. Eine funktionelle prädiktive Karte kann einem Benutzer visuell präsentiert werden, wie etwa über eine Anzeige, haptisch oder akustisch. Der Benutzer kann mit der funktionellen prädiktiven Karte interagieren, um Bearbeitungsvorgänge und andere Benutzerschnittstellenvorgänge durchzuführen. In einigen Fällen kann eine funktionelle prädiktive Karte für eines oder mehrere von Steuern einer landwirtschaftlichen Arbeitsmaschine, wie etwa einer landwirtschaftlichen Erntemaschine, Präsentation für einen Bediener oder einen anderen Benutzer und Präsentation für einen Bediener oder Benutzer zur Interaktion durch den Bediener oder Benutzer verwendet werden.
  • Nachdem der allgemeine Ansatz in Bezug auf die 2 und 3 beschrieben wurde, wird ein spezifischerer Ansatz zum Erzeugen einer funktionellen prädiktiven Schädlingskarte, die einem Bediener oder Benutzer präsentiert werden kann oder dazu verwendet wird, die landwirtschaftliche Erntemaschine 100 zu steuern oder beides, unter Bezugnahme auf die 4 und 5 beschrieben. Auch wenn die vorliegende Erörterung in Bezug auf die landwirtschaftliche Erntemaschine und insbesondere einen Mähdrescher fortgesetzt wird, umfasst der Umfang der vorliegenden Offenbarung andere Arten von landwirtschaftlichen Erntemaschinen oder anderen landwirtschaftlichen Arbeitsmaschinen.
  • 2 ist ein Blockdiagramm, das einige Abschnitte einer beispielhaften landwirtschaftlichen Erntemaschine 100 zeigt. 2 zeigt, dass die landwirtschaftliche Erntemaschine 100 veranschaulichend einen oder mehrere Prozessoren oder Server 201, einen Datenspeicher 202, einen geografischen Positionssensor 204, ein Kommunikationssystem 206 und einen oder mehrere In-situ-Sensoren 208 beinhaltet, die eine oder mehrere landwirtschaftliche Merkmale eines Feldes gleichzeitig bei einem Erntevorgang erfassen. Ein landwirtschaftliches Merkmal kann jedes Merkmal umfassen, das sich auf den Erntevorgang auswirken kann. Einige Beispiele für landwirtschaftliche Merkmale umfassen Merkmale der Erntemaschine, des Feldes, der Pflanzen auf dem Feld und des Wetters. Andere Arten landwirtschaftlicher Merkmale werden ebenfalls berücksichtigt. Die In-situ-Sensoren 208 erzeugen Werte, die den erfassten Merkmalen entsprechen. Die landwirtschaftliche Erntemaschine 100 beinhaltet auch einen prädiktiven Modell- oder Beziehungsgenerator (im Folgenden gemeinsam als „prädiktiver Modellgenerator 210“ bezeichnet), einen prädiktiven Kartengenerator 212, einen Steuerzonengenerator 213, ein Steuersystem 214, ein oder mehrere steuerbare Teilsysteme 216 und einen Bedienerschnittstellenmechanismus 218. Die landwirtschaftliche Erntemaschine 100 kann auch eine Vielzahl sonstiger landwirtschaftlicher Erntemaschinenfunktionen 220 beinhalten. Die In-situ-Sensoren 208 beinhalten beispielsweise bordeigene Sensoren 222, Remote-Sensoren 224 und andere Sensoren 226, die Merkmale eines Feldes im Laufe eines landwirtschaftlichen Vorgangs erfassen. Der prädiktive Modellgenerator 210 beinhaltet veranschaulichend einen Vorabinformationsvariable-zu-In-situ-Variable-Modellgenerator 228 und der prädiktive Modellgenerator 210 kann weitere Elemente 230 beinhalten. Das Steuersystem 214 beinhaltet die Kommunikationssystemsteuerung 229, die Bedienerschnittstellensteuerung 231, eine Einstellungssteuerung 232, die Pfadplanungssteuerung 234, die Vorschubgeschwindigkeitssteuerung 236, die Erntevorsatz- und Haspelsteuerung 238, die Draperbandsteuerung 240, die Deckplattenpositionssteuerung 242, die Rückstandsystemsteuerung 244, die Maschinenreinigungssteuerung 245, die Zonensteuerung 247, und das Steuersystem 214 kann andere Elemente 246 beinhalten. Die steuerbaren Teilsysteme 216 beinhalten Maschinen- und Erntevorsatzstellglieder 248, das Antriebs-Teilsystem 250, das Lenkungs-Teilsystem 252, das Rückstands-Teilsystem 138, das Maschinenreinigungs-Teilsystem 254, und die Teilsysteme 216 können eine Vielzahl anderer Teilsysteme 256 beinhalten.
  • 2 zeigt auch, dass die landwirtschaftliche Erntemaschine 100 eine Vorabinformationskarte 258 empfangen kann. Wie nachfolgend beschrieben, beinhaltet die Vorabinformationskarte 258 zum Beispiel eine vegetative Indexkarte oder eine vegetative Karte von einem Vorabbetrieb oder eine prädiktive Schädlingskarte. Die Vorabinformationskarte 258 kann jedoch auch andere Arten von Daten umfassen, die vor einem Erntevorgang erhalten wurden oder eine Karte aus einem Vorabbetrieb. 2 zeigt auch, dass ein Bediener 260 die landwirtschaftliche Erntemaschine 100 bedienen kann. Der Bediener 260 interagiert mit den Bedienerschnittstellenmechanismen 218. In einigen Beispielen können die Bedienerschnittstellenmechanismen 218 Joysticks, Hebel, ein Lenkrad, Gestänge, Pedale, Tasten, Drehknöpfe, Tastenfelder, vom Benutzer betätigbare Elemente (wie etwa Symbole, Tasten usw.) auf einer Benutzerschnittstellenanzeigevorrichtung, ein Mikrofon und einen Lautsprecher (wenn Spracherkennung und Sprachsynthese bereitgestellt werden) sowie eine Vielzahl anderer Arten von Steuervorrichtungen beinhalten. Wenn ein berührungsempfindliches Anzeigesystem bereitgestellt wird, kann der Bediener 260 mit den Bedienerschnittstellenmechanismen 218 mithilfe von Berührungsgesten interagieren. Diese vorstehend beschriebenen Beispiele werden als veranschaulichende Beispiele bereitgestellt und sollen den Umfang der vorliegenden Offenbarung nicht einschränken. Folglich können andere Arten von Bedienerschnittstellenmechanismen 218 verwendet werden und liegen im Geltungsbereich der vorliegenden Offenbarung.
  • Die Vorabinformationskarte 258 kann mithilfe des Kommunikationssystems 206 oder auf andere Weise in die landwirtschaftliche Erntemaschine 100 heruntergeladen und im Datenspeicher 202 gespeichert werden. In einigen Beispielen kann das Kommunikationssystem 206 ein zellulares Kommunikationssystem, ein System zum Kommunizieren über ein Weitverkehrsnetzwerk oder ein lokales Netzwerk, ein System zum Kommunizieren über ein Nahfeldkommunikationsnetzwerk oder ein Kommunikationssystem sein, das konfiguriert ist, um über ein beliebiges aus einer Vielzahl anderer Netzwerke oder Kombinationen von Netzwerken zu kommunizieren. Das Kommunikationssystem 206 kann auch ein System beinhalten, das das Herunterladen oder Übertragen von Informationen auf und von einer Secure Digital (SD-) Karte oder einer universellen seriellen Bus (USB-) Karte oder beides erleichtert.
  • Der geografische Positionssensor 204 erfasst oder erkennt veranschaulichend die geografische Position oder den Ort der landwirtschaftlichen Erntemaschine 100. Der geografische Positionssensor 204 kann unter anderem einen Empfänger für ein globales Navigationssatellitensystem (GNSS) beinhalten, der Signale von einem GNSS-Satellitensender empfängt. Der geografische Positionssensor 204 kann auch eine Echtzeit-Kinematikkomponente (RTK) enthalten, die konfiguriert ist, um die Genauigkeit der aus dem GNSS-Signal abgeleiteten Positionsdaten zu verbessern. Der geografische Positionssensor 204 kann ein Koppelnavigationssystem, ein zellulares Triangulationssystem oder eine Vielzahl von anderen geografischen Positionssensoren beinhalten.
  • Bei den In-situ-Sensoren 208 kann es sich um beliebige der vorstehend beschriebenen Sensoren in Bezug auf 1 handeln. Die In-situ-Sensoren 208 beinhalten bordseitige Sensoren 222, die an Board der landwirtschaftlichen Erntemaschine 100 montiert sind. Solche Sensoren können zum Beispiel einen Wahrnehmungssensor beinhalten (z. B. ein vorwärts gerichtetes Mono- oder Stereokamerasystem und ein Bildverarbeitungssystem), Bildsensoren, die sich innerhalb der landwirtschaftlichen Erntemaschine 100 befinden. Die In-situ-Sensoren 208 beinhalten auch Remote-In-situ-Sensoren 224, die In-situ-Informationen erfassen. In-situ-Daten umfassen Daten, die von einem Sensor an Bord der Erntemaschine oder von einem beliebigen Sensor aufgenommen werden, von dem die Daten während des Erntevorgangs erkannt werden.
  • Der prädiktive Modellgenerator 210 erzeugt ein Modell, das eine Beziehung zwischen den durch den In-situ-Sensor 208 erfassten Werten und einer durch die Vorabinformationskarte 258 auf das Feld abgebildeten Metrik angibt. Wenn zum Beispiel die Vorabinformationskarte 258 einen vegetativen Indexwert auf verschiedene Positionen in dem Feld abbildet und der In-situ-Sensor 208 einen Wert erfasst, der die Schädlingsintensität angibt, dann erzeugt der Vorabinformationsvariable-zu-In-situ-Variable-Modellgenerator 228 ein prädiktives Schädlingsmodell, das die Beziehung zwischen dem vegetativen Indexwert und dem Schädlingsintensitätswert modelliert. Das prädiktive Schädlingsmodell kann auch auf Grundlage von vegetativen Indexwerten aus der Vorabinformationskarte 258 und mehreren In-situ-Datenwerten erzeugt werden, die durch In-situ-Sensoren 208 erzeugt werden. Dann verwendet der prädiktive Kartengenerator 212 das durch den prädiktiven Modellgenerator 210 erzeugte prädiktive Schädlingsmodell, um eine funktionelle prädiktive Schädlingskarte zu erzeugen, die den Wert einer Schädlingseigenschaft, wie etwa Intensität, die durch die In-situ-Sensoren 208 an verschiedenen Positionen in dem Feld erfasst wird, auf Grundlage der Vorabinformationskarte 258 vorhersagt.
  • In einigen Beispielen kann der Typ der Werte in der funktionellen prädiktiven Karte 263 der gleiche wie der von den In-situ-Sensoren 208 erfasste In-situ-Datentyp sein. In einigen Fällen kann der Typ der Werte in der funktionellen prädiktiven Karte 263 andere Einheiten als die von den In-situ-Sensoren 208 erfassten Daten aufweisen. In einigen Beispielen kann der Typ der Werte in der funktionellen prädiktiven Karte 263 der gleiche wie der von den In-situ-Sensoren 208 erfasste In-situ-Datentyp sein, weist jedoch eine Beziehung zu dem von den In-situ-Sensoren 208 erfassten Datentyp auf. Beispielsweise kann der von den In-situ-Sensoren 208 erfasste Datentyp in einigen Beispielen den Wertetyp in der funktionellen prädiktiven Karte 263 anzeigen. In einigen Beispielen kann sich der Datentyp in der funktionellen prädiktiven Karte 263 von dem Datentyp in der Vorabinformationskarte 258 unterscheiden. In einigen Fällen kann der Datentyp in der funktionellen prädiktiven Karte 263 andere Einheiten als die Daten in der Vorabinformationskarte 258 aufweisen. In einigen Beispielen kann sich der Datentyp in der funktionellen prädiktiven Karte 263 von dem Datentyp in der Vorabinformationskarte 258 unterscheiden, jedoch eine Beziehung zu dem Datentyp in der Vorabinformationskarte 258 haben. Beispielsweise kann der Datentyp in der Vorabinformationskarte 258 in einigen Beispielen in der funktionellen prädiktiven Karte 263 in einigen Beispielen den Datentyp in der funktionellen prädiktiven Karte 263 angeben. In einigen Beispielen unterscheidet sich der Datentyp in der funktionellen prädiktiven Karte 263 von einem oder beiden von dem durch die In-situ-Sensoren 208 erfassten In-situ-Datentyp und dem Datentyp in der Vorabinformationskarte 258. In einigen Beispielen ist der Datentyp in der funktionellen prädiktiven Karte 263 der gleiche wie einer oder beide des von den In-situ-Sensoren 208 erfassten In-situ-Datentyps und des Datentyps in der Vorabinformationskarte 258. In einigen Beispielen ist der Datentyp in der funktionellen prädiktiven Karte 263 der gleiche wie der von den In-situ-Sensoren 208 erfasste In-situ-Datentyp oder der Datentyp in der Vorabinformationskarte 258 und unterscheidet sich von dem anderen.
  • Fortfahrend mit dem vorhergehenden Beispiel, in dem die Vorabinformationskarte 258 eine vegetative Indexkarte ist und der In-situ-Sensor 208 einen Wert erfasst, der die Schädlingsintensität angibt, kann der prädiktive Kartengenerator 212 die vegetativen Indexwerte in der Vorabinformationskarte 258 und das durch den prädiktiven Modellgenerator 210 erzeugte Modell verwenden, um eine funktionelle prädiktive Karte 263 zu erzeugen, die die Schädlingsintensität an verschiedenen Positionen in dem Feld vorhersagt. Der prädiktive Kartengenerator 212 gibt somit die prädiktive Karte 264 aus.
  • Wie in 2 gezeigt, sagt die prädiktive Karte 264 den Wert eines erfassten Merkmals (erfasst durch In-situ-Sensoren 208) oder eines Merkmals vorher, das sich auf das erfasste Merkmal bezieht, an verschiedenen Positionen über das Feld auf Grundlage eines Vorabinformationswerts in der Vorabinformationskarte 258 an diesen Positionen und dem prädiktiven Modell voraus. Wenn zum Beispiel der prädiktive Modellgenerator 210 ein prädiktives Modell erzeugt hat, das eine Beziehung zwischen einem vegetativen Indexwert und einer Schädlingsintensität anzeigt, dann erzeugt der prädiktive Kartengenerator 212 angesichts des vegetativen Indexwerts an verschiedenen Positionen auf dem Feld eine prädiktive Karte 264, die den Wert der Schädlingsintensität an verschiedenen Positionen auf dem Feld vorhersagt. Der vegetative Indexwert, der von der vegetativen Indexkarte erhalten wird, an jenen Positionen und die Beziehung zwischen dem vegetativen Indexwert und der Schädlingsintensität, die von dem prädiktiven Modell erhalten werden, werden verwendet, um die prädiktive Karte 264 zu erzeugen.
  • Nun werden einige Variationen in den Datentypen beschrieben, die in der Vorabinformationskarte 258 abgebildet sind, die Datentypen, die von In-situ-Sensoren 208 erfasst werden, und die Datentypen, die auf der prädiktiven Karte 264 vorhergesagt werden.
  • In einigen Beispielen unterscheidet sich der Datentyp in der Vorabinformationskarte 258 von dem Datentyp, der von In-situ-Sensoren 208 erfasst wird, dennoch ist der Datentyp in der prädiktiven Karte 264 derselbe wie der Datentyp, der von den In-situ-Sensoren 208 erfasst wird. Beispielsweise kann die Vorabinformationskarte 258 eine vegetative Indexkarte sein, und die von den In-situ-Sensoren 208 erfasste Variable kann Ertrag sein. Die prädiktive Karte 264 kann dann eine prädiktive Ertragskarte sein, die vorhergesagte Ertragswerte auf verschiedene geografische Positionen in dem Feld abbildet. In einem weiteren Beispiel kann die Vorabinformationskarte 258 eine vegetative Indexkarte sein, und die von den In-situ-Sensoren 208 erfasste Variable kann eine Ernteguthöhe sein. Die prädiktive Karte 264 kann dann eine prädiktive Ernteguthöhenkarte sein, die vorhergesagte Ernteguthöhenwerte auf verschiedene geografische Positionen in dem Feld abbildet.
  • Außerdem unterscheidet sich in einigen Beispielen der Datentyp in der Vorabinformationskarte 258 von dem Datentyp, der von In-situ-Sensoren 208 erfasst wird, und der Datentyp in der prädiktiven Karte 264 unterscheidet sich sowohl von dem Datentyp in der Vorabinformationskarte 258 als auch von dem Datentyp, der von den In-situ-Sensoren 208 erfasst wird. Beispielsweise kann die Vorabinformationskarte 258 eine vegetative Indexkarte sein, und die von den In-situ-Sensoren 208 erfasste Variable kann die Ernteguthöhe sein. Die prädiktive Karte 264 kann dann eine prädiktive Biomassekarte sein, die vorhergesagte Biomassewerte auf verschiedene geografische Positionen in dem Feld abbildet. In einem weiteren Beispiel kann die Vorabinformationskarte 258 eine vegetative Indexkarte sein, und die von den In-situ-Sensoren 208 erfasste Variable kann der Ertrag sein. Die prädiktive Karte 264 kann dann eine prädiktive Geschwindigkeitskarte sein, die vorhergesagte Erntemaschinengeschwindigkeitswerte auf verschiedene geografische Positionen in dem Feld abbildet.
  • In einigen Beispielen stammt die Vorabinformationskarte 258 von einem früheren Durchgang durch das Feld während eines Vorabbetriebs und der Datentyp unterscheidet sich von dem Datentyp, der von In-situ-Sensoren 208 erfasst wird, jedoch ist der Datentyp in der prädiktiven Karte 264 der gleiche wie der Datentyp, der von den In-situ-Sensoren 208 erfasst wird. Beispielsweise kann die Vorabinformationskarte 258 eine Saatgutpopulationskarte sein, die während des Pflanzens erzeugt wird, und die Variable, die durch die In-situ-Sensoren 208 erfasst wird, kann die Stängelgröße sein. Die prädiktive Karte 264 kann dann eine prädiktive Stängelgrößenkarte sein, die vorhergesagte Stängelgrößenwerte auf verschiedene geografische Positionen im Feld abbildet. In einem weiteren Beispiel kann die Vorabinformationskarte 258 eine Saatguthybridkarte sein, und die von den In-situ-Sensoren 208 erfasste Variable kann der Erntegutzustand sein, wie etwa stehendes Erntegut oder umgeknicktes Erntegut. Die prädiktive Karte 264 kann dann eine prädiktive Erntegutzustandskarte sein, die vorhergesagte Erntegutzustandswerte auf verschiedene geografische Positionen in dem Feld abbildet.
  • In einigen Beispielen stammt die Vorabinformationskarte 258 von einem früheren Durchgang durch das Feld während eines Vorabbetriebs und der Datentyp ist der gleiche wie der Datentyp, der von In-situ-Sensoren 208 erfasst wird, und der Datentyp in der prädiktiven Karte 264 ist ebenfalls der gleiche wie der Datentyp, der von den In-situ-Sensoren 208 erfasst wird. Beispielsweise kann die Vorinformationskarte 258 eine Ertragskarte sein, die während eines Vorjahres erzeugt wurde, und die von den In-situ-Sensoren 208 erfasste Variable kann der Ertrag sein. Die prädiktive Karte 264 kann dann eine prädiktive Ertragskarte sein, die vorhergesagte Ertragswerte auf verschiedene geografische Positionen in dem Feld abbildet. In einem solchen Beispiel können die relativen Ertragsunterschiede in der georeferenzierten Vorabinformationskarte 258 aus dem Vorjahr durch den prädiktiven Modellgenerator 210 verwendet werden, um ein prädiktives Modell zu erzeugen, das eine Beziehung zwischen den relativen Ertragsunterschieden auf der Vorabinformationskarte 258 und den Ertragswerten modelliert, die durch In-situ-Sensoren 208 während des aktuellen Erntevorgangs erfasst werden. Das prädiktive Modell wird dann von dem prädiktiven Kartengenerator 210 verwendet, um eine prädiktive Ertragskarte zu erzeugen.
  • In einem weiteren Beispiel kann die Vorabinformationskarte 258 eine Schädlingsintensitätskarte sein, die während eines Vorabbetriebs erzeugt wurde, wie etwa von einer Sprühvorrichtung, und die von den In-situ-Sensoren 208 erfasste Variable kann die Schädlingsintensität sein. Die prädiktive Karte 264 kann dann eine prädiktive Schädlingsintensitätskarte sein, die vorhergesagte Schädlingsintensitätswerte auf verschiedene geografische Positionen in dem Feld abbildet. In einem solchen Beispiel wird eine Karte der Schädlingsintensitäten zum Zeitpunkt des Besprühens georeferenziert aufgezeichnet und der landwirtschaftlichen Erntemaschine 100 als Vorabinformationskarte 258 der Schädlingsintensität bereitgestellt. Die In-situ-Sensoren 208 können die Schädlingsintensität an geografischen Positionen in dem Feld erkennen und der prädiktive Modellgenerator 210 kann dann ein prädiktives Modell erstellen, das eine Beziehung zwischen der Schädlingsintensität zum Zeitpunkt der Ernte und der Schädlingsintensität zum Zeitpunkt des Besprühens modelliert. Dies liegt daran, dass die Sprühvorrichtung die Schädlingsintensität zum Zeitpunkt des Besprühens beeinflusst hat, aber bei der Ernte können in ähnlichen Bereichen wieder Schädlinge auftauchen. Die von Schädlingen betroffenen Bereiche bei der Ernte haben jedoch wahrscheinlich eine unterschiedliche Intensität, die unter anderem auf dem Zeitpunkt der Ernte, dem Wetter und der Schädlingsart basiert.
  • In einigen Beispielen kann dem Steuerzonengenerator 213 eine prädiktive Karte 264 bereitgestellt werden. Der Steuerzonengenerator 213 gruppiert benachbarte Abschnitte eines Bereichs auf Grundlage von Datenwerten der prädiktiven Karte 264, die diesen benachbarten Abschnitten zugeordnet sind, in eine oder mehrere Steuerzonen. Eine Steuerzone kann zwei oder mehr zusammenhängende Abschnitte eines Bereichs, wie etwa eines Feldes, beinhalten, für die ein Steuerparameter, der der Steuerzone zum Steuern eines steuerbaren Teilsystems entspricht, konstant ist. Beispielsweise kann eine Reaktionszeit zum Ändern einer Einstellung steuerbarer Teilsysteme 216 unzureichend sein, um zufriedenstellend auf Änderungen von Werten zu reagieren, die in einer Karte enthalten sind, wie etwa der prädiktiven Karte 264. In diesem Fall analysiert der Steuerzonengenerator 213 die Karte und identifiziert Steuerzonen, die eine definierte Größe aufweisen, um die Reaktionszeit der steuerbaren Teilsysteme 216 zu berücksichtigen. In einem weiteren Beispiel können die Steuerzonen bemessen sein, um den Verschleiß durch übermäßige Stellgliedbewegung, die sich aus der kontinuierlichen Einstellung ergibt, zu reduzieren. In einigen Beispielen kann es einen anderen Satz von Steuerzonen für jedes steuerbare Teilsystem 216 oder für Gruppen von steuerbaren Teilsystemen 216 geben. Die Steuerzonen können zu der prädiktiven Karte 264 hinzugefügt werden, um eine prädiktive Steuerzonenkarte 265 zu erhalten. Die prädiktive Steuerzonenkarte 265 kann somit der prädiktiven Karte 264 ähnlich sein, mit der Ausnahme, dass die prädiktive Steuerzonenkarte 265 Steuerzoneninformationen beinhaltet, die die Steuerzonen definieren. Somit kann eine funktionelle prädiktive Karte 263, wie hierin beschrieben, Steuerzonen beinhalten. Sowohl die prädiktive Karte 264 als auch die prädiktive Steuerzonenkarte 265 sind funktionelle prädiktive Karten 263. In einem Beispiel beinhaltet eine funktionelle prädiktive Karte 263 keine Steuerzonen, wie etwa die prädiktive Karte 264. In einem weiteren Beispiel beinhaltet eine funktionelle prädiktive Karte 263 Steuerzonen, wie etwa die prädiktive Steuerzonenkarte 265. In einigen Beispielen können mehrere Erntegutarten gleichzeitig in einem Feld vorhanden sein, wenn ein Mischkultur-Produktionssystem implementiert ist. In diesem Fall können der prädiktive Kartengenerator 212 und der Steuerzonengenerator 213 die Position und die Merkmale der zwei oder mehr Erntegüter identifizieren und dann die prädiktive Karte 264 und die prädiktive Steuerzonenkarte 265 entsprechend erzeugen.
  • Es ist ebenfalls zu beachten, dass der Steuerzonengenerator 213 Werte gruppieren kann, um Steuerzonen zu erzeugen, und die Steuerzonen zu einer prädiktiven Steuerzonenkarte 265 oder einer separaten Karte hinzugefügt werden können, die nur die erzeugten Steuerzonen zeigt. In einigen Beispielen können die Steuerzonen zum Steuern oder Kalibrieren der landwirtschaftlichen Erntemaschine 100 oder für beides verwendet werden. In anderen Beispielen können die Steuerzonen dem Bediener 260 angezeigt und verwendet werden, um die landwirtschaftliche Erntemaschine 100 zu steuern oder zu kalibrieren, und in anderen Beispielen können die Steuerzonen dem Bediener 260 oder einem anderen Benutzer angezeigt oder zur späteren Verwendung gespeichert werden.
  • Die prädiktive Karte 264 oder die prädiktive Steuerzonenkarte 265 oder beide werden dem Steuersystem 214 bereitgestellt, das Steuersignale auf Grundlage der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 oder beider erzeugt. In einigen Beispielen steuert die Kommunikationssystemsteuerung 229 das Kommunikationssystem 206, um die prädiktive Karte 264 oder die prädiktive Steuerzonenkarte 265 oder Steuersignale auf Grundlage der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 an andere landwirtschaftliche Erntemaschinen, die auf demselben Feld ernten, zu kommunizieren. In einigen Beispielen steuert die Kommunikationssystemsteuerung 229 das Kommunikationssystem 206, um die prädiktive Karte 264, die prädiktive Steuerzonenkarte 265 oder beide an andere Remote-Systeme zu senden.
  • Die Bedienerschnittstellensteuerung 231 ist betreibbar, um Steuersignale zu erzeugen, um die Bedienerschnittstellenmechanismen 218 zu steuern. Die Bedienerschnittstellensteuerung 231 ist außerdem betreibbar, um dem Bediener 260 die prädiktive Karte 264 oder die prädiktive Steuerzonenkarte 265 oder andere Informationen, die von oder auf Grundlage der prädiktiven Karte 264, der prädiktiven Steuerzonenkarte 265 oder beider abgeleitet werden, zu präsentieren. Der Bediener 260 kann ein lokaler Bediener oder ein Remote-Bediener sein. Als ein Beispiel erzeugt die Steuerung 231 Steuersignale, um einen Anzeigemechanismus zu steuern, um eine oder beide der prädiktiven Karte 264 und prädiktiven Steuerzonenkarte 265 für den Bediener 260 anzuzeigen. Die Steuerung 231 kann vom Bediener betätigbare Mechanismen erzeugen, die angezeigt werden und vom Bediener betätigt werden können, um mit der angezeigten Karte zu interagieren. Der Bediener kann die Karte bearbeiten, indem er beispielsweise aufgrund der Beobachtung des Bedieners eine auf der Karte angezeigte Schädlingsart korrigiert. Die Einstellungssteuerung 232 kann Steuersignale erzeugen, um verschiedene Einstellungen an der landwirtschaftlichen Erntemaschine 100 auf Grundlage der prädiktiven Karte 264, der prädiktiven Steuerzonenkarte 265 oder beider zu steuern. Zum Beispiel kann die Einstellungssteuerung 232 Steuersignale erzeugen, um die Maschinen- und Erntevorsatzstellglieder248 zu steuern. Als Reaktion auf die erzeugten Steuersignale arbeiten die Maschinen- und Erntevorsatzstellglieder 248, um zum Beispiel eine oder mehrere der Sieb- und Häckseleinstellungen, den Dreschkorbspalt, die Rotoreinstellungen, die Reinigungsgebläse-Drehzahleinstellungen, die Erntevorsatzhöhe, die Erntevorsatzfunktionalität, die Haspeldrehzahl, die Haspelposition, die Draperfunktionalität (wenn die landwirtschaftliche Erntemaschine 100 mit einem Draper-Erntevorsatz gekoppelt ist), die Maisvorsatzfunktionalität, die interne Verteilungssteuerung und andere Stellglieder 248, die die anderen Funktionen der landwirtschaftlichen Erntemaschine 100 beeinflussen, zu steuern. Die Pfadplanungssteuerung 234 erzeugt veranschaulichend Steuersignale, um das Lenkungs-Teilsystem 252 zu steuern, um die landwirtschaftliche Erntemaschine 100 gemäß einem gewünschten Pfad zu steuern. Die Pfadplanungssteuerung 234 kann ein Pfadplanungssystem steuern, um eine Route für die landwirtschaftliche Erntemaschine 100 zu erzeugen, und kann das Antriebs-Teilsystem 250 und das Lenkteilsystem 252 steuern, um die landwirtschaftliche Erntemaschine 100 entlang dieser Route zu lenken. Die Vorschubgeschwindigkeitssteuerung 236 kann verschiedene Teilsysteme steuern, wie etwa das Antriebs-Teilsystem 250 und die Maschinenstellglieder 248, um eine Vorschubgeschwindigkeit auf Grundlage der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 oder beider zu steuern. Die Erntevorsatz- und Haspelsteuerung 238 kann Steuersignale erzeugen, um einen Erntevorsatz oder eine Haspel oder eine andere Erntevorsatzfunktionalität zu steuern. Die Draperbandsteuerung 240 kann Steuersignale erzeugen, um einen Draperband oder eine andere Draperfunktionalität auf Grundlage der prädiktiven Karte 264, der prädiktiven Steuerzonenkarte 265 oder beider zu steuern. Die Deckplattenpositionssteuerung 242 kann Steuersignale erzeugen, um eine Position einer Deckplatte, die in einem Erntevorsatz enthalten ist, auf Grundlage einer prädiktiven Karte 264 oder einer prädiktiven Steuerzonenkarte 265 oder beider zu steuern, und die Rückstandssystemsteuerung 244 kann Steuersignale erzeugen, um ein Rückstands-Teilsystem 138 auf Grundlage einer prädiktiven Karte 264 oder einer prädiktiven Steuerzonenkarte 265 oder beider zu steuern. Die Maschinenreinigungssteuerung 245 kann Steuersignale erzeugen, um das Maschinenreinigungs-Teilsystem 254 zu steuern. Zum Beispiel kann auf Grundlage der verschiedenen Arten von Schädlingen, die durch die Maschine 100 geleitet werden, eine bestimmte Art von Maschinenreinigungsvorgang oder eine Häufigkeit, mit der ein Reinigungsvorgang durchgeführt wird, gesteuert werden. Andere Steuerungen, die in der landwirtschaftlichen Erntemaschine 100 enthalten sind, können andere Teilsysteme auf Grundlage der prädiktiven Karte 264 oder prädiktiven Steuerzonenkarte 265 oder beider ebenfalls steuern.
  • Die 3A und 3B (hierin gemeinsam als 3 bezeichnet) zeigen ein Flussdiagramm, das ein Beispiel für den Betrieb der landwirtschaftlichen Erntemaschine 100 beim Erzeugen einer prädiktiven Karte 264 und einer prädiktiven Steuerzonenkarte 265 auf Grundlage der Vorabinformationskarte 258 veranschaulicht.
  • Bei 280 empfängt die landwirtschaftliche Erntemaschine 100 die Vorabinformationskarte 258. Beispiele für die Vorabinformationskarte 258 oder das Empfangen der Vorabinformationskarte 258 werden in Bezug auf die Blöcke 281, 282, 284 und 286 erörtert. Wie oben erörtert, bildet die Vorabinformationskarte 258 Werte einer Variable, die einem ersten Merkmal entspricht, auf verschiedene Positionen im Feld ab, wie bei Block 282 angezeigt. Wie bei Block 281 angezeigt, kann das Empfangen der Vorabinformationskarte 258 das Auswählen einer oder mehrerer einer Vielzahl von möglichen Vorabinformationskarten beinhalten, die verfügbar sind. Zum Beispiel kann eine Vorabinformationskarte eine vegetative Indexkarte sein, die aus Luftbildern erzeugt wird. Eine andere Vorabinformationskarte kann eine Karte sein, die während eines vorherigen Durchgangs durch das Feld erzeugt wurde, der von einer anderen Maschine durchgeführt worden sein kann, die einen vorherigen Vorgang auf dem Feld durchgeführt hat, wie beispielsweise eine Sprühvorrichtung oder eine andere Maschine. Der Vorgang, durch den eine oder mehrere Vorabinformationskarten ausgewählt werden, kann manuell, halbautomatisch oder automatisch sein. Die Vorabinformationskarte 258 basiert auf Daten, die vor einem aktuellen Erntevorgang erfasst wurden. Dies wird durch Block 284 angezeigt. Beispielsweise können die Daten auf der Grundlage von Luftbildern erfasst werden, die während eines Vorjahres oder früher in der aktuellen Wachstumsperiode oder zu anderen Zeiten aufgenommen wurden. Die Daten können auf Daten basieren, die auf andere Weise als mithilfe von Luftbildern erkannt wurden. Die Daten für die Vorabinformationskarte 258 können mithilfe des Kommunikationssystems 206 an die landwirtschaftliche Erntemaschine 100 übertragen und im Datenspeicher 202 gespeichert werden. Die Daten für die Vorabinformationskarte 258 können auch auf andere Weise mithilfe des Kommunikationssystems 206 der landwirtschaftlichen Erntemaschine 100 bereitgestellt werden, was durch Block 286 im Flussdiagramm von 3 bewegt. In einigen Beispielen kann die Vorabinformationskarte 258 von dem Kommunikationssystem 206 empfangen werden.
  • Bei Beginn eines Erntevorgangs erzeugen die In-situ-Sensoren 208 Sensorsignale, die einen oder mehrere In-situ-Datenwerte anzeigen, die ein Merkmal anzeigen, zum Beispiel ein Pflanzenmerkmal, wie etwa ein Schädlingsmerkmal, wie durch Block 288 angezeigt. Beispiele für In-situ-Sensoren 288 werden in Bezug auf die Blöcke 222, 290 und 226 erörtert. Wie oben erläutert, beinhalten die In-situ-Sensoren 208 bordeigene Sensoren 222; Remote-In-situ-Sensoren 224, wie etwa UAV-basierte Sensoren, die zu einem Zeitpunkt geflogen werden, um In-situ-Daten zu sammeln, wie in Block 290 gezeigt; oder andere Arten von In-situ-Sensoren, die durch In-situ-Sensoren 226 bezeichnet werden. In einigen Beispielen werden Daten von bordeigenen Sensoren mithilfe von Positions-, Kurs- oder Geschwindigkeitsdaten von dem geografischen Positionssensor 204 georeferenziert.
  • Der prädiktive Modellgenerator 210 steuert den Vorabinformationsvariable-zu-In-situ-Variable-Modellgenerator 228, um ein Modell zu erzeugen, das eine Beziehung zwischen den abgebildeten Werten, die in der Vorabinformationskarte 258 enthalten sind, und den In-situ-Werten, die durch die In-situ-Sensoren 208 erfasst werden, modelliert, wie durch Block 292 angezeigt. Die Merkmale oder Datentypen, die durch die abgebildeten Werte in der Vorabinformationskarte 258 dargestellt werden, und die In-situ-Werte, die durch die In-situ-Sensoren 208 erfasst werden, können die gleichen Merkmale oder Datentypen oder verschiedene Merkmale oder Datentypen sein.
  • Die Beziehung oder das Modell, die bzw. das von dem prädiktiven Modellgenerator 210 erzeugt wird, wird dem prädiktiven Kartengenerator 212 bereitgestellt. Der prädiktive Kartengenerator 212 erzeugt eine prädiktive Karte 264, die einen Wert des durch die In-situ-Sensoren 208 erfassten Merkmals an verschiedenen geografischen Positionen in einem zu erntenden Feld oder ein anderes Merkmal, das mit dem durch die In-situ-Sensoren 208 erfassten Merkmal in Beziehung steht, mithilfe des prädiktiven Modells und der Vorabinformationskarte 258 vorhersagt, wie durch Block 294 angezeigt.
  • Es ist zu beachten, dass die Vorabinformationskarte 258 in einigen Beispielen zwei oder mehr verschiedene Karten oder zwei oder mehr verschiedene Kartenebenen einer einzelnen Karte beinhalten kann. Jede Kartenebene kann einen anderen Datentyp als den Datentyp einer anderen Kartenebene darstellen oder die Kartenebenen können denselben Datentyp aufweisen, der zu verschiedenen Zeitpunkten erhalten wurde. Jede Karte in den zwei oder mehr verschiedenen Karten oder jede Ebene in den zwei oder mehr verschiedenen Kartenebenen einer Karte bildet einen anderen Typ von Variablen zu den geografischen Positionen im Feld ab. In einem solchen Beispiel erzeugt der prädiktive Modellgenerator 210 ein prädiktives Modell, das die Beziehung zwischen den In-situ-Daten und jeder der verschiedenen Variablen modelliert, die durch die zwei oder mehr verschiedenen Karten oder die zwei oder mehr verschiedenen Kartenebenen abgebildet sind. Gleichermaßen können die In-situ-Sensoren 208 zwei oder mehr Sensoren beinhalten, die jeweils eine andere Art von Variablen erfassen. Somit erzeugt der prädiktive Modellgenerator 210 ein prädiktives Modell, das die Beziehungen zwischen jedem durch die vorherige Informationskarte 258 abgebildeten Variablentyp und jedem durch die In-situ-Sensoren 208 erfassten Variablentyp modelliert. Der prädiktive Kartengenerator 212 kann eine funktionelle prädiktive Karte 263 erzeugen, die einen Wert für jedes erfasste Merkmal, das von den In-situ-Sensoren 208 erfasst wird (oder einem Merkmal, das sich auf das erfasste Merkmal bezieht), an verschiedenen Positionen in dem Feld, das geerntet wird, mithilfe des prädiktiven Modells und jeder der Karten oder Kartenebenen in der Vorabinformationskarte 258 vorhersagt.
  • Der prädiktive Kartengenerator 212 konfiguriert die prädiktive Karte 264 derart, dass die prädiktive Karte 264 durch das Steuersystem 214 umsetzbar (oder verbrauchbar) ist. Der prädiktive Kartengenerator 212 kann die prädiktive Karte 264 dem Steuersystem 214 oder dem Steuerzonengenerator 213 oder beiden bereitstellen. Einige Beispiele für verschiedene Arten, wie die prädiktive Karte 264 konfiguriert oder ausgegeben werden kann, werden in Bezug auf die Blöcke 296, 295, 299 und 297 beschrieben. Beispielsweise konfiguriert der prädiktive Kartengenerator 212 die prädiktive Karte 264, so dass die prädiktive Karte 264 Werte beinhaltet, die durch das Steuersystem 214 gelesen und als Grundlage zum Erzeugen von Steuersignalen für eines oder mehrere der verschiedenen steuerbaren Teilsysteme der landwirtschaftlichen Erntemaschine 100 verwendet werden können, wie durch Block 296 angezeigt.
  • Der Steuerzonengenerator 213 kann die prädiktive Karte 264 auf Grundlage der Werte auf der prädiktiven Karte 264 in Steuerzonen unterteilen. Kontinuierlich geolokalisierte Werte, die innerhalb eines Schwellenwertes voneinander liegen, können in eine Steuerzone gruppiert werden. Der Schwellenwert kann ein Standardschwellenwert sein oder der Schwellenwert kann auf Grundlage einer Bedienereingabe, auf Grundlage einer Eingabe von einem automatisierten System oder auf Grundlage anderer Kriterien festgelegt werden. Eine Größe der Zonen kann auf einer Reaktionsfähigkeit des Steuersystems 214, der steuerbaren Teilsysteme 216 auf Grundlage von Verschleißüberlegungen oder auf anderen Kriterien basieren, wie durch Block 295 angezeigt. Der prädiktive Kartengenerator 212 konfiguriert die prädiktive Karte 264 zur Präsentation für einen Bediener oder einen anderen Benutzer. Der Steuerzonengenerator 213 kann eine prädiktive Steuerzonenkarte 265 zur Präsentation für einen Bediener oder einen anderen Benutzer konfigurieren. Dies wird durch Block 299 angezeigt. Wenn sie einem Bediener oder einem anderen Benutzer präsentiert wird, kann die Präsentation der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 oder beider einen oder mehrere der prädiktiven Werte auf der prädiktiven Karte 264, die mit der geografischen Position korreliert sind, die Steuerzonen auf der prädiktiven Steuerzonenkarte 265, die mit der geografischen Position korreliert sind, und Einstellwerte oder Steuerparameter enthalten, die auf Grundlage der prädiktiven Werte auf der Karte 264 oder den Zonen auf der prädiktiven Steuerzonenkarte 265 verwendet werden. Die Präsentation kann in einem anderen Beispiel mehr abstrahierte Informationen oder detailliertere Informationen beinhalten. Die Darstellung kann auch ein Konfidenzniveau beinhalten, das eine Genauigkeit angibt, mit der die prädiktiven Werte auf der prädiktiven Karte 264 oder die Zonen auf der prädiktiven Steuerzonenkarte 265 mit gemessenen Werten übereinstimmen, die durch Sensoren an der landwirtschaftlichen Erntemaschine 100 gemessen werden können, wenn sich die landwirtschaftliche Erntemaschine 100 durch das Feld bewegt. Ferner kann ein Authentifizierungs- und Autorisierungssystem vorgesehen werden, das Authentifizierungs- und Autorisierungsprozesse implementiert, wenn Informationen an mehreren Positionen präsentiert werden. Beispielsweise kann es eine Hierarchie von Personen geben, die berechtigt sind, Karten und andere präsentierte Informationen anzuzeigen und zu ändern. Beispielsweise kann eine bordeigene Anzeigevorrichtung die Karten in nahezu Echtzeit lokal auf der Maschine anzeigen, oder die Karten können auch an einem oder mehreren Remote-Standorten oder beiden generiert werden. In einigen Beispielen kann jede physische Anzeigevorrichtung an jedem Standort einer Person oder einer Benutzerberechtigungsstufe zugeordnet sein. Die Benutzerberechtigungsstufe kann verwendet werden, um zu bestimmen, welche Anzeigemarkierungen auf der physischen Anzeigevorrichtung sichtbar sind und welche Werte die entsprechende Person ändern kann. Beispielsweise ist ein lokaler Bediener der Maschine 100 möglicherweise nicht in der Lage, die Informationen, die der prädiktiven Karte 264 entsprechen, zu sehen oder Änderungen am Maschinenbetrieb vorzunehmen. Ein Vorgesetzter, wie etwa ein Vorgesetzter an einem Remote-Standort, kann jedoch die prädiktive Karte 264 auf der Anzeige sehen, aber daran gehindert werden, Änderungen vorzunehmen. Ein Manager, der sich an einem separaten Remote-Standort befinden kann, kann in der Lage sein, alle Elemente auf der prädiktiven Karte 264 zu sehen und auch in der Lage sein, die prädiktive Karte 264 zu ändern. In einigen Fällen kann die prädiktive Karte 264, auf die ein remote angeordneter Manager zugreifen kann und die von ihm geändert werden kann, in der Maschinensteuerung verwendet werden. Dies ist ein Beispiel für eine Autorisierungshierarchie, die implementiert werden kann. Die prädiktive Karte 264 oder die prädiktive Steuerzonenkarte 265 oder beide können auch auf andere Weise konfiguriert werden, wie durch Block 297 angezeigt.
  • Bei Block 298 werden Eingaben von dem geografischen Positionssensor 204 und anderen In-situ-Sensoren 208 von dem Steuersystem empfangen. Insbesondere erkennt das Steuersystem 214 bei Block 300 eine Eingabe von dem geografischen Positionssensor 204, der eine geografische Position der landwirtschaftlichen Erntemaschine 100 identifiziert. Block 302 stellt den Empfang von Sensoreingaben durch das Steuersystem 214 dar, die den Bahnverlauf oder den Kurs der landwirtschaftlichen Erntemaschine 100 angeben, und Block 304 stellt den Empfang einer Geschwindigkeit der landwirtschaftlichen Erntemaschine 100 durch das Steuersystem 214 dar. Block 306 stellt den Empfang anderer Informationen von verschiedenen In-situ-Sensoren 208 durch das Steuersystem 214 dar.
  • Bei Block 308 generiert das Steuersystem 214 Steuersignale, um die steuerbaren Teilsysteme 216 auf Grundlage der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 oder beider und der Eingabe von dem geografischen Positionssensor 204 und beliebigen anderen In-situ-Sensoren 208 zu steuern. Bei Block 310 wendet das Steuersystem 214 die Steuersignale auf die steuerbaren Teilsysteme an. Es versteht sich, dass die bestimmten Steuersignale, die erzeugt werden, und die bestimmten steuerbaren Teilsysteme 216, die gesteuert werden, auf Grundlage eines oder mehrerer verschiedener Dinge variieren können. Beispielsweise können die erzeugten Steuersignale und die steuerbaren Teilsysteme 216, die gesteuert werden, auf der Art der prädiktiven Karte 264 oder der prädiktiven Steuerzonenkarte 265 oder beiden basieren, die verwendet werden. Gleichermaßen können die erzeugten Steuersignale, die steuerbaren Teilsysteme 216, die gesteuert werden, und der Zeitpunkt der Steuersignale auf verschiedenen Latenzen des Erntegutstroms durch die landwirtschaftliche Erntemaschine 100 und der Reaktionsfähigkeit der steuerbaren Teilsysteme 216 basieren.
  • Beispielsweise kann eine erzeugte prädiktive Karte 264 in Form einer prädiktiven Schädlingskarte verwendet werden, um ein oder mehrere Teilsysteme 216 zu steuern. Eine Vielzahl von Steuersignalen kann mithilfe von Werten erzeugt werden, die von einer prädiktiven Schädlingskarte oder einer anderen Art von prädiktiver Karte erhalten werden, um eines oder mehrere der steuerbaren Teilsysteme 216 zu steuern.
  • Bei Block 312 wird bestimmt, ob der Erntevorgang abgeschlossen wurde. Wenn die Ernte nicht abgeschlossen ist, fährt die Verarbeitung mit Block 314 fort, wo In-situ-Sensordaten von dem geografischen Positionssensor 204 und den In-situ-Sensoren 208 (und möglicherweise anderen Sensoren) weiterhin abgelesen werden.
  • In einigen Beispielen kann die landwirtschaftliche Erntemaschine 100 bei Block 316 auch Lernauslösekriterien erkennen, um maschinelles Lernen an einer oder mehreren von der prädiktiven Karte 264, der prädiktiven Steuerzonenkarte 265, dem Modell, das von dem prädiktiven Modellgenerator 210 erzeugt wird, den Zonen, die von dem Steuerzonengenerator 213 erzeugt werden, einem oder mehreren Steueralgorithmen, die von den Steuerungen in dem Steuersystem 214 implementiert werden, und anderem ausgelösten Lernen durchzuführen.
  • Die Lernauslösekriterien können eine Vielzahl verschiedener Kriterien beinhalten. Einige Beispiele für das Erkennen von Auslösekriterien werden in Bezug auf die Blöcke 318, 320, 321, 322 und 324 erörtert. Beispielsweise kann das ausgelöste Lernen in einigen Beispielen das Wiederherstellen einer Beziehung beinhalten, die verwendet wird, um ein prädiktives Modell zu erzeugen, wenn eine Schwellenmenge von In-situ-Sensordaten von den In-situ-Sensoren 208 erhalten wird. In solchen Beispielen löst der Empfang einer Menge von In-situ-Sensordaten von den In-situ-Sensoren 208, die einen Schwellenwert überschreitet, den prädiktiven Modellgenerator 210 aus oder veranlasst ihn, ein neues prädiktives Modell zu erzeugen, das vom prädiktiven Kartengenerator 212 verwendet wird. Wenn also die landwirtschaftliche Erntemaschine 100 einen Erntevorgang fortsetzt, löst der Empfang der Schwellenmenge an In-situ-Sensordaten von den In-situ-Sensoren 208 die Erzeugung einer neuen Beziehung aus, die durch ein prädiktives Modell repräsentiert wird, das durch den prädiktiven Modellgenerator 210 erzeugt wird. Ferner können die neue prädiktive Karte 264, die prädiktive Steuerzonenkarte 265 oder beide mithilfe des neuen prädiktiven Modells erneut erzeugt werden. Block 318 stellt das Erkennen einer Schwellenwertmenge von In-situ-Sensordaten dar, die verwendet werden, um die Erstellung eines neuen prädiktiven Modells auszulösen.
  • In anderen Beispielen können die Lernauslösekriterien darauf beruhen, wie stark sich die In-situ-Sensordaten von den In-situ-Sensoren 208 ändern, wie etwa über die Zeit oder im Vergleich zu vorherigen Werten. Wenn zum Beispiel Abweichungen innerhalb der In-situ-Sensordaten (oder der Beziehung zwischen den In-situ-Sensordaten und den Informationen in der Vorabinformationskarte 258) innerhalb eines ausgewählten Bereichs liegen oder weniger als ein definierter Betrag sind oder unter einem Schwellenwert liegen, dann wird kein neues prädiktives Modell durch den prädiktiven Modellgenerator 210 erzeugt. Infolgedessen erzeugt der prädiktive Kartengenerator 212 keine neue prädiktive Karte 264, prädiktive Steuerzonenkarte 265 oder beides. Wenn jedoch Abweichungen innerhalb der In-situ-Sensordaten außerhalb des ausgewählten Bereichs liegen, größer als der definierte Betrag sind oder beispielsweise über dem Schwellenwert liegen, erzeugt der prädiktive Modellgenerator 210 ein neues prädiktives Modell mithilfe aller oder eines Teils der neu empfangenen In-situ-Sensordaten, die der prädiktive Kartengenerator 212 verwendet, um eine neue prädiktive Karte 264 zu erzeugen. Bei Block 320 können Variationen der In-situ-Sensordaten, wie etwa eine Größe eines Betrags, um den die Daten den ausgewählten Bereich überschreiten, oder eine Größe der Variation der Beziehung zwischen den In-situ-Sensordaten und den Informationen in der Vorabinformationskarte 258, als Auslöser verwendet werden, um die Erzeugung eines prädiktiven Modells und einer prädiktiven Karte zu veranlassen. Unter Beibehaltung der oben beschriebenen Beispiele können der Schwellenwert, der Bereich und der definierte Betrag auf Standardwerte eingestellt werden; durch einen Bediener oder eine Benutzerinteraktion über eine Benutzerschnittstelle eingestellt werden; durch ein automatisiertes System eingestellt werden; oder auf andere Weise eingestellt werden.
  • Es können auch andere Lernauslösekriterien verwendet werden. Wenn zum Beispiel der prädiktive Modellgenerator 210 zu einer anderen Vorabinformationskarte (die sich von der ursprünglich ausgewählten Vorabinformationskarte 258 unterscheidet) wechselt, kann das Wechseln zu der anderen Vorabinformationskarte ein erneutes Lernen durch den prädiktiven Modellgenerator 210, den prädiktiven Kartengenerator 212, den Steuerzonengenerator 213, das Steuersystem 214 oder andere Elemente auslösen. In einem weiteren Beispiel kann auch der Übergang der landwirtschaftlichen Erntemaschine 100 zu einer anderen Topographie oder zu einer anderen Steuerzone als Lernauslösekriterien verwendet werden.
  • In einigen Fällen kann der Bediener 260 auch die prädiktive Karte 264 oder die prädiktive Steuerzonenkarte 265 oder beide bearbeiten. Die Bearbeitungen können einen Wert auf der prädiktiven Karte 264, eine Größe, Form, Position oder Vorhandensein einer Steuerzone auf der prädiktiven Steuerzonenkarte 265 oder beides ändern. Block 321 zeigt, dass bearbeitete Informationen als Lernauslösekriterien verwendet werden können.
  • In einigen Fällen kann es auch sein, dass der Bediener 260 beobachtet, dass die automatisierte Steuerung eines steuerbaren Teilsystems nicht das ist, was der Bediener wünscht. In solchen Fällen kann der Bediener 260 dem steuerbaren Teilsystem eine manuelle Anpassung bereitstellen, die widerspiegelt, dass der Bediener 260 wünscht, dass das steuerbare Teilsystem anders arbeitet, als vom Steuersystem 214 befohlen wird. Somit kann eine manuelle Änderung einer Einstellung durch den Bediener 260 bewirken, dass einer oder mehrere von dem prädiktiven Modellgenerator 210 ein Modell neu erlernen, dem prädiktiven Kartengenerator 212, um die Karte 264 zu regenerieren, dem Steuerzonengenerator 213, um eine oder mehrere Steuerzonen auf der prädiktiven Steuerzonenkarte 265 zu regenerieren, und dem Steuersystem 214, um einen Steueralgorithmus neu zu erlernen oder maschinelles Lernen an einer oder mehreren der Steuerkomponenten 232 bis 246 im Steuersystem 214 auf Grundlage der Einstellung durch den Bediener 260 durchzuführen, wie in Block 322 gezeigt. Block 324 stellt die Verwendung anderer ausgelöster Lernkriterien dar.
  • In anderen Beispielen kann das Umlernen periodisch oder intermittierend durchgeführt werden, zum Beispiel auf Grundlage eines ausgewählten Zeitintervalls, wie etwa eines diskreten Zeitintervalls oder eines variablen Zeitintervalls, wie durch Block 326 angezeigt.
  • Wenn das Umlernen ausgelöst wird, ob auf Grundlage von Lernauslösekriterien oder auf Grundlage des Durchlaufs eines Zeitintervalls, wie durch Block 326 angezeigt, führt einer oder mehrere von dem prädiktiven Modellgenerator 210, dem prädiktiven Kartengenerator 212, dem Steuerzonengenerator 213 und dem Steuersystem 214 maschinelles Lernen durch, um ein neues prädiktives Modell, eine neue prädiktive Karte, eine neue Steuerzone bzw. einen neuen Steueralgorithmus auf Grundlage der Lernauslösekriterien zu erzeugen. Das neue prädiktive Modell, die neue prädiktive Karte und der neue Steueralgorithmus werden mithilfe zusätzlicher Daten generiert, die seit dem letzten Lernvorgang gesammelt wurden. Das Durchführen des Umlernens wird durch Block 328 angezeigt.
  • Wenn der Erntevorgang abgeschlossen wurde, geht der Vorgang von Block 312 zu Block 330 über, wo eines oder mehrere von der prädiktiven Karte 264, der prädiktiven Steuerzonenkarte 265 und dem prädiktiven Modell, das durch den prädiktiven Modellgenerator 210 erzeugt wird, gespeichert werden. Die prädiktive Karte 264, die prädiktive Steuerzonenkarte 265 und das prädiktive Modell können lokal auf dem Datenspeicher 202 gespeichert oder mithilfe des Kommunikationssystems 206 zur späteren Verwendung an ein Remote-System gesendet werden.
  • Es ist zu beachten, dass, während einige Beispiele hierin den prädiktiven Modellgenerator 210 und den prädiktiven Kartengenerator 212 beschreiben, die eine Vorabinformationskarte beim Erzeugen eines prädiktiven Modells bzw. beim Empfangen einer funktionellen prädiktiven Karte, der prädiktive Modellgenerator 210 bzw. der prädiktive Kartengenerator 212 in anderen Beispielen beim Erzeugen eines prädiktiven Modells und einer funktionellen prädiktiven Karte jeweils andere Arten von Karten, einschließlich prädiktiver Karten, wie etwa eine funktionelle prädiktive Karte, die während des Erntevorgangs erzeugt wird, empfangen können.
  • 4 ist ein Blockdiagramm eines Abschnitts der in 1 gezeigten landwirtschaftlichen Erntemaschine 100. Insbesondere zeigt 4 unter anderem Beispiele des prädiktiven Modellgenerators 210 und des prädiktiven Kartengenerators 212 detaillierter. 4 veranschaulicht auch den Informationsfluss zwischen den verschiedenen gezeigten Komponenten. Der prädiktive Modellgenerator 210 empfängt eine historische Schädlingskarte 329, eine optische Karte 331, eine vegetative Indexkarte 332, eine Scoutingkarte 333 und/oder eine Tieraktivitätskarte 335 als eine Informationskarte. Wie gezeigt, können die Scoutingkarte 333 und die Tieraktivitätskarte 335 in einigen Beispielen eine Schädlingskarte ohne Analyse durch den Generator 210 anzeigen. Der prädiktive Modellgenerator 210 empfängt auch eine geografische Position 334 oder eine Angabe einer geografischen Position von dem geografischen Positionssensor 204. Die In-situ-Sensoren 208 beinhalten beispielhaft einen Schädlingsbekämpfungssensor, wie etwa den Schädlingsbekämpfungssensor 336, sowie ein Verarbeitungssystem 338. In einigen Fällen kann sich der Schädlingsensor 336 an Bord der landwirtschaftlichen Erntemaschine 100 befinden. In einigen Fällen kann der Schädlingsensor 336 einen Bedienereingabesensor beinhalten, der es einem Benutzer ermöglicht, Schädlinge manuell zu identifizieren. Das Verarbeitungssystem 338 verarbeitet Sensordaten, die von dem Schädlingsensor 336 erzeugt werden, um verarbeitete Daten zu erzeugen, von denen einige Beispiele nachfolgend beschrieben werden.
  • In einigen Beispielen kann der Schädlingsensor 336 ein optischer Sensor sein, wie etwa eine Kamera, die Bilder eines Bereichs eines zu erntenden Feldes erzeugt. In einigen Fällen kann der optische Sensor an der landwirtschaftlichen Erntemaschine 100 angeordnet sein, um Bilder eines Bereichs zu sammeln, der an die landwirtschaftliche Erntemaschine 100 angrenzt, wie etwa in einem Bereich, der vor, seitlich, hinter oder in einer anderen Richtung relativ zu der landwirtschaftlichen Erntemaschine 100 liegt, wenn sich die landwirtschaftliche Erntemaschine 100 während eines Erntevorgangs durch das Feld bewegt.
  • Das Verarbeitungssystem 338 verarbeitet ein oder mehrere Bilder, die über den Schädlingsensor 336 erhalten wurden, um verarbeitete Bilddaten zu erzeugen, die ein oder mehrere Merkmale von Schädlingen in dem Bild identifizieren. Schädlingsmerkmale, die durch das Verarbeitungssystem 338 erkannt werden, können eine Position von Schädlingen, die in dem Bild vorhanden sind, eine Intensität von Schädlingen in einem Bild oder eine Art von Schädling in dem Bild beinhalten.
  • Der In-situ-Sensor 208 kann andere Arten von Sensoren sein oder beinhalten, wie etwa eine Kamera, die sich entlang eines Pfads befindet, durch den sich abgetrenntes Material in der landwirtschaftlichen Erntemaschine 100 bewegt (im Folgenden als „Prozesskamera“ bezeichnet). Eine Prozesskamera kann sich zumindest teilweise innerhalb der landwirtschaftlichen Erntemaschine 100 befinden und kann Bilder von Material, einschließlich Anzeichen von Schädlingen, wie etwa beschädigtes Getreide oder Pflanzenmaterial, erfassen, während sich das Material durch die landwirtschaftliche Erntemaschine 100 bewegt oder von dieser ausgestoßen wird. In einigen Beispielen können die Schädlinge oder Teile der Schädlinge erkannt werden. In anderen Beispielen kann ein Toxin, eine Ausscheidung oder ein Nebenprodukt eines Schädlings nachgewiesen werden.
  • In einigen Beispielen können rohe oder verarbeitete Daten von dem Schädlingsensor 336 dem Bediener 260 über den Bedienerschnittstellenmechanismus 218 dargestellt werden. Der Bediener 260 kann sich an Bord der landwirtschaftlichen Erntemaschine 100 oder an einem Remote-Standort befinden.
  • Die vorliegende Erörterung fährt in Bezug auf ein Beispiel fort, in dem der Schädlingsensor 336 ein Bildsensor, wie etwa eine Kamera, ist. Es versteht sich, dass es sich hierbei nur um ein Beispiel handelt und die oben genannten Sensoren als andere Beispiele des Schädlingsensors 336 hierin ebenfalls in Betracht gezogen werden. Wie in 4 gezeigt, beinhaltet der beispielhafte prädiktive Modellgenerator 210 einen historischen Schädlingsmerkmal-zu-Schädlingsmerkmalgenerator 339, einen optischen Merkmal-zu-Schädlingsmerkmalmodellgenerator 341, einen vegetativen Index-zu-Schädlingsmerkmalmodellgenerator 342, einen Tieraktivität-zu-Schädlingsmerkmalmodellgenerator 344 und/oder einen erfasstes Merkmal-zu-Schädlingsmerkmalmodellgenerator 346. In anderen Beispielen kann der prädiktive Modellgenerator 210 zusätzliche, weniger oder andere Komponenten beinhalten, als die in dem Beispiel von 4 gezeigten. Folglich kann der prädiktive Modellgenerator 210 in einigen Beispielen auch andere Elemente 348 beinhalten, die andere Arten von prädiktiven Modellgeneratoren beinhalten können, um andere Arten von Schädlingsmerkmalsmodellen zu erzeugen.
  • Der Modellgenerator 339 identifiziert eine Beziehung zwischen Schädlingsmerkmalen, die in Bilddaten 340 an einer geografischen Position erkannt wurden, die der Position entspricht, an der die Bilddaten 340 erhalten wurden, und historischen Schädlingsmerkmalen aus der historischen Schädlingskarte 329, die derselben Position auf dem Feld entsprechen, an der das Schädlingsmerkmal erkannt wurde. Auf Grundlage dieser Beziehung, die durch den Modellgenerator 339 hergestellt wird, erzeugt der Modellgenerator 339 ein prädiktives Schädlingsmodell. Das prädiktive Schädlingsmodellwird von dem Schädlingspositionskartengenerator 356 verwendet, um Schädlingsmerkmale an verschiedenen Positionen in dem Feld auf Grundlage der georeferenzierten historischen Schädlingsmerkmale, die in der historischen Schädlingskarte 329 an den gleichen Positionen in dem Feld enthalten sind, vorherzusagen.
  • Der Modellgenerator 341 identifiziert eine Beziehung zwischen Schädlingsmerkmalen, die in Bilddaten 340 an einer geografischen Position erkannt wurden, die der Position entspricht, an der die Bilddaten 340 erhalten wurden, und optischen Merkmalswerten aus der optischen Karte 331, die derselben Position auf dem Feld entsprechen, an der das Schädlingsmerkmal erkannt wurde. Auf Grundlage dieser Beziehung, die durch den Modellgenerator 341 hergestellt wird, erzeugt der Modellgenerator 341 ein prädiktives Schädlingsmodell. Das prädiktive Schädlingsmodell wird von dem Schädlingspositionskartengenerator 356 verwendet, um Schädlingsmerkmale an verschiedenen Positionen in dem Feld auf Grundlage der georeferenzierten optischen Merkmalwerte, die in der optischen Merkmalkarte 331 an den gleichen Positionen in dem Feld enthalten sind, vorherzusagen.
  • Der Modellgenerator 342 identifiziert eine Beziehung zwischen Schädlingsmerkmalen, die in den Bilddaten 340 erfasst werden, an einer geografischen Position, die der Position entspricht, an der die Bilddaten 340 erhalten wurden, und vegetativen Indexwerten aus der vegetativen Indexkarte 332, die derselben Position in dem Feld entsprechen, an der das Schädlingsmerkmal erfasst wurde. Auf Grundlage dieser Beziehung, die durch den Modellgenerator 342 hergestellt wird, erzeugt der Modellgenerator 342 ein prädiktives Schädlingsmodell. Das prädiktive Schädlingsmodell wird von dem Schädlingspositionskartengenerator 356 verwendet, um Schädlingsmerkmale an verschiedenen Positionen auf Grundlage der georeferenzierten vegetativen Indexwerte, die in der vegetativen Indexkarte 332 an den gleichen Positionen in dem Feld enthalten sind, vorherzusagen.
  • Der Modellgenerator 344 identifiziert eine Beziehung zwischen der Schädlingsart, die durch verarbeitete Daten 340 an einer bestimmten Position auf dem Feld identifiziert wird, und dem Tieraktivitätswert aus der Tieraktivitätskarte 335 an derselben Position. Der Modellgenerator 344 erzeugt ein prädiktives Schädlingsmodell, das von dem Schädlingsartkartengenerator 356 verwendet wird, um Schädlingsmerkmale an einer bestimmten Position in dem Feld auf Grundlage des Tieraktivitätswerts an dieser Position in dem Feld vorherzusagen.
  • Der Modellgenerator 346 identifiziert eine Beziehung zwischen Schädlingsmerkmalen, die in den verarbeiteten Daten 340 an einer geografischen Position dargestellt sind, die den Daten 340 entspricht, und dem erfassten Wert an derselben geografischen Position. Der erfasste Wert ist der georeferenzierte Wert, der in der Scoutingkarte 333 enthalten ist. Der Modellgenerator 346 erzeugt dann ein prädiktives Schädlingsmodell, das von dem Schädlingskartengenerator 356 verwendet wird, um das Schädlingsmerkmal an einer Position in dem Feld auf Grundlage des Scoutingwerts für diese Position in dem Feld vorherzusagen.
  • Angesichts des Vorstehenden ist der prädiktive Modellgenerator 210 betreibbar, um eine Vielzahl von prädiktiven Schädlingsmodellen zu erzeugen, wie etwa eines oder mehrere der prädiktiven Schädlingsmodelle, die von den Modellgeneratoren 339, 341, 342, 344, 346 und 348 erzeugt werden. In einem weiteren Beispiel können zwei oder mehr der vorstehend beschriebenen prädiktiven Schädlingsmodelle zu einem einzelnen prädiktiven Schädlingsmodell kombiniert werden, das zwei oder mehr der folgenden Aspekte an verschiedenen Positionen in dem Feld vorhersagt: Schädlingsposition, Schädlingsintensität und Schädlingsart auf Grundlage des historischen Schädlings-, optischen, vegetativen Index-, Scouting- oder Tieraktivitätswerts. Jedes dieser Schädlingsmodelle oder Kombinationen davon werden gemeinsam durch das Schädlingsmodell 350 in 4 dargestellt.
  • Das prädiktive Schädlingsmodell 350 wird dem prädiktiven Kartengenerator 212 bereitgestellt. Im Beispiel von 4 beinhaltet der prädiktive Kartengenerator 212 einen Schädlingskartengenerator 356. In anderen Beispielen kann der prädiktive Kartengenerator 212 zusätzliche, weniger oder andere Kartengeneratoren beinhalten. Somit kann der prädiktive Kartengenerator 212 in einigen Beispielen andere Elemente 358 beinhalten, die andere Arten von Kartengeneratoren beinhalten können, um Schädlingskarten für andere Schädlingsmerkmale zu erzeugen. Der Schädlingskartengenerator 356 empfängt das prädiktive Schädlingsmodell 350 und erzeugt eine prädiktive Karte, die Vorhersagen über das Vorhandensein, die Intensität, die Art oder andere Merkmale von Schädlingen an verschiedenen Positionen auf dem Feld abbildet.
  • Der prädiktive Kartengenerator 212 gibt eine oder mehrere prädiktive Schädlingskarten 360 aus, die prädiktiv für Schädlingsposition, Schädlingsintensität, Schädlingsart und/oder ein anderes Schädlingsmerkmal sind. Jede der prädiktiven Schädlingskarten 360 sagt das jeweilige Schädlingsmerkmal an verschiedenen Positionen in einem Feld voraus. Jede der erzeugten prädiktiven Schädlingskarten 360 kann dem Steuerzonengenerator 213, dem Steuersystem 214 oder beiden bereitgestellt werden. Der Steuerzonengenerator 213 erzeugt Steuerzonen und integriert diese Steuerzonen in die funktionelle prädiktive Karte 360. Eine oder mehrere funktionelle prädiktive Karten können dem Steuersystem 214 bereitgestellt werden, das Steuersignale erzeugt, um eines oder mehrere der steuerbaren Teilsysteme 216 auf Grundlage der funktionellen prädiktiven Karten zu steuern.
  • 5 ist ein Flussdiagramm eines Beispiels für den Betrieb des prädiktiven Modellgenerators 210 und des prädiktiven Kartengenerators 212 beim Erzeugen des prädiktiven Schädlingsmodells 350 und der prädiktiven Schädlingskarte 360. Bei Block 362 empfangen der prädiktive Modellgenerator 210 und der prädiktive Kartengenerator 212 eine historische Schädlingskarte, eine optische Merkmalkarte, eine vegetative Indexkarte, eine Scoutingkarte, eine Tieraktivitätskarte oder eine Kombination davon. Bei Block 364 empfängt das Verarbeitungssystem 338 ein oder mehrere Bilder von einem Schädlingsensor 336. Wie vorstehend erörtert, kann der Schädlingsensor 336 eine Kamera sein, wie etwa eine nach vorne gerichtete Kamera 366; ein optischer Sensor 368, wie etwa eine Kamera, die in das Innere eines Mähdreschers blickt; oder eine andere Art von Schädlingsensor 370. In einigen Beispielen können Toxine oder andere Chemikalien, die mit einem Schädling assoziiert werden, fluoreszieren, wenn sie ultraviolettem Licht ausgesetzt werden. In einigen Beispielen können Chemikalien, die mit einem Schädling assoziiert werden, in die Luft gelangen und dann mit einem Gassensor oder einer elektronischen Nase erfasst werden.
  • Bei Block 372 verarbeitet das Verarbeitungssystem 338 das/die empfangene/n Bild/er, um Bilddaten zu erzeugen, die ein Merkmal von Schädlingen angeben, die in dem/den Bild/ern vorhanden sind. Bei Block 374 können die Bilddaten die Schädlingsposition, die Schädlingsintensität oder beides angeben, die an einer Position vorhanden sein können, wie etwa an einer Position vor einem Mähdrescher. In einigen Fällen können die Bilddaten, wie bei Block 376 angezeigt, Schädlinge anzeigen, die sich innerhalb eines Mähdreschers befinden oder von einem Mähdrescher ausgestoßen werden. In einigen Fällen können die Bilddaten, wie bei Block 380 angezeigt, die Schädlingsart anzeigen. Somit beinhalten die Bilddaten einen Schädlingsartindikator 378, der Schädlingsart oder Schädlinge identifiziert, auf die der Mähdrescher trifft. Die Schädlingsart kann auf der Grundlage eines oder mehrerer Bilder eines Schädlings, eines oder mehrerer Bilder einer Ernte oder eines Unkrauts, die von einem Schädling betroffen sind, oder eines oder mehrerer Bilder, die einen Gegenstand enthalten, der die Schädlingsart angibt, bestimmt werden. Die Bilddaten können auch andere Daten beinhalten.
  • Bei Block 382 erhält der prädiktive Modellgenerator 210 auch die geografische Position, die den Bilddaten entspricht. Beispielsweise kann der prädiktive Modellgenerator 210 die geografische Position von dem geografischen Positionssensor 204 erhalten und auf Grundlage von Maschinenverzögerungen, Maschinengeschwindigkeit usw. eine genaue geografische Position bestimmen, an der das Bild aufgenommen wurde oder von der die Bilddaten 340 abgeleitet wurden.
  • Bei Block 384 erzeugt der prädiktive Modellgenerator 210 ein oder mehrere prädiktive Schädlingsmodelle, wie etwa das Schädlingsmodell 350, die eine Beziehung zwischen einem aus einer Vorabinformationskarte, wie etwa der Vorabinformationskarte 258, erhaltenen vegetativen Indexwert und einem durch den In-situ-Sensor 208 erfassten Schädlingsmerkmal oder einem zugehörigen Merkmal modellieren. Zum Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Schädlingsmodell erzeugen, das die Beziehung zwischen einem vegetativen Indexwert und einem erfassten Merkmal modelliert, das Schädlingsposition, Schädlingsintensität oder Schädlingsart beinhaltet, wie durch die Bilddaten angezeigt, die von dem In-situ-Sensor 208 erhalten werden. Oder zum Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Schädlingsmodell erzeugen, das die Beziehung zwischen einem Scoutingwert und einem erfassten Merkmal modelliert, einschließlich Schädlingsposition, Schädlingsintensität oder Schädlingsart, wie durch die Bilddaten angezeigt, die von dem In-situ-Sensor 208 erhalten werden. Oder zum Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Schädlingsmodell erzeugen, das die Beziehung zwischen einem Tieraktivitätswert und einem erfassten Merkmal einschließlich Schädlingsposition, Schädlingsintensität oder Schädlingsart modelliert, das durch die Bilddaten angezeigt wird, die von dem In-situ-Sensor 208 erhalten werden.
  • Bei Block 386 wird das prädiktive Schädlingsmodell, wie etwa das prädiktive Schädlingsmodell 350, dem prädiktiven Kartengenerator 212 bereitgestellt, der eine prädiktive Schädlingskarte 360 erzeugt, die ein prädiktives Schädlingsmerkmal auf Grundlage der Werte von der historischen Schädlingskarte, der optischen Merkmalkarte, der vegetativen Indexkarte, der Scoutingkarte, der Tieraktivitätskarte und/oder einer anderen Karte und dem prädiktiven Schädlingsmodell 350 abbildet. Beispielsweise sagt die prädiktive Schädlingskarte 360 in einigen Beispielen die Schädlingsposition voraus. In einigen Beispielen sagt die prädiktive Schädlingskarte 360 die Schädlingsposition zusammen mit den Schädlingsintensitätswerten voraus, wie durch Block 388 angezeigt. In einigen Beispielen sagt die prädiktive Schädlingskarte 360 die Schädlingsposition und die Schädlingsart voraus, wie durch Block 390 angezeigt, und in noch anderen Beispielen sagt die prädiktive Karte 360 andere Elemente voraus, wie durch Block 392 angezeigt. Zum Beispiel die Höhe der Schäden oder die Auswirkungen der Schädlinge auf das Erntegut. Ferner kann die prädiktive Schädlingskarte 360 während eines landwirtschaftlichen Vorgangs erzeugt werden. Somit wird, wenn sich eine landwirtschaftliche Erntemaschine durch ein Feld bewegt, in dem ein landwirtschaftlicher Vorgang durchgeführt wird, die prädiktive Schädlingskarte 360 erzeugt, während der landwirtschaftliche Vorgang durchgeführt wird.
  • Bei Block 394 gibt der prädiktive Kartengenerator 212 die prädiktive Schädlingskarte 360 aus. Bei Block 391 gibt der prädiktive Schädlingskartengenerator 212 die prädiktive Schädlingskarte zur Darstellung für und zur möglichen Interaktion durch den Bediener 260 aus. Bei Block 393 kann der prädiktive Kartengenerator 212 die Karte für den Verbrauch durch das Steuersystem 214 konfigurieren. Bei Block 395 kann der prädiktive Kartengenerator 212 dem Steuerzonengenerator 213 auch die Karte 360 zur Erzeugung von Steuerzonen bereitstellen. Bei Block 397 konfiguriert der prädiktive Kartengenerator 212 die Karte 360 auch auf andere Weise. Die prädiktive Schädlingskarte 360 (mit oder ohne die Steuerzonen) wird dem Steuersystem 214 bereitgestellt. Bei Block 396 erzeugt das Steuersystem 214 Steuersignale, um die steuerbaren Teilsysteme 216 auf Grundlage der prädiktiven Schädlingskarte 360 zu steuern.
  • 6A ist ein Blockdiagramm eines beispielhaften Abschnitts der in 1 gezeigten landwirtschaftlichen Erntemaschine 100. Insbesondere zeigt 6A unter anderem Beispiele für den prädiktiven Modellgenerator 210 und den prädiktiven Kartengenerator 212. Im veranschaulichten Beispiel ist die Vorabinformationskarte 258 eine erfasste Schädlingskarte 337, eine prädiktive Schädlingskarte 360 und/oder eine Vorabbetriebskarte 400. Die Vorabbetriebskarte 400 kann Werte eines anderen landwirtschaftlichen Merkmals an verschiedenen Positionen in dem Feld beinhalten. Bei den landwirtschaftlichen Merkmalswerten kann es sich um Werte handeln, die während eines Vorabbetriebs, beispielsweise eines Vorabbetriebs durch eine Sprühvorrichtung, gesammelt wurden. Beispielsweise kann die Sprühvorrichtung mit Kameras ausgestattet sein, die das Vorhandensein oder ein anderes Merkmal von Schädlingen erfassen.
  • In dem in 6A gezeigten Beispiel kann der In-situ-Sensor 208 einen Ertragssensor 402, einen Kornqualitätssensor 403, einen Bedienereingabesensor 404 und/oder ein Verarbeitungssystem 406 beinhalten. Die In-situ-Sensoren 208 können auch andere Sensoren 408 beinhalten.
  • Der Ertragssensor 402 erfasst eine Variable, die den Ertrag angibt, der von der landwirtschaftlichen Erntemaschine 100 geerntet wird. Der Kornqualitätssensor 403 erfasst eine Qualität des verarbeiteten Korns, zum Beispiel, wenn das Korn gebrochen, krank, verrottet, minderwertig, giftig, kontaminiert usw. ist.
  • Der Bedienereingabesensor 404 erfasst veranschaulicht verschiedene Bedienereingaben. Die Eingaben können Einstelleingaben zum Steuern der Einstellungen an der landwirtschaftlichen Erntemaschine 100 oder andere Steuereingaben, wie etwa Lenkeingaben und andere Eingaben, sein. Wenn also der Bediener 260 eine Einstellung ändert oder eine befohlene Eingabe über einen Bedienerschnittstellenmechanismus 218 bereitstellt, wird eine solche Eingabe durch den Bedienereingabesensor 404 erkannt, der ein Sensorsignal bereitstellt, das diese erfasste Bedienereingabe anzeigt. Der Erntegutzustandssensor 405 erfasst einen Erntegutzustand des Ernteguts in der Nähe der landwirtschaftlichen Erntemaschine 100. Erntegutzustände können stehendes Erntegut, umgeknicktes Erntegut, teilweise umgeknicktes Erntegut, die Ausrichtung des umgeknickten oder teilweise umgeknickten Ernteguts usw. beinhalten.
  • Das Verarbeitungssystem 406 kann die Sensorsignale von dem Biomassesensor 402 oder dem Bedienereingabesensor 404 oder beiden empfangen und eine Ausgabe erzeugen, die die erfasste Variable angibt. Zum Beispiel kann das Verarbeitungssystem 406 eine Sensoreingabe von dem optischen Sensor 410 oder dem Rotordrucksensor 412 empfangen und eine Ausgabe erzeugen, die Biomasse anzeigt. Das Verarbeitungssystem 406 kann auch eine Eingabe vom Bedienereingabesensor 404 empfangen und eine Ausgabe erzeugen, die die erfasste Bedienereingabe anzeigt.
  • Der prädiktive Modellgenerator 210 kann einen Schädlingsmerkmal-zu-Ertragsmodellgenerator 416, einen Schädlingsmerkmal-zu-Kornqualitätsmodellgenerator 417, einen Schädlingsmerkmal-zu-Erntegutzustandsmodellgenerator 420 und einen Schädlingsmerkmal-zu-Bedienerbefehlsmodellgenerator 422 beinhalten. In anderen Beispielen kann der prädiktive Modellgenerator 210 zusätzliche, weniger oder andere Modellgeneratoren 424 beinhalten. Der prädiktive Modellgenerator 210 kann eine geografische Positionsanzeige 334 von dem geografischen Positionssensor 204 empfangen und ein prädiktives Modell 426 erzeugen, das eine Beziehung zwischen den Informationen in einer oder mehreren der Vorinformationskarten 258 und einem oder mehreren von Folgendem modelliert: dem Ertrag, der von dem Ertragssensor 402 erfasst wird; der Kornqualität, die von dem Kornqualitätssensor 403 erfasst wird; dem Erntegutzustand, der von dem Erntegutzustandssensor 405 erfasst wird; und Bedienereingabebefehle, die von dem Bedienereingabesensor 404 erfasst werden.
  • Zum Beispiel erzeugt der Schädlingsmerkmal-zu-Ertragsmodellgenerator 416 eine Beziehung zwischen Schädlingsmerkmalwerten und den Ertragswerten, die von dem Ertragsensor 402 erfasst werden. Der Schädlingsmerkmal-zu-Kornqualitätsmodellgenerator 418 erzeugt veranschaulichend ein Modell, das eine Beziehung zwischen dem Schädlingsmerkmal und der Variablen darstellt, die die durch den Kornqualitätssensor 403 erfasste Kornqualität angibt. Der Schädlingsmerkmal-zu-Erntegutzustandsmodellgenerator 420 erzeugt veranschaulichend ein Modell, das eine Beziehung zwischen dem Schädlingsmerkmal und dem Erntegutzustand oder der Variablen darstellt, die den durch den Erntegutzustandssensor 405 erfassten Erntegutzustand angibt. Der Schädlingsmerkmal-zu-Bedienerbefehlmodellgenerator 422 erzeugt ein Modell, das die Beziehung zwischen einem Schädlingsmerkmal und Bedienereingabebefehlen modelliert, die von dem Bedienereingabesensor 404 erfasst werden. Das von dem prädiktiven Modellgenerator 210 erzeugte prädiktive Modell 426 kann eines oder mehrere der prädiktiven Modelle beinhalten, die von dem Schädlingsmerkmal-zu-Ertragsmodellgenerator 416, dem Schädlingsmerkmal-zu-Kornqualitätsmodellgenerator 417, dem Schädlingsmerkmal-zu-Erntegutzustandsmodellgenerator 420, dem Schädlingsmerkmal-zu-Bedienerbefehlsmodellgenerator 422 und anderen Modellgeneratoren, die als Teil anderer Elemente 424 enthalten sein können, erzeugt werden können.
  • Im Beispiel von 6A beinhaltet der prädiktive Kartengenerator 212 einen prädiktiven Ertragskartengenerator 429, einen prädiktiven Kornqualitätskartengenerator 430, einen prädiktiven Erntegutzustandskartengenerator 431 und einen prädiktiven Bedienerbefehlskartengenerator 432. In anderen Beispielen kann der prädiktive Kartengenerator 212 zusätzliche, weniger oder andere Kartengeneratoren 434 beinhalten.
  • Der prädiktive Ertragskartengenerator 429 empfängt ein prädiktives Modell 426 und eine oder mehrere der Informationskarten 258. Der prädiktive Ertragskartengenerator 429 erzeugt eine funktionelle prädiktive Ertragskarte 436, die den Ertrag an verschiedenen Positionen in dem Feld auf Grundlage eines oder mehrerer der Schädlingsmerkmale in einer oder mehreren der Vorabinformationskarten 258 an diesen Positionen in dem Feld und auf Grundlage des prädiktiven Modells 426 vorhersagt.
  • Der prädiktive Kornqualitätskartengenerator 430 empfängt ein prädiktives Modell 426 und eine oder mehrere der Informationskarten 258. Der prädiktive Kornqualitätskartengenerator 430 erzeugt eine funktionelle prädiktive Kornqualitätskarte 437, die eine Kornqualität an verschiedenen Positionen in dem Feld auf Grundlage der Schädlingsmerkmalswerte in einer oder mehreren der Informationskarten 258 an diesen Positionen in dem Feld und des prädiktiven Modells 426 vorhersagt.
  • Der prädiktive Erntegutzustandskartengenerator 431 empfängt ein prädiktives Modell 426 und eine oder mehrere der Informationskarten 258. Der prädiktive Erntegutzustandskartengenerator 431 erzeugt eine funktionelle prädiktive Erntegutzustandskarte 438, die einen Erntegutzustand an verschiedenen Positionen in dem Feld auf Grundlage der Schädlingsmerkmalwerte in einer oder mehreren der Informationskarten 258 an diesen Positionen in dem Feld und dem prädiktiven Modell 426 vorhersagt.
  • Der prädiktive Bedienerbefehlskartengenerator 432 empfängt ein prädiktives Modell 426 (wie etwa ein prädiktives Modell, das durch den Schädlingsmerkmal-zu-Befehlsmodellgenerator 422 erzeugt wird), das die Beziehung zwischen den Schädlingsmerkmal- und Bedienerbefehlseingaben, die durch den Bedienereingabesensor 404 erfasst werden, modelliert und eine funktionelle prädiktive Bedienerbefehlskarte 439 erzeugt, die Bedienerbefehlseingaben an verschiedenen Positionen in dem Feld auf Grundlage der Schädlingsmerkmalwerte von einer oder mehreren Informationskarten 258 und dem prädiktiven Modell 426 vorhersagt.
  • Andere Kartengeneratoren 434 können ein prädiktives Modell 426 von einem anderen Modellgenerator 424 empfangen, das eine Beziehung zwischen dem Schädlingsmerkmal und einem landwirtschaftlichen Merkmal modelliert, das durch einen anderen Sensor 408 erfasst wird. Der andere Kartengenerator 434 erzeugt eine funktionelle prädiktive landwirtschaftliche Merkmalskarte 440, die landwirtschaftliche Merkmale an verschiedenen Positionen in dem Feld auf Grundlage der Schädlingsmerkmalswerte von einer oder mehreren Informationskarten 258 und dem prädiktiven Modell 426 vorhersagt.
  • Der prädiktive Kartengenerator 212 gibt eine oder mehrere der funktionellen prädiktiven Karten 436, 437, 438, 439 und 440 aus. Jede der funktionellen prädiktiven Karten 436, 437, 438, 439 und 440 kann dem Steuerzonengenerator 213, dem Steuersystem 214 oder beiden bereitgestellt werden. Der Steuerzonengenerator 213 erzeugt Steuerzonen, um eine prädiktive Steuerzonenkarte 265 bereitzustellen, die jeder Karte 436, 437, 438, 439 und 440 entspricht, die vom Steuerzonengenerator 213 empfangen wird. Beliebige oder alle der funktionellen prädiktiven Karten 436, 437, 438 oder 440 und die entsprechenden Karten 265 können dem Steuersystem 214 bereitgestellt werden, das Steuersignale erzeugt, um eines oder mehrere der steuerbaren Teilsysteme 216 auf Grundlage einer oder aller der funktionellen prädiktiven Karten 436, 437, 438, 439 und 430 oder entsprechender Karten 265 mit darin enthaltenen Steuerzonen zu steuern. Eine oder alle der Karten 436, 437, 438, 439 oder 440 oder entsprechenden Karten 265 können dem Bediener 260 oder einem anderen Benutzer präsentiert werden.
  • 6B ist ein Blockdiagramm, das einige Beispiele für Echtzeit-(In-situ)-Sensoren 208 zeigt. Einige der in 6B gezeigten Sensoren oder verschiedene Kombinationen davon können sowohl einen Sensor 336 als auch ein Verarbeitungssystem 338 aufweisen. Einige der möglichen In-situ-Sensoren 208, die in 6B gezeigt sind, sind vorstehend in Bezug auf die vorherigen Figuren gezeigt und beschrieben und ähnlich nummeriert. 6B zeigt, dass die In-situ-Sensoren 208 Bedienereingabesensoren 980, Maschinensensoren 982, Ernteguteigenschaftssensoren 984, Feld- und Bodeneigenschaftssensoren 985, Umgebungsmerkmalsensoren 987 beinhalten können, und sie können eine Vielzahl anderer Sensoren 226 beinhalten. Die Nicht-Maschinensensoren 983 beinhalten Bedienereingabesensor(en) 980, Ernteguteigenschaftssensor(en) 984, Feld- und Bodeneigenschaftssensor(en) 985, Umgebungsmerkmalsensor(en) 987 und können auch andere Sensoren 226 beinhalten. Die Bedienereingabesensoren 980 können Sensoren sein, die Bedienereingaben über die Bedienerschnittstellenmechanismen 218 erfassen. Daher können die Bedienereingabesensoren 980 die Benutzerbewegung von Gestängen, Joysticks, einem Lenkrad, Tasten, Drehknöpfen oder Pedalen erfassen. Die Bedienereingabesensoren 980 können auch Benutzerinteraktionen mit anderen Bedienereingabemechanismen erfassen, wie etwa mit einem berührungsempfindlichen Bildschirm, mit einem Mikrofon, auf dem Spracherkennung verwendet wird, oder mit einer Vielzahl anderer Bedienereingabemechanismen.
  • Die Maschinensensoren 982 können unterschiedliche Merkmale der landwirtschaftlichen Erntemaschine 100 erfassen. Wie vorstehend erörtert, können die Maschinensensoren 982 beispielsweise Maschinengeschwindigkeitssensoren 146, einen Abscheider-Verlustsensor 148, eine Reinkornkamera 150, einen nach vorne gerichteten Bilderfassungsmechanismus 151, Verlustsensoren 152 oder einen geografischen Positionssensor 204 beinhalten, von denen Beispiele vorstehend beschrieben sind. Maschinensensoren 982 können auch Maschineneinstellungssensoren 991 beinhalten, die Maschineneinstellungen erfassen. Einige Beispiele für Maschineneinstellungen wurden vorstehend in Bezug auf 1 beschrieben. Der Vorsatzgeräte- (z. B. Erntevorsatz-) Positionssensor 993 kann die Position des Erntevorsatzes 102, der Haspel 164, der Schneidevorrichtung 104 oder anderer Vorsatzgeräte relativ zu dem Rahmen der landwirtschaftlichen Erntemaschine 100 erfassen. Zum Beispiel können die Sensoren 993 die Höhe des Erntevorsatzes 102 über dem Boden erfassen. Die Maschinensensoren 982 können auch Vorsatzgeräte- (z. B. Erntevorsatz-) Ausrichtungssensoren 995 beinhalten. Die Sensoren 995 können die Ausrichtung des Erntevorsatzes 102 relativ zur landwirtschaftlichen Erntemaschine 100 oder relativ zum Boden erfassen. Maschinensensoren 982 können Stabilitätssensoren 997 beinhalten. Die Stabilitätssensoren 997 erfassen eine Oszillation oder Prellbewegung (und Amplitude) der landwirtschaftlichen Erntemaschine 100. Die Maschinensensoren 982 können auch Rückstandeinstellungssensoren 999 beinhalten, die konfiguriert sind, um zu erfassen, ob die landwirtschaftliche Erntemaschine 100 konfiguriert ist, den Rückstand zu zerkleinern, eine Schwade zu erzeugen oder den Rückstand auf andere Weise zu behandeln. Die Maschinensensoren 982 können einen Siebkasten-Gebläsedrehzahlsensor 951 beinhalten, der die Drehzahl des Reinigungsgebläses 120 erfasst. Die Maschinensensoren 982 können konkave Abstandssensoren 953 beinhalten, die den Abstand zwischen dem Rotor 112 und den Dreschkörben 114 an der landwirtschaftlichen Erntemaschine 100 erfassen. Die Maschinensensoren 982 können Häckselspaltensensoren 955 beinhalten, die die Größe der Öffnungen in Häcksler 122 erfassen. Die Maschinensensoren 982 können einen Dreschrotor-Drehzahlsensor 957 beinhalten, der eine Rotordrehzahl des Rotors 112 erfasst. Die Maschinensensoren 982 können einen Rotordrucksensor 959 beinhalten, der den Druck erfasst, der zum Antreiben des Rotors 112 verwendet wird. Die Maschinensensoren 982 können einen Siebabstandssensor 961 beinhalten, der die Größe der Öffnungen im Sieb 124 erfasst. Die Maschinensensoren 982 können einen MOG-Feuchtigkeitssensor 963 beinhalten, der einen Feuchtigkeitsgehalt des MOG erfasst, das die landwirtschaftliche Erntemaschine 100 passiert. Die Maschinensensoren 982 können einen Maschinenausrichtungssensor 965 beinhalten, der die Ausrichtung der landwirtschaftlichen Erntemaschine 100 erfasst. Die Maschinensensoren 982 können Materialvorschubgeschwindigkeitssensoren 967 beinhalten, die die Materialvorschubgeschwindigkeit erfassen, wenn sich das Material durch das Zuführgehäuse 106, den Reinkornelevator 130 oder an anderer Stelle in der landwirtschaftlichen Erntemaschine 100 bewegt. Die Maschinensensoren 982 können Biomassesensoren 969 beinhalten, die die Biomasse erfassen, die sich durch das Zuführgehäuse 106, durch den Abscheider 116 oder an anderer Stelle in der landwirtschaftlichen Erntemaschine 100 bewegt. Die Maschinensensoren 982 können einen Kraftstoffverbrauchssensor 971 beinhalten, Kraftstoffverbrauchsrate der landwirtschaftlichen Erntemaschine 100 über die Zeit erfasst. Die Maschinensensoren 982 können einen Leistungsnutzungssensor 973 beinhalten, der die Leistungsnutzung in der landwirtschaftlichen Erntemaschine 100 erfasst, wie etwa welche Teilsysteme Leistung nutzen, oder die Rate, mit der Teilsysteme Leistung nutzen, oder die Verteilung von Leistung unter den Teilsystemen in der landwirtschaftlichen Erntemaschine 100. Die Maschinensensoren 982 können Reifendrucksensoren 977 beinhalten, die den Luftdruck in den Reifen 144 der landwirtschaftlichen Erntemaschine 100 erfassen. Der Maschinensensor 982 kann eine Vielzahl anderer Maschinenleistungssensoren oder Maschinenmerkmalsensoren beinhalten, die durch Block 975 angezeigt werden. Die Maschinenleistungssensoren und die Maschinenmerkmalsensoren 975 können die Maschinenleistung oder Merkmale der landwirtschaftlichen Erntemaschine 100 erfassen.
  • Die Ernteguteigenschaftssensoren 984 können Merkmale des abgetrennten Ernteguts während der Verarbeitung des Ernteguts durch die landwirtschaftliche Erntemaschine 100 erfassen. Die Ernteguteigenschaften können Dinge wie etwa die Art des Ernteguts, die Feuchtigkeit des Ernteguts, die Kornqualität (wie etwa gebrochenes Korn), die MOG-Werte, die Kornbestandteile wie etwa Stärken und Protein, die MOG-Feuchtigkeit und andere Eigenschaften des Erntegutmaterials beinhalten. Andere Sensoren könnten „Zähigkeit“ des Strohs, die Haftung von Mais an den Ähren und andere Merkmale erfassen, die vorteilhaft verwendet werden könnten, um die Verarbeitung für eine bessere Kornerfassung, reduzierte Kornschäden, reduzierten Leistungsverbrauch, reduzierten Kornverlust usw. zu steuern.
  • Die Feld- und Bodeneigenschaftssensoren 985 können die Merkmale des Feldes und des Bodens erfassen. Die Feld- und Bodeneigenschaften können Bodenfeuchtigkeit, Bodenkompaktheit, das Vorhandensein und die Position von stehendem Wasser, Bodentyp und andere Boden- und Feldmerkmale beinhalten.
  • Die Umgebungsmerkmalsensoren 987 können eine oder mehrere Umgebungsmerkmale erfassen. Die Umgebungsmerkmale können Dinge wie Windrichtung und Windgeschwindigkeit, Niederschlag, Nebel, Staubniveau oder andere Verschmutzungen oder andere Umgebungsmerkmale beinhalten.
  • In einigen Beispielen werden einer oder mehrere der in 6B gezeigten Sensoren verarbeitet, um verarbeitete Daten 309 und verwendete Eingaben an den Modellgenerator 210 zu empfangen. Der Modellgenerator 210 erzeugt ein Modell, das die Beziehung zwischen den Sensordaten und einer oder mehreren der Vorab- oder prädiktiven Informationskarten angibt. Das Modell wird dem Kartengenerator 212 bereitgestellt, der eine Karte erzeugt, die prädiktive Sensordatenwerte entsprechend dem Sensor aus 6B oder einem verwandten Merkmal abbildet.
  • 7 zeigt ein Flussdiagramm, das ein Beispiel für den Betrieb eines prädiktiven Modellgenerators 210 und eines prädiktiven Kartengenerators 212 bei der Erzeugung eines oder mehrerer prädiktiver Modelle 426 und einer oder mehrerer funktioneller prädiktiver Karten 436, 437, 438, 439 und 440 veranschaulicht.
  • Bei Block 442 empfangen der prädiktive Modellgenerator 210 und der prädiktive Kartengenerator 212 eine Vorabinformationskarte 258. Die Vorabinformationskarte 258 kann eine erfasste Schädlingskarte 337, eine prädiktive Schädlingskarte 360 oder eine Vorabbetriebskarte 400 sein, die mithilfe von Daten erstellt wurde, die während eines Vorabbetriebs in einem Feld erhalten wurden.
  • Bei Block 444 empfängt der prädiktive Modellgenerator 210 ein Sensorsignal, das Sensordaten von einem In-situ-Sensor 208 enthält. Block 446 gibt an, dass das Sensorsignal, das von dem prädiktiven Modellgenerator 210 empfangen wird, Daten eines Typs beinhaltet, der Ertrag angibt. Block 448 gibt an, dass die Sensorsignaldaten eine Kornqualität anzeigen können. Block 449 gibt an, dass die Sensorsignaldaten einen Erntegutzustand anzeigen können. Block 450 gibt an, dass das vom prädiktiven Kartengenerator 210 empfangene Sensorsignal ein Sensorsignal sein kann, das Daten eines Typs aufweist, der eine Bedienerbefehlseingabe angibt, wie vom Bedienereingabesensor 404 erfasst. Der prädiktive Modellgenerator 210 kann auch andere In-situ-Sensoreingaben empfangen, wie durch Block 452 angezeigt.
  • Bei Block 454 verarbeitet das Verarbeitungssystem 406 die Daten, die in dem Sensorsignal oder den Sensorsignalen enthalten sind, die von dem oder den In-situ-Sensoren 208 empfangen werden, um verarbeitete Daten 409 zu erhalten, dargestellt in 6A. Die in dem Sensorsignal oder den Sensorsignalen enthaltenen Daten können in einem Rohformat vorliegen, das verarbeitet wird, um verarbeitete Daten 409 zu empfangen. Beispielsweise enthält ein Temperatursensorsignal elektrische Widerstandsdaten, die zu Temperaturdaten verarbeitet werden können. In anderen Beispielen kann die Verarbeitung Digitalisieren, Codieren, Formatieren, Skalieren, Filtern oder Klassifizieren von Daten umfassen. Die verarbeiteten Daten 409 können Ertrag, Kornqualität, Erntegutzustand, Bedienereingabebefehl und/oder ein anderes landwirtschaftliches Merkmal angeben. Die verarbeiteten Daten 409 werden dem prädiktiven Modellgenerator 210 bereitgestellt.
  • Zurückkommend zu 7 empfängt der prädiktive Modellgenerator 210 bei Block 456 auch eine geografische Position 334 von dem geografischen Positionssensor 204, wie in 6A gezeigte Eingangssignal darstellt. Die geografische Position 334 kann mit der geografischen Position korrelieren, von der die erfasste/n Variable/n, die von In-situ-Sensoren 208 erfasst wurde/n, entnommen wurde/n oder dieser entspricht/entsprechen. Beispielsweise kann der prädiktive Modellgenerator 210 die geografische Position 334 von dem geografischen Positionssensor 204 erhalten und auf Grundlage von Maschinenverzögerungen, Maschinengeschwindigkeit usw. eine genaue geografische Position bestimmen, der die verarbeiteten Daten 409 entsprechen.
  • Bei Block 458 erzeugt der prädiktive Modellgenerator 210 ein oder mehrere prädiktive Modelle 426, die eine Beziehung zwischen einem abgebildeten Wert in einer Vorabinformationskarte und einem in den verarbeiteten Daten 409 dargestellten Merkmal modellieren. Beispielsweise kann in einigen Fällen der abgebildete Wert in einer Vorabinformationskarte ein Schädlingsmerkmal sein und der prädiktive Modellgenerator 210 erzeugt ein prädiktives Modell mithilfe des abgebildeten Werts einer Vorabinformationskarte und einem durch In-situ-Sensoren 208 erfassten Merkmal, wie in den verarbeiteten Daten 490 dargestellt, oder einem verwandten Merkmal, wie etwa einem Merkmal, das mit dem durch In-situ-Sensoren 208 erfassten Merkmal korreliert.
  • Zum Beispiel kann der prädiktive Modellgenerator 210 bei Block 460 ein prädiktives Modell 426 erzeugen, das eine Beziehung zwischen einem oder mehreren Schädlingsmerkmalen, die von einer oder mehreren Vorabinformationskarten erhalten werden, und Ertrag modelliert. In einem weiteren Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Modell 426 erzeugen, das eine Beziehung zwischen einem Schädlingsmerkmal, das von einer oder mehreren Vorabinformationskarten erhalten wird, und Kornqualität, die von einem In-situ-Sensor erhalten wird, modelliert. In einem weiteren Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Modell 426 erzeugen, das eine Beziehung zwischen einem Schädlingsmerkmal und dem Erntegutzustand modelliert. In noch einem weiteren Beispiel kann der prädiktive Modellgenerator 210 ein prädiktives Modell 426 erzeugen, das eine Beziehung zwischen einem Schädlingsmerkmal und Bedienerbefehlseingaben modelliert.
  • Das eine oder die mehreren prädiktiven Modelle 426 werden dem prädiktiven Kartengenerator 212 bereitgestellt. Bei Block 466 erzeugt der prädiktive Kartengenerator 212 eine oder mehrere funktionale prädiktive Karten. Die funktionellen prädiktiven Karten können eine funktionelle prädiktive Ertragskarte 437, eine funktionelle prädiktive Kornqualitätskarte 436, eine funktionelle prädiktive Maschinenerntegutzustandskarte 438, eine funktionelle prädiktive Bedienerbefehlskarte 439, eine funktionelle prädiktive landwirtschaftliche Merkmalskarte 440 oder eine beliebige Kombination dieser Karten sein. Die funktionelle prädiktive Kornqualitätskarte 436 sagt eine Kornqualität vorher, auf die die landwirtschaftliche Erntemaschine 100 an verschiedenen Positionen auf dem Feld treffen wird. Die funktionelle prädiktive Ertragskarte 437 sagt einen Ertrag vorher, der von der landwirtschaftlichen Erntemaschine 100 an verschiedenen Positionen in dem Feld erwartet wird. Die funktionelle prädiktive Erntegutzustandskarte 438 sagt einen Erntegutzustand vorher, der von der landwirtschaftlichen Erntemaschine 100 an verschiedenen Positionen auf dem Feld erwartet wird. Die funktionelle prädiktive Bedienerbefehlskarte 439 sagt wahrscheinliche Bedienerbefehlseingaben an verschiedenen Positionen in dem Feld vorher. Die funktionelle prädiktive landwirtschaftliche Merkmalskarte 440 sagt ein oder mehrere landwirtschaftliche Merkmale an verschiedenen Positionen in dem Feld vorher. Eine oder mehrere der funktionellen prädiktiven Karten 436, 437, 438, 439 und 440 können während eines landwirtschaftlichen Vorgangs erzeugt werden. Wenn sich die landwirtschaftliche Erntemaschine 100 beim Durchführen eines landwirtschaftlichen Vorgangs durch ein Feld bewegt, werden somit die eine oder mehreren prädiktive Karten 436, 437, 438, 439 und 440 erzeugt, während der landwirtschaftliche Vorgang durchgeführt wird.
  • Bei Block 468 gibt der prädiktive Kartengenerator 212 eine oder mehrere funktionelle prädiktive Karten 436, 437, 438, 439 und 440 aus. Bei Block 470 kann der prädiktive Kartengenerator 212 die Karte zur Präsentation für und zur möglichen Interaktion durch einen Bediener 260 oder einen anderen Benutzer konfigurieren. Bei Block 472 kann der prädiktive Kartengenerator 212 die Karte für den Verbrauch durch das Steuersystem 214 konfigurieren. Bei Block 474 kann der prädiktive Kartengenerator 212 eine oder mehrere prädiktive Karten 436, 437, 438, 439 und 440 dem Steuerzonengenerator 213 zur Erzeugung von Steuerzonen bereitstellen. Bei Block 476 konfiguriert der prädiktive Kartengenerator 212 eine oder mehrere prädiktive Karten 436, 437, 438, 439 und 440 auf andere Weise. In einem Beispiel, in dem die funktionellen prädiktive/n Karte/n 436, 437, 438, 439 und 440 dem Steuerzonengenerator 213 bereitgestellt werden, können die eine oder die mehreren funktionellen prädiktiven Karten 436, 437, 438, 439 und 440, mit den darin enthaltenen Steuerzonen, dargestellt durch entsprechende Karten 265, wie oben beschrieben, dem Bediener 260 oder einem anderen Benutzer präsentiert oder auch dem Steuersystem 214 bereitgestellt werden.
  • Bei Block 478 erzeugt das Steuersystem 214 dann Steuersignale, um die steuerbaren Teilsysteme auf Grundlage der funktionellen prädiktiven Karte/n 436, 437, 438, 439 und 440 (oder der funktionellen prädiktiven Karten 436, 437, 438, 439 und 440, die Steuerzonen aufweisen) sowie einer Eingabe von dem geografischen Positionssensor 204 zu steuern.
  • In anderen Beispielen kann die landwirtschaftliche Erntemaschine 100 auch auf andere Weise gesteuert werden. Zum Beispiel können die Erntevorsatzstellglieder 248 auf Grundlage eines vorhergesagten Erntegutzustands gesteuert werden. Oder zum Beispiel kann das Antriebs-Teilsystem 250 gesteuert werden, um Bereiche zu vermeiden, in denen zum Beispiel Schädlinge vorhergesagt werden. Oder zum Beispiel kann ein Reinigungs-Teilsystem gesteuert werden, um einen Häcksler zu schließen und eine Gebläsedrehzahl zu erhöhen, um Schädlinge aus dem Reinkorntank heraus zu halten. Zum Beispiel kann das Reinigungs-Teilsystem gesteuert werden, um einen Häcksler zu öffnen und eine Gebläsedrehzahl zu verringern, um zu verhindern, dass Schädlinge auf dem Feld abgelagert werden. Oder zum Beispiel kann das Rückstands-Teilsystem 253 gesteuert werden, sodass Material getrennt werden kann.
  • In einem Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Pfadplanungssteuerung 234 das Lenkungs-Teilsystem 252, um die landwirtschaftliche Erntemaschine 100 zu steuern. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Rückstandssystemsteuerung 244 das Rückstands-Teilsystem 138. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Einstellungssteuerung 232 Dreschereinstellungen des Dreschers 110. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Einstellungssteuerung 232 oder eine andere Steuerung 246 das Materialhandhabungs-Teilsystem 125. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Einstellungssteuerung 232 das Erntegutreinigungs-Teilsystem. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Maschinenreinigungssteuerung 245 das Maschinenreinigungs-Teilsystem 254 an der landwirtschaftlichen Erntemaschine 100. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Kommunikationssystemsteuerung 229 das Kommunikationssystem 206. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Bedienerschnittstellensteuerung 231 die Bedienerschnittstellenmechanismen 218 an der landwirtschaftlichen Erntemaschine 100. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Deckplattenpositionssteuerung 242 Maschinen-/Erntevorsatzstellglieder, um eine Deckplatte auf der landwirtschaftlichen Erntemaschine 100 zu steuern. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuert die Draperbandsteuerung 240 Maschinen-/Erntevorsatzstellglieder, um ein Draperband an der landwirtschaftlichen Erntemaschine 100 zu steuern. In einem anderen Beispiel, in dem das Steuersystem 214 die funktionelle prädiktive Karte empfängt, steuern die anderen Steuerungen 246 andere steuerbare Teilsysteme 256 auf der landwirtschaftlichen Erntemaschine 100.
  • 8 zeigt ein Blockdiagramm, das ein Beispiel für einen Steuerzonengenerator 213 veranschaulicht. Der Steuerzonengenerator 213 beinhaltet einen Arbeitsmaschinenstellglied- (WMA-) Selektor 486, ein Steuerzonenerzeugungssystem 488 und ein Regimezonenerzeugungssystem 490. Der Steuerzonengenerator 213 kann auch andere Elemente 492 beinhalten. Das Steuerzonenerzeugungssystem 488 beinhaltet die Steuerzonenkriterienidentifikationskomponente 494, die Steuerzonengrenzendefinitionskomponente 496, die Zieleinstellungsidentifikationskomponente 498 und andere Elemente 520. Das Regimezonenerzeugungssystem 490 beinhaltet die Regimezonenkriterienidentifikationskomponente 522, die Regimezonengrenzendefinitionskomponente 524, die Einstellungsresolveridentifikationskomponente 526 und andere Elemente 528. Bevor der gesamte Betrieb des Steuerzonengenerators 213 näher beschrieben wird, erfolgt zunächst eine kurze Beschreibung einiger Elemente des Steuerzonengenerators 213 und dessen jeweiliger Betrieb.
  • Die landwirtschaftliche Erntemaschine 100 oder andere Arbeitsmaschinen können eine Vielzahl verschiedener Arten von steuerbaren Stellgliedern aufweisen, die verschiedene Funktionen ausführen. Die steuerbaren Stellglieder an der landwirtschaftlichen Erntemaschine 100 oder anderen Arbeitsmaschinen werden gemeinsam als Arbeitsmaschinenstellglieder (WMAs) bezeichnet. Jedes WMA kann auf Grundlage von Werten auf einer funktionellen prädiktiven Karte unabhängig steuerbar sein, oder die WMAs können als Sätze auf Grundlage eines oder mehrerer Werte auf einer funktionellen prädiktiven Karte gesteuert werden. Daher kann der Steuerzonengenerator 213 Steuerzonen erzeugen, die jedem individuell steuerbaren WMA entsprechen oder den Sätzen von WMAs entsprechen, die in Abstimmung miteinander gesteuert werden.
  • Der WMA-Selektor 486 wählt ein WMA oder einen Satz von WMAs aus, für die entsprechende Steuerzonen erzeugt werden sollen. Das Steuerzonenerzeugungssystem 488 erzeugt dann die Steuerzonen für das ausgewählte WMA oder einen Satz von WMAs. Für jedes WMA oder jede Gruppe von WMAs können unterschiedliche Kriterien bei der Identifizierung von Steuerzonen verwendet werden. Beispielsweise kann für ein WMA die WMA-Reaktionszeit als Kriterium zum Definieren der Grenzen der Steuerzonen verwendet werden. In einem weiteren Beispiel können Verschleißmerkmale (z. B. wie stark ein bestimmtes Stellglied oder ein bestimmter Mechanismus als Ergebnis seiner Bewegung verschleißt) als Kriterium zum Identifizieren der Grenzen von Steuerzonen verwendet werden. Die Steuerzonenkriterienidentifikationskomponente 494 identifiziert bestimmte Kriterien, die bei der Definition von Steuerzonen für das ausgewählte WMA oder einen Satz von WMAs verwendet werden sollen. Die Steuerzonengrenzendefinitionskomponente 496 verarbeitet die Werte auf einer funktionellen prädiktiven Karte, die analysiert wird, um die Grenzen der Steuerzonen auf dieser funktionellen prädiktiven Karte basierend auf den Werten in der funktionellen prädiktiven Karte, die analysiert wird, und basierend auf den Steuerzonenkriterien für das ausgewählte WMA oder einen Satz von WMAs zu definieren.
  • Die Zieleinstellungsidentifikationskomponente 498 setzt einen Wert der Zieleinstellung, der zum Steuern des WMA oder eines Satzes von WMAs in verschiedenen Steuerzonen verwendet wird. Wenn zum Beispiel das ausgewählte WMA das Antriebssystem 250 ist und die analysierte funktionale prädiktive Karte eine funktionale prädiktive Geschwindigkeitskarte 438 ist, kann die Zieleinstellung in jeder Steuerzone eine Zielgeschwindigkeitseinstellung auf Grundlage von Geschwindigkeitswerten sein, die in der funktionalen prädiktiven Geschwindigkeitskarte 238 innerhalb der identifizierten Steuerzone enthalten sind.
  • In einigen Beispielen, in denen die landwirtschaftliche Erntemaschine 100 auf Grundlage einer aktuellen oder zukünftigen Position der landwirtschaftlichen Erntemaschine 100 gesteuert werden soll, können mehrere Zieleinstellungen für ein WMA an einer bestimmten Position möglich sein. In diesem Fall können die Zieleinstellungen unterschiedliche Werte haben und konkurrieren. Daher müssen die Zieleinstellungen aufgelöst werden, damit nur eine einzige Zieleinstellung zur Steuerung des WMA verwendet werden kann. Wenn das WMA zum Beispiel ein Stellglied im Antriebssystem 250 ist, das gesteuert wird, um die Geschwindigkeit der landwirtschaftlichen Erntemaschine 100 zu steuern, können mehrere verschiedene konkurrierende Sätze von Kriterien existieren, die vom Steuerzonenerzeugungssystem 488 bei der Identifizierung der Steuerzonen und der Zieleinstellungen für das ausgewählte WMA in den Steuerzonen berücksichtigt werden. Beispielsweise können unterschiedliche Zieleinstellungen zum Steuern der Maschinengeschwindigkeit beispielsweise auf Grundlage eines erkannten oder vorhergesagten Vorschubgeschwindigkeitswerts, eines erkannten oder vorhergesagten Kraftstoffeffizienzwerts, eines erkannten oder vorhergesagten Kornverlustwerts oder einer Kombination davon erzeugt werden. Jedoch kann die landwirtschaftliche Erntemaschine 100 zu jedem gegebenen Zeitpunkt nicht mit mehreren Geschwindigkeiten gleichzeitig über den Boden fahren. Vielmehr fährt die landwirtschaftliche Erntemaschine 100 jederzeit mit einer einzigen Geschwindigkeit. Somit wird eine der konkurrierenden Zieleinstellungen ausgewählt, um die Geschwindigkeit der landwirtschaftlichen Erntemaschine 100 zu steuern.
  • In einigen Beispielen erzeugt das Regimezonenerzeugungssystem 490 Regimezonen, um mehrere verschiedene konkurrierende Zieleinstellungen aufzulösen. Die Regimezonenkriterienidentifikationskomponente 522 identifiziert die Kriterien, die verwendet werden, um Regimezonen für das ausgewählte WMA oder einen Satz von WMAs auf der zu analysierenden funktionellen prädiktiven Karte festzulegen. Einige Kriterien, die verwendet werden können, um Regimezonen zu identifizieren oder zu definieren, beinhalten zum Beispiel Erntegutart oder Erntegutsorte auf Grundlage einer Bestandskarte oder einer anderen Quelle von Erntegutart oder Erntegutsorte, Schädlingsart, Schädlingsintensität oder Erntegutzustand, wie etwa ob das Erntegut umgeknickt, teilweise umgeknickt oder stehend ist. So wie jedes WMA oder jede Gruppe von WMAs eine entsprechende Steuerzone aufweisen kann, können unterschiedliche WMAs oder Gruppen von WMAs eine entsprechende Regimezone aufweisen. Die Regimezonengrenzendefinitionskomponente 524 identifiziert die Grenzen von Regimezonen auf der funktionellen prädiktiven Karte, die analysiert wird, basierend auf den Regimezonenkriterien, die durch die Regimezonenkriterienidentifikationskomponente 522 identifiziert wurden.
  • In einigen Beispielen können sich Regimezonen überschneiden. Beispielsweise kann sich eine Erntegutsortenregimezone mit einem Teil oder einer Gesamtheit einer Erntegutsortenregimezone überschneiden. In einem solchen Beispiel können die verschiedenen Regimezonen einer Präzedenzhierarchie zugewiesen werden, so dass, wenn sich zwei oder mehr Regimezonen überschneiden, die Regimezone, der eine größere hierarchische Position oder Bedeutung in der Präzedenzhierarchie zugewiesen wurde, Vorrang vor den Regimezonen hat, die eine geringere hierarchische Position oder Bedeutung in der Präzedenzhierarchie haben. Die Prioritätshierarchie der Regimezonen kann manuell oder automatisch mithilfe eines regelbasierten Systems, eines modellbasierten Systems oder eines anderen Systems eingestellt werden. Als ein Beispiel kann, wenn sich eine Regimezone mit umgeknicktem Erntegut mit einer Erntegutsortenregimezone überschneidet, der Regimezone mit umgeknicktem Erntegut eine größere Bedeutung in der Vorranghierarchie als der Erntegutsortenregimezone zugewiesen werden, so dass die Regimezone mit umgeknicktem Erntegut Vorrang hat.
  • Darüber hinaus kann jede Regimezone über einen eindeutigen Einstellungsresolver für ein bestimmtes WMA oder einen Satz von WMAs verfügen. Die Einstellungsresolveridentifikationskomponente 526 identifiziert einen bestimmten Einstellungsresolver für jede Regimezone, die auf der zu analysierenden funktionellen prädiktiven Karte identifiziert wurde, und einen bestimmten Einstellungsresolver für das ausgewählte WMA oder Satz von WMAs.
  • Sobald der Einstellungsresolver für eine bestimmte Regimezone identifiziert ist, kann dieser Einstellungsresolver verwendet werden, um konkurrierende Zieleinstellungen aufzulösen, wobei mehr als eine Zieleinstellung auf Grundlage der Steuerzonen identifiziert wird. Die verschiedenen Arten von Einstellungsresolvern können unterschiedliche Formen aufweisen. Beispielsweise können die Einstellungsresolver, die für jede Regimezone identifiziert werden, einen Resolver menschlicher Wahl beinhalten, bei dem die konkurrierenden Zieleinstellungen einem Bediener oder einem anderen Benutzer zur Auflösung präsentiert werden. In einem weiteren Beispiel kann der Einstellungsresolver ein neuronales Netzwerk oder andere künstliche Intelligenz oder ein maschinelles Lernsystem beinhalten. In solchen Fällen können die Einstellungsresolver die konkurrierenden Zieleinstellungen basierend auf einer vorhergesagten oder historischen Qualitätsmetrik auflösen, die jedem der unterschiedlichen Zieleinstellungen entspricht. Beispielsweise kann eine erhöhte Fahrzeuggeschwindigkeitseinstellung die Zeit zum Ernten eines Feldes reduzieren und entsprechende zeitbasierte Arbeitskosten und Ausrüstungskosten reduzieren, kann aber Kornverluste erhöhen. Eine reduzierte Fahrzeuggeschwindigkeitseinstellung kann die Zeit zum Ernten eines Feldes erhöhen und die entsprechenden zeitbasierten Arbeitskosten und Ausrüstungskosten erhöhen, kann aber Kornverluste verringern. Wenn der Kornverlust oder die Erntezeit als Qualitätsmetrik ausgewählt wird, kann der vorhergesagte oder historische Wert für die ausgewählte Qualitätsmetrik angesichts der zwei konkurrierenden Fahrzeuggeschwindigkeitseinstellungswerte verwendet werden, um die Geschwindigkeitseinstellung aufzulösen. In einigen Fällen können die Einstellungsresolver ein Satz von Schwellenwertregeln sein, die anstelle oder zusätzlich zu den Regimezonen verwendet werden können. Ein Beispiel für eine Schwellenwertregel kann wie folgt ausgedrückt werden:
    • Wenn vorhergesagte Biomassewerte innerhalb von 6 Metern (20 Fuß) vom Erntevorsatz der landwirtschaftlichen Erntemaschine 100 größer als x Kilogramm sind (wobei x ein ausgewählter oder vorbestimmter Wert ist), dann ist der Zieleinstellwert zu verwenden, der auf Grundlage der Vorschubgeschwindigkeit gegenüber anderen konkurrierenden Zieleinstellungen ausgewählt wird, andernfalls ist der Zieleinstellwert auf Grundlage des Kornverlusts gegenüber anderen konkurrierenden Zieleinstellwerten zu verwenden.
  • Die Einstellungsresolver können logische Komponenten sein, die logische Regeln beim Identifizieren einer Zieleinstellung ausführen. Beispielsweise kann der Einstellungsresolver Zieleinstellungen auflösen, während er versucht, die Erntezeit zu minimieren oder die Gesamterntekosten zu minimieren oder geerntetes Korn zu maximieren oder auf anderen Variablen basiert, die in Abhängigkeit der verschiedenen in Frage kommenden Zieleinstellungen berechnet werden. Eine Erntezeit kann minimiert werden, wenn eine Menge zum Abschließen einer Ernte auf einen ausgewählten Schwellenwert oder darunter reduziert wird. Gesamterntekosten können minimiert werden, wenn die Gesamterntekosten auf oder unter einen ausgewählten Schwellenwert reduziert werden. Erntegut kann maximiert werden, wenn die Menge an Erntegut auf oder über einen ausgewählten Schwellenwert erhöht wird.
  • 9 ist ein Flussdiagramm, das ein Beispiel für den Betrieb des Steuerzonengenerators 213 bei der Erzeugung von Steuerzonen und Regimezonen für eine Karte veranschaulicht, die der Steuerzonengenerator 213 zur Zonenverarbeitung empfängt (z. B. für eine Karte, die analysiert wird).
  • Bei Block 530 empfängt der Steuerzonengenerator 213 eine Karte, die zur Verarbeitung analysiert wird. In einem Beispiel, wie bei Block 532 gezeigt, ist die analysierte Karte eine funktionale prädiktive Karte. Beispielsweise kann die analysierte Karte eine der funktionalen prädiktiven Karten 436, 437, 438 oder 440 sein. Block 534 gibt an, dass die zu analysierende Karte auch andere Karten sein kann.
  • Bei Block 536 wählt der WMA-Selektor 486 ein WMA oder einen Satz von WMAs aus, für die Steuerzonen auf der analysierten Karte erzeugt werden sollen. Bei Block 538 erhält die Steuerzonenkriterienidentifikationskomponente 494 Steuerzonendefinitionskriterien für die ausgewählten WMAs oder den Satz von WMAs. Block 540 gibt ein Beispiel an, in dem die Steuerzonenkriterien Verschleißeigenschaften des ausgewählten WMA oder Satzes von WMAs sind oder beinhalten. Block 542 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien eine Größe und Variation von Eingangsquellendaten sind oder beinhalten, wie etwa die Größe und Variation der Werte auf der analysierten Karte oder die Größe und Variation von Eingaben von verschiedenen In-situ-Sensoren 208. Block 544 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien physikalische Maschinenmerkmale sind oder beinhalten, wie etwa die physikalischen Abmessungen der Maschine, eine Geschwindigkeit, mit der verschiedene Teilsysteme arbeiten, oder andere physikalische Maschinenmerkmale. Block 546 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien eine Reaktionsfähigkeit des ausgewählten WMA oder Satzes von WMAs beim Erreichen neu befohlener Einstellwerte sind oder beinhalten. Block 548 gibt ein Beispiel an, in dem die Steuerungszonendefinitionskriterien Maschinenleistungsmetriken sind oder beinhalten. Block 550 gibt ein Beispiel an, in dem die Steuerungszonendefinitionskriterien Bedienerpräferenzen sind oder beinhalten. Block 552 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien auch andere Elemente sind oder beinhalten. Block 549 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien zeitbasiert sind, was bedeutet, dass die landwirtschaftliche Erntemaschine 100 die Grenze einer Steuerzone nicht überschreitet, bis eine ausgewählte Zeitspanne verstrichen ist, seit dem die landwirtschaftliche Erntemaschine 100 in eine bestimmte Steuerzone eingetreten ist. In einigen Fällen kann die ausgewählte Zeitdauer eine minimale Zeitdauer sein. So können die Steuerzonendefinitionskriterien in einigen Fällen verhindern, dass die landwirtschaftliche Erntemaschine 100 eine Grenze einer Steuerzone überschreitet, bis zumindest die ausgewählte Zeitspanne verstrichen ist. Block 551 gibt ein Beispiel an, in dem die Steuerzonendefinitionskriterien auf einem ausgewählten Größenwert basieren. Beispielsweise kann ein Steuerzonendefinitionskriterium, das auf einem ausgewählten Größenwert basiert, die Definition einer Steuerzone ausschließen, die kleiner als die ausgewählte Größe ist. In einigen Fällen kann die ausgewählte Größe eine Mindestgröße sein.
  • Bei Block 554 erhält die Regimezonenkriterienidentifikationskomponente 522 Regimezonendefinitionskriterien für das ausgewählte WMA oder den ausgewählten Satz von WMAs. Block 556 gibt ein Beispiel an, in dem die Regimezonendefinitionskriterien auf einer manuellen Eingabe von Bediener 260 oder einem anderen Benutzer basieren. Block 558 veranschaulicht ein Beispiel, in dem die Regimezonendefinitionskriterien auf Erntegutart oder Erntegutsorte basieren. Block 560 veranschaulicht ein Beispiel, in dem die Regimezonendefinitionskriterien auf Schädlingsart oder Schädlingsintensität oder beiden basieren. Block 562 veranschaulicht ein Beispiel, in dem die Regimezonendefinitionskriterien auf dem Erntezustand basieren oder diesen beinhalten. Block 564 gibt ein Beispiel an, in dem die Regimezonendefinitionskriterien auch andere Kriterien sind oder beinhalten.
  • Bei Block 566 erzeugt die Steuerzonengrenzendefinitionskomponente 496 die Grenzen von Steuerzonen auf der zu analysierenden Karte auf Grundlage der Steuerzonenkriterien. Die Regimezonengrenzendefinitionskomponente 524 erzeugt die Grenzen von Regimezonen auf der zu analysierenden Karte auf Grundlage der Regimezonenkriterien. Block 568 gibt ein Beispiel an, in dem die Zonengrenzen für die Steuerzonen und Regimezonen identifiziert werden. Block 570 zeigt, dass die Zieleinstellungsidentifikationskomponente 498 die Zieleinstellungen für jede der Steuerzonen identifiziert. Die Steuerzonen und Regimezonen können auch auf andere Weise erzeugt werden, was durch Block 572 angezeigt wird.
  • Bei Block 574 identifiziert die Einstellungsresolveridentifikationskomponente 526 den Einstellungsresolver für die ausgewählten WMAs in jeder Regimezone, die durch die Regimezonengrenzendefinitionskomponente 524 definiert ist. Wie vorstehend erörtert, kann der Regimezonenresolver ein menschlicher Resolver 576, ein Resolver für künstliche Intelligenz oder ein maschinelles Lernsystem 578, ein Resolver 580 auf Grundlage vorhergesagter oder historischer Qualität für jede konkurrierende Zieleinstellung, ein regelbasierter Resolver 582, ein leistungskriterienbasierter Resolver 584 oder andere Resolver 586 sein.
  • Bei Block 588 bestimmt der WMA-Selektor 486, ob weitere WMAs oder Sätze von WMAs zu verarbeiten sind. Wenn zusätzliche WMAs oder Sätze von WMAs noch zu verarbeiten sind, kehrt die Verarbeitung zu Block 436 zurück, wo das nächste WMA oder der Satz von WMAs ausgewählt wird, für die Steuerzonen und Regimezonen definiert werden sollen. Wenn keine zusätzlichen WMAs oder Sätze von WMAs verbleiben, für die Steuerzonen oder Regimezonen erzeugt werden sollen, bewegt sich die Verarbeitung zu Block 590, wo der Steuerzonengenerator 213 eine Karte mit Steuerzonen, Zieleinstellungen, Regimezonen und Einstellungsresolvern für jedes der WMAs oder Sätze von WMAs ausgibt. Wie vorstehend erörtert, kann die ausgegebene Karte dem Bediener 260 oder einem anderen Benutzer präsentiert werden; die ausgegebene Karte kann dem Steuersystem 214 bereitgestellt werden; oder die ausgegebene Karte kann auf andere Weise ausgegeben werden.
  • 10 veranschaulicht ein Beispiel für den Betrieb des Steuersystems 214 bei der Steuerung der landwirtschaftlichen Erntemaschine 100 auf Grundlage einer Karte, die von dem Steuerzonengenerator 213 ausgegeben wird. Somit empfängt das Steuersystem 214 bei Block 592 eine Karte der Arbeitsstelle. In einigen Fällen kann die Karte eine funktionelle prädiktive Karte sein, die Steuerzonen und Regimezonen beinhalten kann, wie durch Block 594 dargestellt. In einigen Fällen kann die empfangene Karte eine funktionelle prädiktive Karte sein, die Steuerzonen und Regimezonen ausschließt. Block 596 gibt ein Beispiel an, in dem die empfangene Karte der Arbeitsstelle eine Vorabinformationskarte mit darauf identifizierten Steuerzonen und Regimezonen sein kann. Block 598 gibt ein Beispiel an, in dem die empfangene Karte mehrere verschiedene Karten oder mehrere verschiedene Kartenebenen beinhalten kann. Block 610 gibt ein Beispiel an, in dem die empfangene Karte auch andere Formen annehmen kann.
  • Bei Block 612 empfängt das Steuersystem 214 ein Sensorsignal vom geografischen Positionssensor 204. Das Sensorsignal von dem geografischen Positionssensor 204 kann Daten beinhalten, die die geografische Position 614 der landwirtschaftlichen Erntemaschine 100, die Geschwindigkeit 616 der landwirtschaftlichen Erntemaschine 100, den Kurs 618 der landwirtschaftlichen Erntemaschine 100 oder andere Informationen 620 angeben. Bei Block 622 wählt die Zonensteuerung 247 eine Regimezone aus und bei Block 624 wählt die Zonensteuerung 247 eine Steuerzone auf der Karte auf Grundlage des geografischen Positionssensorsignals aus. Bei Block 626 wählt die Zonensteuerung 247 ein WMA oder einen Satz von WMAs aus, die gesteuert werden sollen. Bei Block 628 erhält die Zonensteuerung 247 eine oder mehrere Zieleinstellungen für das ausgewählte WMA oder einen Satz von WMAs. Die Zieleinstellungen, die für das ausgewählte WMA oder eine Gruppe von WMAs erhalten werden, können aus verschiedenen Quellen stammen. Zum Beispiel zeigt Block 630 ein Beispiel, bei dem eine oder mehrere der Zieleinstellungen für das ausgewählte WMA oder den Satz von WMAs auf einer Eingabe von den Steuerzonen auf der Karte der Arbeitsstelle basiert. Block 632 zeigt ein Beispiel, in dem eine oder mehrere der Zieleinstellungen aus menschlichen Eingaben von dem Bediener 260 oder einem anderen Benutzer erhalten werden. Block 634 zeigt ein Beispiel, in dem die Zieleinstellungen von einem In-situ-Sensor 208 erhalten werden. Block 636 zeigt ein Beispiel, in dem die eine oder mehreren Zieleinstellungen von einem oder mehreren Sensoren an anderen Maschinen erhalten werden, die auf demselben Feld arbeiten, entweder gleichzeitig mit der landwirtschaftlichen Erntemaschine 100 oder von einem oder mehreren Sensoren an Maschinen, die in der Vergangenheit auf demselben Feld gearbeitet haben. Block 638 zeigt ein Beispiel, in dem die Zieleinstellungen auch aus anderen Quellen erhalten werden.
  • Bei Block 640 greift die Zonensteuerung 247 auf den Einstellungsresolver für die ausgewählte Regimezone zu und steuert den Einstellungsresolver, um konkurrierende Zieleinstellungen in eine aufgelöste Zieleinstellung aufzulösen. Wie oben erörtert, kann der Einstellungsresolver in einigen Fällen ein menschlicher Resolver sein, wobei die Zonensteuerung 247 Bedienerschnittstellenmechanismen 218 steuert, um die konkurrierenden Zieleinstellungen dem Bediener 260 oder einem anderen Benutzer zur Auflösung zu präsentieren. In einigen Fällen kann der Einstellungsresolver ein neuronales Netzwerk oder ein anderes künstliches Intelligenz- oder maschinelles Lernsystem sein, und die Zonensteuerung 247 übermittelt die konkurrierenden Zieleinstellungen an das neuronale Netzwerk, die künstliche Intelligenz oder das maschinelle Lernsystem zur Auswahl. In einigen Fällen kann der Einstellungsresolver auf einer vorhergesagten oder historischen Qualitätsmetrik, auf Schwellenwertregeln oder auf logischen Komponenten basieren. In einem dieser letztgenannten Beispiele führt die Zonensteuerung 247 den Einstellungsresolver aus, um eine aufgelöste Zieleinstellung auf Grundlage der vorhergesagten oder historischen Qualitätsmetrik, auf Grundlage der Schwellenwertregeln oder mithilfe der logischen Komponenten zu erhalten.
  • Bei Block 642, stellt die Zonensteuerung 247, wenn die Zonensteuerung 247 die aufgelöste Zieleinstellung identifiziert hat, die aufgelöste Zieleinstellung anderen Steuerungen im Steuersystem 214 bereit, die Steuersignale auf Grundlage der aufgelösten Zieleinstellung erzeugen und auf das ausgewählte WMA oder den ausgewählten Satz von WMAs anwenden. Wenn das ausgewählte WMA zum Beispiel ein Maschinen- oder Erntevorsatzstellglied 248 ist, stellt die Zonensteuerung 247 die aufgelöste Zieleinstellung der Einstellungssteuerung 232 oder der Erntevorsatz-/Haspelsteuerung 238 oder von beiden bereit, um Steuersignale auf Grundlage der aufgelösten Zieleinstellung zu erzeugen, und diese erzeugten Steuersignale werden an die Maschinen- oder Erntevorsatzstellglieder 248 angelegt. Wenn bei Block 644 zusätzliche WMAs oder zusätzliche Sätze von WMAs an der aktuellen geografischen Position der landwirtschaftlichen Erntemaschine 100 gesteuert werden sollen (wie bei Block 612 erkannt), kehrt die Verarbeitung zu Block 626 zurück, wo das nächste WMA oder Satz von WMAs ausgewählt wird. Die durch die Blöcke 626 bis 644 dargestellten Prozesse werden fortgesetzt, bis alle WMAs oder Sätze von WMAs, die an der aktuellen geografischen Position der landwirtschaftlichen Erntemaschine 100 gesteuert werden sollen, angesprochen wurden. Wenn keine zusätzlichen WMAs oder Sätze von WMAs an der aktuellen geografischen Position der landwirtschaftlichen Erntemaschine 100 zu steuern sind, geht die Verarbeitung zu Block 646 über, wo die Zonensteuerung 247 bestimmt, ob zusätzliche zu berücksichtigende Steuerzonen in der ausgewählten Regimezone vorhanden sind. Wenn zusätzliche zu berücksichtigende Steuerzonen vorhanden sind, kehrt die Verarbeitung zurück zu Block 624, wo eine nächste Steuerzone ausgewählt wird. Wenn keine zusätzlichen Steuerzonen mehr zu berücksichtigen sind, geht die Verarbeitung zu Block 648 über, in dem festgestellt wird, ob zusätzliche Regimezonen noch zu berücksichtigen sind. Die Zonensteuerung 247 bestimmt, ob weitere Regimezonen in Betracht gezogen werden sollen. Wenn weitere Regimezonen zu berücksichtigen sind, kehrt die Verarbeitung zu Block 622 zurück, wo eine nächste Regimezone ausgewählt wird.
  • Bei Block 650 bestimmt die Zonensteuerung 247, ob der Vorgang, den die landwirtschaftliche Erntemaschine 100 durchführt, abgeschlossen ist. Wenn nicht, bestimmt die Zonensteuerung 247, ob ein Steuerzonenkriterium erfüllt wurde, um die Verarbeitung fortzusetzen, wie durch Block 652 angezeigt. Wie oben erwähnt, können die Steuerzonendefinitionskriterien zum Beispiel Kriterien beinhalten, die definieren, wann eine Steuerzonengrenze von der landwirtschaftlichen Erntemaschine 100 überschritten werden kann. Zum Beispiel kann durch einen ausgewählten Zeitraum definiert sein, ob eine Steuerzonengrenze von der landwirtschaftlichen Erntemaschine 100 überschritten werden kann, was bedeutet, dass die landwirtschaftliche Erntemaschine 100 daran gehindert wird, eine Zonengrenze zu überschreiten, bis eine ausgewählte Zeitspanne abgelaufen ist. In diesem Fall bestimmt die Zonensteuerung 247 bei Block 652, ob der ausgewählte Zeitraum abgelaufen ist. Zusätzlich kann die Zonensteuerung 247 die Verarbeitung kontinuierlich durchführen. Somit wartet die Zonensteuerung 247 nicht auf einen bestimmten Zeitraum, bevor sie fortfährt, zu bestimmen, ob ein Betrieb der landwirtschaftlichen Erntemaschine 100 abgeschlossen ist. Bei Block 652 bestimmt die Zonensteuerung 247, dass es an der Zeit ist, die Verarbeitung fortzusetzen, und setzt dann die Verarbeitung bei Block 612 fort, wo die Zonensteuerung 247 erneut eine Eingabe von dem geografischen Positionssensor 204 empfängt. Es ist ebenfalls zu beachten, dass die Zonensteuerung 247 die WMAs und Sätze von WMAs gleichzeitig mithilfe einer Steuerung mit mehreren Eingaben und mehreren Ausgaben steuern kann, anstatt die WMAs und Sätze von WMAs sequentiell zu steuern.
  • 11 ist ein Blockdiagramm, das ein Beispiel für eine Bedienerschnittstellensteuerung 231 zeigt. In einem veranschaulichten Beispiel beinhaltet die Bedienerschnittstellensteuerung 231 ein Bedienereingabebefehlsverarbeitungssystem 654, ein anderes Steuerungsinteraktionssystem 656, ein Sprachverarbeitungssystem 658 und einen Aktionssignalgenerator 660. Das Bedienereingabebefehlsverarbeitungssystem 654 beinhaltet das Sprachverarbeitungssystem 662, das Berührungsgestenhandhabungssystem 664 und andere Elemente 666. Das andere Steuerungsinteraktionssystem 656 beinhaltet das Steuerungseingabeverarbeitungssystem 668 und den Steuerungsausgabegenerator 670. Das Sprachverarbeitungssystem 658 beinhaltet den Auslösedetektor 672, die Erkennungskomponente 674, die Synthesekomponente 676, das System zum Verstehen der natürlichen Sprache 678, das Dialogmanagementsystem 680 und andere Elemente 682. Der Aktionssignalgenerator 660 umfasst den visuellen Steuersignalgenerator 684, den Audio-Steuersignalgenerator 686, den haptischen Steuersignalgenerator 688 und andere Elemente 690. Bevor der Betrieb der in 11 gezeigten beispielhaften Bedienerschnittstellensteuerung 231 bei der Handhabung verschiedener Bedienerschnittstellenaktionen beschrieben wird, wird zuerst eine kurze Beschreibung einiger der Elemente der Bedienerschnittstellensteuerung 231 und der damit verbundene Betrieb bereitgestellt.
  • Das Bedienereingabebefehlsverarbeitungssystem 654 erkennt Bedienereingaben an den Bedienerschnittstellenmechanismen 218 und verarbeitet diese Eingaben für Befehle. Das Sprachverarbeitungssystem 662 erkennt Spracheingaben und verarbeitet die Interaktionen mit dem Sprachverarbeitungssystem 658, um die Spracheingaben für Befehle zu verarbeiten. Das Berührungsgestenhandhabungssystem 664 erkennt Berührungsgesten an berührungsempfindlichen Elementen in den Bedienerschnittstellenmechanismen 218 und verarbeitet diese Eingaben für Befehle.
  • Das andere Steuerungsinteraktionssystem 656 behandelt Interaktionen mit anderen Steuerungen des Steuersystems 214. Das Steuerungseingabeverarbeitungssystem 668 erkennt und verarbeitet Eingaben von anderen Steuerungen im Steuersystem 214, und der Steuerungsausgabegenerator 670 erzeugt Ausgaben und stellt diese Ausgaben anderen Steuerungen im Steuersystem 214 bereit. Das Sprachverarbeitungssystem 658 erkennt Spracheingaben, bestimmt die Bedeutung dieser Eingaben und stellt eine Ausgabe bereit, die die Bedeutung der gesprochenen Eingaben angibt. Zum Beispiel kann das Sprachverarbeitungssystem 658 eine Spracheingabe von dem Bediener 260 als einen Einstellungsänderungsbefehl erkennen, in dem der Bediener 260 dem Steuersystem 214 befiehlt, eine Einstellung für ein steuerbares Teilsystem 216 zu ändern. In einem solchen Beispiel erkennt das Sprachverarbeitungssystem 658 den Inhalt des gesprochenen Befehls, identifiziert die Bedeutung dieses Befehls als einen Einstellungsänderungsbefehl und liefert die Bedeutung dieser Eingabe zurück an das Sprachverarbeitungssystem 662. Das Sprachverarbeitungssystem 662 wiederum interagiert mit dem Steuerungsausgabegenerator 670, um die befohlene Ausgabe an die entsprechende Steuerung im Steuersystem 214 bereitzustellen, um den gesprochenen Einstellungsänderungsbefehl zu erfüllen.
  • Das Sprachverarbeitungssystem 658 kann auf verschiedene Weise aufgerufen werden. Beispielsweise stellt das Sprachverarbeitungssystem 662 in einem Beispiel kontinuierlich eine Eingabe von einem Mikrofon (das einer der Bedienerschnittstellenmechanismen 218 ist) an das Sprachverarbeitungssystem 658 bereit. Das Mikrofon erkennt Sprache von dem Bediener 260, und das Sprachverarbeitungssystem 662 stellt dem Sprachverarbeitungssystem 658 die erkannte Sprache bereit. Der Auslösedetektor 672 erkennt einen Auslöser, der angibt, dass das Sprachverarbeitungssystem 658 aufgerufen wird. In einigen Fällen, wenn das Sprachverarbeitungssystem 658 kontinuierliche Spracheingaben von dem Sprachverarbeitungssystem 662 empfängt, führt die Spracherkennungskomponente 674 eine kontinuierliche Spracherkennung an der gesamten vom Bediener 260 gesprochenen Sprache durch. In einigen Fällen ist das Sprachverarbeitungssystem 658 zum Aufruf mithilfe eines Aufweckworts konfiguriert. Das heißt, in einigen Fällen kann der Betrieb des Sprachverarbeitungssystems 658 auf Grundlage der Erkennung eines ausgewählten gesprochenen Wortes, das als Aufweckwort bezeichnet wird, eingeleitet werden. In einem solchen Beispiel, in dem die Erkennungskomponente 674 das Aufweckwort erkennt, liefert die Erkennungskomponente 674 einen Hinweis darauf, dass das Aufweckwort erkannt wurde, um den Detektor 672 auszulösen. Der Auslösedetektor 672 erkennt, dass das Sprachverarbeitungssystem 658 durch das Aufweckwort aufgerufen oder ausgelöst wurde. In einem anderen Beispiel kann das Sprachverarbeitungssystem 658 durch einen Bediener 260 aufgerufen werden, der ein Stellglied an einem Benutzerschnittstellenmechanismus betätigt, wie etwa durch Berühren eines Stellglieds auf einem berührungsempfindlichen Anzeigebildschirm, durch Drücken einer Taste oder durch Bereitstellen einer anderen Auslöseeingabe. In einem solchen Beispiel kann der Auslösedetektor 672 erkennen, dass das Sprachverarbeitungssystem 658 aufgerufen wurde, wenn eine Auslöseeingabe über einen Benutzerschnittstellenmechanismus erkannt wird. Der Auslösedetektor 672 kann auch auf andere Weise erkennen, dass das Sprachverarbeitungssystem 658 aufgerufen wurde.
  • Sobald das Sprachverarbeitungssystem 658 aufgerufen wird, wird die Spracheingabe vom Bediener 260 der Spracherkennungskomponente 674 bereitgestellt. Die Spracherkennungskomponente 674 erkennt linguistische Elemente in der Spracheingabe, wie etwa Wörter, Phrasen oder andere linguistische Einheiten. Das System zum Verstehen der natürlichen Sprache 678 identifiziert eine Bedeutung der erkannten Sprache. Die Bedeutung kann eine Ausgabe in natürlicher Sprache, eine Befehlsausgabe, die einen in der erkannten Sprache reflektierten Befehl identifiziert, eine Werteausgabe, die einen Wert in der erkannten Sprache identifiziert, oder eine Vielzahl anderer Ausgaben sein, die das Verständnis der erkannten Sprache widerspiegeln. Beispielsweise können das System zum Verstehen der natürlichen Sprache 678 und das Sprachverarbeitungssystem 568 allgemeiner die Bedeutung der erkannten Sprache im Kontext der landwirtschaftlichen Erntemaschine 100 verstehen.
  • In einigen Beispielen kann das Sprachverarbeitungssystem 658 auch Ausgaben erzeugen, die den Bediener 260 auf Grundlage der Spracheingabe durch eine Benutzererfahrung navigieren. Beispielsweise kann das Dialogmanagementsystem 680 einen Dialog mit dem Benutzer erzeugen und verwalten, um zu identifizieren, was der Benutzer tun möchte. Der Dialog kann den Befehl eines Benutzers unmissverständlich machen; einen oder mehrere spezifische Werte identifizieren, die erforderlich sind, um den Befehl des Benutzers auszuführen; oder andere Informationen vom Benutzer erhalten oder dem Benutzer oder beiden andere Informationen bereitstellen. Die Synthesekomponente 676 kann eine Sprachsynthese erzeugen, die dem Benutzer durch einen Audiobedienerschnittstellenmechanismus, wie etwa einen Lautsprecher, präsentiert werden kann. Somit kann der Dialog, der vom Dialogmanagementsystem 680 verwaltet wird, ausschließlich ein gesprochener Dialog oder eine Kombination aus sowohl einem visuellen Dialog als auch einem gesprochenen Dialog sein.
  • Der Aktionssignalgenerator 660 erzeugt Aktionssignale, um Bedienerschnittstellenmechanismen 218 auf Grundlage von Ausgaben von einem oder mehreren von dem Bedienereingabebefehlsverarbeitungssystem 654, dem anderen Steuerungsinteraktionssystem 656 und dem Sprachverarbeitungssystem 658 zu steuern. Der visuelle Steuersignalgenerator 684 erzeugt Steuersignale, um visuelle Elemente in den Bedienerschnittstellenmechanismen 218 zu steuern. Bei den visuellen Elementen kann es sich um Lichter, einen Anzeigebildschirm, Warnindikatoren oder andere visuelle Elemente handeln. Der Audiosteuersignalgenerator 686 erzeugt Ausgaben, die Audioelemente der Bedienerschnittstellenmechanismen 218 steuern. Die Audioelemente umfassen einen Lautsprecher, akustische Alarmmechanismen, Hörner oder andere akustische Elemente. Der haptische Steuersignalgenerator 688 erzeugt Steuersignale, die ausgegeben werden, um haptische Elemente der Bedienerschnittstellenmechanismen 218 zu steuern. Die haptischen Elemente beinhalten Vibrationselemente, die verwendet werden können, um beispielsweise den Sitz des Bedieners, das Lenkrad, Pedale oder Joysticks, die vom Bediener verwendet werden, vibrieren zu lassen. Die haptischen Elemente können eine taktile Rückkopplungs- oder Krafttrückkopplungselemente beinhalten, die dem Bediener über Bedienerschnittstellenmechanismen ein taktiles Rückkopplungs- oder Kraftrückkopplungssignal bereitstellen. Die haptischen Elemente können auch eine Vielzahl anderer haptischer Elemente beinhalten.
  • 12 ist ein Flussdiagramm, das ein Beispiel für den Betrieb der Bedienerschnittstellensteuerung 231 bei der Erzeugung einer Bedienerschnittstellenanzeige auf einem Bedienerschnittstellenmechanismus 218 veranschaulicht, der einen berührungsempfindlichen Anzeigebildschirm beinhalten kann. 12 veranschaulicht außerdem ein Beispiel dafür, wie die Bedienerschnittstellensteuerung 231 Bedienerinteraktionen mit dem berührungsempfindlichen Anzeigebildschirm erkennen und verarbeiten kann.
  • Bei Block 692 empfängt die Bedienerschnittstellensteuerung 231 eine Karte. Block 694 gibt ein Beispiel an, in dem die Karte eine funktionelle prädiktive Karte ist, und Block 696 gibt ein Beispiel an, in dem die Karte ein anderer Kartentyp ist. Bei Block 698 empfängt die Bedienerschnittstellensteuerung 231 eine Eingabe von dem geografischen Positionssensor 204, der die geografische Position der landwirtschaftlichen Erntemaschine 100 identifiziert. Wie in Block 700 angegeben, kann die Eingabe von dem geografischen Positionssensor 204 den Kurs zusammen mit der Position der landwirtschaftlichen Erntemaschine 100 beinhalten. Block 702 gibt ein Beispiel an, in dem die Eingabe von dem geografischen Positionssensor 204 die Geschwindigkeit der landwirtschaftlichen Erntemaschine 100 beinhaltet, und Block 704 gibt ein Beispiel an, in dem die Eingabe von dem geografischen Positionssensor 204 andere Elemente beinhaltet.
  • Bei Block 706 steuert der visuelle Steuersignalgenerator 684 in der Bedienerschnittstellensteuerung 231 den berührungsempfindlichen Anzeigebildschirm in den Bedienerschnittstellenmechanismen 218, um eine Anzeige zu erzeugen, die das gesamte oder einen Teil eines durch die empfangene Karte dargestellten Feldes zeigt. Block 708 gibt an, dass das angezeigte Feld eine aktuelle Positionsmarkierung beinhalten kann, die eine aktuelle Position der landwirtschaftlichen Erntemaschine 100 relativ zum Feld zeigt. Block 710 gibt ein Beispiel an, in dem das angezeigte Feld eine nächste Arbeitseinheitsmarkierung beinhaltet, die eine nächste Arbeitseinheit (oder einen Bereich auf dem Feld) identifiziert, in dem die landwirtschaftliche Erntemaschine 100 betrieben wird. Block 712 gibt ein Beispiel an, in dem das angezeigte Feld einen bevorstehenden Bereichsanzeigeabschnitt beinhaltet, der Bereiche anzeigt, die noch von der landwirtschaftlichen Erntemaschine 100 verarbeitet werden sollen, und Block 714 gibt ein Beispiel an, in dem das angezeigte Feld zuvor besuchte Anzeigeabschnitte beinhaltet, die Bereiche des Feldes darstellen, die die landwirtschaftliche Erntemaschine 100 bereits bearbeitet hat. Block 716 gibt ein Beispiel an, in dem das angezeigte Feld verschiedene Merkmale des Feldes mit georeferenzierten Positionen auf der Karte anzeigt. Handelt es sich beispielsweise bei der empfangenen Karte um eine Schädlingskarte, kann das angezeigte Feld die verschiedenen Schädlingsarten anzeigen, die in dem Feld vorhanden sind, die innerhalb des angezeigten Feldes georeferenziert sind. Die abgebildeten Merkmale können in den zuvor besuchten Bereichen (wie in Block 714 gezeigt), in den bevorstehenden Bereichen (wie in Block 712 gezeigt) und in der nächsten Arbeitseinheit (wie in Block 710 gezeigt) gezeigt werden. Block 718 gibt ein Beispiel an, in dem das angezeigte Feld auch andere Elemente beinhaltet.
  • 13 ist eine bildliche Darstellung, die ein Beispiel für eine Benutzerschnittstellenanzeige 720 zeigt, die auf einem berührungsempfindlichen Anzeigebildschirm erzeugt werden kann. In anderen Implementierungen kann die Benutzerschnittstellenanzeige 720 auf anderen Arten von Anzeigen erzeugt werden. Der berührungsempfindliche Bildschirm kann in der Fahrerkabine der landwirtschaftlichen Erntemaschine 100 oder auf der mobilen Vorrichtung oder anderswo montiert werden. Die Benutzerschnittstellenanzeige 720 wird beschrieben, bevor mit der Beschreibung des in 12 gezeigten Flussdiagramms fortgefahren wird.
  • In dem in 13 gezeigten Beispiel veranschaulicht die Benutzerschnittstellenanzeige 720, dass der berührungsempfindliche Anzeigebildschirm ein Anzeigemerkmal zum Bedienen eines Mikrofons 722 und eines Lautsprechers 724 beinhaltet. Somit kann die berührungsempfindliche Anzeige kommunizierbar mit dem Mikrofon 722 und dem Lautsprecher 724 gekoppelt werden. Block 726 zeigt an, dass der berührungsempfindliche Anzeigebildschirm eine Vielzahl von Bedienerschnittstellensteuerstellgliedern beinhalten kann, wie etwa Tasten, Tastaturen, Softtastaturen, Links, Symbole, Schalter usw. Der Bediener 260 kann die Bedienerschnittstellensteuerstellglieder betätigen, um verschiedene Funktionen auszuführen.
  • In dem in 13 gezeigten Beispiel beinhaltet die Benutzerschnittstellenanzeige 720 einen Feldanzeigeabschnitt 728, der mindestens einen Abschnitt des Feldes anzeigt, in dem die landwirtschaftliche Erntemaschine 100 betrieben wird. Der Feldanzeigeabschnitt 728 ist mit einer aktuellen Positionsmarkierung 708 gezeigt, die einer aktuellen Position der landwirtschaftlichen Erntemaschine 100 in dem Abschnitt des Feldes entspricht, der in dem Feldanzeigeabschnitt 728 gezeigt ist. In einem Beispiel kann der Bediener die berührungsempfindliche Anzeige steuern, um in Teile des Feldanzeigeabschnitts 728 zu zoomen oder den Feldanzeigeabschnitt 728 zu schwenken oder zu scrollen, um verschiedene Abschnitte des Feldes anzuzeigen. Eine nächste Arbeitseinheit 730 ist als Bereich des Feldes direkt vor der aktuellen Positionsmarkierung 708 der landwirtschaftlichen Erntemaschine 100 gezeigt. Die aktuelle Positionsmarkierung 708 kann auch konfiguriert sein, um die Fahrtrichtung der landwirtschaftlichen Erntemaschine 100, eine Fahrgeschwindigkeit der landwirtschaftlichen Erntemaschine 100 oder beides zu identifizieren. In 13 stellt die Form der aktuellen Positionsmarkierung 708 eine Angabe zur Ausrichtung der landwirtschaftlichen Erntemaschine 100 innerhalb des Feldes bereit, die als eine Angabe einer Fahrtrichtung der landwirtschaftlichen Erntemaschine 100 verwendet werden kann.
  • Die Größe der nächsten Arbeitseinheit 730, die auf dem Feldanzeigeabschnitt 728 markiert ist, kann auf Grundlage einer Vielzahl verschiedener Kriterien variieren. Zum Beispiel kann die Größe der nächsten Arbeitseinheit 730 in Abhängigkeit von der Fahrgeschwindigkeit der landwirtschaftlichen Erntemaschine 100 variieren. Wenn sich die landwirtschaftliche Erntemaschine 100 somit schneller bewegt, kann der Bereich der nächsten Arbeitseinheit 730 größer sein als der Bereich der nächsten Arbeitseinheit 730, wenn sich die landwirtschaftliche Erntemaschine 100 langsamer bewegt. Der Feldanzeigeabschnitt 728 ist auch so gezeigt, dass er den zuvor besuchten Bereich 714 und bevorstehende Bereiche 712 anzeigt. Die zuvor besuchten Bereiche 714 stellen Bereiche dar, die bereits geerntet wurden, während die bevorstehenden Bereiche 712 Bereiche darstellen, die noch geerntet werden müssen. Der Feldanzeigeabschnitt 728 ist auch so gezeigt, der verschiedene Merkmale des Feldes anzeigt. In dem in 13 gezeigten Beispiel ist die angezeigte Karte eine Schädlingskarte. Daher werden eine Vielzahl von verschiedenen Schädlingsmarkierungen auf dem Feldanzeigeabschnitt 728 angezeigt. Es gibt einen Satz von Schädlingsmerkmalsanzeigemarkierungen 732, die in den bereits besuchten Bereichen 714 angezeigt werden. Es gibt auch einen Satz von Schädlingsmerkmalsanzeigemarkierungen 734, die in den bevorstehenden Bereichen 712 gezeigt sind, und es gibt einen Satz von Schädlingsmerkmalsanzeigemarkierungen 736, die in der nächsten Arbeitseinheit 730 gezeigt sind. 13 zeigt, dass die Schädlingsmerkmalsanzeigemarkierungen 732, 734 und 736 aus verschiedenen Symbolen bestehen. Jedes der Symbole stellt eine Schädlingsart dar. In dem in 3 gezeigten Beispiel stellt das @-Symbol ein auf dem Feld aktives Tier dar; das *-Symbol stellt krankheitsbehaftete Pflanzen dar; und das #-Symbol stellt Pilze dar. Somit zeigt der Feldanzeigeabschnitt 728 verschiedene Arten von Schädlingen an, die sich an verschiedenen Bereichen innerhalb des Feldes befinden. Dies sind nur Beispiele und andere Schädlinge können auch auf der Anzeige 720 angezeigt werden. Wie zuvor beschrieben, können die Anzeigemarkierungen 732 aus verschiedenen Symbolen bestehen, und wie nachstehend beschrieben, können die Symbole beliebige Anzeigemerkmale sein, wie etwa verschiedene Farben, Formen, Muster, Intensitäten, Text, Symbole oder andere Anzeigemerkmale. In einigen Fällen kann jede Position des Feldes eine damit verbundene Anzeigemarkierung aufweisen. Somit kann in einigen Fällen eine Anzeigemarkierung an jeder Position des Feldanzeigeabschnitts 728 bereitgestellt werden, um die Art des Merkmals zu identifizieren, die für jede bestimmte Position des Feldes abgebildet wird. Folglich umfasst die vorliegende Offenbarung das Bereitstellen einer Anzeigemarkierung, wie etwa der Verlustpegel-Anzeigemarkierung 732 (wie im Kontext mit dem vorliegenden Beispiel aus 11) an einer oder mehreren Positionen auf dem Feldanzeigeabschnitt 728, um die Art, den Grad usw. des angezeigten Merkmals zu identifizieren, wodurch das Merkmal an der entsprechenden Position in dem angezeigten Feld identifiziert wird.
  • Im Beispiel von 13 weist die Benutzerschnittstellenanzeige 720 auch einen Steueranzeigeabschnitt 738 auf. Der Steueranzeigeabschnitt 738 ermöglicht es dem Bediener, Informationen anzuzeigen und auf verschiedene Weise mit der Anzeige der Benutzerschnittstelle 720 zu interagieren.
  • Die Stellglieder und Anzeigemarkierungen in Abschnitt 738 können beispielsweise als einzelne Elemente, feste Listen, scrollbare Listen, Dropdown-Menüs oder Dropdown-Listen angezeigt werden. In dem in 13 gezeigten Beispiel zeigt der Anzeigeabschnitt 738 Informationen für die drei verschiedenen Arten von Schädlingen an, die den drei oben genannten Symbolen entsprechen. Der Anzeigeabschnitt 738 beinhaltet auch einen Satz berührungsempfindlicher Stellglieder, mit denen der Bediener 260 durch Berührung interagieren kann. Beispielsweise kann der Bediener 260 die berührungsempfindlichen Stellglieder mit einem Finger berühren, um das jeweilige berührungsempfindliche Stellglied zu aktivieren.
  • Eine Flaggenspalte 739 zeigt Flaggen, die automatisch oder manuell gesetzt wurden. Das Flaggenstellglied 740 ermöglicht es dem Bediener 260, eine Position zu markieren und dann Informationen hinzuzufügen, die die Arten von Schädlingen angeben, die an dieser Position gefunden werden. Wenn zum Beispiel der Bediener 260 das Flaggenstellglied 740 durch Berühren des Flaggenstellglieds 740 betätigt, identifiziert das Berührungsgestenhandhabungssystem 664 in der Bedienerschnittstellensteuerung 231 die Position als eine Position, an der ein Reh vorhanden ist oder war. Wenn der Bediener 260 die Taste 742 berührt, identifiziert das Berührungsgestenhandhabungssystem 664 die Position als eine Position, an der eine oder mehrere erkrankte Pflanzen vorhanden sind. Wenn der Bediener 260 die Taste 744 berührt, identifiziert das Berührungsgestenhandhabungssystem 664 die Position als eine Position, an der Pilze oder eine oder mehrere von Pilzen betroffene Pflanzen vorhanden sind. Das Berührungsgestenhandhabungssystem 664 steuert auch den visuellen Steuersignalgenerator 684, um ein Symbol hinzuzufügen, das der identifizierten Schädlingsart auf dem Feldanzeigeabschnitt 728 an einer Position entspricht, die der Benutzer vor oder nach oder während der Betätigung der Tasten 740, 742 oder 744 identifiziert.
  • Die Spalte 746 zeigt die Symbole an, die jeder Schädlingsart entsprechen, die auf dem Feldanzeigeabschnitt 728 verfolgt wird. Die Bezeichnerspalte 748 zeigt den Bezeichner (der ein Textbezeichner oder ein anderer Bezeichner sein kann), der die Schädlingsart identifiziert. Ohne Einschränkung können die Schädlingssymbole in Spalte 746 und die Bezeichner in Spalte 748 beliebige Anzeigemarkierungen beinhalten, wie etwa verschiedene Farben, Formen, Muster, Intensitäten, Text, Symbole oder andere Anzeigemarkierungen. Spalte 750 zeigt Schädlingsmerkmalwerte. In dem in 13 gezeigten Beispiel sind die Schädlingsmerkmalwerte repräsentative Werte für die Schädlingsdichte. Die in Spalte 750 angezeigten Werte können vorhergesagte Werte oder Werte sein, die durch In-situ-Sensoren 208 gemessen werden. Die Werte in Spalte 750 können einen beliebigen der Werte beinhalten, die im Umfang der Schädlingsintensität enthalten sind, sowie Schädlingsart und andere Werte. In einem Beispiel kann der Bediener 260 den bestimmten Teil des Feldanzeigeabschnitts 728 auswählen, für den die Werte in Spalte 750 angezeigt werden sollen. Somit können die Werte in Spalte 750 Werten in Anzeigeabschnitten 712, 714 oder 730 entsprechen. Spalte 752 zeigt Aktionsschwellenwerte an. Die Aktionsschwellenwerte in Spalte 752 können Schwellenwerte sein, die den gemessenen Werten in Spalte 750 entsprechen. Wenn die gemessenen Werte in Spalte 750 die entsprechenden Aktionsschwellenwerte in Spalte 752 erfüllen, dann ergreift das Steuersystem 214 die in Spalte 754 identifizierte Aktion. In einigen Fällen kann ein gemessener Wert einen entsprechenden Aktionsschwellenwert erfüllen, indem er den entsprechenden Aktionsschwellenwert erfüllt oder überschreitet. In einem Beispiel kann der Bediener 260 beispielsweise einen Schwellenwert auswählen, um den Schwellenwert durch Berühren des Schwellenwerts in Spalte 752 zu ändern. Nach der Auswahl kann der Bediener 260 den Schwellenwert ändern. Die Schwellenwerte in Spalte 752 können konfiguriert sein, um die bezeichnete Aktion durchzuführen, wenn der gemessene Wert 750 den Schwellenwert übersteigt, dem Schwellenwert entspricht oder unter dem Schwellenwert liegt.
  • Ebenso kann der Bediener 260 die Aktionsidentifizierer in Spalte 754 berühren, um die durchzuführende Aktion zu ändern. Wenn ein Schwellenwert erfüllt ist, können mehrere Aktionen ergriffen werden. Zum Beispiel werden am unteren Ende der Spalte 754 eine Geschwindigkeitsreduzierungsaktion und eine Gebläsedrehzahlerhöhungsaktion als Aktionen identifiziert, die durchgeführt werden, wenn der gemessene Wert in Spalte 750 den Schwellenwert in Spalte 752 erfüllt.
  • Die Aktionen, die in Spalte 754 festgelegt werden können, können aus einer Vielzahl verschiedener Arten von Aktionen bestehen. Beispielsweise können die Aktionen eine Halteaktion beinhalten, die, wenn sie ausgeführt wird, die landwirtschaftliche Erntemaschine 100 daran hindert, in einem Bereich weiter zu ernten. Die Aktionen können eine Eindämmungsaktivierung beinhalten, die, wenn sie ausgeführt wird, eine Eindämmungsaktion ausführt, wie etwa ein schlechter Kornsammler, der das Korn ausbläst. Die Aktionen können eine Aktion „Einstellung ändern“ zum Ändern einer Einstellung eines internen Stellglieds oder eines anderen WMA oder eines Satzes von WMAs oder zum Implementieren einer Aktion „Einstellung ändern“ beinhalten, die eine Einstellung eines Erntevorsatzes ändert. Dies sind nur Beispiele, und eine Vielzahl anderer Aktionen wird hier in Betracht gezogen.
  • Die auf der Benutzerschnittstellenanzeige 720 gezeigten Anzeigemarkierungen können visuell gesteuert werden. Das visuelle Steuern der Schnittstellenanzeige 720 kann durchgeführt werden, um die Aufmerksamkeit des Bedieners 260 zu erregen. Beispielsweise können die Anzeigemarkierungen gesteuert werden, um die Intensität, Farbe oder das Muster zu modifizieren, mit dem die Anzeigemarkierungen angezeigt werden. Zusätzlich können die Anzeigemarkierungen so gesteuert werden, dass sie blinken. Beispielhaft sind die beschriebenen Änderungen des visuellen Erscheinungsbildes der Anzeigemarkierungen vorgesehen. Folglich können andere Aspekte des optischen Erscheinungsbildes der Anzeigemarkierungen verändert werden. Daher können die Anzeigemarkierungen unter verschiedenen Umständen in gewünschter Weise modifiziert werden, um beispielsweise die Aufmerksamkeit des Bedieners 260 zu erregen.
  • Verschiedene Funktionen, die durch den Bediener 260 mithilfe der Benutzerschnittstellenanzeige 720 ausgeführt werden können, können ebenfalls automatisch ausgeführt werden, wie etwa durch andere Steuerungen im Steuersystem 214. Wenn beispielsweise eine andere Schädlingsart durch einen In-situ-Sensor 208 identifiziert wird, kann die Bedienerschnittstellensteuerung 231 automatisch eine Flagge an der aktuellen Position der landwirtschaftlichen Erntemaschine 100 hinzufügen (die der Position der angetroffenen Schädlingsart entspricht) und eine Anzeige in der Markierungsspalte, ein entsprechendes Symbol in der Symbolspalte und einen Bezeichner in der Bezeichnerspalte 748 erzeugen. Die Bedienerschnittstellensteuerung 231 kann auch einen gemessenen Wert in Spalte 750 und einen Schwellenwert in Spalte 752 bei Identifizierung einer anderen Schädlingsart erzeugen. Die Bedienerschnittstellensteuerung 231 oder eine andere Steuerung kann auch automatisch eine Aktion identifizieren, die der Spalte 754 hinzugefügt wird.
  • Zurückkehrend zum Flussdiagramm von 12 wird die Beschreibung des Betriebs der Bedienerschnittstellensteuerung 231 fortgesetzt. Bei Block 760 erkennt die Bedienerschnittstellensteuerung 231 eine Eingabeeinstellung einer Flagge und steuert die berührungsempfindliche Benutzerschnittstellenanzeige 720, um die Flagge auf dem Feldanzeigeabschnitt 728 anzuzeigen. Die erkannte Eingabe kann eine Bedienereingabe, wie bei 762 angegeben, oder eine Eingabe von einer anderen Steuerung, wie bei 764 angegeben, sein. Bei Block 766 erkennt die Bedienerschnittstellensteuerung 231 eine In-situ-Sensoreingabe, die ein gemessenes Merkmal des Feldes von einem der In-situ-Sensoren 208 anzeigt. Bei Block 768 erzeugt der visuelle Steuersignalgenerator 684 Steuersignale, um die Benutzerschnittstellenanzeige 720 zu steuern, um Stellglieder anzuzeigen, um die Benutzerschnittstellenanzeige 720 zu modifizieren und um die Maschinensteuerung zu modifizieren. Beispielsweise stellt Block 770 dar, dass eines oder mehrere der Stellglieder zum Einstellen oder Modifizieren der Werte in den Spalten 739, 746 und 748 angezeigt werden kann. Somit kann der Benutzer Flaggen setzen und die Merkmale dieser Flaggen ändern. Beispielsweise kann ein Benutzer die Schädlingsarten und Schädlingsbezeichner entsprechend der Flaggen ändern. Block 772 stellt dar, dass Aktionsschwellenwerte in Spalte 752 angezeigt werden. Block 776 stellt dar, dass die Aktionen in Spalte 754 angezeigt werden, und Block 778 stellt dar, dass die gemessenen In-situ-Daten in Spalte 750 angezeigt werden. Block 780 gibt an, dass auch eine Vielzahl anderer Informationen und Stellglieder auf der Benutzerschnittstellenanzeige 720 angezeigt werden können.
  • Bei Block 782 erfasst und verarbeitet das Bedienereingabebefehlsverarbeitungssystem 654 Bedienereingaben, die Interaktionen mit der Benutzerschnittstellenanzeige 720 entsprechen, die durch den Bediener 260 durchgeführt werden. Wenn der Benutzerschnittstellenmechanismus, auf dem die Benutzerschnittstellenanzeige 720 angezeigt wird, ein berührungsempfindlicher Anzeigebildschirm ist, können Interaktionseingaben mit dem berührungsempfindlichen Anzeigebildschirm durch den Bediener 260 Berührungsgesten 784 sein. In einigen Fällen können die Bedienerinteraktionseingaben Eingaben mithilfe einer Point-and-Click-Vorrichtung 786 oder anderer Bedienerinteraktionseingaben 788 sein.
  • Bei Block 790 empfängt die Bedienerschnittstellensteuerung 231 Signale, die eine Alarmbedingung angeben. Beispielsweise zeigt Block 792 an, dass Signale von dem Steuerungseingabeverarbeitungssystem 668 empfangen werden können, die anzeigen, dass erfasste Werte in Spalte 750 Schwellenwertbedingungen erfüllen, die in Spalte 752 vorhanden sind. Wie zuvor erläutert, können die Schwellenwertbedingungen Werte beinhalten, die unter einem Schwellenwert, bei einem Schwellenwert oder über einem Schwellenwert liegen. Block 794 zeigt, dass der Aktionssignalgenerator 660 als Reaktion auf das Empfangen einer Alarmbedingung den Bediener 260 alarmieren kann, indem er den visuellen Steuersignalgenerator 684 verwendet, um visuelle Alarme zu erzeugen, indem er den Audiosteuersignalgenerator 686 verwendet, um Audioalarme zu erzeugen, indem er den haptischen Steuersignalgenerator 688 verwendet, um haptische Alarme zu erzeugen, oder indem er eine beliebige Kombination davon verwendet. Gleichermaßen kann der Steuerungsausgabegenerator 670, wie durch Block 796 angezeigt, Ausgaben an andere Steuerungen im Steuersystem 214 erzeugen, so dass diese Steuerungen die entsprechende Aktion ausführen, die in Spalte 754 identifiziert wurde. Block 798 zeigt, dass die Bedienerschnittstellensteuerung 231 Alarmbedingungen auch auf andere Weise erkennen und verarbeiten kann.
  • Block 900 zeigt, dass das Sprachverarbeitungssystem 662 Eingaben, die das Sprachverarbeitungssystem 658 aufrufen, erkennen und verarbeiten kann. Block 902 zeigt, dass das Durchführen der Sprachverarbeitung die Verwendung des Dialogverwaltungssystems 680 beinhalten kann, um einen Dialog mit dem Bediener 260 durchzuführen. Block 904 zeigt, dass die Sprachverarbeitung das Bereitstellen von Signalen an den Steuerungsausgabegenerator 670 beinhalten kann, so dass Steuervorgänge automatisch auf Grundlage der Spracheingaben durchgeführt werden.
  • Die nachfolgende Tabelle 1 zeigt einen beispielhaften Dialog zwischen der Bedienerschnittstellensteuerung 231 und dem Bediener 260. In Tabelle 1 verwendet der Bediener 260 ein Auslösewort oder ein Aufweckwort, das vom Auslösedetektor 672 erkannt wird, um das Sprachverarbeitungssystem 658 aufzurufen. In dem in Tabelle 1 dargestellten Beispiel lautet das Aufweckwort „Johnny“.
  • Tabelle 1
  • Bediener: „Johnny, informiere mich über die aktuellen Schädlinge.“
  • Bedienerschnittstellensteuerung: „Die von Pilzen befallenen Erntegüter liegen bei 65 % mit einer Schwelle von 10 %.“
  • Bediener: „Johnny, was soll ich wegen der Schädlinge tun?“
  • Bedienerschnittstellensteuerung: „Pilzbefall des Ernteguts ist zu groß. In diesem Bereich nicht weiter ernten und schlechtes Korn später eindämmen.“
  • Tabelle 2 zeigt ein Beispiel, in dem die Sprachsynthesekomponente 676 eine Ausgabe an den Audiosteuersignalgenerator 686 bereitstellt, um hörbare Aktualisierungen auf einer intermittierenden oder periodischen Basis bereitzustellen. Das Intervall zwischen Aktualisierungen kann zeitbasiert sein, wie etwa alle fünf Minuten, oder abdeckungs- oder entfernungsbasiert, wie etwa alle zwei Hektar, oder ausnahmebasiert, wie etwa wenn ein gemessener Wert größer als ein Schwellenwert ist.
  • Tabelle 2
  • Bedienerschnittstellensteuerung: „In den letzten 10 Minuten umfasste die Ernte 90 % normales Erntegut, 10 % krankes Erntegut.“
  • Bedienerschnittstellensteuerung: „Der nächste 1 Hektar umfasst schätzungsweise 95 % Erntegut, 5 % krankes Erntegut.“
  • Das in Tabelle 3 gezeigte Beispiel veranschaulicht, dass einige Stellglieder oder Benutzereingabemechanismen auf der berührungsempfindlichen Anzeige 720 durch einen Sprachdialog ergänzt werden können. Das Beispiel in Tabelle 3 veranschaulicht, dass der Aktionssignalgenerator 660 Aktionssignale erzeugen kann, um automatisch eine von Schädlingen betroffene Erntegutstelle in dem zu erntenden Feld zu markieren.
  • Tabelle 3
  • Mensch: „Johnny, markiere die Stelle mit den Schädlingen.“
  • Bedienerschnittstellensteuerung: „Der Bereich mit Schädlingen ist markiert.“
  • Das in Tabelle 4 gezeigte Beispiel veranschaulicht, dass der Aktionssignalgenerator 660 einen Dialog mit dem Bediener 260 führen kann, um eine Markierung eines Schädlingsbereichs zu beginnen und zu beenden.
  • Tabelle 4
  • Mensch: „Johnny, beginne damit, Erntegut zu markieren, das von Schädlingen befallen ist.“
  • Bedienerschnittstellensteuerung: „Markierung des von Schädlingen befallenen Bereichs.“
  • Mensch: „Johnny, beende die Markierung des von Schädlingen befallenen Bereichs.“
  • Bedienerschnittstellensteuerung: „Markierung des von Schädlingen befallenen Bereichs gestoppt.“
  • Das in Tabelle 5 gezeigte Beispiel veranschaulicht, dass der Aktionssignalgenerator 160 Signale erzeugen kann, um einen von Schädlingen betroffenen Bereich auf eine andere Weise als die in den Tabellen 3 und 4 gezeigten zu markieren.
  • Tabelle 5
  • Mensch: „Johnny, markiere die nächsten 30 Meter als von Schädlingen befallene Stelle.“
  • Bedienerschnittstellensteuerung: „Die nächsten 30 Meter sind als Bereich mit Schädlingsbefall markiert.“
  • Unter Bezugnahme auf 12 veranschaulicht Block 906, dass die Bedienerschnittstellensteuerung 231 Bedingungen zum Ausgeben einer Nachricht oder anderer Informationen auch auf andere Weise erkennen und verarbeiten kann. Zum Beispiel kann das andere Steuerungsinteraktionssystem 656 Eingaben von anderen Steuerungen erkennen, die angeben, dass dem Bediener 260 Alarme oder Ausgabenachrichten präsentiert werden sollten. Block 908 zeigt, dass die Ausgaben Audionachrichten sein können. Block 910 zeigt, dass die Ausgaben visuelle Nachrichten sein können, und Block 912 zeigt, dass die Ausgaben haptische Nachrichten sein können. Bis die Bedienerschnittstellensteuerung 231 bestimmt, dass der aktuelle Erntevorgang abgeschlossen ist, wie durch Block 914 angezeigt, kehrt die Verarbeitung zu Block 698 zurück, wo die geografische Position der Erntemaschine 100 aktualisiert wird und die Verarbeitung wie oben beschrieben fortgesetzt wird, um die Benutzerschnittstellenanzeige 720 zu aktualisieren.
  • Sobald der Vorgang abgeschlossen ist, können beliebige gewünschte Werte gespeichert werden, die angezeigt werden oder auf der Benutzerschnittstellenanzeige 720 angezeigt wurden. Diese Werte können auch beim maschinellen Lernen verwendet werden, um verschiedene Abschnitte des prädiktiven Modellgenerators 210, des prädiktiven Kartengenerators 212, des Steuerzonengenerators 213, der Steueralgorithmen oder anderer Elemente zu verbessern. Das Speichern der gewünschten Werte wird durch Block 916 angezeigt. Die Werte können lokal auf der landwirtschaftlichen Erntemaschine 100 gespeichert werden oder die Werte können an einem Remote-Serverstandort gespeichert oder an ein anderes Remote-System gesendet werden.
  • Somit ist ersichtlich, dass eine Vorabinformationskarte von einer landwirtschaftlichen Erntemaschine erhalten wird, die Schädlingsmerkmalswerte an verschiedenen geografischen Positionen eines zu erntenden Feldes zeigt. Ein In-situ-Sensor an der Erntemaschine erfasst ein Merkmal, das Werte aufweist, die ein landwirtschaftliches Merkmal angeben, während sich die landwirtschaftliche Erntemaschine durch das Feld bewegt. Ein prädiktiver Kartengenerator erzeugt eine prädiktive Karte, die Steuerwerte für verschiedene Positionen auf Grundlage der Werte des Schädlingsmerkmals in der Vorabinformationskarte und dem landwirtschaftlichen Merkmal, das durch den In-situ-Sensor erfasst wird, vorhersagt. Ein Steuersystem steuert das steuerbare Teilsystem auf Grundlage der Steuerwerte in der prädiktiven Karte.
  • Ein Steuerwert ist ein Wert, auf dem eine Aktion basieren kann. Ein Steuerwert, wie hierin beschrieben, kann einen beliebigen Wert (oder Merkmale, die durch den Wert angegeben sind oder von diesem abgeleitet werden) beinhalten, der bei der Steuerung der landwirtschaftlichen Erntemaschine 100 verwendet werden kann. Ein Steuerwert kann ein beliebiger Wert sein, der ein landwirtschaftliches Merkmal anzeigt. Bei einem Regelwert kann es sich dabei um einen prädiktiven Wert, um einen Messwert oder um einen erkannten Wert handeln. Ein Steuerwert kann einen beliebigen der von einer Karte bereitgestellten Werte beinhalten, wie etwa eine beliebige der hierin beschriebenen Karten, zum Beispiel kann ein Steuerwert ein Wert sein, der von einer Informationskarte bereitgestellt wird, ein Wert, der von einer Vorabinformationskarte bereitgestellt wird, oder ein Wert, der von einer prädiktiven Karte bereitgestellt wird, wie etwa eine funktionelle prädiktive Karte. Ein Steuerwert kann auch eine beliebige der Merkmale beinhalten, die durch die von einem der hierin beschriebenen Sensoren erfassten Werte angegeben oder daraus abgeleitet sind. In anderen Beispielen kann ein Steuerwert durch einen Bediener der landwirtschaftlichen Maschine bereitgestellt werden, wie etwa eine Befehlseingabe durch einen Bediener der landwirtschaftlichen Maschine.
  • In der vorliegenden Erläuterung wurden Prozessoren und Server erwähnt. In einem Beispiel beinhalten die Prozessoren und Server Computerprozessoren mit zugehörigem Speicher und Zeitschaltungen, die nicht separat dargestellt werden. Die Prozessoren und Server sind Funktionsteile der Systeme oder Vorrichtungen, zu denen die Prozessoren und Server gehören und durch die sie aktiviert werden, und erleichtern die Funktionalität der anderen Komponenten oder Elemente in diesen Systemen.
  • Es wurde auch eine Reihe von Anzeigen der Benutzerschnittstelle diskutiert. Die Anzeigen können mehrere verschiedene Formen annehmen und können mehrere verschiedene benutzergesteuerte Bedienerschnittstellenmechanismen darauf aufweisen. Beispielsweise können die vom Benutzer aktivierbaren Bedienerschnittstellenmechanismen Textfelder, Kontrollkästchen, Symbole, Links, Dropdown-Menüs, Suchfelder usw. beinhalten. Die vom Benutzer betätigbaren Bedienschnittstellenmechanismen können auch auf unterschiedlichste Weise betätigt werden. Zum Beispiel können die vom Benutzer betätigbaren Bedienerschnittstellenmechanismen über Bedienerschnittstellenmechanismen, wie etwa eine Point-and-Click-Vorrichtung, ein Trackball oder eine Maus, Hardwaretasten, Schalter, einen Joystick oder eine Tastatur, Daumenschalter oder Daumenpads usw., eine virtuelle Tastatur oder andere virtuelle Stellglieder betätigt werden. Wenn der Bildschirm, auf dem die vom Benutzer betätigbaren Bedienerschnittstellenmechanismen angezeigt werden, ein berührungsempfindlicher Bildschirm ist, können außerdem die vom Benutzer betätigbaren Bedienerschnittstellenmechanismen mit Berührungsgesten betätigt werden. Benutzerbetätigbare Bedienerschnittstellenmechanismen können auch mithilfe von Sprachbefehlen mit der Spracherkennungsfunktionalität betätigt werden. Die Spracherkennung kann mithilfe einer Spracherkennungsvorrichtung, wie etwa eines Mikrofons, und einer Software implementiert werden, die dazu dient, Sprache zu erkennen und Befehle basierend auf der empfangenen Sprache auszuführen.
  • Eine Reihe von Datenspeichern wurde ebenfalls erörtert. Es wird darauf hingewiesen, dass die Datenspeicher jeweils in mehrere Datenspeicher aufgeteilt werden können. In einigen Beispielen können einer oder mehrere der Datenspeicher lokal für die auf die Datenspeicher zugreifenden Systeme sein, einer oder mehrere der Datenspeicher können remote von einem den Datenspeicher verwendenden System angeordnet sein, oder ein oder mehrere Datenspeicher können lokal sein, während andere remote sind. All diese Konfigurationen werden durch die vorliegende Offenbarung in Betracht gezogen.
  • Außerdem zeigen die Figuren eine Reihe von Blöcken mit Funktionen, die jedem Block zugeordnet sind. Es wird darauf hingewiesen, dass weniger Blöcke verwendet werden können, um zu veranschaulichen, dass die Funktionalität, die mehreren verschiedenen Blöcken zugewiesen wird, von weniger Komponenten ausgeführt wird. Es können auch mehr Blöcke verwendet werden, die veranschaulichen, dass die Funktionalität auf mehrere Komponenten verteilt sein kann. In verschiedenen Beispielen können einige Funktionen hinzugefügt und einige entfernt werden.
  • Es ist zu beachten, dass die vorstehende Erläuterung eine Vielzahl unterschiedlicher Systeme, Komponenten, Logiken und Interaktionen beschrieben hat. Es versteht sich, dass beliebige oder alle solcher Systeme, Komponenten, Logiken und Interaktionen durch Hardwareelemente, wie etwa Prozessoren, Speicher oder andere Verarbeitungskomponenten, einschließlich, aber nicht beschränkt auf Komponenten mit künstlicher Intelligenz, wie etwa neuronale Netzwerke, von denen einige im Folgenden beschrieben werden, umgesetzt werden können, die die Funktionen ausführen, die mit diesen Systemen, Komponenten, Logiken oder Interaktionen verbunden sind. Darüber hinaus können beliebige oder alle Systeme, Komponenten, Logiken und Interaktionen durch Software implementiert werden, die in einen Speicher geladen werden und anschließend von einem Prozessor oder Server oder einer anderen Rechnerkomponente ausgeführt werden, wie nachfolgend beschrieben. Jedes oder alle Systeme, Komponenten, Logiken und Interaktionen können auch durch verschiedene Kombinationen von Hardware, Software, Firmware usw. umgesetzt werden, von denen einige Beispiele nachfolgend beschrieben werden. Dies sind einige Beispiele für verschiedene Strukturen, die zur Implementierung beliebiger oder aller der oben beschriebenen Systeme, Komponenten, Logiken und Interaktionen verwendet werden können. Andere Strukturen können ebenfalls verwendet werden.
  • 14 ist ein Blockdiagramm der landwirtschaftlichen Erntemaschine 600, das der in 2 gezeigten landwirtschaftlichen Erntemaschine 100 ähnlich sein kann. Die landwirtschaftliche Erntemaschine 600 kommuniziert mit Elementen in einer Remote-Serverarchitektur 500. In einigen Beispielen stellt die Remote-Serverarchitektur 500 Rechen-, Software-, Datenzugriffs- und Speicherdienste bereit, die keine Kenntnisse des Endbenutzers über den physischen Standort oder die Konfiguration des Systems erfordern, das die Dienste bereitstellt. In verschiedenen Beispielen können Remote-Server die Dienste über ein Weitverkehrsnetzwerk, wie etwa das Internet, unter Verwendung geeigneter Protokolle bereitstellen. So können beispielsweise Remote-Serveranwendungen über ein Weitverkehrsnetzwerk bereitstellen und über einen Webbrowser oder eine andere Computerkomponente darauf zugreifen. Software oder Komponenten, die in 2 gezeigt sind, sowie damit verbundene Daten können auf Servern an einem Remote-Standort gespeichert werden. Die Computerressourcen in einer Remote-Serverumgebung können an einem Remote-Standort des Rechenzentrums konsolidiert oder an eine Vielzahl von Remote-Rechenzentren verteilt werden. Remote-Server-Infrastrukturen können Dienste über gemeinsam genutzte Rechenzentren bereitstellen, obwohl die Dienste für den Benutzer als ein einziger Zugangspunkt erscheinen. Somit können die hierin beschriebenen Komponenten und Funktionen von einem Remote-Server an einem Remote-Standort über eine Remote-Server-Architektur bereitgestellt werden. Alternativ können die Komponenten und Funktionen von einem Server bereitgestellt werden, oder die Komponenten und Funktionen können direkt oder auf andere Weise auf Endgeräten installiert werden.
  • In dem in 14 dargestellten Beispiel sind einige Elemente denen in 2 ähnlich und diese Elemente sind ähnlich nummeriert. 14 zeigt insbesondere, dass sich der prädiktive Modellgenerator 210 oder der prädiktive Kartengenerator 212 oder beide an einem Serverstandort 502 befinden können, der entfernt von der landwirtschaftlichen Erntemaschine 600 ist. Daher greift in dem in 14 gezeigten Beispiel die landwirtschaftliche Erntemaschine 600 über den Remote-Serverstandort 502 auf Systeme zu.
  • 14 veranschaulicht darüber hinaus ein weiteres Beispiel für eine Remote-Serverarchitektur. 14 zeigt, dass einige Elemente von 2 an einem Remote-Serverstandort 502 angeordnet sein können, während andere an einem anderen Standort angeordnet sein können. So kann beispielsweise der Datenspeicher 202 an einem von Standort 502 getrennten Standort angeordnet sein und es kann über den Remote-Server an Standort 502 darauf zugegriffen werden. Unabhängig davon, wo sich die Elemente befinden, kann direkt auf die Elemente von der landwirtschaftlichen Erntemaschine 600 über ein Netzwerk wie etwa ein Weitverkehrsnetzwerk oder ein lokales Netzwerk zugegriffen werden; die Elemente können an einem Remote-Standort von einem Dienst gehostet werden; oder die Elemente können als Dienst bereitgestellt werden oder über einen Verbindungsdienst, der sich an einem entfernten Standort befindet, darauf zugegriffen werden. Außerdem können Daten an jedem Standort gespeichert werden und die gespeicherten Daten können von Bedienern, Benutzern oder Systemen abgerufen oder an diese weitergeleitet werden. So können beispielsweise physikalische Träger anstelle oder zusätzlich zu elektromagnetischen Strahlungsträgern verwendet werden. In einigen Beispielen, in denen die Netzabdeckung schlecht oder nicht vorhanden ist, kann eine andere Maschine, z. B. ein Tankwagen oder eine andere mobile Maschine oder ein anderes Fahrzeug, über ein automatisches, halbautomatisches oder manuelles System zur Informationserfassung verfügen. Wenn sich die Mähdreschervorrichtung 600 vor dem Betanken in die Nähe der Maschine begibt, die das Informationserfassungssystem enthält, wie etwa einen Tankwagen, sammelt das Informationserfassungssystem die Informationen von dem Mähdrescher 600 über eine beliebige drahtlose Ad-hoc-Verbindung. Die gesammelten Informationen können dann an ein anderes Netz weitergeleitet werden, wenn die Maschine, die die empfangenen Informationen enthält, einen Ort erreicht, an dem eine drahtlose Telekommunikationsdienstabdeckung oder eine andere drahtlose Abdeckung verfügbar ist. So kann beispielsweise ein Tankwagen in einen Bereich einfahren, der über eine drahtlose Kommunikationsabdeckung verfügt, wenn er zum Betanken anderer Maschinen an einen Ort fährt oder wenn er sich an einem Haupttanklager befindet. Alle diese Architekturen werden hierin betrachtet. Darüber hinaus können die Informationen in der landwirtschaftlichen Erntemaschine 600 gespeichert werden, bis die landwirtschaftliche Erntemaschine 600 einen Bereich mit drahtloser Kommunikationsabdeckung erreicht. Die landwirtschaftliche Erntemaschine 600 selbst kann die Informationen an ein anderes Netzwerk senden.
  • Es wird auch darauf hingewiesen, dass die Elemente von 2 oder Teile davon auf einer Vielzahl von unterschiedlichen Vorrichtungen angeordnet sein können. Eine oder mehrere dieser Vorrichtungen können einen Bordcomputer, eine elektronische Steuereinheit, eine Anzeigeeinheit, einen Server, einen Desktopcomputer, einen Laptop-Computer, einen Tablet-Computer oder eine andere mobile Vorrichtung beinhalten, wie etwa einen Palmtop-Computer, ein Mobiltelefon, ein Smartphone, einen Multimediaplayer, einen persönlichen digitalen Assistenten usw.
  • In einigen Beispielen kann die Remote-Serverarchitektur 500 Cybersicherheitsmaßnahmen beinhalten. Ohne Einschränkung können diese Maßnahmen eine Verschlüsselung von Daten auf Speichervorrichtungen, eine Verschlüsselung von Daten, die zwischen Netzwerkknoten gesendet werden, eine Authentifizierung von Personen oder Prozessen, die auf Daten zugreifen, sowie die Verwendung von Hauptbüchern zum Aufzeichnen von Metadaten, Daten, Datenübertragungen, Datenzugriffen und Datentransformationen beinhalten. In einigen Beispielen können die Hauptbücher verteilt und unveränderlich sein (z. B. als Blockchain implementiert).
  • 15 ist ein vereinfachtes Blockdiagramm eines veranschaulichenden Beispiels einer tragbaren oder mobilen Computervorrichtung, die als Handgerät 16 eines Benutzers oder Kunden verwendet werden kann, in dem das vorliegende System (oder Teile davon) eingesetzt werden kann. So kann beispielsweise eine mobile Vorrichtung in der Fahrerkabine der landwirtschaftlichen Erntemaschine 100 eingesetzt werden, um die oben erörterten Karten zu erzeugen, zu verarbeiten oder anzuzeigen. Die 16-17 sind Beispiele für tragbare oder mobile Vorrichtungen.
  • 15 zeigt ein allgemeines Blockdiagramm der Komponenten eines Endgerätes 16, das einige der in 2 dargestellten Komponenten ausführen kann, mit ihnen interagieren kann, oder beides. In der Vorrichtung 16 ist eine Kommunikationsverbindung 13 bereitgestellt, die es der tragbaren Vorrichtung ermöglicht, mit anderen Computervorrichtungen zu kommunizieren, und unter einigen Beispielen einen Kanal zum automatischen Empfangen von Informationen, beispielsweise durch Scannen, bereitstellt. Beispiele für Kommunikationsverbindungen 13 beinhalten das Zulassen der Kommunikation über ein oder mehrere Kommunikationsprotokolle, wie etwa drahtlose Dienste, die verwendet werden, um einen zellularen Zugang zu einem Netzwerk zu ermöglichen, sowie Protokolle, die lokale drahtlose Verbindungen zu Netzwerken bereitstellen.
  • In anderen Beispielen können Anwendungen auf einer entfernbaren „Secure Digital“-(SD-)Karte empfangen werden, die mit einer Schnittstelle 15 verbunden ist. Die Schnittstelle 15 und die Kommunikationsverbindungen 13 kommunizieren mit einem Prozessor 17 (der auch die Prozessoren oder Server aus den anderen FIG. verkörpern kann) über einen Bus 19, der ebenfalls mit dem Speicher 21 und den Ein-/Ausgabekomponenten (E/A) 23 sowie dem Taktgeber 25 und dem Ortungssystem 27 verbunden ist.
  • E/A-Komponenten 23 sind in einem Beispiel vorgesehen, um Ein- und Ausgabeoperationen zu erleichtern. E/A-Komponenten 23 für verschiedene Beispiele des Endgeräts 16 können Eingabekomponenten, wie etwa Tasten, Tastsensoren, optische Sensoren, Mikrofone, Touchscreens, Näherungssensoren, Beschleunigungssensoren, Orientierungssensoren, und Ausgabekomponenten, wie etwa eine Anzeigevorrichtung, ein Lautsprecher und/oder ein Druckeranschluss beinhalten. Es können auch andere E/A-Komponenten 23 verwendet werden.
  • Die Uhr 25 umfasst veranschaulichend eine Echtzeituhrkomponente, die eine Uhrzeit und ein Datum ausgibt. Dieser kann auch, veranschaulichend, Timing-Funktionen für Prozessor 17 bereitstellen.
  • Das Ortungssystem 27 beinhaltet veranschaulichend eine Komponente, die eine aktuelle geografische Position des Geräts 16 ausgibt. Dies kann beispielsweise einen globalen Positionierungssystem-(GPS-)Empfänger, ein LORAN-System, ein Koppelnavigationssystem, ein zellulares Triangulationssystems oder ein anderes Positionierungssystems beinhalten. Das Ortungssystem 27 kann beispielsweise auch eine Karten- oder Navigationssoftware beinhalten, die gewünschte Karten, Navigationsrouten und andere geografische Funktionen erzeugt.
  • Der Speicher 21 speichert das Betriebssystem 29, die Netzwerkeinstellungen 31, die Anwendungen 33, die Anwendungskonfigurationseinstellungen 35, den Datenspeicher 37, die Kommunikationstreiber 39 und die Kommunikationskonfigurationseinstellungen 41. Der Speicher 21 kann alle Arten von greifbaren flüchtigen und nichtflüchtigen computerlesbaren Speichervorrichtungen beinhalten. Der Speicher 21 kann auch Computerspeichermedien beinhalten (siehe unten). Der Speicher 21 speichert computerlesbare Anweisungen, die, wenn sie von Prozessor 17 ausgeführt werden, den Prozessor veranlassen, computerimplementierte Schritte oder Funktionen gemäß den Anweisungen auszuführen. Der Prozessor 17 kann von anderen Komponenten aktiviert werden, um auch deren Funktionalität zu verbessern.
  • 16 zeigt ein Beispiel, bei dem die Vorrichtung 16 ein Tablet-Computer 600 ist. In 16 wird der Computer 601 mit dem Benutzerschnittstellen-Bildschirm 602 dargestellt. Der Bildschirm 602 kann ein Touchscreen oder eine stiftfähige Schnittstelle sein, die Eingaben von einem Stift oder Stylus empfängt. Der Tablet-Computer 600 kann auch eine virtuelle Bildschirmtastatur verwenden. Natürlich kann der Computer 601 auch über einen geeigneten Befestigungsmechanismus, wie etwa eine drahtlose Verbindung oder einen USB-Anschluss, an eine Tastatur oder eine andere Benutzereingabevorrichtung angeschlossen werden. Der Computer 601 kann illustrativ auch Spracheingaben empfangen.
  • 17 ist ähnlich der 16 mit der Ausnahme, dass die Vorrichtung ein Smartphone 71 ist. Das Smartphone 71 verfügt über ein berührungsempfindliches Display 73, das Symbole oder Grafiken oder andere Benutzereingabemechanismen 75 anzeigt. Die Mechanismen 75 können von einem Benutzer verwendet werden, um Anwendungen auszuführen, Anrufe zu tätigen, Datenübertragungsvorgänge durchzuführen usw. Im Allgemeinen ist das Smartphone 71 auf einem mobilen Betriebssystem aufgebaut und bietet eine fortschrittlichere Rechenleistung und Konnektivität als ein Funktionstelefon.
  • Es ist zu beachten, dass andere Formen der Vorrichtungen 16 möglich sind.
  • 18 ist ein Beispiel für eine Rechnerumgebung, in der Elemente von 2 eingesetzt werden können. Unter Bezugnahme auf 18 beinhaltet ein beispielhaftes System zur Implementierung einiger Ausführungsformen eine Rechenvorrichtung in Form eines Computers 810, der programmiert ist, um wie oben erörtert zu arbeiten. Die Komponenten des Computers 810 können, ohne hierauf beschränkt zu sein, unter anderem eine Verarbeitungseinheit 820 (die Prozessoren oder Server aus den vorstehenden FIGUREN beinhalten kann), einen Systemspeicher 830 und einen Systembus 821 umfassen, die verschiedene Systemkomponenten einschließlich des Systemspeichers mit der Verarbeitungseinheit 820 koppeln. Der Systembus 821 kann eine von mehreren Arten von Busstrukturen sein, einschließlich eines Speicherbusses oder einer Speichersteuerung, eines Peripheriebusses und eines lokalen Busses mit einer Vielzahl von Busarchitekturen. Speicher und Programme, die in Bezug auf 2 beschrieben werden, können in entsprechenden Teilen von 18 eingesetzt werden.
  • Der Computer 810 beinhaltet typischerweise mehrere computerlesbare Medien. Computerlesbare Medien können beliebige verfügbare Medien sein, auf die der Computer 810 zugreifen kann, und umfassen sowohl flüchtige als auch nichtflüchtige Medien, entfernbare und nicht entfernbare Medien. Beispielsweise und nicht einschränkend können computerlesbare Medien Computerspeichermedien und Kommunikationsmedien umfassen. Computerspeichermedien unterscheiden sich von einem modulierten Datensignal oder einer Trägerwelle und beinhalten diese nicht. Computerlesbare Medien umfassen Hardware-Speichermedien mit flüchtigen und nichtflüchtigen, entfernbaren und nicht entfernbaren Medien, die in einem beliebigen Verfahren oder einer Technologie für die Speicherung von Informationen, wie etwa computerlesbaren Befehlen, Datenstrukturen, Programmmodulen oder anderen Daten, implementiert sind. Rechenspeichermedien umfassen, aber sie sind nicht beschränkt auf RAM, ROM, EEPROM, Flash-Speicher oder andere Speichertechnologie, CD-ROM, Digitalversatile-Disks (DVD) oder andere optische Plattenspeicher, Magnetkassetten, -bänder, -plattenspeicher oder andere magnetische Speichergeräte oder jedes andere Medium, das verwendet werden kann, um die gewünschte Information zu speichern, auf die über den Rechner 810 zugegriffen werden kann. Kommunikationsmedien können computerlesbare Anweisungen, Datenstrukturen, Programmmodule oder andere Daten in einem Transportmechanismus enthalten und umfassen alle Informationslieferungsmedien. Der Begriff „moduliertes Datensignal“ bezeichnet ein Signal, bei dem eine oder mehrere seiner Merkmale so eingestellt oder geändert werden, dass Informationen in dem Signal codiert werden.
  • Der Systemspeicher 830 beinhaltet Computerspeichermedien in Form eines flüchtigen und/oder nichtflüchtigen Speichers oder beider, wie etwa Festwertspeicher (ROM) 831 und Direktzugriffsspeicher (RAM) 832. Ein grundlegendes Ein-/Ausgabesystem 833 (BIOS), das die grundlegenden Programme enthält, die helfen, Informationen zwischen den Elementen innerhalb des Computers 810 zu übertragen, wie etwa beim Starten, wird typischerweise im ROM 831 gespeichert. Der RAM 832 enthält typischerweise Daten- oder Programmmodule oder beide, die für die Verarbeitungseinheit 820 unmittelbar zugänglich sind und/oder derzeit betrieben werden. Beispielsweise und nicht einschränkend veranschaulicht 18 das Betriebssystem 834, die Anwendungsprogramme 835, weitere Programmmodule 836 und die Programmdaten 837.
  • Der Computer 810 kann auch andere entfernbare/nicht-entfernbare flüchtige/nichtflüchtige Computerspeichermedien beinhalten. Beispielsweise wird in 18 ein Festplattenlaufwerk 841 nur beispielhaft veranschaulicht, das von nicht entfernbaren, nichtflüchtigen magnetischen Medien, einem optischen Plattenlaufwerk 855 und einer nichtflüchtigen optischen Platte 856 liest oder auf diese schreibt. Das Festplattenlaufwerk 841 ist typischerweise über eine nichtentfernbare Speicherschnittstelle, wie etwa die Schnittstelle 840, mit dem Systembus 821 verbunden, und das optische Plattenlaufwerk 855 sind typischerweise über eine entfernbare Speicherschnittstelle, wie etwa die Schnittstelle 850, mit dem Systembus 821 verbunden.
  • Alternativ oder zusätzlich kann die hierin beschriebene Funktionalität mindestens teilweise durch eine oder mehrere Hardware-Logikkomponenten ausgeführt werden. Zu den veranschaulichenden Arten von Hardware-Logikkomponenten, die verwendet werden können, gehören beispielsweise feldprogrammierbare Gate-Arrays (FPGAs), Applikations-spezifische integrierte Schaltungen (z. B. ASICs), Applikations-spezifische Standardprodukte (z. B. ASSPs), System-on-a-Chip-Systeme (SOCs), „Complex Programmable Logic Devices“ (CPLDs) usw.
  • Die Laufwerke und die zugehörigen Computerspeichermedien, die obenstehend erörtert und in 18 dargestellt sind, bieten eine Speicherung von computerlesbaren Anweisungen, Datenstrukturen, Programmmodulen und anderen Daten für den Computer 810. In 18 wird beispielsweise die Festplatte 841 als speicherndes Betriebssystem 844, Anwendungsprogramme 845, andere Programmmodule 846 und Programmdaten 847 dargestellt. Es sei angemerkt, dass diese Komponenten entweder gleich oder verschieden von dem Betriebssystem 834, den Anwendungsprogrammen 835, den anderen Programmmodulen 836 und den Programmdaten 837 sein können.
  • Ein Benutzer kann Befehle und Informationen in den Computer 810 über Eingabegeräte, wie etwa eine Tastatur 862, ein Mikrofon 863 und ein Zeigegerät 861, wie etwa eine Maus, einen Trackball oder ein Touchpad, eingeben. Andere Eingabevorrichtungen (nicht dargestellt) können einen Joystick, ein Gamepad, eine Satellitenschüssel, einen Scanner oder dergleichen beinhalten. Diese und andere Eingabegeräte sind oft über eine Benutzereingabeschnittstelle 860 mit der Verarbeitungseinheit 820 verbunden, die mit dem Systembus gekoppelt ist, aber auch über andere Schnittstellen- und Busstrukturen verbunden sein kann. Eine optische Anzeige 891 oder eine andere Art von Anzeigevorrichtung ist ebenfalls über eine Schnittstelle, wie etwa eine Videoschnittstelle 890, mit dem Systembus 821 verbunden. Zusätzlich zum Monitor können Computer auch andere periphere Ausgabevorrichtungen, wie etwa die Lautsprecher 897 und den Drucker 896 beinhalten, die über eine Ausgabeperipherieschnittstelle 895 verbunden werden können.
  • Der Computer 810 wird in einer Netzwerkumgebung über logische Verbindungen (wie etwa CAN, LAN oder WAN) zu einem oder mehreren entfernten Computern, wie etwa einem entfernten Computer 880, betrieben.
  • Bei Verwendung in einer LAN-Netzwerkumgebung ist der Computer 810 über eine Netzwerkschnittstelle oder einen Adapter 870 mit dem LAN 871 verbunden. Bei Verwendung in einer WAN-Netzwerkumgebung beinhaltet der Computer 810 typischerweise ein Modem 872 oder andere Mittel zum Aufbauen einer Kommunikation über das WAN 873, wie etwa das Internet. In einer vernetzten Umgebung können Programmmodule auf einer externen Speichervorrichtung gespeichert werden. 18 veranschaulicht beispielsweise, dass sich Remote-Anwendungsprogramme 885 auf dem entfernten Computer 880 befinden können.
  • Es sollte auch angemerkt werden, dass die verschiedenen hier beschriebenen Beispiele auf verschiedene Weise kombiniert werden können. Das heißt, Teile eines oder mehrerer Beispiele können mit Teilen eines oder mehrerer anderer Beispiele kombiniert werden. All dies wird hierin betrachtet.
  • Beispiel 1 ist eine landwirtschaftliche Arbeitsmaschine, umfassend:
    • ein Kommunikationssystem, das eine Informationskarte empfängt, die Werte eines Schädlingsmerkmals beinhaltet, die verschiedenen geografischen Positionen in einem Feld entsprechen;
    • einen geografischen Positionssensor, der eine geografische Position der landwirtschaftlichen Arbeitsmaschine erkennt;
    • einen In-situ-Sensor, der einen Wert eines landwirtschaftlichen Merkmals erkennt, der der geografischen Position entspricht;
    • einen prädiktiven Kartengenerator, der eine funktionelle prädiktive landwirtschaftliche Karte des Feldes erzeugt, die prädiktive Steuerwerte auf Grundlage der Werte der Schädlingsmerkmalwerte in der Informationskarte und auf Grundlage der landwirtschaftlichen Merkmalwerte auf die verschiedenen geografischen Positionen in dem Feld abbildet;
    • ein steuerbares Teilsystem; und
    • ein Steuersystem, das ein Steuersignal erzeugt, um das steuerbare Teilsystem auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte zu steuern.
  • Beispiel 2 ist die landwirtschaftliche Arbeitsmaschine eines beliebigen oder aller vorhergehenden Beispiele, wobei der prädiktive Kartengenerator Folgendes umfasst:
    • einen prädiktiven Ertragskartengenerator, der die funktionelle prädiktive landwirtschaftliche Karte erzeugt, die prädiktive Ertragswerte als Steuerwerte auf die verschiedenen geografischen Positionen in dem Feld abbildet.
  • Beispiel 3 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei das Steuersystem Folgendes umfasst:
    • eine Vorschubgeschwindigkeitssteuerung, die ein Vorschubgeschwindigkeitssteuersignal auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt und das steuerbare Teilsystem auf der Grundlage des Vorschubgeschwindigkeitssteuersignals steuert, um eine Vorschubgeschwindigkeit des Materials durch die landwirtschaftliche Arbeitsmaschine zu steuern.
  • Beispiel 4 ist die landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei der prädiktive Kartengenerator Folgendes umfasst:
    • einen prädiktiven Kornqualitätskartengenerator, der die funktionelle prädiktive landwirtschaftliche Karte erzeugt, die prädiktive Kornqualitätswerte als Steuerwerte auf die verschiedenen geografischen Positionen in dem Feld abbildet.
  • Beispiel 5 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei das Steuersystem Folgendes umfasst:
    • eine Rückstandsteuerung, die ein Rückstandsteuersignal auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt und ein Rückstands-Teilsystem auf der Grundlage des Rückstandsteuersignals steuert, um einen Rückstandshandhabungsvorgang der landwirtschaftlichen Arbeitsmaschine zu steuern.
  • Beispiel 6 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei das Steuersystem einen Getreidesammler steuert, um von Schädlingen befallenes Getreide von geringer Qualität zurückzuhalten.
  • Beispiel 7 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei das Steuersystem Folgendes umfasst:
    • eine Einstellungssteuerung, die ein Bedienerbefehlssteuersignal erzeugt, das einen Bedienerbefehl auf Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Bedienerbefehlskarte anzeigt, und das steuerbare Teilsystem auf Grundlage des Bedienerbefehlssteuersignals steuert, um den Bedienerbefehl auszuführen.
  • Beispiel 8 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele und umfasst ferner:
    • einen prädiktiven Modellgenerator, der ein prädiktives landwirtschaftliches Modell erzeugt, das eine Beziehung zwischen dem Schädlingsmerkmal und dem landwirtschaftlichen Merkmal auf Grundlage eines Werts des Schädlingsmerkmals in der Vorabinformationskarte an der geografischen Position und des Werts des landwirtschaftlichen Merkmals, der durch den In-situ-Sensor an der geografischen Position erkannt wird, modelliert, wobei der prädiktive Kartengenerator die funktionelle prädiktive landwirtschaftliche Karte auf Grundlage der Werte des Schädlingsmerkmals in der Vorabinformationskarte und auf Grundlage des prädiktiven landwirtschaftlichen Modells erzeugt.
  • Beispiel 9 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei das Steuersystem ferner Folgendes umfasst:
    • eine Bedienerschnittstellensteuerung, die eine Benutzerschnittstellenkartendarstellung der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt, wobei die Benutzerschnittstellenkartendarstellung einen Feldabschnitt mit einem aktuellen Positionsindikator, der den geografischen Standort der landwirtschaftlichen Arbeitsmaschine auf dem Feldabschnitt angibt, und ein Schädlingsmerkmalsymbol, das einen Wert des Schädlingsmerkmals an einer oder mehreren geografischen Positionen auf dem Feldabschnitt angibt, umfasst.
  • Beispiel 10 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei die Bedienerschnittstellensteuerung die Darstellung der Benutzerschnittstellenkarte erzeugt, um einen interaktiven Anzeigeabschnitt zu beinhalten, der eine erfasste Merkmalsanzeige anzeigt, die das erfasste landwirtschaftliche Merkmal angibt, einen interaktiven Schwellenwertanzeigeabschnitt, der einen Aktionsschwellenwert angibt, und einen interaktiven Aktionsindikator, der eine Steueraktion angibt, die zu ergreifen ist, wenn das erfasste landwirtschaftliche Merkmal den Aktionsschwellenwert erfüllt, wobei das Steuersystem das Steuersignal erzeugt, um das steuerbare Teilsystem auf Grundlage der Steueraktion zu steuern.
  • Beispiel 11 ist ein computerimplementiertes Verfahren zum Steuern einer landwirtschaftlichen Arbeitsmaschine, umfassend:
    • Erhalten einer Informationskarte, die Werte eines Schädlingsmerkmals entsprechend unterschiedlichen geografischen Positionen in einem Feld beinhaltet;
    • Erkennen einer geografischen Position der landwirtschaftlichen Arbeitsmaschine;
    • Erkennen eines Werts eines landwirtschaftlichen Merkmals mit einem In-situ-Sensor, der der geografischen Position entspricht;
    • Erzeugen einer funktionellen prädiktiven landwirtschaftlichen Karte des Feldes, die prädiktive Steuerwerte auf Grundlage der Werte des Schädlingsmerkmals in der Informationskarte und auf Grundlage des Werts des landwirtschaftlichen Merkmals auf die verschiedenen geografischen Positionen in dem Feld abbildet; und
    • Steuern eines steuerbaren Teilsystems auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte.
  • Beispiel 12 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Erzeugen einer funktionellen prädiktiven Karte Folgendes umfasst:
    • Erzeugen einer funktionellen prädiktiven Ertragskarte, die prädiktive Ertragswerte als Steuerwerte abbildet.
  • Beispiel 13 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Steuern eines steuerbaren Teilsystems Folgendes umfasst:
    • Erzeugen eines Vorschubgeschwindigkeitssteuersignals auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Ertragskarte; und
    • Steuern des steuerbaren Teilsystems auf Grundlage des Vorschubgeschwindigkeitssteuersignals, um eine Vorschubgeschwindigkeit von Material durch die landwirtschaftliche Arbeitsmaschine zu steuern.
  • Beispiel 14 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Erzeugen einer funktionellen prädiktiven Karte Folgendes umfasst:
    • Erzeugen einer funktionellen prädiktiven Kornqualitätskarte, die prädiktive Kornqualitätswerte als die Steuerwerte abbildet.
  • Beispiel 15 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Steuern eines steuerbaren Teilsystems Folgendes umfasst:
    • Erzeugen eines Rückstandssteuersignals auf Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Kornqualitätskarte; und
    • Steuern des steuerbaren Teilsystems auf Grundlage des Rückstandsteuersignals, um ein Rückstandhandhabungs-Teilsystem der landwirtschaftlichen Arbeitsmaschine zu steuern.
  • Beispiel 16 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Erzeugen einer funktionellen prädiktiven Karte Folgendes umfasst:
    • Erzeugen einer funktionalen prädiktiven Bedienerbefehlskarte, die prädiktive Bedienerbefehle auf die verschiedenen geografischen Positionen in dem Feld kartiert.
  • Beispiel 17 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele, wobei das Steuern des steuerbaren Teilsystems Folgendes umfasst:
    • Erzeugen eines Bedienerbefehlssteuersignals, das einen Bedienerbefehl auf Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Bedienerbefehlskarte anzeigt; und
    • Steuern des steuerbaren Teilsystems auf Grundlage des Bedienerbefehlssteuersignals, um den Bedienerbefehl auszuführen.
  • Beispiel 18 ist das computerimplementierte Verfahren eines oder aller vorhergehenden Beispiele und ferner umfassend:
    • Erzeugen eines prädiktiven landwirtschaftlichen Modells, das eine Beziehung zwischen dem Schädlingsmerkmal und dem landwirtschaftlichen Merkmal auf Grundlage eines Werts des Schädlingsmerkmals in der Informationskarte an der geografischen Position und des Werts des landwirtschaftlichen Merkmals, das durch den In-situ-Sensor an der geografischen Position erkannt wird, modelliert, wobei das Erzeugen der funktionellen prädiktiven landwirtschaftlichen Karte das Erzeugen der funktionellen prädiktiven landwirtschaftlichen Karte auf Grundlage der Werte des Schädlingsmerkmals in der Informationskarte und auf Grundlage des prädiktiven landwirtschaftlichen Modells umfasst.
  • Beispiel 19 ist eine landwirtschaftliche Arbeitsmaschine, umfassend:
    • Ein Kommunikationssystem, das eine Vorabiformationskarte empfängt, die Werte eines landwirtschaftlichen Merkmals entsprechend unterschiedlichen geografischen Orten in einem Feld beinhaltet;
    • einen geografischen Positionssensor, der eine geografische Position der landwirtschaftlichen Arbeitsmaschine erkennt;
    • einen In-situ-Sensor, der einen Wert eines Schädlingsmerkmals erkennt, das der geografischen Position entspricht;
    • einen prädiktiven Modellgenerator, der ein prädiktives landwirtschaftliches Modell erzeugt, das eine Beziehung zwischen dem Schädlingsmerkmal und dem landwirtschaftlichen Merkmal auf Grundlage eines Werts des landwirtschaftlichen Merkmals in der Vorabinformationskarte an der geografischen Position und des Werts des Schädlingsmerkmals modelliert, der durch den In-situ-Sensor an der geografischen Position erkannt wird;
    • einen prädiktiven Kartengenerator, der eine funktionelle prädiktive landwirtschaftliche Karte des Feldes erzeugt, die prädiktive Steuerwerte auf Grundlage der Werte des landwirtschaftlichen Merkmals in der Vorabinformationskarte und auf Grundlage des prädiktiven landwirtschaftlichen Modells auf die verschiedenen geografischen Positionen in dem Feld abbildet;
    • ein steuerbares Teilsystem; und
    • ein Steuersystem, das ein Steuersignal erzeugt, um das steuerbare Teilsystem auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte zu steuern.
  • Beispiel 20 ist die landwirtschaftliche Arbeitsmaschine eines oder aller vorhergehenden Beispiele, wobei die Vorabinformationskarte Werte eines historischen Schädlingsmerkmals, eines optischen Merkmals, eines vegetativen Index, eines Scoutingmerkmals und einer Tieraktivität umfasst.
  • Obwohl der Gegenstand in einer für strukturelle Merkmale oder methodische Handlungen spezifischen Sprache beschrieben wurde, versteht es sich, dass der in den beigefügten Ansprüchen definierte Gegenstand nicht unbedingt auf die vorstehend beschriebenen spezifischen Merkmale oder Handlungen beschränkt ist. Vielmehr werden die vorstehend beschriebenen Besonderheiten und Handlungen als exemplarische Formen der Ansprüche offengelegt.

Claims (15)

  1. Landwirtschaftliche Arbeitsmaschine (100), umfassend: ein Kommunikationssystem (206), das eine Informationskarte empfängt, die Werte eines Schädlingsmerkmals beinhaltet, die verschiedenen geografischen Positionen in einem Feld entspricht; einen geografischen Positionssensor (204), der eine geografischen Position der landwirtschaftlichen Arbeitsmaschine erkennt; einen In-situ-Sensor (208), der einen Wert eines landwirtschaftlichen Merkmals erkennt, das der geografischen Position entspricht; einen prädiktiven Kartengenerator (212), der eine funktionelle prädiktive landwirtschaftliche Karte des Feldes erzeugt, die prädiktive Steuerwerte auf Grundlage der Werte des Schädlingsmerkmals in der Informationskarte und auf Grundlage des Wertes des landwirtschaftlichen Merkmals auf die verschiedenen geografischen Positionen in dem Feld abbildet; ein steuerbares Teilsystem (216); und ein Steuersystem (214), das ein Steuersignal erzeugt, um das steuerbare Teilsystem (216) auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte zu steuern.
  2. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei der prädiktive Kartengenerator Folgendes umfasst: einen prädiktiven Ertragskartengenerator, der die funktionelle prädiktive landwirtschaftliche Karte erzeugt, die prädiktive Ertragswerte als Steuerwerte auf die verschiedenen geografischen Positionen in dem Feld abbildet.
  3. Landwirtschaftliche Arbeitsmaschine nach Anspruch 2, wobei das Steuersystem Folgendes umfasst: eine Vorschubgeschwindigkeitssteuerung, die ein Vorschubgeschwindigkeitssteuersignal auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt und das steuerbare Teilsystem auf der Grundlage des Vorschubgeschwindigkeitssteuersignals steuert, um eine Vorschubgeschwindigkeit des Materials durch die landwirtschaftliche Arbeitsmaschine zu steuern.
  4. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei der prädiktive Kartengenerator Folgendes umfasst: einen prädiktiven Kornqualitätskartengenerator, der die funktionelle prädiktive landwirtschaftliche Karte erzeugt, die prädiktive Kornqualitätswerte als Steuerwerte auf die verschiedenen geografischen Positionen in dem Feld abbildet.
  5. Landwirtschaftliche Arbeitsmaschine nach Anspruch 4, wobei das Steuersystem Folgendes umfasst: eine Rückstandsteuerung, die ein Rückstandsteuersignal auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt und ein Rückstands-Teilsystem auf der Grundlage des Rückstandsteuersignals steuert, um einen Rückstandshandhabungsvorgang der landwirtschaftlichen Arbeitsmaschine zu steuern.
  6. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei das Steuersystem einen Kornsammler steuert, um von Schädlingen befallenes Getreide von geringer Qualität zurückzuhalten.
  7. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei das Steuersystem Folgendes umfasst: eine Einstellungssteuerung, die ein Bedienerbefehlssteuersignal erzeugt, das einen Bedienerbefehl auf Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Bedienerbefehlskarte anzeigt, und das steuerbare Teilsystem auf Grundlage des Bedienerbefehlssteuersignals steuert, um den Bedienerbefehl auszuführen.
  8. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1 und ferner umfassend: einen prädiktiven Modellgenerator, der ein prädiktives landwirtschaftliches Modell erzeugt, das eine Beziehung zwischen dem Schädlingsmerkmal und dem landwirtschaftlichen Merkmal auf Grundlage eines Werts des Schädlingsmerkmals in der Vorabinformationskarte an der geografischen Position und des Werts des landwirtschaftlichen Merkmals, der durch den In-situ-Sensor an der geografischen Position erkannt wird, modelliert, wobei der prädiktive Kartengenerator die funktionelle prädiktive landwirtschaftliche Karte auf Grundlage der Werte des Schädlingsmerkmals in der Vorabinformationskarte und auf Grundlage des prädiktiven landwirtschaftlichen Modells erzeugt.
  9. Landwirtschaftliche Arbeitsmaschine nach Anspruch 1, wobei das Steuersystem ferner Folgendes umfasst: eine Bedienerschnittstellensteuerung, die eine Benutzerschnittstellenkartendarstellung der funktionellen prädiktiven landwirtschaftlichen Karte erzeugt, wobei die Benutzerschnittstellenkartendarstellung einen Feldabschnitt mit einem aktuellen Positionsindikator, der den geografischen Standort der landwirtschaftlichen Arbeitsmaschine auf dem Feldabschnitt angibt, und ein Schädlingsmerkmalsymbol, das einen Wert des Schädlingsmerkmals an einer oder mehreren geografischen Positionen auf dem Feldabschnitt angibt, umfasst.
  10. Landwirtschaftliche Arbeitsmaschine nach Anspruch 9, wobei die Bedienerschnittstellensteuerung die Darstellung der Benutzerschnittstelle erzeugt, um einen interaktiven Anzeigeabschnitt zu enthalten, der eine erfasste Merkmalsanzeige anzeigt, die das erkannte landwirtschaftliche Merkmal angibt, einen interaktiven Schwellenwertanzeigeabschnitt, der einen Aktionsschwellenwert angibt, und einen interaktiven Aktionsindikator, der eine Steueraktion angibt, die zu ergreifen ist, wenn das erkannte landwirtschaftliche Merkmal den Aktionsschwellenwert erfüllt, wobei das Steuersystem das Steuersignal erzeugt, um das steuerbare Teilsystem auf der Grundlage der Steueraktion zu steuern.
  11. Computerimplementiertes Verfahren zum Steuern einer landwirtschaftlichen Arbeitsmaschine (100), umfassend: Erhalten einer Informationskarte (258), die Werte eines Schädlingsmerkmals beinhaltet, die verschiedenen geografischen Positionen in einem Feld entsprechen; Erkennen einer geografischen Position der landwirtschaftlichen Arbeitsmaschine (100); Erkennen eines Werts eines landwirtschaftlichen Merkmals mit einem In-situ-Sensor (208), der der geografischen Position entspricht; Erzeugen einer funktionellen prädiktiven landwirtschaftlichen Karte des Feldes, die prädiktive Steuerwerte auf Grundlage der Werte des Schädlingsmerkmals in der Informationskarte und auf Grundlage des Werts des landwirtschaftlichen Merkmals auf die verschiedenen geografischen Positionen in dem Feld abbildet; und Steuern eines steuerbaren Teilsystems (216) auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine (100) und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte.
  12. Computerimplementiertes Verfahren nach Anspruch 11, wobei das Erzeugen einer funktionellen prädiktiven Karte Folgendes umfasst: Erzeugen einer funktionellen prädiktiven Ertragskarte, die prädiktive Ertragswerte als Steuerwerte abbildet.
  13. Computerimplementiertes Verfahren nach Anspruch 12, wobei das Steuern eines steuerbaren Teilsystems Folgendes umfasst: Erzeugen eines Vorschubgeschwindigkeitssteuersignals auf der Grundlage der erkannten geografischen Position und der funktionellen prädiktiven Ertragskarte; und Steuern des steuerbaren Teilsystems auf Grundlage des Vorschubgeschwindigkeitssteuersignals, um eine Vorschubgeschwindigkeit von Material durch die landwirtschaftliche Arbeitsmaschine zu steuern.
  14. Computerimplementiertes Verfahren nach Anspruch 11, wobei das Erzeugen einer funktionalen prädiktiven Karte Folgendes umfasst: Erzeugen einer funktionellen prädiktiven Kornqualitätskarte, die prädiktive Kornqualitätswerte als die Steuerwerte abbildet.
  15. Landwirtschaftliche Arbeitsmaschine (100), umfassend: ein Kommunikationssystem (206), das eine Vorabinformationskarte empfängt, die Werte eines landwirtschaftlichen Merkmals beinhaltet, die verschiedenen geografischen Positionen in einem Feld entsprechen; einen geografischen Positionssensor (204), der eine geografischen Position der landwirtschaftlichen Arbeitsmaschine erkennt; einen In-situ-Sensor (208), der einen Wert eines Schädlingsmerkmals erkennt, das der geografischen Position entspricht; einen prädiktiven Modellgenerator (210), der ein prädiktives landwirtschaftliches Modell erzeugt, das eine Beziehung zwischen dem Schädlingsmerkmal und dem landwirtschaftlichen Merkmal auf Grundlage eines Werts des landwirtschaftlichen Merkmals in der Vorabinformationskarte an der geografischen Position und des Werts des Schädlingsmerkmals modelliert, der durch den In-situ-Sensor an der geografischen Position erkannt wird; einen prädiktiven Kartengenerator (212), der eine funktionelle prädiktive landwirtschaftliche Karte des Feldes erzeugt, die prädiktive Steuerwerte auf Grundlage der Werte des landwirtschaftlichen Merkmals in der Vorabinformationskarte und auf Grundlage des prädiktiven landwirtschaftlichen Modells auf die verschiedenen geografischen Positionen in dem Feld abbildet; ein steuerbares Teilsystem (216); und ein Steuersystem (214), das ein Steuersignal erzeugt, um das steuerbare Teilsystem (216) auf Grundlage der geografischen Position der landwirtschaftlichen Arbeitsmaschine und auf Grundlage der Steuerwerte in der funktionellen prädiktiven landwirtschaftlichen Karte zu steuern.
DE102021124778.0A 2020-10-09 2021-09-24 Maschinensteuerung mithilfe einer prädiktiven karte Pending DE102021124778A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/066,887 US20220110253A1 (en) 2020-10-09 2020-10-09 Machine control using a predictive map
US17/067,350 US11946747B2 (en) 2020-10-09 2020-10-09 Crop constituent map generation and control system
US17/067,350 2020-10-09
US17/066,887 2020-10-09

Publications (1)

Publication Number Publication Date
DE102021124778A1 true DE102021124778A1 (de) 2022-04-14

Family

ID=80818305

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021124778.0A Pending DE102021124778A1 (de) 2020-10-09 2021-09-24 Maschinensteuerung mithilfe einer prädiktiven karte

Country Status (1)

Country Link
DE (1) DE102021124778A1 (de)

Similar Documents

Publication Publication Date Title
DE102020204464A1 (de) Maschinensteuerung unter verwendung eines echtzeitmodells
DE102021126413A1 (de) Landwirtschaftliche merkmale, konfidenz und steuerung
DE102021200028A1 (de) Landwirtschaftliche erntemaschine mit vorauflauf-unkrauterkennungs- und -eindämmungssystem
US11825768B2 (en) Machine control using a predictive map
CN114303614A (zh) 图生成和控制系统
US11711995B2 (en) Machine control using a predictive map
CN114303592A (zh) 使用预测图的机器控制
DE102021120069A1 (de) Prädiktives geschwindigkeitskartenerzeugungs- und steuersystem
CN114303615A (zh) 使用预测图的机器控制
CA3130117A1 (en) Predictive map generation and control system
DE102021119643A1 (de) Erntegutzustandskarten-erzeugungs- und steuersystem
DE102022100945A1 (de) Maschinensteuerung mithilfe einer karte mit regimezonen
DE102021124212A1 (de) Maschinensteuerung mithilfe einer prädiktiven Karte
DE102021124715A1 (de) Erntegutbestandteilkartenerzeugungs- und steuersystem
DE102021119856A1 (de) Maschinensteuerung mithilfe einer prädiktiven geschwindigkeitskarte
DE102022123724A1 (de) Erntegutgutbestandteilerfassung
DE102021124364A1 (de) Erntegutfeuchtigkeitskartenerzeugungs- und steuersystem
DE102022124448A1 (de) Prädiktives reaktionskarten-erzeugungs- und steuersystem
DE102021101230A1 (de) Erzeugung prädiktiver Maschineneigenschaftskarten und Steuersystem
DE102021124778A1 (de) Maschinensteuerung mithilfe einer prädiktiven karte
CN114303616A (zh) 作物成分图生成器和控制系统
DE102021124015A1 (de) Maschinensteuerung mithilfe einer prädiktiven karte
DE102020120877A1 (de) Überwachungs- und verbesserungssystem für die maschinensteuerung
DE102021124392A1 (de) Maschinensteuerung mithilfe einer prädiktiven karte
DE102021124425A1 (de) Maschinensteuerung mithilfe einer prädiktiven karte