DE102021114740B3 - Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window - Google Patents

Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window Download PDF

Info

Publication number
DE102021114740B3
DE102021114740B3 DE102021114740.9A DE102021114740A DE102021114740B3 DE 102021114740 B3 DE102021114740 B3 DE 102021114740B3 DE 102021114740 A DE102021114740 A DE 102021114740A DE 102021114740 B3 DE102021114740 B3 DE 102021114740B3
Authority
DE
Germany
Prior art keywords
pixel
pixels
sub
screen
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102021114740.9A
Other languages
German (de)
Inventor
Patentinhaber gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102021114740.9A priority Critical patent/DE102021114740B3/en
Application granted granted Critical
Publication of DE102021114740B3 publication Critical patent/DE102021114740B3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/125Stereoscopic displays; 3D displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/123Optical louvre elements, e.g. for directional light blocking

Abstract

Diese Erfindung beschreibt den Aufbau eines dreidimensionalen Pixels für digitale Bildschirme zur Anzeige von dreidimensionalen Bildern für das bloße Auge. Es besteht aus OLED (organic light emitting diode) Subpixeln, die in einer konvexen Halbkugel dicht aneinander angeordnet sind, vergleichbar mit einem geodätischen Polyeder. Darüber liegt eine Art Rundum-Blickschutzfolie, die verhindert, dass zu viele Subpixel gleichzeitig aus demselben Blickwinkel sichtbar sind. In diese konvexe Halbkugel wird eine facettierte Linse eingesetzt, die jedes einzelne Subpixel auf die Größe des gesamten 3D-Pixels optisch vergrößert. Dadurch wird aus unterschiedlichen Blinkwinkeln auf das 3D-Pixel ein anderes Subpixel sichtbar. Da die beiden Augen des Betrachters in leicht unterschiedlichen Blinkwinkeln auf die 3D-Pixel eines damit zusammengesetzten Bilds blicken, entsteht ein natürliches stereoskopisches Bild, das keiner weiteren Hilfsmittel bedarf, um kontinuierlich dreidimensional auf die Betrachter zu wirken.This invention describes the construction of a three-dimensional pixel for digital screens for displaying three-dimensional images to the naked eye. It consists of OLED (organic light emitting diode) sub-pixels that are arranged close together in a convex hemisphere, comparable to a geodesic polyhedron. On top of this is a kind of all-round privacy screen that prevents too many sub-pixels from being visible at the same time from the same viewing angle. A faceted lens is inserted into this convex hemisphere, which optically enlarges each individual sub-pixel to the size of the entire 3D pixel. As a result, another subpixel becomes visible from different blinking angles on the 3D pixel. Since the viewer's two eyes look at the 3D pixels of a composite image from slightly different angles, a natural stereoscopic image is created that requires no further aids in order to have a continuous three-dimensional effect on the viewer.

Description

Die vorliegende Erfindung betrifft digitale Anzeigen von dreidimensionalen Bildern. Sie wird im Folgenden einfach als 3D-Pixel bezeichnet.The present invention relates to digital displays of three-dimensional images. It is referred to simply as a 3D pixel in the following.

Bekanntermaßen gibt es bereits Technologien zum Erzeugen von 3D-Effekten auf zweidimensionalen Bildschirmen. Darunter die klassische 3D-Brille, die zwei gleichzeitig angezeigte Bilder jeweils nur für das eine oder das andere Auge sichtbar macht. Dies geschieht entweder mithilfe von Farbfiltern, Polarisationsfiltern, oder mit sogenannten Shutterbrillen, die abwechselnd ein Brillenglas abdunkeln und der Bildschirm synchron dazu nur das Bild für das linke oder rechte Auge anzeigt. Ein anderer Ansatz ist das Bild, ohne Notwendigkeit von Brillen, direkt nach der Augenposition des Betrachters auszurichten. Gängige Methoden sind Linsen/Prismen vor den (Sub-)Pixeln, direktionale Farbfilter, oder direktionale Hintergrundbeleuchtung, oder ähnliche Filter- und Blendensysteme mit Subpixeln für jeweils das rechte und linke Auge. Außerdem gibt es Software-gestützte Lösungen, die mit Kameras die Position des Betrachters ermitteln und dann das Bild entsprechend anpassen. Weitere Lösungen verwenden Reihen von geneigten Subpixeln mit Linsen darüber, um Bilder für mehrere Blickwinkel gleichzeitig anzuzeigen. Herangezogene Patente: CN 105 911 712 A , KR 10 2017 0 029 210 A , WO 2017 / 080 089 A1 , KR 10 2017 0 044 953 A , TW 2017 10 744 A , KR 10 2017 0 053 270 A , US 2017 / 0 195 666 A1 , US 2017 / 0 363 794 A1 , US 2017 / 0 374 358 A1 , US 2017 / 0 315 371 A1 , US 2006 / 0 176 245 A1 , EP 1 063 614 A2 .As is known, there are already technologies for generating 3D effects on two-dimensional screens. These include classic 3D glasses, which only make two images displayed simultaneously visible to one eye or the other. This is done either with the help of color filters, polarization filters, or with so-called shutter glasses, which alternately darken a lens and the screen synchronously only displays the image for the left or right eye. Another approach is to align the image directly to the viewer's eye position without the need for glasses. Common methods are lenses/prisms in front of the (sub)pixels, directional color filters, or directional backlighting, or similar filter and aperture systems with subpixels for the right and left eye. There are also software-based solutions that use cameras to determine the viewer's position and then adjust the image accordingly. Other solutions use rows of tilted sub-pixels with lenses on top to display images for multiple viewing angles simultaneously. Patents used: CN 105 911 712 A , KR 10 2017 0 029 210 A , WO 2017 / 080 089 A1 , KR 10 2017 0 044 953 A , TW 2017 10 744 A , KR 10 2017 0 053 270 A , U.S. 2017/0 195 666 A1 , U.S. 2017/0 363 794 A1 , U.S. 2017/0 374 358 A1 , U.S. 2017/0 315 371 A1 , U.S. 2006/0 176 245 A1 , EP 1 063 614 A2 .

Die Aufgabe ist es, dynamische 3D-Bilder zu erzeugen, die keiner weiteren Hilfsmittel bedürfen, um echt zu wirken und realistisch auf die Veränderung der Position des Betrachters zu reagieren. Außerdem sollen alle Beschränkungen bezüglich der Anzahl an gleichzeitigen Betrachtern eliminiert werden. Herkömmliche 3D-Technologien benötigen weitere Hilfsmittel, wie Brillen oder Kameras und sie sind nur in der Lage eine sehr begrenzte Anzahl an Blinkwinkeln darzustellen, nämlich meist nur zwei für das linke und rechte Auge. Außerdem begrenzen die meisten Lösungen, die ohne Brillen funktionieren, stark die Anzahl an gleichzeitigen Betrachtern, wenn der 3D-Effekt für jeden Betrachter gewahrt werden soll. So ist es oft nur für einen einzelnen Betrachter möglich, den 3D-Effekt wahrzunehmen.The task is to generate dynamic 3D images that do not require any additional tools in order to appear real and to react realistically to changes in the viewer's position. In addition, all restrictions on the number of simultaneous viewers should be eliminated. Conventional 3D technologies require additional tools, such as glasses or cameras, and they are only able to display a very limited number of viewing angles, usually only two for the left and right eye. Also, most solutions that work without glasses severely limit the number of simultaneous viewers if the 3D effect is to be preserved for each viewer. So it is often only possible for a single viewer to perceive the 3D effect.

Die vorliegende Erfindung beschreibt ein einzelnes 3D-Pixel. Ein damit konstruierter Bildschirm soll die oben genannten Aufgaben lösen. Die Grundlage des 3D-Pixels bildet ein konkaver halbkugelförmiger Minibildschirm aus wenigen tausend OLED (organic light emitting diode) Pixeln mit sehr hoher Pixeldichte, etwa 10.000 „pixels per inch“ oder ca. 400 Pixel pro Millimeter. Ein 3D-Pixel, der auf exakt horizontaler Ebene genau 200 Blickwinkel (=200 OLED Subpixel) ermöglicht, hat somit einen Umfang von 400 Pixeln und einen Durchmesser von etwa 127 Pixeln und besteht aus insgesamt etwa 25.460 Subpixeln, gemäß der Formeln zur Berechnung von Kreisen und Kugeln. Bei 400 Pixeln pro Millimeter entspricht dies etwa 320 Mikrometer, womit ein Full-HD 3D-Bildschirm so ca. 28 Zoll hätte. Über dem Mini OLED-Bildschirm, welcher die Subpixel enthält, liegt eine omnidirektionale Blickschutzfolie, die dafür sorgt, dass die Subpixel nur jeweils frontal komplett sichtbar sind. Eine Blickschutzfolie besteht aus einem mikroskopischen Gitter aus dunklen Lamellen, die aus flacheren Blickwinkeln die Sicht auf das jeweilige Subpixel versperren. In die Halbkugel wird dann eine Linse eingesetzt. Diese Linse ist direkt über jedem einzelnen Subpixel konkav gekrümmt, um das Licht vom Subpixel zu streuen. Die Außenseite der Linse ist konvex, um das gestreute Licht wieder zu sammeln und geradeaus auszurichten.The present invention describes a single 3D pixel. A screen constructed with it is intended to solve the above-mentioned tasks. The 3D pixel is based on a concave, hemispherical mini screen made of a few thousand OLED (organic light emitting diode) pixels with a very high pixel density of around 10,000 pixels per inch or around 400 pixels per millimeter. A 3D pixel, which enables exactly 200 viewing angles (=200 OLED subpixels) on an exactly horizontal plane, has a circumference of 400 pixels and a diameter of about 127 pixels and consists of a total of about 25,460 subpixels, according to the formulas for calculating circles and bullets. At 400 pixels per millimeter, this corresponds to around 320 micrometers, which means that a Full HD 3D screen would be around 28 inches. There is an omnidirectional privacy screen over the mini OLED screen, which contains the sub-pixels, which ensures that the sub-pixels are only fully visible from the front. A privacy screen consists of a microscopic grid of dark slats that block the view of the respective sub-pixel from flat viewing angles. A lens is then inserted into the hemisphere. This lens is concave directly above each individual sub-pixel to diffuse the light from the sub-pixel. The outside of the lens is convex to recollect and direct the scattered light straight ahead.

Ein Bildschirm bestehend aus solchen 3D-Pixeln löst alle oben genannten Aufgaben, sodass jeder 3D-Pixel genug Subpixel für tausende verschiedene Blinkwinkel enthält, aber immer nur genau ein Subpixel aus einem bestimmten Blickwinkel sichtbar ist. Ein 3D-Pixel enthält genug Subpixel, sodass jedes Auge ein anderes Subpixel sieht und dadurch ohne Weiteres ein natürliches, stereoskopisches 3D-Bild im Kopf aller Betrachter entsteht, die sich um den 3D-Bildschrim versammeln. Es ist sogar möglich, dass zwei Betrachter die jeweils an den Rändern des Bildschirms stehen, dasselbe Objekt im Bild von zwei verschiedenen Seiten betrachten, und ein Betrachter etwas sieht, dass dem anderen verborgen bleibt, oder sogar mehr Objekte sichtbar sind, die bei einem frontalen Blickwinkel von anderen Objekten verdeckt waren. Dies ist bei allen bisherigen Lösungen undenkbar, da die allermeisten von ihnen lediglich einen 3D-Effekt für zweidimensionale Bilder bieten, wohingegen ein Bildschirm mit 3D-Pixeln echte dreidimensionale Szenen anzeigen kann. Mit 3D-Pixeln werden alle Bilder für jeden der tausenden von Blickwinkeln der Szene gleichzeitig in den Subpixeln angezeigt, jedoch ist immer nur ein einziges 3D-Bild pro Blickwinkel sichtbar.A screen consisting of such 3D pixels solves all of the tasks mentioned above, so that each 3D pixel contains enough subpixels for thousands of different viewing angles, but only exactly one subpixel is visible from a specific viewing angle. A 3D pixel contains enough sub-pixels that each eye sees a different sub-pixel, thereby easily creating a natural, stereoscopic 3D image in the mind of all viewers who gather around the 3D screen. It is even possible that two viewers, each standing at the edges of the screen, are looking at the same object in the picture from two different sides, and one viewer sees something that is hidden from the other, or even more objects are visible than in a frontal view Viewing angles were obscured by other objects. This is unthinkable with all previous solutions, since most of them only offer a 3D effect for two-dimensional images, whereas a screen with 3D pixels can display real three-dimensional scenes. With 3D pixels, all images for each of the scene's thousands of angles are displayed simultaneously in the sub-pixels, but only a single 3D image is visible at any given angle.

Eine Ausführung der Erfindung wird in den Zeichnungen dargestellt und hier näher erläutert. Beschreibung der Zeichnungen:

  • 1: Anordnung der Subpixel in einem 3D-Pixel. Sicht von oben.
  • 2: Querschnitt der Linse. Sicht von der Seite.
  • 3: Brechung des Lichts eines einzelnen Subpixels zur Vergrößerung.
  • 4: Detailansicht des Querschnitts eines 3D-Pixels. Sicht von der Seite.
An embodiment of the invention is illustrated in the drawings and explained in more detail here. Description of the drawings:
  • 1 : Arrangement of the sub-pixels in a 3D pixel. View from above.
  • 2 : Cross section of the lens. side view.
  • 3 : Refraction of light from a single sub-pixel to enlarge it.
  • 4 : Detailed view of the cross section of a 3D pixel. side view.

Die OLED-Subpixel werden in Form eines Goldberg-Polyeders (1) angeordnet, vergleichbar mit einer Bienenwaben- oder Facettenaugen-Struktur. Die Linse (2) ist genau an die Subpixel Anordnung angepasst und über jedem Subpixel konkav geformt, sodass das Licht eines jeden Subpixels einzeln nach vorne gestreut wird. Anschließend wird das Licht von der konvexen Form der Linse an der Außenseite wieder gerade nach vorne ausgerichtet, wodurch das Subpixel optisch vergrößert wird (3). In 4 wird eine detaillierte Sicht der Schichten eines 3D-Pixels dargestellt. Die unterste Schicht bilden die einzelnen OLED-Subpixel (A), bzw. der OLED-Minibildschirm. Darüber liegt das Blickschutz-Gitter (B), das genau der facettierten Anordnung der Subpixel folgt. Mit konkaven Übergängen (C) liegt darüber die Linse (D).The OLED subpixels are laid out in the form of a Goldberg polyhedron ( 1 ) arranged, comparable to a honeycomb or compound eye structure. The Lens ( 2 ) is precisely adapted to the sub-pixel arrangement and is concavely shaped above each sub-pixel so that the light from each sub-pixel is individually scattered forward. The light is then directed straight ahead again by the convex shape of the lens on the outside, optically enlarging the sub-pixel ( 3 ). In 4 a detailed view of the layers of a 3D pixel is presented. The bottom layer is made up of the individual OLED subpixels (A) or the OLED mini screen. Above that is the privacy screen (B), which follows the faceted arrangement of the sub-pixels exactly. The lens (D) lies above it with concave transitions (C).

Claims (3)

Pixel für Bildschirme zum Anzeigen dreidimensionaler Bilder, wobei das Pixel selbst eine dritte Dimension hat, in der eine Vielzahl von OLED-Subpixeln (A) so angeordnet sind, dass sie auf unterschiedliche Blickwinkel ausgerichtet sind und alle OLED-Subpixel (A) in Form eines Goldberg-Polyeders angeordnet sind, wobei für alle anderen OLED-Subpixel (A), die nicht auf den betrachtenden Blickwinkel ausgerichtet sind, die Sichtbarkeit durch eine Lamellen- oder Gitterstruktur (B) reduziert wird, wobei alle OLED-Subpixel mit Hilfe einer entsprechend geformten Linse (D) in Richtung ihres Blickwinkels optisch vergrößert werden und die Linse an die OLED-Subpixel-Anordnung angepasst und über jedem Subpixel konkav geformt ist.pixels for screens for displaying three-dimensional images, wherein the pixel itself has a third dimension in which a plurality of OLED sub-pixels (A) are arranged to face different viewing angles and all OLED sub-pixels (A) are arranged in the form of a Goldberg polyhedron, where for all other OLED subpixels (A) that are not aligned to the viewing angle, the visibility is reduced by a lamellar or lattice structure (B), wherein all OLED sub-pixels are optically magnified in the direction of their viewing angle by means of a correspondingly shaped lens (D) and the lens is adapted to the OLED sub-pixel arrangement and is concavely shaped over each sub-pixel. 3D-Bildschirm, bestehend aus Pixeln gemäß Anspruch 1.3D screen composed of pixels according to claim 1 . Digitales Fenster, bestehend aus einem 3D-Bildschirm gemäß Anspruch 2 auf der einen Seite und Kameras auf der anderen Seite, wobei die Kameras eine dreidimensionale Szene erzeugen, die live auf dem Bildschirm angezeigt wird, wodurch alles, was sich zwischen den Kameras und dem Bildschirm befindet, unsichtbar oder durchsichtig erscheint.Digital window consisting of a 3D screen according to claim 2 on one side and cameras on the other, with the cameras creating a three-dimensional scene that is displayed live on the screen, making anything between the cameras and the screen appear invisible or see-through.
DE102021114740.9A 2021-06-08 2021-06-08 Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window Active DE102021114740B3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102021114740.9A DE102021114740B3 (en) 2021-06-08 2021-06-08 Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021114740.9A DE102021114740B3 (en) 2021-06-08 2021-06-08 Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window

Publications (1)

Publication Number Publication Date
DE102021114740B3 true DE102021114740B3 (en) 2022-05-12

Family

ID=81256471

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021114740.9A Active DE102021114740B3 (en) 2021-06-08 2021-06-08 Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window

Country Status (1)

Country Link
DE (1) DE102021114740B3 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063614A2 (en) 1999-06-22 2000-12-27 The One Infinite Inc. Apparatus for using a plurality of facial images from different viewpoints to generate a facial image from a new viewpoint, method thereof, application apparatus and storage medium
US20060176245A1 (en) 2005-02-04 2006-08-10 Hitachi Displays, Ltd. Autostereoscopic display
CN105911712A (en) 2016-06-30 2016-08-31 北京邮电大学 Multi-view-point liquid crystal display LCD naked-eye 3D (Three Dimensional) display method and device
KR20170029210A (en) 2015-09-07 2017-03-15 삼성전자주식회사 Multi view image display apparatus and contorl method thereof
TW201710744A (en) 2015-09-04 2017-03-16 Jun-Xiao Jiang 360-degree multi-view 3D image device capable of allowing a viewer to see a complete 3D image of the image object
KR20170044953A (en) 2015-10-16 2017-04-26 삼성전자주식회사 Glassless 3d display apparatus and contorl method thereof
KR20170053270A (en) 2015-11-06 2017-05-16 삼성전자주식회사 Glassless 3d display apparatus and contorl method thereof
WO2017080089A1 (en) 2015-11-13 2017-05-18 苏州苏大维格光电科技股份有限公司 Directive colour filter and naked-eye 3d display apparatus
US20170195666A1 (en) 2015-09-25 2017-07-06 Sai Akhil Reddy Konakalla Multi person viewable 3d display device and filter glasses based on frequency multiplexing of light
US20170315371A1 (en) 2012-11-16 2017-11-02 Koninklijke Philips N.V. Autostereoscopic display device
US20170363794A1 (en) 2014-12-31 2017-12-21 Suzhou University Multi-view pixel directional backlight module and naked-eye 3d display device
US20170374358A1 (en) 2016-06-22 2017-12-28 Korea Institute Of Science And Technology Multi-view 3d display apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063614A2 (en) 1999-06-22 2000-12-27 The One Infinite Inc. Apparatus for using a plurality of facial images from different viewpoints to generate a facial image from a new viewpoint, method thereof, application apparatus and storage medium
US20060176245A1 (en) 2005-02-04 2006-08-10 Hitachi Displays, Ltd. Autostereoscopic display
US20170315371A1 (en) 2012-11-16 2017-11-02 Koninklijke Philips N.V. Autostereoscopic display device
US20170363794A1 (en) 2014-12-31 2017-12-21 Suzhou University Multi-view pixel directional backlight module and naked-eye 3d display device
TW201710744A (en) 2015-09-04 2017-03-16 Jun-Xiao Jiang 360-degree multi-view 3D image device capable of allowing a viewer to see a complete 3D image of the image object
KR20170029210A (en) 2015-09-07 2017-03-15 삼성전자주식회사 Multi view image display apparatus and contorl method thereof
US20170195666A1 (en) 2015-09-25 2017-07-06 Sai Akhil Reddy Konakalla Multi person viewable 3d display device and filter glasses based on frequency multiplexing of light
KR20170044953A (en) 2015-10-16 2017-04-26 삼성전자주식회사 Glassless 3d display apparatus and contorl method thereof
KR20170053270A (en) 2015-11-06 2017-05-16 삼성전자주식회사 Glassless 3d display apparatus and contorl method thereof
WO2017080089A1 (en) 2015-11-13 2017-05-18 苏州苏大维格光电科技股份有限公司 Directive colour filter and naked-eye 3d display apparatus
US20170374358A1 (en) 2016-06-22 2017-12-28 Korea Institute Of Science And Technology Multi-view 3d display apparatus
CN105911712A (en) 2016-06-30 2016-08-31 北京邮电大学 Multi-view-point liquid crystal display LCD naked-eye 3D (Three Dimensional) display method and device

Similar Documents

Publication Publication Date Title
DE10245611B4 (en) Device for displaying three-dimensional images
DE112013007184B4 (en) Image processing apparatus, method and program, and image display device
DE202018101096U1 (en) Close-up display with super-resolution through sparse sampling
DE112015004035T5 (en) Image display device
DE102005040597A1 (en) Method and device for tracking sweet spots
CN107340602A (en) 3D display apparatus and method
DE102008043620A1 (en) Illumination device for an autostereoscopic display
DE102014205519A1 (en) Method and apparatus for adapting a display of an autostereoscopic display for a vehicle
DE102014109602A1 (en) Display device for stereo images
WO2011103866A2 (en) Method for visualizing three-dimensional images on a 3d display device and 3d display device
CN105629490A (en) Display device and driving method thereof
DE102016101515A1 (en) Image display method and system
DE102015012271B4 (en) Method and screen for the secure presentation of information
DE102021114740B3 (en) Omnidirectional 3D pixel for real three-dimensional naked eye images, 3D screen and digital window
EP2901674B1 (en) Method for rendering image information and autostereoscopic display
EP2997731B1 (en) Method for reproducing image information, and autostereoscopic screen
DE102010018083B4 (en) Simultaneous reproduction of a plurality of images by means of a two-dimensional image representation matrix
WO2005106563A2 (en) System for observing stereoscopic images
WO2004023348A1 (en) Method for simulating optical components for the stereoscopic production of spatial impressions
WO2020141133A1 (en) Autostereoscopic display
WO2021008780A1 (en) Basic display for an autostereoscopic display arrangement
DE19652689B4 (en) Method for three-dimensional representation of information
WO2005032152A1 (en) Method and arrangement for three-dimensionally recognizable representation
DE102007043574A1 (en) Autostereoscopic flat display for e.g. computer tomography, has rear lens scanning disk with horizontal cylinder lenses that are focused on surface of subpixels, where barrier mask is permitted to be used in place of scanning disk
WO2017055426A1 (en) Image display device

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: G02B0030000000

Ipc: G02B0030260000

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: G02B0030260000

Ipc: G02B0030290000

R018 Grant decision by examination section/examining division
R020 Patent grant now final