DE102021006060A1 - Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process - Google Patents

Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process Download PDF

Info

Publication number
DE102021006060A1
DE102021006060A1 DE102021006060.1A DE102021006060A DE102021006060A1 DE 102021006060 A1 DE102021006060 A1 DE 102021006060A1 DE 102021006060 A DE102021006060 A DE 102021006060A DE 102021006060 A1 DE102021006060 A1 DE 102021006060A1
Authority
DE
Germany
Prior art keywords
binder
basic
metals
ceramics
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102021006060.1A
Other languages
German (de)
Inventor
Christos Aneziris
Patrick Gehre
Enrico Storti
Steffen Dudczig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Bergakademie Freiberg
Original Assignee
Technische Universitaet Bergakademie Freiberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Bergakademie Freiberg filed Critical Technische Universitaet Bergakademie Freiberg
Priority to DE102021006060.1A priority Critical patent/DE102021006060A1/en
Publication of DE102021006060A1 publication Critical patent/DE102021006060A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/6281Alkaline earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • C22C33/0228Using a mixture of prealloyed powders or a master alloy comprising other non-metallic compounds or more than 5% of graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0235Starting from compounds, e.g. oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • C04B2235/321Dolomites, i.e. mixed calcium magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent

Abstract

Die Erfindung betrifft ein Verfahren und Bindemittelsystem für das Binder Jetting 3D-Druck-Verfahren für die Herstellung von Bauteilen auf der Basis von nicht basischen Keramiken, von Metallen bzw. auf der Basis von metallokeramischen Verbundwerkstoffen aus der Mischung von basischen und sauren Keramiken mit Metallen.The invention relates to a method and binder system for the binder jetting 3D printing method for the production of components based on non-basic ceramics, metals or on the basis of metal-ceramic composite materials from the mixture of basic and acidic ceramics with metals.

Description

Die Erfindung betrifft ein Verfahren und Bindemittelsystem für das Binder Jetting 3D-Druck-Verfahren für die Herstellung von Bauteilen auf der Basis von nicht basischen Keramiken, von Metallen bzw. auf der Basis von metallokeramischen Verbundwerkstoffen bestehend aus der Mischung von basischen und sauren Keramiken mit Metallen.The invention relates to a method and binder system for the binder jetting 3D printing method for the production of components based on non-basic ceramics, metals or on the basis of metal-ceramic composites consisting of the mixture of basic and acidic ceramics with metals .

Das Binder Jetting ist ein additives Fertigungsverfahren, bei dem pulverförmiges Ausgangsmaterial an ausgewählten Stellen mit einem Binder verklebt wird, um so Bauteile zu erzeugen. Das Verfahren ist in der VDI-Richtlinie 3405 unter der Bezeichnung „3D-Drucken“ genormt.Binder jetting is an additive manufacturing process in which powdered starting material is bonded to a binder at selected points in order to create components. The process is standardized in the VDI guideline 3405 under the name "3D printing".

Beim 3D-Druck werden die Bauteile schichtweise aufgebaut. Aus 3D-Daten wird z. B. auf einem höhenverstellbaren Tisch oder mit einem höherverstellbaren Druckkopf eine Pulver- oder Granulatschicht aufgebracht und mittels Binder über den Druckkopf an den Stellen verklebt, die zur Bauteilgeometrie zählen. Anschließend wird z. B. der Tisch um eine Schichtdicke abgesenkt und eine neue Pulverschicht aufgebracht. Danach wird das überständige Pulver zur Weiterverwendung zurückgeführt, das Bauteil dem Drucker entnommen und von Pulverresten befreit.With 3D printing, the components are built up in layers. From 3D data z. B. on a height-adjustable table or with a higher-adjustable print head, a powder or granulate layer is applied and glued using a binder over the print head at the points that are part of the component geometry. Then z. B. lowered the table by one layer thickness and applied a new layer of powder. The excess powder is then returned for further use, the component is removed from the printer and powder residue is removed.

In der Europäischen Schrift 3210949 A1 wird ein Binder Jetting 3D-Verfahren präsentiert, welches ein neues Bindemittelsystem offenbart. Die Körnung z. B. aus Keramik wird mit MgO und Magnesiumphosphat beschichtet oder es wird ein Sorel-Zement zugegeben und über ein Mehrdüsensystem werden gezielt Wassertropfen auf die beschichteten Körnungen aufgebracht, welche eine Bindemittelfunktion hervorrufen. Bindemittelanteile über 20 % sind erforderlich, um ein Bauteil mit akzeptabler Festigkeit über dieses Verfahren mit diesem Bindemittelsystem zu drucken. Dem Feuerfestfachmann ist bekannt, dass dieser hohe Bindemittelanteil bzw. auch die Chemie des Bindemittelsystems die Hochtemperatureigenschaften insbesondere die Kriechbeständigkeit, die Korrosionsbeständigkeit und die Heißbiegefestigkeit beeinträchtigen.In the European specification 3210949 A1, a 3D binder jetting process is presented, which discloses a new binder system. The grain z. B. made of ceramic is coated with MgO and magnesium phosphate or a Sorel cement is added and a multi-nozzle system is used to apply water droplets to the coated grains, which cause a binding function. Binder levels above 20% are required to print a part with acceptable strength via this process using this binder system. The refractory expert knows that this high proportion of binder and also the chemistry of the binder system impairs the high-temperature properties, in particular the creep resistance, the corrosion resistance and the hot bending strength.

Der Erfindung liegt demnach die technische Aufgabenstellung zu Grunde, ein Bindemittel und Verfahren zur Erzeugung von Bauteilen für Hochtemperaturanwendungen mittels 3D-Druck bereitzustellen.The invention is therefore based on the technical task of providing a binder and method for producing components for high-temperature applications using 3D printing.

Zur Lösung dieser technischen Aufgabenstellung wird in der vorliegenden Beschreibung ein Bindemittelsystem offenbart, welches aufgrund seiner chemischen Zusammensetzung und einem nur erforderlichen Anteil des Bindemittels von kleiner gleich 10 Gew.% in der Erzeugung von Keramiken, Metallen und metallokeramischen Verbundwerkstoffen für Hochtemperaturanwendungen mittels Binder Jetting 3D-Druck-Verfahren einsatzfähig ist. Erfindungsgemäß werden damit gute Hochtemperatureigenschaften insbesondere gute Kriechbeständigkeit, gute Korrosionsbeständigkeit und gute Heißbiegefestigkeit bei Temperaturen größer 600 °C der gedruckten Bauteile erst ermöglicht.In order to solve this technical problem, a binder system is disclosed in the present description which, due to its chemical composition and a required proportion of the binder of less than or equal to 10% by weight, can be used in the production of ceramics, metals and metal-ceramic composite materials for high-temperature applications using binder jetting 3D Printing method is operational. According to the invention, good high-temperature properties, in particular good creep resistance, good corrosion resistance and good hot bending strength at temperatures greater than 600° C., are made possible for the printed components in the first place.

In zahlreichen Patentschriften werden Bindemittel für die Abbindung von keramischen, feuerfesten Erzeugnissen offenbart, die auf eine Reaktion zwischen einer basischen und einer sauren Bindemittelkomponente basieren. Unter anderem beschreibt die DE 38 06 554 A 1 ein wasserfreies Bindemittel, das langkettige Fettsäuren in Verbindung mit reaktionsfähigem MgO enthält. In DE 29 51 502A1 wird die Herstellung von Gießereisandformen offenbart. Eine Carbonsäure, ein basisches Hydroxid und Gießereiformsand werden in Gegenwart einer wässrigen Lösung eines Carboxylgruppen-enthaltenden Polymer vermischt. Auf der Basis der DE 691 14 412 T2 wird ein Carbonsäure-enthaltendes Material mit basischem Dolomit zur Verwendung in einer Gießwanne beschrieben, wobei der Dolomit mit einer Kalciumcarbonat-Überzugsschicht versehen ist.Numerous patents disclose binders for setting ceramic, refractory products which are based on a reaction between a basic and an acidic binder component. Among other things, describes the DE 38 06 554 A 1 An anhydrous binder containing long chain fatty acids in conjunction with reactive MgO. In DE 29 51 502A1 the manufacture of foundry sand molds is disclosed. A carboxylic acid, a basic hydroxide and foundry sand are mixed in the presence of an aqueous solution of a carboxyl group-containing polymer. Based on the DE 691 14 412 T2 describes a carboxylic acid-containing material containing basic dolomite for use in a tundish, the dolomite being coated with a layer of calcium carbonate.

In der US 2005/0003189A1 wird ein Schichtbauverfahren für die Herstellung von Modellen beschrieben, bei dem ein thermoplastisches Partikelmaterial mit einem pulverförmigen Binder gemischt ist und schichtweise mit einem wässrigen Lösungsmittel bedruckt wird. Der Binder soll dabei in dem wässrigen Druckmedium leicht löslich sein. Anschließend werden die Modelle vom umliegenden Pulver befreit und evtl. in einem Postprozess in einem Ofen getrocknet, um die Festigkeit zu steigern.In the US 2005/0003189A1 describes a layer construction method for the production of models, in which a thermoplastic particulate material is mixed with a powdered binder and is printed in layers with an aqueous solvent. The binder should be easily soluble in the aqueous pressure medium. The models are then freed from the surrounding powder and, if necessary, dried in an oven in a post-process to increase their strength.

In WO 2014/056482 wird ein Binder Jetting 3D-Verfahren offenbart, welches Harzsysteme wie z. B. Phenolharz, Furan-, Harnstoff- oder Aminoharze, Novolake oder Resole als Bindemittel nutzt.In WO 2014/056482 a 3D binder jetting process is disclosed which uses resin systems such as e.g. B. phenolic resin, furan, urea or amino resins, novolaks or resoles used as binders.

In der DE 102007032892 B4 wird eine basische, keramische Tundishmasse offenbart, welche durch Zugabe von Wasser verfestigbar ist und aus einer feuerfesten Basiskomponente und einem Bindemittelsystem besteht, wobei eine Bindemittelkomponente eine saure Komponente in Form wenigstens einer Säure und eine zweite Komponente eine basische Komponente in Form wenigstens einer Base ist, die unter Zugabe von Wasser zu der Tundishmasse in einer Säure-Base-Reaktion reagieren. Die Zugabe von Wasser zu der basischen Tundishmasse erfolgt in einem Mischer, insbesondere beispielsweise in einem Zwangsmischer oder einem Durchlaufmischer oder in einer Spritzmaschine, beispielsweise einer Druckkesselspritzmaschine, bei der die Wasserzugabe bevorzugt am Ende des Schlauches erfolgt.In the DE 102007032892 B4 discloses a basic, ceramic tundish mass which can be hardened by adding water and consists of a refractory base component and a binder system, with a binder component being an acidic component in the form of at least one acid and a second component is a basic component in the form of at least one base which reacts in an acid-base reaction upon addition of water to the tundish mass. Water is added to the basic tundish mass in a mixer, in particular, for example, in a compulsory mixer or a continuous mixer or in a spraying machine, for example a pressure tank spraying machine, in which the water is preferably added at the end of the hose.

Die vorliegende Erfindung betrifft ein mehrstufiges Binder Jetting 3D-Druck-Verfahren zum Herstellen eines oder mehrerer Formkörper auf der Basis von nicht basischen Keramiken, von Metallen oder auf der Basis von metallokeramischen Verbundwerkstoffen aus der Mischung von basischen und sauren Keramiken mit Metallen mit guten Hochtemperatureigenschaften, wobei das erfindungsgemäße Verfahren die Schritte umfasst: 1) Trockene Beschichtung der Partikelkörnungen der Ausgangsrohstoffe auf der Basis von nicht basischen Keramiken oder Metallen oder auf der Basis von metallokeramischen Verbundwerkstoffen aus einer Mischung von basischen und sauren Keramiken mit Metallen mit einem Bindemittelsystem aus einer basischen, keramischen Komponente mit einem Anteil kleiner gleich 5 Gew.% und aus einer sauren festen Komponente kleiner gleich 5 Gew.% in einem Mischer 2) schichtweisen Aufbau eines oder mehrerer Formkörper mittels wiederholtem Aufbringen der beschichteten Partikelkörnungen im 3D Druckverfahren, 3) wobei ein Vorverfestigungsschritt mit dem gezielten und selektiven Wassertropfen durch eine oder mehreren computergesteuerten Düsen zum Erzielen einer Vorverfestigung durch eine Basis-Säure Reaktion zwischen den beschichteten Körnungen des Formkörpers hervorgerufen wird, 4) einen Entpackschritt, wobei das nicht verfestigte Partikelmaterial von dem vorverfestigten Formkörper getrennt wird und 5) die gedruckten Formkörper über 400 °C in sauerstoffhaltigen oder geschützten Atmosphären, z. B. Argon oder unter Vakuum wärmebehandelt und/oder gesintert werden, wobei 6) Formkörper, die in geschützten Atmosphären oder unter Vakuum gesintert worden sind, nachträglich in einer sauerstoffhaltigen Atmosphäre über 400 °C wärmebehandelt werden können, um Passivierungsschichten über die Bildung von Oxiden zu generieren.The present invention relates to a multi-stage binder jetting 3D printing process for producing one or more shaped bodies based on non-basic ceramics, metals or on the basis of metal-ceramic composites from the mixture of basic and acidic ceramics with metals with good high-temperature properties, the method according to the invention comprising the steps: 1) Dry coating of the particle granules of the starting raw materials based on non-basic ceramics or metals or on the basis of metal-ceramic composites made of a mixture of basic and acidic ceramics with metals with a binder system made of a basic, ceramic Component with a proportion of less than or equal to 5% by weight and of an acidic solid component of less than or equal to 5% by weight in a mixer 2) layered construction of one or more shaped bodies by repeated application of the coated particle granules in the 3D printing process, 3) a pre-consolidation step with the targeted and selective drops of water through one or more computer-controlled nozzles to achieve pre-consolidation caused by a base-acid reaction between the coated granules of the shaped body, 4) an unpacking step, whereby the unsolidified particulate material is separated from the pre-consolidated shaped body and 5) the printed Shaped bodies over 400 °C in oxygen-containing or protected atmospheres, e.g. B. argon or heat-treated under vacuum and / or sintered, where 6) shaped bodies that have been sintered in protected atmospheres or under vacuum can be subsequently heat-treated in an oxygen-containing atmosphere above 400 ° C to passivation layers on the formation of oxides to generate.

Erfindungsgemäß werden Basis-Säure Reaktionen für die Herstellung von Bauteilen auf Basis einer oder mehreren nicht basischen Keramiken, einem oder mehreren Metallen oder aus der Mischung von Keramiken und Metallen im Sinne von metallokeramischen Verbundwerkstoffen für das Binder Jetting 3D-Verfahren mit gezielter, selektiver tropfenartigen Wasserzugabe über einer gesteuerten Düse oder über mehrere gesteuerten Düsen auf beschichteter Körnung mit Bindemittel auf der Basis einer basischen Bindemittelkomponente von Magnesiumoxid, Dolomit, Magnesiumhydroxid, Calciumhydroxid, Aluminiumhydroxid oder magnesiumreichen Magnesiumaluminatspinell oder Magnesiumtitanat, Magnesiumzirkonat, Calciumtitatant oder Calciumzirkonat oder Mischungen, und Kieselsäure, Zitronensäure Amidosulfonsäure, Apfelsäure, Weinsäure, Ameisensäure, Essigsäure, Borsäure als saure Komponente nicht offenbart.According to the invention, basic-acid reactions for the production of components based on one or more non-basic ceramics, one or more metals or a mixture of ceramics and metals in the sense of metallo-ceramic composite materials for the binder jetting 3D process with targeted, selective drop-like addition of water via a controlled nozzle or via several controlled nozzles on coated granules with binder based on a basic binder component of magnesium oxide, dolomite, magnesium hydroxide, calcium hydroxide, aluminum hydroxide or magnesium-rich magnesium aluminate spinel or magnesium titanate, magnesium zirconate, calcium titanate or calcium zirconate or mixtures, and silicic acid, citric acid, amidosulfonic acid, Malic acid, tartaric acid, formic acid, acetic acid, boric acid are not disclosed as acidic components.

Erfindungsgemäß wird eine Basis-Säure Reaktion für die Herstellung von Bauteilen mittels Binder Jetting 3D-Druck-Verfahren auf Basis einer oder mehreren nicht basischen Keramiken, einem Metall oder mehreren Metallen oder aus der Mischung von Keramiken und Metallen im Sinne von metallokeramischen Verbundwerkstoffen mit gezielter, selektiver tropfenartigen Wasserzugabe über eine gesteuerte Düse oder über mehrere gesteuerte Düsen auf eine Schicht aus den bereits offenbarten Materialien hervorgerufen. Diese Materialien werden erfindungsgemäß bereits in einem vorgeschalteten Aufbereitungsprozess mit Magnesiumoxid, Magnesiumhydroxid, Magnesiumtitanat, Magnesiumzirkonat, Aluminiumhydroxid, magnesiumreichen Magnesiumaluminatspinell, Calciumoxid, Calciumhydroxid, Dolomit, Calciumtitatat, Calciumzirkonat oder Mischungen davon als basische Bindemittelkomponente, und Kieselsäure, Zitronensäure, Amidosulfonsäure, Apfelsäure, Weinsäure, Ameisensäure, Essigsäure, Borsäure oder Mischungen davon als saure Komponente trocken beschichtet.According to the invention, a basic-acid reaction for the production of components using binder jetting 3D printing methods based on one or more non-basic ceramics, one metal or more metals or from the mixture of ceramics and metals in the sense of metal-ceramic composites with a targeted, selective droplet-like addition of water via a controlled nozzle or via a plurality of controlled nozzles onto a layer of the materials already disclosed. According to the invention, these materials are already in an upstream treatment process with magnesium oxide, magnesium hydroxide, magnesium titanate, magnesium zirconate, aluminum hydroxide, magnesium-rich magnesium aluminate spinel, calcium oxide, calcium hydroxide, dolomite, calcium titatate, calcium zirconate or mixtures thereof as basic binder components, and silicic acid, citric acid, amidosulfonic acid, malic acid, tartaric acid, Formic acid, acetic acid, boric acid or mixtures thereof are dry-coated as the acidic component.

Erfindungsgemäß folgt nach der Urformgebung mittels dem Binder Jetting 3D-Druck-Verfahren eine Sinterung unter Luft oder in geschützter Atmosphäre, wie z. B. unter Vakuum, Argon, Stickstoff etc.According to the invention, after the original shaping by means of the binder jetting 3D printing process, sintering takes place in air or in a protected atmosphere, e.g. B. under vacuum, argon, nitrogen etc.

Erfindungsgemäß kann nach einer Sinterung in einer geschützten Atmosphäre eine weitere Wärmebehandlung oberhalb 400 °C in sauerstoffhaltiger Atmosphäre stattfinden.According to the invention, a further heat treatment above 400° C. in an oxygen-containing atmosphere can take place after sintering in a protected atmosphere.

Erfindungsgemäß hat der magnesiumreiche Magnesiumaluminatspinell weniger als 70 % Aluminiumoxid und ist beispielhaft auf dem Markt mit dem Produktname MR 66 mit ca. 31 % MgO und ca. 63 % Al2O3 von der Fa. Almatis bekannt.According to the invention, the magnesium-rich magnesium aluminate spinel has less than 70% aluminum oxide and is known on the market by way of example with the product name MR 66 with approx. 31% MgO and approx. 63% Al 2 O 3 from Almatis.

Erfindungsgemäß dienen auch sowohl in reinen keramischen Bauteilen als auch in metallokeramischen Formbauteilen Magnesiumtitanat, Magnesiumzirkonat, Calciumtitatant oder Calciumzirkonat als Sinterhilfsmittel für eine bessere Verdichtung bei einer nachgeschalteten Sinterung.According to the invention, magnesium titanate, magnesium zirconate, calcium titanate or calcium zirconate also serve as sintering aids for better compaction during subsequent sintering both in pure ceramic components and in metal-ceramic molded components.

Erfindungsgemäß dienen als nicht basische Keramiken Oxide wie z. B. Aluminiumoxid, Siliziumdioxid, Zirkondioxid, Titandioxid, aluminiumoxidreicher Magnesiumaluminat Spinell (Aluminiumoxid-Gehalt größer 70 %), Bariumzirkonat, Lanthanoxid, Chromoxid, Lanthanchromid oder Mischungen davon, Karbide wie z. B. Siliziumkarbid, Wolframkarbid, Nitride wie z. B. Siliziumnitrid, Titanitrid, Aluminiumnitrid, Bornitrid und Boride wie z. B. Titandiborid.According to the invention are used as non-basic ceramics oxides such. B. alumina, silica, zirconia, titanium dioxide, alumina-rich magnesium aluminate spinel (alumina content greater than 70%), barium zirconate, lanthanum oxide, chromium oxide, lanthanum chromium or mixtures thereof, carbides such. B. silicon carbide, tungsten carbide, nitrides such. As silicon nitride, titanium nitride, aluminum nitride, boron nitride and borides such. B. titanium diboride.

Erfindungsgemäß dient als nicht basische Keramiken Kohlenstoff in allen seinen Modifikationen, wie z. B. Graphit, Ruß, Kohlenstoffnanoröhrchen, Kohlenstofffaser etc.According to the invention serves as non-basic ceramics carbon in all its modifications such. B. Graphite, carbon black, carbon nanotubes, carbon fiber etc.

Erfindungsgemäß können auch Mischungen aus Oxiden, Nitriden, Karbiden oder Boriden mit oder ohne Kohlenstoff dienen, als vorgemischte Pulver oder als vorgemischte und gefertigte Granulate.Mixtures of oxides, nitrides, carbides or borides with or without carbon can also be used according to the invention, as premixed powders or as premixed and manufactured granules.

Erfindungsgemäß dienen Metalle aus der Eisen- und Nichteisenmetallurgie wie z. B. Stahl, Eisen, Aluminium, Magnesium, Kupfer, Nickel, Titan, Silizium, refraktäre Metalle wie z. B. Molybdän, Wolfram, Niob, Tantal etc. oder Mischungen davon. Bei diesen Materialkombinationen aus Metallen und Keramiken können erfindungsgemäß auch basische Keramiken, wie z. B. Magnesiumoxid, magnesiumoxidreicher Magnesiumaluminatspinell, Calciumoxid oder Dolomit zugesetzt werden.According to the invention metals from ferrous and non-ferrous metallurgy such. As steel, iron, aluminum, magnesium, copper, nickel, titanium, silicon, refractory metals such. B. molybdenum, tungsten, niobium, tantalum etc. or mixtures thereof. In these material combinations of metals and ceramics, basic ceramics such. B. magnesium oxide, magnesium oxide-rich magnesium aluminate spinel, calcium oxide or dolomite can be added.

Erfindungsgemäß können auch Mischungen aus Metallen mit Oxiden, Nitriden, Karbiden oder Boriden mit oder ohne Kohlenstoff dienen, als vorgemischte Pulver oder als vorgemischte und vorgefertigte Granulate.Mixtures of metals with oxides, nitrides, carbides or borides with or without carbon can also be used according to the invention, as premixed powders or as premixed and prefabricated granules.

Erfindungsgemäß können dem Bindemittelsystem auf der Basis einer basischen Keramik und einer Säure auch organische Zusätze zur Steigerung der temporären Festigkeit wie z. B. Polyvinylalkohol (PVA) zugesetzt werden.According to the binder system based on a basic ceramic and an acid, organic additives to increase the temporary strength such. B. polyvinyl alcohol (PVA) can be added.

Erfindungsgemäß werden feinkörnige (unter 100 µm) oder grobkörnige (über 100 µm bis 100 mm) Ausgangspulver auf Basis von Metall oder Metallen, Oxid oder Oxiden oder Kombinationen von beiden eingesetzt.According to the invention, fine-grained (less than 100 μm) or coarse-grained (more than 100 μm to 100 mm) starting powders based on metal or metals, oxide or oxides or combinations of both are used.

Es folgen zwei erfindungsgemäße Beispiele a) Aluminiumoxid (Keramik mit den Schritten: trockene Vorbeschichtung der Körnungen mit dem erfindungsgemäßen Bindemittelsystem im Eirich-Mischer, 3D-Druck mittels Binder Jetting 3D-Druck-Verfahren, Sinterung bei 1600 °C in sauerstoffhaltigen Atmosphäre), und b) Stahl und Magnesiumoxid (Metall und basische MgO-Keramik mit den Schritten: Granulation im Eirich-Mischer, Beschichtung der Verbundwerkstoffgranulatkörnungen mit dem Bindemittelsystem im Eirich-Mischer, Binder Jetting 3D-Druck, Sinterung unter Argon bei 1400 °C, Wärmebehandlung in sauerstoffhaltiger Atmosphäre, Bildung von oxidhaltigen Passivierungsschichten aus der Reaktion des Stahls und dessen Legierungselemente mit dem MgO, u. a. in situ Spinellbildung).Two examples according to the invention follow: a) aluminum oxide (ceramic with the steps: dry pre-coating of the grains with the binder system according to the invention in the Eirich mixer, 3D printing using binder jetting 3D printing process, sintering at 1600° C. in an oxygen-containing atmosphere), and b) Steel and magnesium oxide (metal and basic MgO ceramic with the steps: granulation in the Eirich mixer, coating of the composite material granules with the binder system in the Eirich mixer, binder jetting 3D printing, sintering under argon at 1400 °C, heat treatment in an oxygen-containing Atmosphere, formation of oxide-containing passivation layers from the reaction of the steel and its alloying elements with the MgO, including in situ spinel formation).

Beispiel 1example 1

Tabelle 1 Material, davon Grobkorn Anteil [in Gew.%] Al2O33,15-2,5mm 9,2 Al2O3 2,5-2,0 mm 6,9 Al2O3 2,0-1,25 mm 6,7 Al2O3 1,25-1,0mm 1,9 Al2O3 1,0-0,63 mm 12,4 Material, davon Mittelkorn Al2O3 0,63-0,315 mm 13,2 Al2O30,315-0,16 mm 7,0 Material, davon Feinkorn Al2O3 < 0,16 mm 43,4 Feines MgO 0-40 µm als basische Bindemittelkomponente 5 Zitronensäure 0-40 µm als saure Bindemittelkomponente 5 Table 1 Material, including coarse grain Proportion [% by weight] Al2O3 3.15-2.5mm 9.2 Al2O3 2.5-2.0mm 6.9 Al2 O3 2.0-1.25 mm 6.7 Al2O3 1.25-1.0mm 1.9 Al 2 O 3 1.0-0.63 mm 12.4 Material, of which medium grain Al2 O3 0.63-0.315 mm 13.2 Al2 O3 0.315-0.16 mm 7.0 Material, of which fine grain Al2O3 < 0.16mm 43.4 Fine MgO 0-40 µm as basic binder component 5 Citric acid 0-40 µm as an acidic binder component 5

In einem Eirich-Mischer erfolgt die trockene Mischung und Beschichtung der Aluminiumoxidkörnung mit 5 Gew.% MgO und 5 Gew.% Zitronensäure. Anschließend folgt der 3D Druck in einer Binder Jetting Drucker-Maschine der Fa. Desamanera, die über 300 computergesteuerte Düsen verfügt, welche auf Basis eines 3D-Drucker Codes Zylinder 50 mm im Durchmesser und 25 mm in Höhe Wasser auf die Körnermischung verdrucken. Der Vorverfestigungsschritt des zylindrischen Formbauteils wird mit dem gezielten und selektiven Wassertropfen durch eine oder mehreren computergesteuerten Düsen durch eine Basis-Säure Reaktion zwischen den beschichteten Körnungen des Formkörpers hervorgerufen. Nach dem Druck folgt eine Sinterung in einem elektrisch beheizten Ofen mit sauerstoffhaltigen Atmosphäre bei 1600 °C für 2 h. Anschließend folgt die Festigkeitsbestimmung mittels Kaltdruckfestigkeit. Die Festigkeit liegt bei 12 MPa.Dry mixing and coating of the aluminum oxide granules with 5% by weight MgO and 5% by weight citric acid takes place in an Eirich mixer. This is followed by 3D printing in a Desamanera binder jet printer machine, which has over 300 computer-controlled nozzles, which print cylinders of 50 mm in diameter and 25 mm in height based on a 3D printer code onto the grain mixture. The pre-consolidation step of the cylindrical molded component is caused by a base-acid reaction between the coated grains of the molded body with the targeted and selective dropping of water through one or more computer-controlled nozzles. Printing is followed by sintering in an electrically heated furnace with an oxygen-containing atmosphere at 1600° C. for 2 hours. This is followed by the strength determination using cold compressive strength. The strength is 12 MPa.

Beispiel 2example 2

Die nachfolgende Tabelle 2 beinhaltet eine Mischung für die Herstellung eines Schlickers, auch bezeichnet als Gemenge auf der Basis von feinkörnigem Stahl 316 L, 5 bis 50 µm und feinkörnigem MgO, 5 bis 50 µm. Tabelle 2 Material Anteil [in Gew.%] MgO 40,0 Stahl 316 L 60,0 Additiv, davon 0,5 Dolapix PC 75 (Zschimmer & Schwarz GmbH) 0,5 Alkohol 40,0 Table 2 below contains a mixture for the production of a slip, also referred to as a mixture, based on fine-grain steel 316 L, 5 to 50 μm and fine-grain MgO, 5 to 50 μm. Table 2 material Proportion [% by weight] MgO 40.0 Steel 316L 60.0 additive, thereof 0.5 Dolapix PC 75 (Zschimmer & Schwarz GmbH) 0.5 alcohol 40.0

Zur Herstellung des Schlickers wurde Stahl 316 L und MgO in einem Mischbehälter eingefüllt. Die mittlere Korngröße des Stahls betrug 10 µm, die mittlere Korngröße des MgO betrug 8 µm. In einem weiteren Schritt wurden 0,5 Gew.% des organischen, alkalifreien Additivs Dolapix PC 75 von Zschimmer & Schwarz mit 40 Gew. % Alkohol vermengt und dem Stahlpulver sowie dem MgO zugegeben. Die Mischung wurde anschließend für 6 h auf einem Walzenstuhl vermengt. Der so erhaltene Schlicker wurde in eine Gipsform gegossen, um Formkörper zu erhalten. Nach der Entformung erfolgte die Trocknung der Formkörper für 5 h bei 50 °C. Die getrockneten Proben wurden unter Argonatmosphäre mit einer Aufheizrate von 2 K/min in zwei Stufen vorgesintert, oder auch thermisch vorbehandelt. Dabei wurden die Proben erst bei 850 °C für 5 h gehalten und anschließen bei 1400 °C und einer Haltezeit von 5 h gesintert. Der so erhaltene Werkstoff wurde anschließend in einer Kreuzschlagmühle in verschiedenen Korngrößenklassen gebrochen. Tabelle 3 Material, davon Grobkorn Anteil [in Gew.%] Stahl/MgO 3,15-2,5 mm 9,2 Stahl/MgO 2,5-2,0 mm 6,9 Stahl/MgO 2,0 -1,25 mm 6,7 Stahl/MgO 1,25-1,0 mm 1,9 Stahl/MgO 1,0-0,63 mm 12,4 Material, davon Mittelkorn Stahl/MgO 0,63-0,315 mm 13,2 Stahl/MgO 0,315-0,16 mm 7,0 Material, davon Feinkorn Stahl/MgO < 0,16 mm 43,4 Feines MgO 0-40 µm als basische Bindemittelkomponente 5 Zitronensäure 0-40 µm als saure Bindemittelkomponente 5 Steel 316 L and MgO were filled into a mixing container to produce the slip. The average grain size of the steel was 10 μm, the average grain size of the MgO was 8 μm. In a further step, 0.5% by weight of the organic, alkali-free additive Dolapix PC 75 from Zschimmer & Schwarz was mixed with 40% by weight alcohol and added to the steel powder and the MgO. The mixture was then blended on a roller mill for 6 hours. The slurry thus obtained was poured into a gypsum mold to obtain moldings. After demoulding, the moldings were dried at 50° C. for 5 hours. The dried samples were pre-sintered in two stages under an argon atmosphere at a heating rate of 2 K/min, or else thermally pre-treated. The samples were first held at 850°C for 5 hours and then sintered at 1400°C for a holding time of 5 hours. The material obtained in this way was then broken up into various grain size classes in a cross-beating mill. Table 3 Material, including coarse grain Proportion [% by weight] Steel/MgO 3.15-2.5mm 9.2 Steel/MgO 2.5-2.0mm 6.9 Steel/MgO 2.0 -1.25 mm 6.7 Steel/MgO 1.25-1.0 mm 1.9 Steel/MgO 1.0-0.63mm 12.4 Material, of which medium grain Steel/MgO 0.63-0.315 mm 13.2 Steel/MgO 0.315-0.16 mm 7.0 Material, of which fine grain Steel/MgO < 0.16 mm 43.4 Fine MgO 0-40 µm as basic binder component 5 Citric acid 0-40 µm as an acidic binder component 5

In einem Eirich-Mischer erfolgt die trockene Mischung und Beschichtung der Verbundwerkstoffkörnung auf der Basis von Stahl 316 L/ MgO aus der Tabelle 3 mit 5 Gew.% MgO und 5 Gew.% Zitronensäure. Anschließend folgt der 3D Druck in einer Binder Jetting Drucker-Maschine der Fa. Desamanera, die über 340 computergesteuerte Düsen verfügt, welche auf Basis eines 3D Drucker Codes Zylinder 50 mm im Durchmesser und 25 mm in Höhe verdrucken. Der Vorverfestigungsschritt des zylindrischen Formbauteils wird mit dem gezielten und selektiven Wassertropfen durch eine oder mehreren computergesteuerten Düsen durch eine Basis-Säure Reaktion zwischen den beschichteten Körnungen des Formkörpers hervorgerufen. Nach dem Druck folgt eine Sinterung in einem elektrischen Ofen mit Graphitauskleidung und in geschützter Argon - Atmosphäre bei 1400 °C für zwei Stunden. Anschließend folgt die Festigkeitsbestimmung mittels Kaltdruckfestigkeit. Die Festigkeit liegt bei 40 MPa. Die unter Argon gesinterten zylindrischen Formbauteile auf der Basis Stahl 316 L und MgO werden anschließend in sauerstoffhaltigen Atmosphäre bei 1000 °C und für 30 min wärmebehandelt. Anschließend folgt wieder die Festigkeitsbestimmung mittels Kaltdruckfestigkeit. Die Festigkeit liegt bei 50 MPa. Die Formbauteile besitzen durch diese zweite Wärmebehandlung durch die Bildung von Passivierungsschichten eine sehr gute Oxidationsbeständigkeit und gute Hochtemperaturfestigkeiten. Die Festigkeit bei 850 °C in sauerstoffhaltigen Atmosphäre liegt im Bereich von 45 MPa.The dry mixing and coating of the composite material grain based on steel 316 L/MgO from Table 3 with 5% by weight MgO and 5% by weight citric acid takes place in an Eirich mixer. This is followed by 3D printing in a Desamanera binder jetting printer machine, which has 340 computer-controlled nozzles, which print cylinders 50 mm in diameter and 25 mm in height based on a 3D printer code. The pre-consolidation step of the cylindrical molded component is caused by a base-acid reaction between the coated grains of the molded body with the targeted and selective dropping of water through one or more computer-controlled nozzles. After printing follows sintering in an electric furnace with graphite lining and in a protected argon atmosphere at 1400 °C for two hours. This is followed by the strength determination using cold compressive strength. The strength is 40 MPa. The cylindrical molded components based on steel 316 L and MgO, sintered under argon, are then heat-treated in an oxygen-containing atmosphere at 1000 °C for 30 minutes. This is followed by the strength determination using cold compressive strength. The strength is 50 MPa. As a result of this second heat treatment and the formation of passivation layers, the molded components have very good oxidation resistance and good high-temperature strength. The strength at 850 °C in an oxygen-containing atmosphere is in the range of 45 MPa.

ZITATE ENTHALTEN IN DER BESCHREIBUNGQUOTES INCLUDED IN DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of documents cited by the applicant was generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturPatent Literature Cited

  • DE 3806554 A [0007]DE 3806554 A [0007]
  • DE 2951502 A1 [0007]DE 2951502 A1 [0007]
  • DE 69114412 T2 [0007]DE 69114412 T2 [0007]
  • US 2005/0003189 A1 [0008]US 2005/0003189 A1 [0008]
  • WO 2014/056482 [0009]WO 2014/056482 [0009]
  • DE 102007032892 B4 [0010]DE 102007032892 B4 [0010]

Claims (6)

Verfahren unter Nutzung eines Bindemittels für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens dadurch gekennzeichnet, dass für die Herstellung eines oder mehrerer Formkörper auf der Basis von nicht basischen Keramiken, von Metallen bzw. auf der Basis von metallokeramischen Verbundwerkstoffen aus der Mischung von basischen und sauren Keramiken mit Metallen, das Verfahren die Schritte umfasst 1) trockene Beschichtung der Partikelkörnungen der Ausgangsrohstoffe auf der Basis von nicht basischen Keramiken oder Metallen oder auf der Basis von metallokeramischen Verbundwerkstoffen aus der Mischung von basischen und sauren Keramiken mit Metallen mit einem Bindemittelsystem aus einer basischen, keramischen Komponente mit einem Anteil kleiner gleich 5 Gew.% und aus einer sauren festen Komponente kleiner gleich 5 Gew.% in einem Mischer, 2) schichtweiser Aufbau eines oder mehrerer Formkörper mittels wiederholtem Aufbringen der beschichteten Partikelkörnungen im 3D Druckverfahren, 3) wobei ein Vorverfestigungsschritt mit dem gezielten und selektiven Wassertropfen aufgebracht durch eine oder mehrere computergesteuerte Düsen zum Erzielen einer Vorverfestigung durch eine Basis-Säure Reaktion zwischen den beschichteten Körnungen des Formkörpers hervorgerufen wird, 4) einen Entpackschritt, wobei das nicht verfestigte Partikelmaterial von dem vorverfestigten Formkörper getrennt wird und 5) die gedruckten Formkörper über 400 °C wärmebehandelt und/oder gesintert in sauerstoffhaltigen oder geschützten Atmosphären, z. B. Argon oder unter Vakuum, werden, wobei 6) Formkörper, die in geschützten Atmosphären oder unter Vakuum gesintert worden sind, nachträglich in einer sauerstoffhaltigen Atmosphäre über 400 °C wärmebehandelt werden können, um Passivierungsschichten über die Bildung von Oxiden zu generieren.Process using a binder for the production of components using the binder jetting 3D printing process, characterized in that for the production of one or more molded bodies based on non-basic ceramics, metals or based on metal-ceramic composites the mixture of basic and acidic ceramics with metals, the method comprises the steps 1) dry coating of the particle grains of the starting raw materials based on non-basic ceramics or metals or on the basis of metallo-ceramic composites from the mixture of basic and acidic ceramics with metals a binder system consisting of a basic, ceramic component with a proportion of less than or equal to 5% by weight and of an acidic solid component with a proportion of less than or equal to 5% by weight in a mixer, 2) layered construction of one or more shaped bodies by repeated application of the coated particle granules in the 3D printing process , 3) a pre-consolidation step with the targeted and selective drop of water applied through one or more computer-controlled nozzles to achieve a pre-consolidation caused by a base-acid reaction between the coated granules of the shaped body, 4) an unpacking step, wherein the non-solidified particulate material is removed from the pre-consolidated shaped bodies is separated and 5) the printed shaped bodies are heat treated above 400 °C and/or sintered in oxygen-containing or protected atmospheres, e.g. B. argon or under vacuum, where 6) moldings that have been sintered in protected atmospheres or under vacuum can be subsequently heat treated in an oxygen-containing atmosphere over 400 ° C to generate passivation layers through the formation of oxides. Bindemittel für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens nach Anspruch 1 dadurch gekennzeichnet, dass als basische Bindemittelkomponente Magnesiumoxid, Magnesiumhydroxid, Magnesiumtitanat, Magnesiumzirkonat, Aluminiumhydroxid, magnesiumreicher Magnesiumaluminatspinell mit einem Aluminiumoxid-Gehalt kleiner 70 Gew.%, Calciumoxid, Calciumhydroxid, Dolomit, Calciumtitatat, Calciumzirkonat oder Mischungen davon dienen und als saure Komponente Kieselsäure, Zitronensäure, Amidosulfonsäure, Apfelsäure, Weinsäure, Ameisensäure, Essigsäure, Borsäure oder Mischungen davon dienen.Binder for the production of components using the binder jetting 3D printing process claim 1 characterized in that the basic binder component is magnesium oxide, magnesium hydroxide, magnesium titanate, magnesium zirconate, aluminum hydroxide, magnesium-rich magnesium aluminate spinel with an aluminum oxide content of less than 70% by weight, calcium oxide, calcium hydroxide, dolomite, calcium titatate, calcium zirconate or mixtures thereof and the acidic component is silicic acid, citric acid , Sulfamic acid, malic acid, tartaric acid, formic acid, acetic acid, boric acid or mixtures thereof. Bindemittel für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens nach Anspruch 1 und 2 dadurch gekennzeichnet, dass dem Bindemittelsystem aus einer basischen und einer sauren Komponente Polyvinylalkohol zugegeben wird.Binder for the production of components using the binder jetting 3D printing process claim 1 and 2 characterized in that polyvinyl alcohol is added to the binder system consisting of a basic and an acidic component. Verfahren und Bindemittel für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens nach mindestens einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, dass als nicht basische Keramiken Oxide wie Aluminiumoxid, Siliziumdioxid, Zirkondioxid, Titandioxid, aluminiumoxidreicher Magnesiumaluminatspinell mit einem Aluminiumoxid-Gehalt größer 70 Gew.%), Bariumzirkonat, Lanthanoxid, Chromoxid, Lanthanchromid, Karbide wie SiC, WC, Nitride wie Siliziumnitrid, Titanitrid, Aluminiumnitrid, Bornitrid, Boride wie Titandiborid, Kohlenstoff wie Graphit, Ruß, Kohlenstoffnanoröhrchen, Kohlenstofffaser oder Mischungen davon dienen.Process and binder for the production of components using the binder jetting 3D printing process according to at least one of Claims 1 until 3 characterized in that the non-basic ceramics used are oxides such as aluminum oxide, silicon dioxide, zirconium dioxide, titanium dioxide, aluminum oxide-rich magnesium aluminate spinel with an aluminum oxide content greater than 70% by weight, barium zirconate, lanthanum oxide, chromium oxide, lanthanum chromium, carbides such as SiC, WC, nitrides such as silicon nitride, Titanium nitride, aluminum nitride, boron nitride, borides such as titanium diboride, carbon such as graphite, carbon black, carbon nanotubes, carbon fibers or mixtures thereof are used. Verfahren und Bindemittel für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens nach mindestens einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, dass als Metalle Stahl, Eisen, Aluminium, Magnesium, Kupfer, Nickel, Titan, Silizium, refraktäre Metalle, Molybdän, Wolfram, Niob, Tantal oder Mischungen davon dienen.Process and binder for the production of components using the binder jetting 3D printing process according to at least one of Claims 1 until 4 characterized in that the metals used are steel, iron, aluminum, magnesium, copper, nickel, titanium, silicon, refractory metals, molybdenum, tungsten, niobium, tantalum or mixtures thereof. Verfahren und Bindemittel für die Herstellung von Bauteilen mit Hilfe des Binder Jetting 3D-Druck-Verfahrens nach mindestens einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, dass bei den Materialkombinationen aus Metallen und Keramiken basische Keramiken wie Magnesiumhydroxid, magnesiumoxidreicher Magnesiumaluminatspinell, Calziumoxid, Dolomit oder Mischungen davon dienen.Process and binder for the production of components using the binder jetting 3D printing process according to at least one of Claims 1 until 5 characterized in that basic ceramics such as magnesium hydroxide, magnesium oxide-rich magnesium aluminate spinel, calcium oxide, dolomite or mixtures thereof are used in the material combinations of metals and ceramics.
DE102021006060.1A 2021-12-08 2021-12-08 Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process Ceased DE102021006060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102021006060.1A DE102021006060A1 (en) 2021-12-08 2021-12-08 Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021006060.1A DE102021006060A1 (en) 2021-12-08 2021-12-08 Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process

Publications (1)

Publication Number Publication Date
DE102021006060A1 true DE102021006060A1 (en) 2023-06-15

Family

ID=86498400

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021006060.1A Ceased DE102021006060A1 (en) 2021-12-08 2021-12-08 Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process

Country Status (1)

Country Link
DE (1) DE102021006060A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951502A1 (en) 1978-12-20 1980-06-26 Kuraray Co METHOD FOR PRODUCING FOUNDRY SANDS
DE3806554A1 (en) 1988-03-01 1989-11-16 Didier Werke Ag FIREPROOF MASSES OR KITTS AND THEIR USE
DE69114412T2 (en) 1990-08-16 1997-02-27 Minerals Tech Inc Surface covering material for tundish and melting pan.
US20050003189A1 (en) 2003-05-21 2005-01-06 Bredt James F. Thermoplastic powder material system for appearance models from 3D prinitng systems
DE102007032892B4 (en) 2007-07-14 2009-12-24 Refractory Intellectual Property Gmbh & Co. Kg Tundish mass and a method for creating a humid Tundishmasse
WO2014056482A1 (en) 2012-10-12 2014-04-17 Voxeljet Ag 3d multi-stage method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951502A1 (en) 1978-12-20 1980-06-26 Kuraray Co METHOD FOR PRODUCING FOUNDRY SANDS
DE3806554A1 (en) 1988-03-01 1989-11-16 Didier Werke Ag FIREPROOF MASSES OR KITTS AND THEIR USE
DE69114412T2 (en) 1990-08-16 1997-02-27 Minerals Tech Inc Surface covering material for tundish and melting pan.
US20050003189A1 (en) 2003-05-21 2005-01-06 Bredt James F. Thermoplastic powder material system for appearance models from 3D prinitng systems
DE102007032892B4 (en) 2007-07-14 2009-12-24 Refractory Intellectual Property Gmbh & Co. Kg Tundish mass and a method for creating a humid Tundishmasse
WO2014056482A1 (en) 2012-10-12 2014-04-17 Voxeljet Ag 3d multi-stage method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIN, X., et al.: Three-dimensional printing of TiAl3/Al2O3 composites. Int. J. Mat. Res., 2006, Vol. 97, Nr. 5, S. 492 – 498. Degruyter.com (online). DOI: https://doi.org/10.3139/146.101263.

Similar Documents

Publication Publication Date Title
DE60101793T3 (en) HEAT-RESISTANT MATERIALS
EP1704128B1 (en) Production of environmentally friendly carbon-combined fireproof products according to a cold mixing method
EP0899251B1 (en) Method of making a body having a porous matrix of at least one recrystallized material
EP1852405A2 (en) Reactive liquid ceramics bonding agent
EP1741687B1 (en) Porous ß-SiC containing shaped ceramic body and method of making it.
DE112007000923B4 (en) Composite material of metal and ceramic, process for its production, its use and energy absorption component
HUE030193T2 (en) Method for making a dense sic based ceramic product
DE69729581T2 (en) BAG LINE CIRCUIT FOR NOZZLE WITH UNDEATED ADMISSION AND COMPOSITION THEREOF
EP2072482A1 (en) Mixture and fire-resistant moulds made from the mixture or masses with high hydration resistance
DE102016100083B4 (en) Refractory moldings and masses and binders and processes for their production
DE102012021906A1 (en) Ceramic composite material for metallurgy-material-affecting conservation, comprises composite obtained by mixing substance portions of silicon nitride and zirconium oxide, and surface layer obtained by heat-treating composite
WO2018087224A1 (en) Composite material made of metal and ceramic, and method for production thereof
DE102005036394B4 (en) Process for the production of a thermal shock and corrosion resistant ceramic material based on a zirconia-free refractory oxide
DE102016100810A1 (en) Refractory material and its use
AU717909B2 (en) Apparatus for discharging molten metal in a casting device and method of use
EP1300379A2 (en) Process of manufacturing fiber reinforced ceramic hollow bodies
DE10164231A1 (en) Process for the production of molded articles from fiber-reinforced ceramic materials
DE102011109682A1 (en) Preparation of carbonaceous and/or carbon-bonded ceramic filter used for filtration of metal melt, involves processing feedstock and molding ceramic slurry by adding phenol resin-free binding agent, carbon black and additive
EP0406549B1 (en) Process for producing carbon bonded refractory ceramic bodies
DE102021006060A1 (en) Process and binder system for the production of components based on ceramics, metals and metal-ceramic composites using the binder jetting 3D process
EP2308809A2 (en) Material, method for producing a material and use thereof
EP2730552A1 (en) Ceramic composite material, component formed from this and process for the production of the composite material
DE202012010696U1 (en) Ceramic composite material and formed by this component
WO2013135585A1 (en) Flame-resistant material for high-temperature applications, method for the production thereof, and the use thereof
DE102006011224B4 (en) Slip and ceramic composite produced therewith

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final