DE102021005398A1 - Combination of storage tubes with photovoltaic systems - Google Patents

Combination of storage tubes with photovoltaic systems Download PDF

Info

Publication number
DE102021005398A1
DE102021005398A1 DE102021005398.2A DE102021005398A DE102021005398A1 DE 102021005398 A1 DE102021005398 A1 DE 102021005398A1 DE 102021005398 A DE102021005398 A DE 102021005398A DE 102021005398 A1 DE102021005398 A1 DE 102021005398A1
Authority
DE
Germany
Prior art keywords
combination
modules
pipe sections
ground
rows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102021005398.2A
Other languages
German (de)
Inventor
gleich Anmelder Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102021005398.2A priority Critical patent/DE102021005398A1/en
Publication of DE102021005398A1 publication Critical patent/DE102021005398A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/007Underground or underwater storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die zweckmäßige Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage umfasst eine Anordnung der Modulreihen (2) oberhalb der Rohrstrecken (4) durch Auswahl geeigneter relationaler Auslegungsparameter in Abhängigkeit vom Breitengrad des Standorts unter Ausnutzung derselben Bodenfläche.The expedient combination of an underground storage tube with an open-space photovoltaic system includes an arrangement of the module rows (2) above the pipe sections (4) by selecting suitable relational design parameters depending on the latitude of the site using the same floor space.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung, welche die Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage umfasst.The present invention relates to a device which comprises the combination of an underground storage tube with an open-space photovoltaic system.

Röhrenspeicher - mitunter auch als Optimierungsleitungen bezeichnet - werden eingesetzt, um flüssige oder gasförmige Medien (6) zu speichern. Insbesondere Energieträger wie beispielsweise Erdgas oder Wasserstoff gehören zu den Medien, die in Röhrenspeichern gespeichert werden. Die Einzelrohre (3) eines Röhrenspeichers sind oftmals unterirdisch in einer Tiefe von ungefähr 1m bis 5m angeordnet. Dabei sind üblicherweise mehrere Einzelrohre (3) zu geradlinigen Rohrstrecken (4) zusammengefügt. Eine Vielzahl dieser geradlinigen Rohrstrecken (4) ist typischerweise in der Horizontalen parallel zueinander angeordnet. Die einzelnen Rohrstrecken (4) sind gewöhnlich über Verbindungsrohre (9) miteinander verbunden und bilden einen zusammenhängenden Röhrenspeicher.Tube storage - sometimes also referred to as optimization lines - are used to store liquid or gaseous media (6). In particular, energy carriers such as natural gas or hydrogen are among the media that are stored in tubular storage systems. The individual pipes (3) of a storage pipe are often arranged underground at a depth of about 1m to 5m. In this case, several individual pipes (3) are usually joined together to form straight pipe sections (4). A large number of these straight pipe sections (4) are typically arranged horizontally parallel to one another. The individual pipe sections (4) are usually connected to one another via connecting pipes (9) and form a coherent pipe store.

Photovoltaikanlagen werden zur regenerativen Stromerzeugung eingesetzt, indem die Energie der Sonnenstrahlung direkt in elektrische Energie umgewandelt wird. Photovoltaikanlagen bestehen oftmals aus einzelnen Modulen (1), die eine definierte Neigung in der Vertikalen und Ausrichtung in der Horizontalen aufweisen. Freiflächen-Photovoltaikanlagen befinden sich auf unbebauten Flächen und sind daher von anderweitigen Photovoltaikanlagen zu unterscheiden, die zum Beispiel auf Dächern installiert oder in Gebäudefassaden integriert sind. Die Neigung und Ausrichtung der Module (1) kann bei Freiflächen-Photovoltaikanlagen unveränderlich oder per Nachführung variabel ausgestaltet sein. Unveränderliche Neigungswinkel der Module (1) zwischen 20° und 40° bei südlicher Ausrichtung sind in Mitteleuropa verbreitet. Vereinzelt werden Neigungswinkel von bis zu 90° bei Ausrichtung der Module (1) nach Osten bzw. Westen realisiert. Die Module (1) einer Freiflächen-Photovoltaikanlage sind gewöhnlich in einer Höhe von ungefähr 0,5m bis 3m über dem Erdboden (5) angeordnet. Diese Höhe kann unter anderem bestimmt sein durch Anforderungen an die Unterkonstruktion der Module (1) oder die Vegetation unterhalb der Module (1). Die einzelnen Module (1) einer Freiflächen-Photovoltaikanlage werden üblicherweise geradlinig aneinandergereiht. Eine Vielzahl dieser geradlinigen Modulreihen (2) ist typischerweise in der Horizontalen parallel zueinander angeordnet. Die einzelnen Modulreihen (2) verfügen oftmals über eine elektrische Verbindung (7) untereinander und bilden eine zusammenhängende Photovoltaikanlage.Photovoltaic systems are used for regenerative power generation by directly converting the energy of solar radiation into electrical energy. Photovoltaic systems often consist of individual modules (1) that have a defined inclination in the vertical and alignment in the horizontal. Ground-mounted photovoltaic systems are located on undeveloped areas and are therefore to be distinguished from other photovoltaic systems that are installed, for example, on roofs or integrated into building facades. The inclination and alignment of the modules (1) can be designed to be fixed in open-space photovoltaic systems or variable by tracking. Fixed inclination angles of the modules (1) between 20° and 40° with a southern orientation are common in Central Europe. Occasionally, inclination angles of up to 90° are realized when aligning the modules (1) to the east or west. The modules (1) of an open-space photovoltaic system are usually arranged at a height of approximately 0.5 m to 3 m above the ground (5). This height can be determined, among other things, by requirements for the substructure of the modules (1) or the vegetation below the modules (1). The individual modules (1) of an open-space photovoltaic system are usually lined up in a straight line. A large number of these rectilinear rows of modules (2) are typically arranged horizontally parallel to one another. The individual rows of modules (2) often have an electrical connection (7) to one another and form a coherent photovoltaic system.

Mit der vorliegenden Erfindung soll die zweckmäßige Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage bereitgestellt werden.The purpose of the present invention is to provide the appropriate combination of an underground storage tube with an open-space photovoltaic system.

Die vorliegende Erfindung umfasst eine Freiflächen-Photovoltaikanlage, deren Modulreihen (2) in geeigneter Weise oberhalb eines unterirdischen Röhrenspeichers angeordnet sind. Dabei wird dieselbe Bodenfläche für zwei komplementäre Zwecke genutzt. Die Orientierung der Rohrstrecken (4) zu den Modulreihen (2), der horizontale Versatz der Modulreihen (2) zu den Rohrstrecken (4), das Verhältnis der Breite der Module (1) zum Rohrdurchmesser, das Verhältnis der Länge der Modulreihen (2) zur Länge der Rohrstrecken (4) und das Verhältnis der Anzahl der Modulreihen (2) zur Anzahl der Rohrstrecken (4) werden in Abhängigkeit vom Breitengrad des Standorts derart gewählt, dass eine Abschattung des Röhrenspeichers durch die Freiflächen-Photovoltaikanlage vor der Sonneneinstrahlung erzielt wird. Durch die Abschattung wird die Temperatur des Erdbodens (5) im Vergleich zum Fall einer direkten Sonneneinstrahlung reduziert. Folglich wird die Temperatur der Einzelrohre (3) verringert. Ebenso wird die Temperatur des gespeicherten Mediums (6) gesenkt. Die geringere Temperatur führt zu einem verkleinerten spezifischen Volumen des gespeicherten Mediums (6), so dass bei gleichbleibendem Druck eine größere Menge des Mediums (6) im vorhandenen Volumen des Röhrenspeichers gespeichert werden kann. Bei gleichbleibendem Volumen kann das Medium (6) aufgrund der verminderten Temperatur bei geringerem Druck gespeichert werden. Die Abschattung bewirkt zudem, dass die maximale Temperatur, derer das Medium (6) ausgesetzt ist, gesenkt wird und dementsprechend die Temperaturschwankungen im Tages- und Jahresverlauf reduziert werden. Dadurch schwankt auch die speicherbare Menge des Mediums (6) bei gleichbleibendem Druck oder der Druck des Mediums (6) bei gleichbleibendem Volumen in geringerem Maße. Dieser Umstand erlaubt eine Verlegung der Rohrstrecken (4) in geringerer Tiefe bei gleichbleibender Schwankungsbreite der Temperatur des Mediums (6), weil die Temperaturdämpfung, welche mit zunehmender Tiefe im Erdboden (5) steigt, zu einem gewissen Teil durch die Abschattung vor der Sonneneinstrahlung erreicht wird.The present invention comprises an open-space photovoltaic system whose rows of modules (2) are arranged in a suitable manner above an underground storage tube. The same floor space is used for two complementary purposes. The orientation of the pipe sections (4) to the rows of modules (2), the horizontal offset of the rows of modules (2) to the pipe sections (4), the ratio of the width of the modules (1) to the pipe diameter, the ratio of the length of the rows of modules (2) to the length of the pipe sections (4) and the ratio of the number of module rows (2) to the number of pipe sections (4) are selected depending on the latitude of the location in such a way that the tubular storage tank is shaded by the open-space photovoltaic system from the sun's rays. The shading reduces the temperature of the ground (5) compared to the case of direct solar radiation. Consequently, the temperature of the individual tubes (3) is reduced. Likewise, the temperature of the stored medium (6) is lowered. The lower temperature leads to a reduced specific volume of the stored medium (6), so that a larger quantity of the medium (6) can be stored in the existing volume of the tubular storage tank while the pressure remains the same. With the same volume, the medium (6) can be stored at lower pressure due to the reduced temperature. The shading also has the effect that the maximum temperature to which the medium (6) is exposed is reduced and accordingly the temperature fluctuations over the course of the day and year are reduced. As a result, the amount of medium (6) that can be stored also fluctuates to a lesser extent with the pressure remaining the same, or the pressure of the medium (6) with the volume remaining the same. This circumstance allows the pipe sections (4) to be laid at a shallower depth with the same range of fluctuation in the temperature of the medium (6), because the temperature damping, which increases with increasing depth in the ground (5), is achieved to a certain extent by the shading from solar radiation becomes.

Freiflächen-Photovoltaikanlagen werden üblicherweise gegen den Zutritt unbefugter Personen geschützt. Der Schutz vor Vandalismus, Sabotage, Diebstahl, usw. wird durch Einfriedung/Einzäunung, Videoüberwachung, Bewegungsmelder und ähnliche Einrichtungen gewährleistet. Solche Schutzeinrichtungen können bei der Kombination einer Freiflächen-Photovoltaikanlage mit einem unterirdischen Röhrenspeicher gemeinsam genutzt werden.Ground-mounted photovoltaic systems are usually protected against access by unauthorized persons. Protection against vandalism, sabotage, theft, etc. is ensured by fencing, video surveillance, motion detectors and similar devices. Such protective devices can be used together when combining an open-space photovoltaic system with an underground tube storage system.

Eine weitere Komplementarität von Photovoltaikanlagen zu unterirdischen Röhrenspeichern besteht im Hinblick auf den Korrosionsschutz. Ein effektiver Korrosionsschutz für die Einzelrohre (3) des Röhrenspeichers ist unabdingbar, weil die Einzelrohre (3) in einer Tiefe im Erdboden (5) eingebettet sind, wo in den gemäßigten Klimazonen nahezu ganzjährig Niederschlagswasser eingelagert ist. Der von der Photovoltaikanlage erzeugte Gleichstrom kann genutzt werden, um einen wirksamen kathodischen Korrosionsschutz mittels Fremdstrom zu gewährleisten. Vorzugsweise wird eine Batterie oder ein anderweitiger Speicher elektrischer Energie eingesetzt, um einen kontinuierlichen Schutzstrom zuverlässig sicherzustellen.Another complementarity of photovoltaic systems to underground storage tubes is with regard to corrosion protection. Effective corrosion protection for the individual pipes (3) of the tubular storage tank is essential because the individual pipes (3) are embedded in the ground (5) at a depth where precipitation water is stored almost all year round in the temperate climate zones. The direct current generated by the photovoltaic system can be used to ensure effective cathodic corrosion protection using external current. A battery or some other form of electrical energy storage is preferably used in order to reliably ensure a continuous protective current.

In einer alternativen Ausführungsvariante wird eine solarthermische Anlage anstatt einer Photovoltaikanlage verwendet, um eine Abschattung des unterirdischen Röhrenspeichers zu bewirken. Anstelle von Modulreihen (2) kommt eine Aneinanderreihung von Spiegeln zum Einsatz, welche die Sonnenstrahlung gebündelt reflektieren und somit den Erdboden (5) vor der solaren Wärmestrahlung abschirmen.In an alternative embodiment variant, a solar thermal system is used instead of a photovoltaic system in order to shade the underground storage tube. Instead of rows of modules (2), a series of mirrors are used, which reflect the sun's rays in a concentrated manner and thus shield the ground (5) from solar thermal radiation.

Vorzugsweise wird die Kühlung des Erdbodens (5) durch geeignete Vegetation zusätzlich begünstigt. Die Bepflanzung mit Gewächsen, deren Eigenschaft darin besteht, den Erdboden (5) durch Transpiration, Interzeption und Abschattung zu kühlen ohne jedoch die Zugänglichkeit der Modulreihen (2) einzuschränken, bietet sich an.The cooling of the ground (5) is preferably additionally promoted by suitable vegetation. Planting with plants whose property is to cool the ground (5) through transpiration, interception and shading without restricting the accessibility of the rows of modules (2) is an option.

Die Vorteile der vorliegenden Erfindung sind aus der detaillierten Beschreibung und den Zeichnungen ersichtlich.The advantages of the present invention are apparent from the detailed description and drawings.

Figurenlistecharacter list

  • 1 ist eine schematische Draufsicht auf die Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage in der nördlichen Hemisphäre gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung 1 Fig. 12 is a schematic plan view of the combination of an underground storage tube and a ground-mounted photovoltaic system in the northern hemisphere in accordance with a preferred embodiment of the present invention
  • 2 ist eine schematische Draufsicht auf die Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage in der nördlichen Hemisphäre gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung 2 Fig. 12 is a schematic plan view of the combination of an underground storage tube and a ground-mounted photovoltaic system in the northern hemisphere in accordance with a preferred embodiment of the present invention
  • 3 ist eine schematische Draufsicht auf die Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage in der nördlichen Hemisphäre gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung 3 Fig. 12 is a schematic plan view of the combination of an underground storage tube and a ground-mounted photovoltaic system in the northern hemisphere in accordance with a preferred embodiment of the present invention
  • 4 ist ein schematischer Querschnitt der Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage unter Vernachlässigung der Unterkonstruktion gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung 4 Fig. 12 is a schematic cross-section of the combination of an underground storage tube and a ground-mounted photovoltaic system, neglecting the substructure, according to a preferred embodiment of the present invention

Im Folgenden wird auf die Zeichnungen 1, 2, 3 und 4 Bezug genommen. Die Orientierung der Rohrstrecken (4) zu den Modulreihen (2) wird bevorzugt so gewählt, dass die Abschattung des Erdbodens (5) oberhalb der Rohrstrecken (4) begünstigt wird. Eine parallele Ausrichtung der Rohrstrecken (4) zu den Modulreihen (2) ist besonders vorteilhaft. In einer bevorzugten Ausführungsform wird der horizontale Versatz der Modulreihen (2) zu den Rohrstrecken (4) derart gewählt, dass sich der Schattenwurf (8) in Abhängigkeit vom Breitengrad des Standorts über möglichst lange Zeitabschnitte im Tages- und Jahresverlauf über jenen Teil des Erdbodens (5) erstreckt, der oberhalb der Rohrstrecken (4) liegt, während die Sonneneinstrahlung intensiv ist. Die Wahl des horizontalen Versatzes der Modulreihen (2) zu den Rohrstrecken (4) ist auch abhängig von der Höhe, in welcher die Module (1) über dem Erdboden (5) angeordnet sind. Vorzugsweise wird das Verhältnis der Breite der Module (1) zum Durchmesser der Einzelrohre (3) derart gewählt, dass sich der Schattenwurf (8) über möglichst lange Zeitabschnitte im Tages- und Jahresverlauf über jenen Teil des Erdbodens (5) erstreckt, der oberhalb der Rohrstrecken (4) liegt, während die Sonneneinstrahlung intensiv ist. Maßgeblich ist die Breite des Schattens, der in Abhängigkeit vom Neigungswinkel der Module (1) auf den Erdboden (5) geworfen wird. Ein Verhältnis der Breite des von den Modulreihen (2) projizierten Schattens zum Durchmesser der Einzelrohre (3) größer als eins ist besonders vorteilhaft. Bevorzugt wird das Verhältnis der Länge der Modulreihen (2) zur Länge der Rohrstrecken (4) so gewählt, dass die Abschattung des Erdbodens (5) oberhalb der Rohrstrecken (4) begünstigt wird. Ein Verhältnis der Länge der Modulreihen (2) zur Länge der Rohrstrecken (4) größer als eins ist in besonderem Maße vorteilhaft. Eine günstige Ausführungsform ist dadurch gekennzeichnet, dass das Verhältnis der Anzahl der Modulreihen (2) zur Anzahl der Rohrstrecken (4) möglichst groß ist. Ein Zahlenverhältnis größer als eins ist besonders vorteilhaft.The following will refer to the drawings 1 , 2 , 3 and 4 referenced. The orientation of the pipe sections (4) to the rows of modules (2) is preferably chosen so that the shading of the ground (5) above the pipe sections (4) is promoted. A parallel alignment of the pipe sections (4) to the rows of modules (2) is particularly advantageous. In a preferred embodiment, the horizontal offset of the rows of modules (2) to the pipe sections (4) is selected in such a way that the shadow (8) cast over that part of the ground ( 5) which lies above the pipe sections (4) while the solar radiation is intense. The choice of the horizontal offset of the rows of modules (2) to the pipe sections (4) is also dependent on the height at which the modules (1) are arranged above the ground (5). The ratio of the width of the modules (1) to the diameter of the individual pipes (3) is preferably selected in such a way that the shadow (8) cast over the longest possible time periods over the course of the day and year extends over that part of the ground (5) that is above the Pipe sections (4) is located while the sun's rays are intense. The decisive factor is the width of the shadow that is cast on the ground (5) depending on the angle of inclination of the modules (1). A ratio of the width of the shadow projected by the rows of modules (2) to the diameter of the individual tubes (3) greater than one is particularly advantageous. The ratio of the length of the rows of modules (2) to the length of the pipe sections (4) is preferably selected in such a way that the shading of the ground (5) above the pipe sections (4) is promoted. A ratio of the length of the rows of modules (2) to the length of the pipe sections (4) greater than one is particularly advantageous. A favorable embodiment is characterized in that the ratio of the number of rows of modules (2) to the number of pipe sections (4) is as large as possible. A numerical ratio greater than one is particularly advantageous.

Verbindungsrohre (9) sind Einzelrohre (3), die sich durch ihre Funktion auszeichnen, zwei oder mehr Rohrstrecken (4) miteinander zu verbinden. Verbindungsrohre (9) sind Einzelrohre (3), in denen ein Medium (6) gespeichert werden kann. Die Aneinanderreihung von zwei oder mehr Verbindungsrohren (9) bildet eine Rohrstrecke (4), welche wiederum zwei oder mehr Rohrstrecken (4) miteinander verbindet.Connecting pipes (9) are individual pipes (3) which are distinguished by their function of connecting two or more pipe sections (4) to one another. Connecting tubes (9) are individual tubes (3) in which a medium (6) can be stored. The juxtaposition of two or more connecting pipes (9) forms a pipe section (4), which in turn connects two or more pipe sections (4) to one another.

Claims (8)

Kombination eines unterirdischen Röhrenspeichers mit einer Freiflächen-Photovoltaikanlage unter Ausnutzung derselben Bodenfläche, wobei die relationalen Auslegungsparameter der Modulreihen (2) und Rohrstrecken (4) zweckmäßig gewählt werden.Combination of an underground tubular storage system with an open-space photovoltaic system using the same floor space, with the relational design parameters of the module rows (2) and pipe sections (4) being appropriately selected. Kombination nach Anspruch 1, wobei die Orientierung der Rohrstrecken (4) zu den Modulreihen (2) derart gewählt wird, dass eine Temperaturminderung des gespeicherten Mediums (6) durch Abschattung des Erdbodens (5) vor der solaren Wärmestrahlung begünstigt wird.combination after claim 1 , wherein the orientation of the pipe sections (4) to the rows of modules (2) is selected such that a reduction in temperature of the stored medium (6) is promoted by shading the ground (5) from the solar thermal radiation. Kombination nach Anspruch 1, wobei der horizontale Versatz der Modulreihen (2) zu den Rohrstrecken (4) derart gewählt wird, dass eine Temperaturminderung des gespeicherten Mediums (6) durch Abschattung des Erdbodens (5) vor der solaren Wärmestrahlung begünstigt wird.combination after claim 1 , wherein the horizontal offset of the rows of modules (2) to the pipe sections (4) is selected such that a reduction in temperature of the stored medium (6) is favored by shading the ground (5) from the solar thermal radiation. Kombination nach Anspruch 1, wobei das Verhältnis der Breite der Module (1) zum Rohrdurchmesser derart gewählt wird, dass eine Temperaturminderung des gespeicherten Mediums (6) durch Abschattung des Erdbodens (5) vor der solaren Wärmestrahlung begünstigt wird.combination after claim 1 , wherein the ratio of the width of the modules (1) to the tube diameter is chosen such that a temperature reduction of the stored medium (6) is favored by shading the ground (5) from the solar thermal radiation. Kombination nach Anspruch 1, wobei das Verhältnis der Länge der Modulreihen (2) zur Länge der Rohrstrecken (4) derart gewählt wird, dass eine Temperaturminderung des gespeicherten Mediums (6) durch Abschattung des Erdbodens (5) vor der solaren Wärmestrahlung begünstigt wird.combination after claim 1 , wherein the ratio of the length of the module rows (2) to the length of the pipe sections (4) is chosen such that a temperature reduction of the stored medium (6) is promoted by shading the ground (5) from the solar thermal radiation. Kombination nach Anspruch 1, wobei das Verhältnis der Anzahl der Modulreihen (2) zur Anzahl der Rohrstrecken (4) derart gewählt wird, dass eine Temperaturminderung des gespeicherten Mediums (6) durch Abschattung des Erdbodens (5) vor der solaren Wärmestrahlung begünstigt wird.combination after claim 1 , wherein the ratio of the number of rows of modules (2) to the number of pipe sections (4) is chosen such that a reduction in temperature of the stored medium (6) is promoted by shading the ground (5) from the solar thermal radiation. Kombination nach Anspruch 1, wobei Einrichtungen für den Schutz des Röhrenspeichers und der Photovoltaikanlage gegen den Zutritt unbefugter Person gemeinsam genutzt werden.combination after claim 1 , where facilities for the protection of the tube storage and the photovoltaic system against access by unauthorized persons are shared. Kombination nach Anspruch 1, wobei der von der Photovoltaikanlage erzeugte Gleichstrom genutzt wird, um einen kathodischen Korrosionsschutz für den unterirdischen Röhrenspeicher mittels Fremdstrom bereitzustellen.combination after claim 1 , whereby the direct current generated by the photovoltaic system is used to provide cathodic corrosion protection for the underground storage tube by means of external current.
DE102021005398.2A 2021-10-29 2021-10-29 Combination of storage tubes with photovoltaic systems Ceased DE102021005398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102021005398.2A DE102021005398A1 (en) 2021-10-29 2021-10-29 Combination of storage tubes with photovoltaic systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021005398.2A DE102021005398A1 (en) 2021-10-29 2021-10-29 Combination of storage tubes with photovoltaic systems

Publications (1)

Publication Number Publication Date
DE102021005398A1 true DE102021005398A1 (en) 2023-05-04

Family

ID=85983639

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021005398.2A Ceased DE102021005398A1 (en) 2021-10-29 2021-10-29 Combination of storage tubes with photovoltaic systems

Country Status (1)

Country Link
DE (1) DE102021005398A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048035B4 (en) 2000-09-26 2006-03-30 Bipv Solarmodul Fabrik Berlin Gmbh Method and device for heating, hot water and electricity supply of buildings using solar energy
DE102007063450A1 (en) 2007-12-31 2009-07-02 Kircher, Jens, Dr. Sunlight converting device i.e. carport, for e.g. house, has attachment unit provided to attach solar collector approximately horizontal or lightly inclined to horizontal and with distance to property surface
DE102008014846A1 (en) 2008-03-18 2009-09-24 Matthias Herberich Photovoltaic system for producing electrical energy from incident sun light, has two-dimensional photovoltaic panel whose rear side is coolable by coolant, which is delivered into surrounding area, after contacting with rear side
WO2013027186A2 (en) 2011-08-25 2013-02-28 Kenneth Keung Yum Yu System of geothermal cooling for photovoltaic solar panels and application thereof
DE102012107348A1 (en) 2012-08-09 2014-02-13 Evonik Industries Ag Method for limiting the load of power transmission networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048035B4 (en) 2000-09-26 2006-03-30 Bipv Solarmodul Fabrik Berlin Gmbh Method and device for heating, hot water and electricity supply of buildings using solar energy
DE102007063450A1 (en) 2007-12-31 2009-07-02 Kircher, Jens, Dr. Sunlight converting device i.e. carport, for e.g. house, has attachment unit provided to attach solar collector approximately horizontal or lightly inclined to horizontal and with distance to property surface
DE102008014846A1 (en) 2008-03-18 2009-09-24 Matthias Herberich Photovoltaic system for producing electrical energy from incident sun light, has two-dimensional photovoltaic panel whose rear side is coolable by coolant, which is delivered into surrounding area, after contacting with rear side
WO2013027186A2 (en) 2011-08-25 2013-02-28 Kenneth Keung Yum Yu System of geothermal cooling for photovoltaic solar panels and application thereof
DE102012107348A1 (en) 2012-08-09 2014-02-13 Evonik Industries Ag Method for limiting the load of power transmission networks

Similar Documents

Publication Publication Date Title
EP2694885B1 (en) Device and method for converting solar radiation energy to electrical power and/or to heat
EP2606288B1 (en) Central receiver solar system comprising a heliostat field and process to install a field of heliostats of such a system
DE69432821T2 (en) SOLAR POWER PLANT FOR GENERATING ELECTRICITY AND / OR HYDROGEN
DE2439156A1 (en) ENERGY SAVING PROCESS USING A WATER-BASED FORMATION
DE112011101719T5 (en) Photovoltaic power generating device with a cylindrical light collecting device
DE69018644T2 (en) NUCLEAR POWER PLANT AND CONSTRUCTION METHOD THEREFOR.
DE102021005398A1 (en) Combination of storage tubes with photovoltaic systems
EP3657094B1 (en) Method for utilising near-surface geothermal heat for heating and / or cooling and / or warming hot drinking water from one or more buildings
DE102017001948A1 (en) Device for energy transformation
DE202019002523U1 (en) Mounting system for photovoltaic systems
DE2605953A1 (en) Thermal store for solar energy collector - has pipes embedded in earth surrounded by insulating slabs
DE202009007986U1 (en) Farm building with photovoltaic system
DE202008005197U1 (en) ground collector
DE202017102872U1 (en) Trellis fruit plant and heating arrangement for heating a planting system
DE102011121135A1 (en) Energy element i.e. roof module, for solar system in sealed roof area of building, has air duct thermally cooperated with photovoltaic cells and heat carrier spacer, and attached to exhaust air spacer
CH715338A2 (en) Geothermal energy absorber and method for producing the same.
DE60317410T2 (en) heat pump
DE3308301A1 (en) Energy-absorbing accumulator system
DE102020002070A1 (en) Device and method for the caloric detection of solar radiation energy
AT519809B1 (en) Photovoltaic facade with greenery behind it
DE102017110409B4 (en) Trellis fruit plant and heating arrangement for heating a planting system
DE2928761A1 (en) Heat exchanger for underground heat extraction - has liquid circulating coil buried at depth to use stored solar heat
DE102008057187A1 (en) Photovoltaic-piping system comprises solar cells that are centrically arranged in transparent pipes in lattice-like raster, where solar cells are centrically arranged on carrier with cross section of equilateral triangle
DE102020004952A1 (en) Device and method for caloric detection of solar radiation energy
DE102012104097A1 (en) Energy producing shelter, particularly carport for offering protection to vehicles against weather conditions, has roof surface and supporting frame supporting roof surface, where part of roof surface has solar module

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final