DE102021001783A1 - Electrolysis with combined superconducting techniques - Google Patents

Electrolysis with combined superconducting techniques Download PDF

Info

Publication number
DE102021001783A1
DE102021001783A1 DE102021001783.8A DE102021001783A DE102021001783A1 DE 102021001783 A1 DE102021001783 A1 DE 102021001783A1 DE 102021001783 A DE102021001783 A DE 102021001783A DE 102021001783 A1 DE102021001783 A1 DE 102021001783A1
Authority
DE
Germany
Prior art keywords
electrolysis
techniques
liquid
combined
combined superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102021001783.8A
Other languages
German (de)
Inventor
gleich Anmelder Erfinder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE102021001783.8A priority Critical patent/DE102021001783A1/en
Priority to PCT/DE2021/000195 priority patent/WO2022214117A1/en
Publication of DE102021001783A1 publication Critical patent/DE102021001783A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Die Elektrolyse ist gekennzeichnet durch folgende Merkmalea) Durch Druck auf die Flüssigkeit wird der Schmelzpunkt der Flüssigkeit soweit gesenkt, dass übliche Supraleitermaterialien zur Elektrolyse verwendet werden können, ohne zu vereisen.Electrolysis is characterized by the following features: a) Pressure on the liquid lowers the melting point of the liquid to such an extent that conventional superconductor materials can be used for electrolysis without icing up.

Description

Elektrolyse mit kombinierten Supraleitertechniken.Electrolysis with combined superconductor techniques.

Derzeit ist eine effiziente Energienutzung zur Elektrolyse nur mit Quanten-Supraleitern aus künstlichen mesonischen Atomen möglich, deren Sprungtemperatur zum Beispiel bei Wasser mindestens 274,15 Kelvin betragen sollte, da sich andernfalls Eis um den Supraleiter bildet, das einen enormen Isolator darstellt, weshalb so gut wie kein Strom mehr fließen kann.Efficient use of energy for electrolysis is currently only possible with quantum superconductors made of artificial mesonic atoms, whose transition temperature should be at least 274.15 Kelvin for water, for example, otherwise ice will form around the superconductor, which represents an enormous insulator, which is why it is so good like no more current can flow.

Bei Kombination der beiden bisherigen Supraleitertechniken aus üblichen supraleitenden Materialien und der Erzeugung von Druck, der die Temperatur des Schmelzpunktes der Flüssigkeit reduziert (dies wird als Aufschmelzung bezeichnet), kann eine Elektrolyse (insbesondere von Wasser zu Wasserstoff) in Verbindung mit der „Big Bang“ - Methode, bei der weniger Energie als Input zugeführt wird als man im Output erhält, so gut wie frei von Energiekosten erfolgen. Dabei muss die Sprungtemperatur von üblichen supraleitenden Materialien durch die Aufschmelzung unterschritten werden.Combining the two previous superconducting techniques of common superconducting materials and generating pressure that reduces the temperature of the liquid's melting point (this is called reflow), electrolysis (especially from water to hydrogen) can be combined with the "Big Bang" - A method in which less energy is supplied as input than is obtained as output can be carried out with virtually no energy costs. The melting point must be below the transition temperature of conventional superconducting materials.

Elektrolyse mit kombinierten Supraleitertechniken.Electrolysis with combined superconductor techniques.

Claims (1)

Die Elektrolyse ist gekennzeichnet durch folgende Merkmale a) Durch Druck auf die Flüssigkeit wird der Schmelzpunkt der Flüssigkeit soweit gesenkt, dass übliche Supraleitermaterialien zur Elektrolyse verwendet werden können, ohne zu vereisen.The electrolysis is characterized by the following features a) By applying pressure to the liquid, the melting point of the liquid is lowered to such an extent that conventional superconductor materials can be used for the electrolysis without icing up.
DE102021001783.8A 2021-04-07 2021-04-07 Electrolysis with combined superconducting techniques Pending DE102021001783A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102021001783.8A DE102021001783A1 (en) 2021-04-07 2021-04-07 Electrolysis with combined superconducting techniques
PCT/DE2021/000195 WO2022214117A1 (en) 2021-04-07 2021-12-08 Electrolysis with combined superconductor technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021001783.8A DE102021001783A1 (en) 2021-04-07 2021-04-07 Electrolysis with combined superconducting techniques

Publications (1)

Publication Number Publication Date
DE102021001783A1 true DE102021001783A1 (en) 2022-10-13

Family

ID=79730098

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102021001783.8A Pending DE102021001783A1 (en) 2021-04-07 2021-04-07 Electrolysis with combined superconducting techniques

Country Status (2)

Country Link
DE (1) DE102021001783A1 (en)
WO (1) WO2022214117A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217155A1 (en) * 2011-02-24 2012-08-30 Woodward Lloyd H Gas generating device
US9157159B2 (en) * 2013-11-17 2015-10-13 Don Lee Hansen System and method for generating hydrogen and oxygen gases
CN107287556B (en) * 2017-06-15 2018-11-23 常州翊迈新材料科技有限公司 Superconducting graphene coating material and preparation method thereof
CN109811357A (en) * 2019-01-09 2019-05-28 中山大学 The non-centrosymmetrical topology of one kind, superconductor are applied to evolving hydrogen reaction

Also Published As

Publication number Publication date
WO2022214117A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
EP3095759A1 (en) Low-temperature wind tunnel nitrogen recovery device, and recovery method
DE102021001783A1 (en) Electrolysis with combined superconducting techniques
DE2529862A1 (en) METHOD AND DEVICE FOR FILLING ELECTRIC CELLS
DE2730155B2 (en) Process for generating cold in the range of cryogenic temperatures
DE2633974A1 (en) METHOD AND DEVICE FOR THERMAL ENERGY STORAGE
WO2012119757A1 (en) Apparatus for storing hydrogen and magnetic energy and a method for the operation of said apparatus
DE10020832A1 (en) Process for generating energy from organic waste
DE2604304A1 (en) Energy recovery from liquefied gas expansion - by heat exchangers with recycled gas, expansion turbines and closed brine circuit
DE1433791A1 (en) Process for the production of highly wear-resistant and heat-resistant surfaces, e.g. of valve seats on valve cones of combustion engines
DE906955C (en) Process for the production of larger contiguous defect-conducting areas in the outer layers of excess-conducting germanium crystals
Kessler et al. Zur Deutung der Struktur der Bremsstrahl-Isochromate des Wolframs an der kurzwelligen Grenze
AT29753B (en) Device for the simultaneous production of pure cultures of yeast and lactic acid bacilli.
Gerdes et al. Thermodynamische untersuchung der systeme GaSb-InSb, AlSb-GaSb und AlSb-InSb
Vulpius Russia’s Empires
Alice “Family is Family, Love is Love”: Sexlessness and Extramarital Affairs in Japan Compared to German Speaking Countries (2010-2019)
Molan et al. A study of the enhancement of glycolysis in human saliva
Gruschko Übersetzung als mentale interpretationsaktivität in linguistik und literaturwissenschaft
durch Mundialisierung et al. UELI GYR
Jasinski et al. Die Wirkung von Knorpel-und Knochenmarkextrakt auf das durch Cortison gehemmte Granulationsgewebe nach subkutaner Fremdkörper-Implantation bei der Ratte
AT122649B (en) Process for accelerating the regasification of liquefied gases in pressure vessels.
Horn Wenn Grenzen verwischen.
Weisskopf et al. Co-fermentation installation E. Flachsman AG-optimisation; Co-Vergaerungsanlage E. Flachsmann AG. Betriebsoptimierung
Graf Energy Infrastructures in the Eastern Bloc. Poland and the Construction of Transnational Electricity, Oil, and Gas Systems
DE501064C (en) Process for the regasification of liquefied gases in pressure vessels with a thin-walled insert that absorbs the liquid
DE833992C (en) Procedure for protecting compressed air lines from premature destruction

Legal Events

Date Code Title Description
R086 Non-binding declaration of licensing interest
R012 Request for examination validly filed
R082 Change of representative
R016 Response to examination communication