DE102019111075A1 - Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI - Google Patents

Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI Download PDF

Info

Publication number
DE102019111075A1
DE102019111075A1 DE102019111075.0A DE102019111075A DE102019111075A1 DE 102019111075 A1 DE102019111075 A1 DE 102019111075A1 DE 102019111075 A DE102019111075 A DE 102019111075A DE 102019111075 A1 DE102019111075 A1 DE 102019111075A1
Authority
DE
Germany
Prior art keywords
amino acid
protease
positions
acid substitution
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102019111075.0A
Other languages
English (en)
Inventor
Christian Degering
Susanne Wieland
Fabian Falkenberg
Nina Mußmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102019111075.0A priority Critical patent/DE102019111075A1/de
Priority to US17/607,037 priority patent/US20220064621A1/en
Priority to PCT/EP2020/060375 priority patent/WO2020221578A1/de
Priority to EP20719389.7A priority patent/EP3963064A1/de
Publication of DE102019111075A1 publication Critical patent/DE102019111075A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Detergent Compositions (AREA)

Abstract

Die Erfindung betrifft Proteasen umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1 (i) an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen aufweist, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie (ii) an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist; sowie deren Herstellung und Verwendung. Derartige Proteasen zeigen eine sehr gute Reinigungsleistung.

Description

  • Die Erfindung liegt auf dem Gebiet der Enzymtechnologie. Die Erfindung betrifft Proteasen aus Bacillus pumilus deren Aminosäuresequenz, insbesondere im Hinblick auf den Einsatz in Wasch- und Reinigungsmitteln verändert wurden, um ihnen eine bessere Reinigungsleistung zu verleihen, und die für sie codierende Nukleinsäuren sowie deren Herstellung. Die Erfindung betrifft ferner die Verwendungen dieser Proteasen und Verfahren, in denen sie eingesetzt werden sowie diese enthaltende Mittel, insbesondere Wasch- und Reinigungsmittel.
  • Proteasen gehören zu den technisch bedeutendsten Enzymen überhaupt. Für Wasch- und Reinigungsmittel sind sie die am längsten etablierten und in praktisch allen modernen, leistungsfähigen Wasch- und Reinigungsmitteln enthaltenen Enzyme. Sie bewirken den Abbau proteinhaltiger Anschmutzungen auf dem Reinigungsgut. Hierunter sind wiederum Proteasen vom Subtilisin-Typ (Subtilasen, Subtilopeptidasen, EC 3.4.21.62) besonders wichtig, welche aufgrund der katalytisch wirksamen Aminosäuren Serin-Proteasen sind. Sie wirken als unspezifische Endopeptidasen und hydrolysieren beliebige Säureamidbindungen, die im Inneren von Peptiden oder Proteinen liegen. Ihr pH-Optimum liegt meist im deutlich alkalischen Bereich. Einen Überblick über diese Familie bietet beispielsweise der Artikel „Subtilases: Subtilisin-like Proteases" von R. Siezen, Seite 75-95 in „Subtilisin enzymes", herausgegeben von R. Bott und C. Betzel, New York, 1996. Subtilasen werden natürlicherweise von Mikroorganismen gebildet. Hierunter sind insbesondere die von Bacillus-Spezies gebildeten und sezernierten Subtilisine als bedeutendste Gruppe innerhalb der Subtilasen zu erwähnen.
  • Beispiele für die in Wasch- und Reinigungsmitteln bevorzugt eingesetzten Proteasen vom Subtilisin-Typ sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Protease aus Bacillus lentus, insbesondere aus Bacillus lentus DSM 5483, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7, sowie Varianten der genannten Proteasen, die eine gegenüber der Ausgangsprotease veränderte Aminosäuresequenz aufweisen. Proteasen werden durch aus dem Stand der Technik bekannte Verfahren gezielt oder zufallsbasiert verändert und so beispielsweise für den Einsatz in Wasch- und Reinigungsmitteln optimiert. Dazu gehören Punktmutagenese, Deletions- oder Insertionsmutagenese oder Fusion mit anderen Proteinen oder Proteinteilen. So sind für die meisten aus dem Stand der Technik bekannten Proteasen entsprechend optimierte Varianten bekannt.
  • In der europäischen Patentanmeldung EP 2016175 A1 ist beispielsweise eine für Wasch- und Reinigungsmittel vorgesehene Protease aus Bacillus pumilus offenbart. Generell sind nur ausgewählte Proteasen für den Einsatz in flüssigen Tensid-haltigen Zubereitungen überhaupt geeignet. Viele Proteasen zeigen in derartigen Zubereitungen keine ausreichende katalytische Leistung. Für die Anwendung von Proteasen in Reinigungsmitteln ist daher eine hohe katalytische Aktivität unter Bedingungen wie sie sich während eines Waschgangs darstellen und eine hohe Lagerstabilität besonders wünschenswert.
  • Folglich haben Protease- und Tensid-haltige flüssige Formulierungen aus dem Stand der Technik den Nachteil, dass die enthaltenen Proteasen unter Standard-Waschbedingungen (z.B. in einem Temperaturbereich von 20°C bis 40°C) keine zufriedenstellende proteolytische Aktivität aufweisen oder nicht lagerstabil sind und die Formulierungen daher keine optimale Reinigungsleistung an Protease-sensitiven Anschmutzungen zeigen.
  • Überraschenderweise wurde jetzt festgestellt, dass eine Protease aus Bacillus pumilus oder eine hierzu hinreichend ähnliche Protease (bezogen auf die Sequenzidentität), die bezogen auf die Nummerierung gemäß SEQ ID NO:1 an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, die Aminosäuresubstitutionen ausgewählt aus 9T, 133A, 144K, 252T und 271E, sowie an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist, hinsichtlich der Reinigungsleistung an Protein-empfindlichen Anschmutzungen gegenüber der Wildtypform und/oder der Referenzmutante verbessert ist und daher besonders für den Einsatz in Wasch- oder Reinigungsmitteln geeignet ist.
  • Gegenstand der Erfindung ist daher in einem ersten Aspekt eine Protease umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1:
    1. (i) an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen aufweist, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie
    2. (ii) an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist.
  • In einem zweiten Aspekt betrifft die Erfindung auch eine Protease umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1
    1. (A) an mindestens einer der Positionen, die den Positionen 3, 4 und 218 entsprechen, mindestens eine Aminosäuresubstitution aufweist, vorzugsweise ausgewählt aus 3K, 3A, 3R, 3S, 4A, 41, 4T und 218S und/oder
    2. (B) an mindestens einer der Positionen, die den Positionen 156 und 162 entsprechen, mindestens eine Aminosäuresubstitution aufweist, ausgewählt aus 156D und 1621.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer wie oben definierten Protease umfassend das Substituieren von Aminosäuren in einer Ausgangsprotease, die mindestens 70 % Sequenzidentität zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist (i) an den Positionen, die den Positionen 9, 133, 144, 252 und 271 in SEQ ID NO:1 entsprechen, derart, dass die Protease an den Positionen Aminosäuresubstitutionen, insbesondere die Aminosäuresubstitutionen ausgewählt aus 9T, 133A, 144K, 252T und 271E umfasst; sowie (ii) an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist. Die mittels dieses Verfahrens erhältliche Protease weist mindestens 70% Sequenzidentität zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge auf.
  • Eine Protease im Sinne der vorliegenden Patentanmeldung umfasst daher sowohl die Protease als solche als auch eine mit einem erfindungsgemäßen Verfahren hergestellte Protease. Alle Ausführungen zur Protease beziehen sich daher sowohl auf die Protease als solche wie auch auf die mittels entsprechender Verfahren hergestellten Proteasen.
  • Weitere Aspekte der Erfindung betreffen die für diese Proteasen kodierenden Nukleinsäuren, erfindungsgemäße Proteasen oder Nukleinsäuren enthaltende nicht menschliche Wirtszellen sowie erfindungsgemäße Proteasen umfassende Mittel, insbesondere Wasch- und Reinigungsmittel, Wasch- und Reinigungsverfahren, und Verwendungen der erfindungsgemäßen Proteasen in Wasch- oder Reinigungsmitteln zur Entfernung von proteinhaltigen Anschmutzungen.
  • „Mindestens eine“, wie hierin verwendet, bedeutete eine oder mehrere, d.h. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 oder mehr.
  • Die vorliegende Erfindung basiert auf der überraschenden Erkenntnis der Erfinder, dass Aminosäuresubstitutionen an den hierin beschriebenen Positionen eine verbesserte Reinigungsleistung dieser veränderten Protease in Wasch- und Reinigungsmitteln bewirkt.
  • In verschiedenen Ausführungsformen ist eine erfindungsgemäß Protease dadurch gekennzeichnet, dass sie eine Aminosäuresequenz umfasst, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1 aufweist:
    1. (i) an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie
    2. (ii) an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution.
  • In verschiedenen weiteren Ausführungsformen weist eine wie hierin beschriebene Protease zusätzlich an der Position, die Position 130 entspricht, eine zusätzliche Aminosäuresubstitution auf. In verschiedenen Ausführungsformen ist diese zusätzliche Aminosäuresubstitution 130D.
  • In verschiedenen anderen Ausführungsformen zeichnet sich eine erfindungsgemäße Protease dadurch aus, dass sie eine Aminosäuresequenz umfasst, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1
    1. (A) an mindestens einer der Positionen, die den Positionen 3, 4 und 218 entsprechen, mindestens eine Aminosäuresubstitution aufweist, vorzugsweise ausgewählt aus 3K, 3A, 3R, 3S, 4A, 41, 4T und 218S und/oder
    2. (B) an mindestens einer der Positionen, die den Positionen 156 und 162 entsprechen, mindestens eine Aminosäuresubstitution aufweist, ausgewählt aus 156D und 1621.
  • In verschiedenen Ausführungsformen weist die Protease folglich an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen auf, vorzugsweise ausgewählt aus 9T, 133A, 144K, 252T und 271E, und zusätzlich an den Positionen, die den Positionen 3, 4, 9, 82, 156, 162 und 218 entsprechen, mindestens eine, d.h. beispielsweise 1, 2, 3, 4, 5 oder 6 Aminosäuresubstitution(en) auf, die ausgewählt sind aus: 3K, 3A, 3R, 3S, 4A, 41, 4T, 9T, 82F, 156D und 1621 und 218S.
  • In verschiedenen anderen Ausführungsformen zeichnet sich eine erfindungsgemäße Protease dadurch aus, dass
    1. a) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K, 3A, 3R und 3S; und/oder
    2. b) die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 4A, 4I und 4T; oder
    3. c) die Aminosäuresubstitution an der Position, die Position 82 entspricht, ausgewählt wird aus 82F; oder
    4. d) die Aminosäuresubstitution an der Position, die Position 156 entspricht, ausgewählt wird aus 156D; und/oder
    5. e) die Aminosäuresubstitution an der Position, die Position 162 entspricht, ausgewählt wird aus 1621; oder
    6. f) die Aminosäuresubstitution an der Position, die Position 218 entspricht, ausgewählt wird aus 218S.
  • In weiteren Ausführungsformen zeichnet sich eine erfindungsgemäße Protease dadurch aus, dass
    • a) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K, 3A und 3S; und/oder
    • b) die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 4A, 4I und 4T; oder
    • c) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3R.
  • In weiteren Ausführungsformen zeichnet sich eine erfindungsgemäße Protease dadurch aus, dass die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K und die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 41. In verschiedenen Ausführungsformen der Erfindung weist die erfindungsgemäße Protease an den Positionen 3 und 4 Substitutionen auf, wobei diese vorzugsweise aus den hierin genannten ausgewählt werden, vorzugsweise (i) 3K und 41, (ii) 3A und 4I oder (iii) 3A und 4A.
  • In verschiedenen Ausführungsformen weist die Protease an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen, insbesondere die Aminosäuresubstitutionen ausgewählt aus 9T, 133A, 144K, 252T und 271E; und an einer oder mehreren der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine, beispielsweise 1, 2, 3, 4, 5 oder 6, beispielsweise 1, 2 oder 3 weitere Aminosäuresubstitution(en) auf, wobei diese vorzugsweise ausgewählt sind aus: 3K, 3A, 3R, 3S, 4A, 41, 4T, 82F, 156D, 1621 und 218S. Darüber hinaus weist eine erfindungsgemäße Protease in verschiedenen weiteren Ausführungsformen zusätzlich an der Position, die Position 130 entspricht, eine zusätzliche Aminosäuresubstitution auf, wobei diese vorzugsweise 130D ist. Derartige Proteasen sind beispielsweise als Mutanten 2-10 in den Beispielen offenbart und damit Gegenstand der Erfindung.
  • Die erfindungsgemäßen Proteasen verfügen über eine verbesserte Reinigungsleistung. In vielfältigen Ausführungsformen können die erfindungsgemäßen Proteasen eine proteolytische Aktivität besitzen, die bezogen auf den Wildtyp (SEQ ID NO:1) mindestens 101%, vorzugsweise mindestens 102% oder mehr. Solche leistungsverbesserten Proteasen ermöglichen verbesserte Waschergebnisse an proteolytisch-sensitiven Anschmutzungen in verschiedenen Temperaturbereichen, insbesondere einem Temperaturbereich von 20°C bis 40°C.
  • Die erfindungsgemäßen Proteasen können unabhängig von oder zusätzlich zur erhöhten Reinigungsleistung über eine erhöhte Lagerstabilität in Wasch- oder Reinigungsmitteln verfügen. Dies bedeutet, dass sie im Vergleich zu dem Referenzenzym (gemäß SEQ ID NO:1) sowie insbesondere auch gegenüber der Ausgangsvariante der Protease (Mutante in Beispielen), insbesondere bei einer Lagerung von 3 oder mehr Tagen, 4 oder mehr Tagen, 7 oder mehr Tagen, 10 oder mehr Tagen, 12 oder mehr Tagen, 14 oder mehr Tagen, 21 oder mehr Tagen oder 28 oder mehr Tagen über eine erhöhte Stabilität in Wasch- oder Reinigungsmitteln verfügen können.
  • Die erfindungsgemäßen Proteasen weisen enzymatische Aktivität auf, das heißt, sie sind zur Hydrolyse von Peptiden und Proteinen befähigt, insbesondere in einem Wasch- oder Reinigungsmittel. Eine erfindungsgemäße Protease ist daher ein Enzym, welches die Hydrolyse von Amid/Peptidbindungen in Protein/Peptid-Substraten katalysiert und dadurch in der Lage ist, Proteine oder Peptide zu spalten. Ferner handelt es sich bei einer erfindungsgemäßen Protease vorzugsweise um eine reife (mature) Protease, d.h. um das katalytisch aktive Molekül ohne Signal- und/oder Propeptid(e). Soweit nicht anders angegeben beziehen sich auch die angegebenen Sequenzen auf jeweils reife (prozessierte) Enzyme.
  • In verschiedenen Ausführungsformen der Erfindung ist die Protease ein frei vorliegendes Enzym. Dies bedeutet, dass die Protease mit allen Komponenten eines Mittels direkt agieren kann und, falls es sich bei dem Mittel um ein Flüssigmittel handelt, dass die Protease direkt mit dem Lösungsmittel des Mittels (z.B. Wasser) in Kontakt steht. In anderen Ausführungsformen kann ein Mittel Proteasen enthalten, die einen Interaktionskomplex mit anderen Molekülen bilden oder die eine „Umhüllung“ enthalten. Hierbei kann ein einzelnes oder mehrere Protease Moleküle durch eine sie umgebende Struktur von den anderen Bestandteilen des Mittels getrennt sein. Eine solche trennende Struktur kann entstehen durch, ist allerdings nicht beschränkt auf, Vesikel, wie etwa eine Micelle oder ein Liposom. Die umgebende Struktur kann aber auch ein Viruspartikel, eine bakterielle Zelle oder eine eukaryotische Zelle sein. In verschiedenen Ausführungsformen kann ein Mittel Zellen von Bacillus pumilus oder Bacillus subtilus, die die erfindungsgemäßen Proteasen exprimieren, oder Zellkulturüberstände solcher Zellen enthalten.
  • In verschiedenen Ausführungsformen der Erfindung umfasst die Protease eine Aminosäuresequenz, die zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge zu mindestens 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91%, 91,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5% und 98,8% identisch ist, und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1 die oben angegebenen Aminosäuresubstitutionen aufweist. Im Zusammenhang mit der vorliegenden Erfindung bedeutet das Merkmal, dass eine Protease die angegebenen Substitutionen aufweist, dass sie an der jeweiligen Position eine (der angegebenen) Substitution(en) enthält, d.h. zumindest die angegebenen Positionen nicht anderweitig mutiert oder, beispielsweise durch Fragmentierung der Protease, deletiert sind.
  • Die Bestimmung der Identität von Nukleinsäure- oder Aminosäuresequenzen erfolgt durch einen Sequenzvergleich. Dieser Sequenzvergleich basiert auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. beispielsweise Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) „Basic local alignment search tool." J. Mol. Biol. 215:403-410, und Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): „Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S.3389-3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nukleotiden oder Aminosäuren in den Nukleinsäure- oder Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. beispielsweise Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497-3500), T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205-217) oder Programme, die auf diesen Programmen beziehungsweise Algorithmen basieren. Ferner möglich sind Sequenzvergleiche (Alignments) mit dem Computer-Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standardparametern, dessen AlignX-Modul für die Sequenzvergleiche auf ClustalW basiert. Soweit nicht anders angegeben, wird die hierin angegebene Sequenzidentität mit dem BLAST-Algorithmus bestimmt.
  • Solch ein Vergleich erlaubt auch eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird üblicherweise in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben oder in einem Alignment einander entsprechenden Positionen angegeben. Der weiter gefasste Begriff der Homologie bezieht bei Aminosäuresequenzen konservierte Aminosäure-Austausche in die Betrachtung mit ein, also Aminosäuren mit ähnlicher chemischer Aktivität, da diese innerhalb des Proteins meist ähnliche chemische Aktivitäten ausüben. Daher kann die Ähnlichkeit der verglichenen Sequenzen auch Prozent Homologie oder Prozent Ähnlichkeit angegeben sein. Identitäts- und/oder Homologieangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Homologe oder identische Bereiche von verschiedenen Nukleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Solche Bereiche weisen oftmals identische Funktionen auf. Sie können klein sein und nur wenige Nukleotide oder Aminosäuren umfassen. Oftmals üben solche kleinen Bereiche für die Gesamtaktivität des Proteins essentielle Funktionen aus. Es kann daher sinnvoll sein, Sequenzübereinstimmungen nur auf einzelne, gegebenenfalls kleine Bereiche zu beziehen. Soweit nicht anders angegeben beziehen sich Identitäts- oder Homologieangaben in der vorliegenden Anmeldung aber auf die Gesamtlänge der jeweils angegebenen Nukleinsäure- oder Aminosäuresäuresequenz.
  • Im Zusammenhang mit der vorliegenden Erfindung bedeutet die Angabe, dass eine Aminosäureposition einer numerisch bezeichneten Position in SEQ ID NO:1 entspricht daher, dass die entsprechende Position der numerisch bezeichneten Position in SEQ ID NO:1 in einem wie oben definierten Alignment zugeordnet ist.
  • In einer weiteren Ausführungsform der Erfindung ist die Protease dadurch gekennzeichnet, dass ihre Reinigungsleistung (nach Lagerung, z.B. über 4 Wochen) gegenüber derjenigen einer Protease, welche als Mutante 1 in den Beispielen der vorliegenden Erfindung gekennzeichnet ist und die entsprechend gekennzeichneten Aminosäuresubstitutionen aufweist, nicht signifikant verringert ist, d.h. mindestens 80 % der Referenzwaschleistung besitzt, vorzugsweise mindestens 100 %, noch bevorzugter mindestens 110 % oder mehr. Die Reinigungsleistung kann in einem Waschsystem bestimmt werden, das ein Waschmittel in einer Dosierung zwischen 4,5 und 7,0 Gramm pro Liter Waschflotte sowie die Protease enthält, wobei die zu vergleichenden Proteasen konzentrationsgleich (bezogen auf aktives Protein) eingesetzt sind und die Reinigungsleistung gegenüber einer Anschmutzung auf Baumwolle bestimmt wird durch Messung des Reinigungsgrades der gewaschenen Textilien. Beispielsweise kann der Waschvorgang für 60 Minuten bei einer Temperatur von 40°C erfolgen und das Wasser eine Wasserhärte zwischen 15,5 und 16,5° (deutsche Härte) aufweisen. Die Konzentration der Protease in dem für dieses Waschsystem bestimmten Waschmittel beträgt 0,001-0,1 Gew.-%, vorzugsweise 0,01 bis 0,06 Gew.-%, bezogen auf aktives, gereinigtes Protein.
  • Ein flüssiges Referenzwaschmittel für ein solches Waschsystem kann wie folgt zusammengesetzt sein (alle Angaben in Gewichts-Prozent): 4,4% Alkylbenzolsulfonsäure, 5,6% weitere anionische Tenside, 2,4% C12-C18 Na-Salze von Fettsäuren (Seifen), 4,4% nicht-ionische Tenside, 0,2% Phosphonate, 1,4% Zitronensäure, 0,95% NaOH, 0,01% Entschäumer, 2% Glycerin, 0,08% Konservierungsstoffe, 1% Ethanol, Rest demineralisiertes Wasser. Bevorzugt beträgt die Dosierung des flüssigen Waschmittels zwischen 4,5 und 6,0 Gramm pro Liter Waschflotte, beispielsweise 4,7, 4,9 oder 5,9 Gramm pro Liter Waschflotte. Bevorzugt wird gewaschen in einem pH-Wertebereich zwischen pH 7 und pH 10,5, bevorzugt zwischen pH 7,5 und pH 8,5.
  • Im Rahmen der Erfindung erfolgt die Bestimmung der Reinigungsleistung beispielsweise bei 20°C oder 40°C unter Verwendung eines flüssigen Waschmittels wie vorstehend angegeben, wobei der Waschvorgang vorzugsweise für 60 Minuten bei 600 rpm erfolgt.
  • Der Weißegrad, d.h. die Aufhellung der Anschmutzungen, als Maß für die Reinigungsleistung wird mit optischen Messverfahren bestimmt, bevorzugt photometrisch. Ein hierfür geeignetes Gerät ist beispielsweise das Spektrometer Minolta CM508d. Üblicherweise werden die für die Messung eingesetzten Geräte zuvor mit einem Weißstandard, bevorzugt einem mitgelieferten Weißstandard, kalibriert.
  • Durch den aktivitätsgleichen Einsatz der jeweiligen Protease wird sichergestellt, dass auch bei einem etwaigen Auseinanderklaffen des Verhältnisses von Aktivsubstanz zu Gesamtprotein (die Werte der spezifischen Aktivität) die jeweiligen enzymatischen Eigenschaften, also beispielsweise die Reinigungsleistung an bestimmten Anschmutzungen, verglichen werden. Generell gilt, dass eine niedrige spezifische Aktivität durch Zugabe einer größeren Proteinmenge ausgeglichen werden kann.
  • Ansonsten sind Verfahren zur Bestimmung der Proteaseaktivität dem Fachmann auf dem Gebiet der Enzymtechnologie geläufig und werden von ihm routinemäßig angewendet. Beispielsweise sind solche Verfahren offenbart in Tenside, Band 7 (1970), S. 125-132. Alternativ kann die Protease-Aktivität über die Freisetzung des Chromophors para-Nitroanilin (pNA) aus dem Substrat suc-L-Ala-L-Ala-L-Pro-L-Phe-p-Nitroanilid (AAPF) bestimmt werden. Die Protease spaltet das Substrat und setzt pNA frei. Die Freisetzung des pNA verursacht eine Zunahme der Extinktion bei 410 nm, deren zeitlicher Verlauf ein Maß für die enzymatische Aktivität ist (vgl. Del Mar et al., 1979). Die Messung erfolgt bei einer Temperatur von 25°C, bei pH 8,6, und einer Wellenlänge von 410 nm. Die Messzeit beträgt 5 min und das Messintervall 20s bis 60s. Die Proteaseaktivität wird üblicherweise in Protease-Einheiten (PE) angegeben. Geeignete Proteaseaktivitäten betragen beispielsweise 2,25, 5 oder 10 PE pro ml Waschflotte. Die Proteaseaktivität ist jedoch nicht gleich Null.
  • Ein alternativer Test zur Feststellung der proteolytischen Aktivität der erfindungsgemäßen Proteasen ist ein optisches Messverfahren, bevorzugt ein photometrisches Verfahren. Der hierfür geeignete Test umfasst die Protease-abhängige Spaltung des Substratproteins Casein. Dieses wird durch die Protease in eine Vielzahl kleinerer Teilprodukte gespalten. Die Gesamtheit dieser Teilprodukte weist eine erhöhte Absorption bei 290 nm gegenüber nicht gespaltenem Casein auf, wobei diese erhöhte Absorption unter Verwendung eines Photometers ermittelt werden und somit ein Rückschluss auf die enzymatische Aktivität der Protease gezogen werden kann.
  • Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2'-Bichinolyl-4,4'-dicarbonsäure) oder dem Biuret-Verfahren (A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751-766) bestimmt werden. Die Bestimmung der Aktivproteinkonzentration kann diesbezüglich über eine Titration der aktiven Zentren unter Verwendung eines geeigneten irreversiblen Inhibitors und Bestimmung der Restaktivität (vgl. M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890-5913) erfolgen.
  • Zusätzlich zu den vorstehend erläuterten Aminosäureveränderungen können erfindungsgemäße Proteasen weitere Aminosäureveränderungen, insbesondere Aminosäure-Substitutionen, -Insertionen oder -Deletionen, aufweisen. Solche Proteasen sind beispielsweise durch gezielte genetische Veränderung, d.h. durch Mutageneseverfahren, weiterentwickelt und für bestimmte Einsatzzwecke oder hinsichtlich spezieller Eigenschaften (beispielsweise hinsichtlich ihrer katalytischen Aktivität, Stabilität, usw.) optimiert. Ferner können erfindungsgemäße Nukleinsäuren in Rekombinationsansätze eingebracht und damit zur Erzeugung völlig neuartiger Proteasen oder anderer Polypeptide genutzt werden.
  • Das Ziel ist es, in die bekannten Moleküle gezielte Mutationen wie Substitutionen, Insertionen oder Deletionen einzuführen, um beispielsweise die Reinigungsleistung von erfindungsgemäßen Enzymen zu verbessern. Hierzu können insbesondere die Oberflächenladungen und/oder der isoelektrische Punkt der Moleküle und dadurch ihre Wechselwirkungen mit dem Substrat verändert werden. So kann beispielsweise die Nettoladung der Enzyme verändert werden, um darüber die Substratbindung insbesondere für den Einsatz in Wasch- und Reinigungsmitteln zu beeinflussen. Alternativ oder ergänzend kann durch eine oder mehrere entsprechende Mutationen die Stabilität oder katalytische Aktivität der Protease erhöht und dadurch ihre Reinigungsleistung verbessert werden. Vorteilhafte Eigenschaften einzelner Mutationen, z.B. einzelner Substitutionen, können sich ergänzen. Eine hinsichtlich bestimmter Eigenschaften bereits optimierter Proteasen, zum Beispiel hinsichtlich ihrer Stabilität bei Lagerung, kann daher im Rahmen der Erfindung zusätzlich weiterentwickelt sein.
  • Für die Beschreibung von Substitutionen, die genau eine Aminosäureposition betreffen (Aminosäureaustausche), wird hierin folgende Konvention angewendet: zunächst wird die natürlicherweise vorhandene Aminosäure in Form des international gebräuchlichen Einbuchstaben-Codes bezeichnet, dann folgt die zugehörige Sequenzposition und schließlich die eingefügte Aminosäure. Mehrere Austausche innerhalb derselben Polypeptidkette werden durch Schrägstriche voneinander getrennt. Bei Insertionen sind nach der Sequenzposition zusätzliche Aminosäuren benannt. Bei Deletionen ist die fehlende Aminosäure durch ein Symbol, beispielsweise einen Stern oder einen Strich, ersetzt oder vor der entsprechenden Position ein Δ angegeben. Beispielsweise beschreibt P9T die Substitution von Prolin an Position 9 durch Threonin, P9TH die Insertion von Histidin nach der Aminosäure Threonin an Position 9 und P9* oder ΔP9 die Deletion von Prolin an Position 9. Diese Nomenklatur ist dem Fachmann auf dem Gebiet der Enzymtechnologie bekannt.
  • Ein weiterer Gegenstand der Erfindung ist daher eine Protease, die dadurch gekennzeichnet ist, dass sie aus einer Protease wie vorstehend beschrieben als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution, wobei die Protease in der Zählung gemäß SEQ ID NO:1 die vorstehend beschriebenen Aminosäuresubstitutionen aufweist. Der Begriff „konservative Aminosäuresubstitution“ bedeutet den Austausch (Substitution) eines Aminosäurerestes gegen einen anderen Aminosäurerest, wobei dieser Austausch nicht zu einer Änderung der Polarität oder Ladung an der Position der ausgetauschten Aminosäure führt, z. B. der Austausch eines unpolaren Aminosäurerestes gegen einen anderen unpolaren Aminosäurerest. Konservative Aminosäuresubstitutionen im Rahmen der Erfindung umfassen beispielsweise: G=A=S, I=V=L=M, D=E, N=Q, K=R, Y=F, S=T, G=A=I=V=L=M=Y=F=W=P=S=T.
  • Alternativ oder ergänzend ist die Protease dadurch gekennzeichnet, dass sie aus einer erfindungsgemäßen Protease als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 200, 210, 220, 230, 240, 250, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273 oder 274 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt, wobei die oben beschriebenen Aminosäuresubstitutionen, d.h. die Substitutionen 9T, 133A, 144K, 252T und 271E bzw. die Substitutionen an den Positionen, die den Positionen 3, 4, 82, 156, 162 und/oder 218 sowie optional 130 entsprechen, noch vorhanden sind. D.h. wenn die hierin beschriebenen Proteasen modifiziert werden, erfolgt die Modifizierung derart, dass die erfindungsgemäßen Substitutionen erhalten bleiben.
  • So ist es beispielsweise möglich, an den Termini oder in den Loops des Enzyms einzelne Aminosäuren zu deletieren, ohne dass dadurch die proteolytische Aktivität verloren oder vermindert wird. Ferner kann durch derartige Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese beispielsweise auch die Allergenizität betreffender Enzyme gesenkt und somit insgesamt ihre Einsetzbarkeit verbessert werden. Vorteilhafterweise behalten die Enzyme auch nach der Mutagenese ihre proteolytische Aktivität, d.h. ihre proteolytische Aktivität entspricht mindestens derjenigen des Ausgangsenzyms, d.h. in einer bevorzugten Ausführungsform beträgt die proteolytische Aktivität mindestens 80, vorzugsweise mindestens 90 % der Aktivität des Ausgangsenzyms. Auch weitere Substitutionen können vorteilhafte Wirkungen zeigen. Sowohl einzelne wie auch mehrere zusammenhängende Aminosäuren können gegen andere Aminosäuren ausgetauscht werden.
  • Die weiteren Aminosäurepositionen werden hierbei durch ein Alignment der Aminosäuresequenz einer erfindungsgemäßen Protease mit der Aminosäuresequenz der Protease aus Bacillus pumilus, wie sie in SEQ ID NO:1 angegeben ist, definiert. Weiterhin richtet sich die Zuordnung der Positionen nach dem reifen (maturen) Protein. Diese Zuordnung ist insbesondere auch anzuwenden, wenn die Aminosäuresequenz einer erfindungsgemäßen Protease eine höhere Zahl von Aminosäurenresten umfasst als die Protease aus Bacillus pumilus gemäß SEQ ID NO:1. Ausgehend von den genannten Positionen in der Aminosäuresequenz der Protease aus Bacillus pumilus sind die Veränderungspositionen in einer erfindungsgemäßen Protease diejenigen, die eben diesen Positionen in einem Alignment zugeordnet sind.
  • Vorteilhafte Positionen für Sequenzveränderungen, insbesondere Substitutionen, der Protease aus Bacillus pumilus, die übertragen auf homologe Positionen der erfindungsgemäßen Proteasen bevorzugt von Bedeutung sind und der Protease vorteilhafte funktionelle Eigenschaften verleihen, sind demnach die Positionen, die in einem Alignment den hierin beschriebenen Positionen entsprechen, d.h. in der Zählung gemäß SEQ ID NO:1. An den genannten Positionen liegen in dem Wildtypmolekül der Protease aus Bacillus pumilus folgende Aminosäurereste: T3, V4, P9, L82, N130, T133, N144, S156, T162, T218, N252 und Q271.
  • Eine weitere Bestätigung der korrekten Zuordnung der zu verändernden Aminosäuren, d.h. insbesondere deren funktionelle Entsprechung, können Vergleichsversuche liefern, wonach die beiden auf der Basis eines Alignments einander zugeordneten Positionen in beiden miteinander verglichenen Proteasen auf die gleiche Weise verändert werden und beobachtet wird, ob bei beiden die enzymatische Aktivität auf gleiche Weise verändert wird. Geht beispielsweise ein Aminosäureaustausch in einer bestimmten Position der Protease aus Bacillus pumilus gemäß SEQ ID NO:1 mit einer Veränderung eines enzymatischen Parameters einher, beispielsweise mit der Erhöhung des KM-Wertes, und wird eine entsprechende Veränderung des enzymatischen Parameters, beispielsweise also ebenfalls eine Erhöhung des KM-Wertes, in einer erfindungsgemäßen Protease-Variante beobachtet, deren Aminosäureaustausch durch dieselbe eingeführte Aminosäure erreicht wurde, so ist hierin eine Bestätigung der korrekten Zuordnung zu sehen.
  • Alle genannten Sachverhalte sind auch auf die erfindungsgemäßen Verfahren zur Herstellung einer Protease anwendbar. Demnach umfasst ein erfindungsgemäßes Verfahren ferner einen oder mehrere der folgenden Verfahrensschritte:
    1. a) Einbringen einer ein- oder mehrfachen konservativen Aminosäuresubstitution in die Protease, wobei die Protease an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen, vorzugsweise die Aminosäuresubstitutionen ausgewählt aus 9T, 133A, 144K, 252T und 271E; sowie an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist, umfasst;
    2. b) Veränderung der Aminosäuresequenz durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese derart, dass die Protease eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 200, 210, 220, 230, 240, 250, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273 oder 274 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt, wobei die Protease die Substitutionen 9T, 133A, 144K, 252T und 271E an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen; sowie mindestens eine weitere Aminosäuresubstitution an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, umfasst.
  • Sämtliche Ausführungsformen gelten auch für die erfindungsgemäßen Verfahren.
  • In weiteren Ausgestaltungen der Erfindung ist die Protease beziehungsweise die mit einem erfindungsgemäßen Verfahren hergestellte Protease noch mindestens zu 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90,5%, 91%, 91,5%, 92%, 92,5%, 93%, 93,5%, 94%, 94,5%, 95%, 95,5%, 96%, 96,5%, 97%, 97,5%, 98%, 98,5%, oder 98,8% identisch zu der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge. Die Protease beziehungsweise die mit einem erfindungsgemäßen Verfahren hergestellte Protease weist die Aminosäuresubstitutionen ausgewählt aus 9T, 133A, 144K, 252T und 271E an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen; sowie mindestens eine Aminosäuresubstitution an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1, auf.
  • In verschiedenen Ausführungsformen betrifft die Erfindung Proteasen gemäß SEQ ID NO:1 mit den folgenden Aminosäuresubstitutionsvarianten:
    • P9T, T133A, N144K, N252T und Q271E kombiniert mit
      1. (i) N130D und T218S;
      2. (ii) N130D und L82F;
      3. (iii) N130D, S156D und T162I;
      4. (iv) N130D, T3K und V4I;
      5. (v) N130D, T3A und V4A;
      6. (vi) N130D, T3A und V4I;
      7. (vii) N130D und T3R;
      8. (viii) N130D und V4A;
      9. (ix) N130D, T3S und V4T,
      wobei die Nummerierung jeweils bezogen ist auf die Nummerierung gemäß SEQ ID NO:1. Weitere Beispiele sind die in den Beispielen beschriebenen Varianten.
  • Ein weiterer Gegenstand der Erfindung ist eine zuvor beschriebene Protease, die zusätzlich stabilisiert ist, insbesondere durch eine oder mehrere Mutationen, beispielsweise Substitutionen, oder durch Kopplung an ein Polymer. Eine Erhöhung der Stabilität bei der Lagerung und/oder während des Einsatzes, beispielsweise beim Waschprozess, führt dazu, dass die enzymatische Aktivität länger anhält und damit die Reinigungsleistung verbessert wird. Grundsätzlich kommen alle im Stand der Technik beschriebenen und/oder zweckmäßigen Stabilisierungsmöglichkeiten in Betracht. Bevorzugt sind solche Stabilisierungen, die über Mutationen des Enzyms selbst erreicht werden, da solche Stabilisierungen im Anschluss an die Gewinnung des Enzyms keine weiteren Arbeitsschritte erfordern. Beispiele für hierfür geeignete Sequenzveränderungen sind vorstehend genannt. Weitere geeignete Sequenzveränderungen sind aus dem Stand der Technik bekannt.
  • Weitere Möglichkeiten der Stabilisierung sind beispielsweise:
    • - Veränderung der Bindung von Metallionen, insbesondere der Calcium-Bindungsstellen, beispielsweise durch Austauschen von einer oder mehreren der an der Calcium-Bindung beteiligten Aminosäure(n) gegen eine oder mehrere negativ geladene Aminosäuren und/oder durch Einführen von Sequenzveränderungen in mindestens einer der Folgen der beiden Aminosäuren Arginin/Glycin;
    • - Schutz gegen den Einfluss von denaturierenden Agentien wie Tensiden durch Mutationen, die eine Veränderung der Aminosäuresequenz auf oder an der Oberfläche des Proteins bewirken;
    • - Austausch von Aminosäuren, die nahe dem N-Terminus liegen, gegen solche, die vermutlich über nicht-kovalente Wechselwirkungen mit dem Rest des Moleküls in Kontakt treten und somit einen Beitrag zur Aufrechterhaltung der globulären Struktur leisten.
  • Bevorzugte Ausführungsformen sind solche, bei denen das Enzym auf mehrere Arten stabilisiert wird, da mehrere stabilisierende Mutationen additiv oder synergistisch wirken.
  • Ein weiterer Gegenstand der Erfindung ist eine Protease wie vorstehend beschrieben, die dadurch gekennzeichnet ist, dass sie mindestens eine chemische Modifikation aufweist. Eine Protease mit einer solchen Veränderung wird als Derivat bezeichnet, d.h. die Protease ist derivatisiert.
  • Unter Derivaten werden im Sinne der vorliegenden Anmeldung demnach solche Proteine verstanden, deren reine Aminosäurekette chemisch modifiziert worden ist. Solche Derivatisierungen können beispielsweise in vivo durch die Wirtszelle erfolgen, die das Protein exprimiert. Diesbezüglich sind Kopplungen niedrigmolekularer Verbindungen wie von Lipiden oder Oligosacchariden besonders hervorzuheben. Derivatisierungen können aber auch in vitro durchgeführt werden, etwa durch die chemische Umwandlung einer Seitenkette einer Aminosäure oder durch kovalente Bindung einer anderen Verbindung an das Protein. Beispielsweise ist die Kopplung von Aminen an Carboxylgruppen eines Enzyms zur Veränderung des isoelektrischen Punkts möglich. Eine solche andere Verbindung kann auch ein weiteres Protein sein, das beispielsweise über bifunktionelle chemische Verbindungen an ein erfindungsgemäßes Protein gebunden wird. Ebenso ist unter Derivatisierung die kovalente Bindung an einen makromolekularen Träger zu verstehen, oder auch ein nichtkovalenter Einschluss in geeignete makromolekulare Käfigstrukturen. Derivatisierungen können beispielsweise die Substratspezifität oder die Bindungsstärke an das Substrat beeinflussen oder eine vorübergehende Blockierung der enzymatischen Aktivität herbeiführen, wenn es sich bei der angekoppelten Substanz um einen Inhibitor handelt. Dies kann beispielsweise für den Zeitraum der Lagerung sinnvoll sein. Derartige Modifikationen können ferner die Stabilität oder die enzymatische Aktivität beeinflussen. Sie können ferner auch dazu dienen, die Allergenizität und/oder Immunogenizität des Proteins herabzusetzen und damit beispielsweise dessen Hautverträglichkeit zu erhöhen. Beispielsweise können Kopplungen mit makromolekularen Verbindungen, beispielsweise Polyethylenglykol, das Protein hinsichtlich der Stabilität und/oder Hautverträglichkeit verbessern.
  • Unter Derivaten eines erfindungsgemäßen Proteins können im weitesten Sinne auch Präparationen dieser Proteine verstanden werden. Je nach Gewinnung, Aufarbeitung oder Präparation kann ein Protein mit diversen anderen Stoffen kombiniert sein, beispielsweise aus der Kultur der produzierenden Mikroorganismen. Ein Protein kann auch, beispielsweise zur Erhöhung seiner Lagerstabilität, mit anderen Stoffen gezielt versetzt worden sein. Erfindungsgemäß sind deshalb auch alle Präparationen eines erfindungsgemäßen Proteins. Das ist auch unabhängig davon, ob es in einer bestimmten Präparation tatsächlich diese enzymatische Aktivität entfaltet oder nicht. Denn es kann gewünscht sein, dass es bei der Lagerung keine oder nur geringe Aktivität besitzt, und erst zum Zeitpunkt der Verwendung seine enzymatische Funktion entfaltet. Dies kann beispielsweise über entsprechende Begleitstoffe gesteuert werden. Insbesondere die gemeinsame Präparation von Proteasen mit spezifischen Inhibitoren ist diesbezüglich möglich.
  • Ein weiterer Gegenstand der Erfindung ist eine Nukleinsäure, die für eine erfindungsgemäße Protease codiert, sowie ein Vektor enthaltend eine solche Nukleinsäure, insbesondere ein Klonierungsvektor oder ein Expressionsvektor.
  • Hierbei kann es sich um DNA- oder RNA-Moleküle handeln. Sie können als Einzelstrang, als ein zu diesem Einzelstrang komplementärer Einzelstrang oder als Doppelstrang vorliegen. Insbesondere bei DNA-Molekülen sind die Sequenzen beider komplementärer Stränge in jeweils allen drei möglichen Leserastern zu berücksichtigen. Ferner ist zu berücksichtigen, dass verschiedene Codons, also Basentriplets, für die gleichen Aminosäuren codieren können, so dass eine bestimmte Aminosäuresequenz von mehreren unterschiedlichen Nukleinsäuren codiert werden kann. Auf Grund dieser Degeneriertheit des genetischen Codes sind sämtliche Nukleinsäuresequenzen in diesem Erfindungsgegenstand eingeschlossen, die eine der vorstehend beschriebenen Proteasen codieren können. Der Fachmann ist in der Lage, diese Nukleinsäuresequenzen zweifelsfrei zu bestimmen, da trotz der Degeneriertheit des genetischen Codes einzelnen Codons definierte Aminosäuren zuzuordnen sind. Daher kann der Fachmann ausgehend von einer Aminosäuresequenz für diese Aminosäuresequenz codierende Nukleinsäuren problemlos ermitteln. Weiterhin können bei erfindungsgemäßen Nukleinsäuren ein oder mehrere Codons durch synonyme Codons ersetzt sein. Dieser Aspekt bezieht sich insbesondere auf die heterologe Expression der erfindungsgemäßen Enzyme. So besitzt jeder Organismus, beispielsweise eine Wirtszelle eines Produktionsstammes, eine bestimmte Codon-Verwendung. Unter Codon-Verwendung wird die Übersetzung des genetischen Codes in Aminosäuren durch den jeweiligen Organismus verstanden. Es kann zu Engpässen in der Proteinbiosynthese kommen, wenn die auf der Nukleinsäure liegenden Codons in dem Organismus einer vergleichsweise geringen Zahl von beladenen tRNA-Molekülen gegenüberstehen. Obwohl für die gleiche Aminosäure codierend führt das dazu, dass in dem Organismus ein Codon weniger effizient translatiert wird als ein synonymes Codon, das für dieselbe Aminosäure codiert. Auf Grund des Vorliegens einer höheren Anzahl von tRNA-Molekülen für das synonyme Codon kann dieses in dem Organismus effizienter translatiert werden.
  • Einem Fachmann ist es über heutzutage allgemein bekannte Methoden, wie beispielsweise die chemische Synthese oder die Polymerase-Kettenreaktion (PCR) in Verbindung mit molekularbiologischen und/oder proteinchemischen Standardmethoden möglich, anhand bekannter DNA- und/oder Aminosäuresequenzen die entsprechenden Nukleinsäuren bis hin zu vollständigen Genen herzustellen. Derartige Methoden sind beispielsweise aus Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press. bekannt.
  • Unter Vektoren werden im Sinne der vorliegenden Erfindung aus Nukleinsäuren bestehende Elemente verstanden, die als kennzeichnenden Nukleinsäurebereich eine erfindungsgemäße Nukleinsäure enthalten. Sie vermögen diese in einer Spezies oder einer Zellinie über mehrere Generationen oder Zellteilungen hinweg als stabiles genetisches Element zu etablieren. Vektoren sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkulare genetische Elemente. Im Rahmen der vorliegenden Erfindung wird eine erfindungsgemäße Nukleinsäure in einen Vektor kloniert. Zu den Vektoren zählen beispielsweise solche, deren Ursprung bakterielle Plasmide, Viren oder Bacteriophagen sind, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren sich in den betreffenden Wirtszellen über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Sie können extrachromosomal als eigene Einheiten vorliegen oder in ein Chromosom oder chromosomale DNA integrieren.
  • Expressionsvektoren umfassen Nukleinsäuresequenzen, die sie dazu befähigen, in den sie enthaltenden Wirtszellen, vorzugsweise Mikroorganismen, besonders bevorzugt Bakterien, zu replizieren und dort eine enthaltene Nukleinsäure zur Expression zu bringen. Die Expression wird insbesondere von dem oder den Promotoren beeinflusst, welche die Transkription regulieren. Prinzipiell kann die Expression durch den natürlichen, ursprünglich vor der zu exprimierenden Nukleinsäure lokalisierten Promotor erfolgen, aber auch durch einen auf dem Expressionsvektor bereitgestellten Promotor der Wirtszelle oder auch durch einen modifizierten oder einen völlig anderen Promotor eines anderen Organismus oder einer anderen Wirtszelle. Im vorliegenden Fall wird zumindest ein Promotor für die Expression einer erfindungsgemäßen Nukleinsäure zur Verfügung gestellt und für deren Expression genutzt. Expressionsvektoren können ferner regulierbar sein, beispielsweise durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte der sie enthaltenen Wirtszellen oder durch Zugabe von bestimmten Substanzen, insbesondere Aktivatoren der Genexpression. Ein Beispiel für eine solche Substanz ist das Galactose-Derivat Isopropyl-β-D-thiogalactopyranosid (IPTG), welches als Aktivator des bakteriellen Lactose-Operons (lac-Operons) verwendet wird. Im Gegensatz zu Expressionsvektoren wird die enthaltene Nukleinsäure in Klonierungsvektoren nicht exprimiert.
  • Ein weiterer Gegenstand der Erfindung ist eine nicht menschliche Wirtszelle, die eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor beinhaltet, oder die eine erfindungsgemäße Protease beinhaltet, insbesondere eine, die die Protease in das die Wirtszelle umgebende Medium sezerniert. Bevorzugt wird eine erfindungsgemäße Nukleinsäure oder ein erfindungsgemäßer Vektor in einen Mikroorganismus transformiert, der dann eine erfindungsgemäße Wirtszelle darstellt. Alternativ können auch einzelne Komponenten, d.h. Nukleinsäure-Teile oder -Fragmente einer erfindungsgemäßen Nukleinsäure derart in eine Wirtszelle eingebracht werden, dass die dann resultierende Wirtszelle eine erfindungsgemäße Nukleinsäure oder einen erfindungsgemäßen Vektor enthält. Dieses Vorgehen eignet sich besonders dann, wenn die Wirtszelle bereits einen oder mehrere Bestandteile einer erfindungsgemäßen Nukleinsäure oder eines erfindungsgemäßen Vektors enthält und die weiteren Bestandteile dann entsprechend ergänzt werden. Verfahren zur Transformation von Zellen sind im Stand der Technik etabliert und dem Fachmann hinlänglich bekannt. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische oder eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit der Nukleinsäure oder dem Vektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Ferner zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Bevorzugte erfindungsgemäße Wirtszellen sezernieren das (transgen) exprimierte Protein in das die Wirtszellen umgebende Medium. Ferner können die Proteasen von den sie produzierenden Zellen nach deren Herstellung modifiziert werden, beispielsweise durch Anknüpfung von Zuckermolekülen, Formylierungen, Aminierungen, usw. Solche posttranslationale Modifikationen können die Protease funktionell beeinflussen.
  • Weitere bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Vektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine wirtschaftliche Produktion der erfindungsgemäßen Proteine. Ein Beispiel für eine solche Verbindung ist IPTG wie vorstehend beschrieben.
  • Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich durch kurze Generationszeiten und geringe Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Kultivierungsverfahren oder Herstellungsverfahren etabliert werden. Zudem verfügt der Fachmann bei Bakterien in der Fermentationstechnik über einen reichhaltigen Erfahrungsschatz. Für eine spezielle Produktion können aus verschiedensten, im Einzelfall experimentell zu ermittelnden Gründen wie Nährstoffquellen, Produktbildungsrate, Zeitbedarf usw., gramnegative oder grampositive Bakterien geeignet sein.
  • Bei gramnegativen Bakterien wie beispielsweise Escherichia coli wird eine Vielzahl von Proteinen in den periplasmatischen Raum sezerniert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Ferner können auch gramnegative Bakterien so ausgestaltet werden, dass sie die exprimierten Proteine nicht nur in den periplasmatischen Raum, sondern in das das Bakterium umgebende Medium ausschleusen. Grampositive Bakterien wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales besitzen demgegenüber keine äußere Membran, so dass sezernierte Proteine sogleich in das die Bakterien umgebende Medium, in der Regel das Nährmedium, abgegeben werden, aus welchem sich die exprimierten Proteine aufreinigen lassen. Sie können aus dem Medium direkt isoliert oder weiter prozessiert werden. Zudem sind grampositive Bakterien mit den meisten Herkunftsorganismen für technisch wichtige Enzyme verwandt oder identisch und bilden meist selbst vergleichbare Enzyme, so dass sie über eine ähnliche Codon-Verwendung verfügen und ihr Protein-Syntheseapparat naturgemäß entsprechend ausgerichtet ist.
  • Erfindungsgemäße Wirtszellen können hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder noch andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere auch um solche Wirtszellen handeln, die mehrere Proteine oder Enzyme transgen exprimieren.
  • Die vorliegende Erfindung ist prinzipiell auf alle Mikroorganismen, insbesondere auf alle fermentierbaren Mikroorganismen, besonders bevorzugt auf solche der Gattung Bacillus, anwendbar und führt dazu, dass sich durch den Einsatz solcher Mikroorganismen erfindungsgemäße Proteine herstellen lassen. Solche Mikroorganismen stellen dann Wirtszellen im Sinne der Erfindung dar.
  • In einer weiteren Ausführungsform der Erfindung ist die Wirtszelle dadurch gekennzeichnet, dass sie ein Bakterium ist, bevorzugt eines, das ausgewählt ist aus der Gruppe der Gattungen von Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas, weiter bevorzugt eines, das ausgewählt ist aus der Gruppe von Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas maltophilia.
  • Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Einen weiteren Gegenstand der Erfindung stellt daher eine Wirtszelle dar, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Im Gegensatz zu prokaryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Zu den Modifikationen, die eukaryontische Systeme besonders im Zusammenhang mit der Proteinsynthese durchführen, gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccharide. Derartige Oligosaccharid-Modifikationen können beispielsweise zur Senkung der Allergenizität eines exprimierten Proteins wünschenswert sein. Auch eine Coexpression mit den natürlicherweise von derartigen Zellen gebildeten Enzymen, wie beispielsweise Cellulasen, kann vorteilhaft sein. Ferner können sich beispielsweise thermophile pilzliche Expressionssysteme besonders zur Expression temperaturbeständiger Proteine oder Varianten eignen.
  • Die erfindungsgemäßen Wirtszellen werden in üblicher Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig aus dem Medium das gebildete Protein entnommen werden kann.
  • Erfindungsgemäße Wirtszellen werden bevorzugt verwendet, um erfindungsgemäße Proteasen herzustellen. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung einer Protease umfassend
    1. a) Kultivieren einer erfindungsgemäßen Wirtszelle, und
    2. b) Isolieren der Protease aus dem Kulturmedium oder aus der Wirtszelle.
  • Dieser Erfindungsgegenstand umfasst bevorzugt Fermentationsverfahren. Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise der erfindungsgemäßen Proteasen. Alle Fermentationsverfahren, die auf einem entsprechenden Verfahren zur Herstellung einer erfindungsgemäßen Protease beruhen, stellen Ausführungsformen dieses Erfindungsgegenstandes dar.
  • Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen insbesondere in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte als auch in der Zellmasse beziehungsweise Trockenmasse und/oder insbesondere in der Aktivität der interessierenden Protease erreicht werden. Ferner kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
  • Die hergestellte Protease kann aus dem Fermentationsmedium geerntet werden. Ein solches Fermentationsverfahren ist gegenüber einer Isolation der Protease aus der Wirtszelle, d.h. einer Produktaufbereitung aus der Zellmasse (Trockenmasse) bevorzugt, erfordert jedoch die Zurverfügungstellung von geeigneten Wirtszellen oder von einem oder mehreren geeigneten Sekretionsmarkern oder -mechanismen und/oder Transportsystemen, damit die Wirtszellen die Protease in das Fermentationsmedium sezernieren. Ohne Sekretion kann alternativ die Isolation der Protease aus der Wirtszelle, d.h. eine Aufreinigung derselben aus der Zellmasse, erfolgen, beispielsweise durch Fällung mit Ammoniumsulfat oder Ethanol, oder durch chromatographische Reinigung.
  • Alle vorstehend ausgeführten Sachverhalte können zu Verfahren kombiniert werden, um erfindungsgemäße Protease herzustellen.
  • Ein weiterer Gegenstand der Erfindung ist ein Mittel, das dadurch gekennzeichnet ist, dass es eine erfindungsgemäße Protease wie vorstehend beschrieben enthält. Bevorzugt ist das Mittel als ein Wasch- oder Reinigungsmittel.
  • Zu diesem Erfindungsgegenstand zählen alle denkbaren Wasch- oder Reinigungsmittelarten, sowohl Konzentrate als auch unverdünnt anzuwendende Mittel, zum Einsatz im kommerziellen Maßstab, in der Waschmaschine oder bei der Handwäsche beziehungsweise -reinigung. Dazu gehören beispielsweise Waschmittel für Textilien, Teppiche, oder Naturfasern, für die die Bezeichnung Waschmittel verwendet wird. Dazu gehören beispielsweise auch Geschirrspülmittel für Geschirrspülmaschinen oder manuelle Geschirrspülmittel oder Reiniger für harte Oberflächen wie Metall, Glas, Porzellan, Keramik, Kacheln, Stein, lackierte Oberflächen, Kunststoffe, Holz oder Leder, für die die Bezeichnung Reinigungsmittel verwendet wird, also neben manuellen und maschinellen Geschirrspülmitteln beispielsweise auch Scheuermittel, Glasreiniger, WC-Duftspüler, usw. Zu den Wasch- und Reinigungsmitteln im Rahmen der Erfindung zählen ferner Waschhilfsmittel, die bei der manuellen oder maschinellen Textilwäsche zum eigentlichen Waschmittel hinzudosiert werden, um eine weitere Wirkung zu erzielen. Ferner zählen zu Wasch- und Reinigungsmittel im Rahmen der Erfindung auch Textilvor- und Nachbehandlungsmittel, also solche Mittel, mit denen das Wäschestück vor der eigentlichen Wäsche in Kontakt gebracht wird, beispielsweise zum Anlösen hartnäckiger Verschmutzungen, und auch solche Mittel, die in einem der eigentlichen Textilwäsche nachgeschalteten Schritt dem Waschgut weitere wünschenswerte Eigenschaften wie angenehmen Griff, Knitterfreiheit oder geringe statische Aufladung verleihen. Zu letztgenannten Mittel werden u.a. die Weichspüler gerechnet.
  • Die erfindungsgemäßen Wasch- oder Reinigungsmittel, die als pulverförmige Feststoffe, in nachverdichteter Teilchenform, als homogene Lösungen oder Suspensionen vorliegen können, können neben einer erfindungsgemäßen Protease alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten, wobei bevorzugt mindestens ein weiterer Inhaltsstoff in dem Mittel vorhanden ist. Die erfindungsgemäßen Mittel können insbesondere Tenside, Builder (Gerüststoffe), Persauerstoffverbindungen oder Bleichaktivatoren enthalten. Ferner können sie wassermischbare organische Lösungsmittel, weitere Enzyme, Sequestrierungsmittel, Elektrolyte, pH-Regulatoren und/oder weitere Hilfsstoffe wie optische Aufheller, Vergrauungsinhibitoren, Schaumregulatoren sowie Farb- und Duftstoffe sowie Kombinationen hiervon enthalten.
  • Insbesondere eine Kombination einer erfindungsgemäßen Protease mit einem oder mehreren weiteren Inhaltsstoff(en) des Mittels ist vorteilhaft, da ein solches Mittel in bevorzugten erfindungsgemäßen Ausgestaltungen eine verbesserte Reinigungsleistung durch sich ergebende Synergismen aufweist. Insbesondere durch die Kombination einer erfindungsgemäßen Protease mit einem Tensid und/oder einem Builder (Gerüststoff) und/oder einer Persauerstoffverbindung und/oder einem Bleichaktivator kann ein solcher Synergismus erreicht werden. Allerdings kann in bevorzugten Ausführungsformen das erfindungsgemäße Mittel keine Borsäure enthalten.
  • Vorteilhafte Inhaltsstoffe erfindungsgemäßer Mittel sind offenbart in der internationalen Patentanmeldung WO2009/121725 , dort beginnend auf Seite 5, vorletzter Absatz, und endend auf Seite 13 nach dem zweiten Absatz. Auf diese Offenbarung wird ausdrücklich Bezug genommen und der dortige Offenbarungsgehalt in die vorliegende Patentanmeldung einbezogen.
  • Ein erfindungsgemäßes Mittel enthält die Protease vorteilhafterweise in einer Menge von 2µg bis 20mg, vorzugsweise von 5µg bis 17,5mg, besonders bevorzugt von 20µg bis 15mg und ganz besonders bevorzugt von 50µg bis 10mg pro g des Mittels. In verschiedenen Ausführungsformen beträgt die Konzentration der hierin beschriebenen Protease (aktives Enzym) in dem Mittel >0 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,1 Gew.-% bezogen auf das Gesamtgewicht des Mittels oder der Zusammensetzung. Ferner kann die in dem Mittel enthaltene Protease, und/oder weitere Inhaltsstoffe des Mittels, mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für das Enzym undurchlässigen Substanz umhüllt sein, welche unter Anwendungsbedingungen des Mittels durchlässig für das Enzym wird. Eine solche Ausführungsform der Erfindung ist somit dadurch gekennzeichnet, dass die Protease mit einer bei Raumtemperatur oder bei Abwesenheit von Wasser für die Protease undurchlässigen Substanz umhüllt ist. Weiterhin kann auch das Wasch- oder Reinigungsmittel selbst in einem Behältnis, vorzugsweise einem luftdurchlässigen Behältnis, verpackt sein, aus dem es kurz vor Gebrauch oder während des Waschvorgangs freigesetzt wird.
  • In weiteren Ausführungsformen der Erfindung ist das Mittel dadurch gekennzeichnet, dass es
    • (a) in fester Form vorliegt, insbesondere als rieselfähiges Pulver mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l, oder
    • (b) in pastöser oder in flüssiger Form vorliegt, und/oder
    • (c) in gelförmiger oder dosierbeutelförmiger (Pouches) Form vorliegt, und/oder
    • (d) als Einkomponentensystem vorliegt, oder
    • (e) in mehrere Komponenten aufgeteilt ist.
  • Diese Ausführungsformen der vorliegenden Erfindung umfassen alle festen, pulverförmigen, flüssigen, gelförmigen oder pastösen Darreichungsformen erfindungsgemäßer Mittel, die gegebenenfalls auch aus mehreren Phasen bestehen können sowie in komprimierter oder nicht komprimierter Form vorliegen können. Das Mittel kann als rieselfähiges Pulver vorliegen, insbesondere mit einem Schüttgewicht von 300 g/l bis 1200 g/l, insbesondere 500 g/l bis 900 g/l oder 600 g/l bis 850 g/l. Zu den festen Darreichungsformen des Mittels zählen ferner Extrudate, Granulate, Tabletten oder Pouches. Alternativ kann das Mittel auch flüssig, gelförmig oder pastös sein, beispielsweise in Form eines nicht-wässrigen Flüssigwaschmittels oder einer nicht-wässrigen Paste oder in Form eines wässrigen Flüssigwaschmittels oder einer wasserhaltigen Paste. Flüssige Mittel sind generell bevorzugt. Weiterhin kann das Mittel als Einkomponentensystem vorliegen. Solche Mittel bestehen aus einer Phase. Alternativ kann ein Mittel auch aus mehreren Phasen bestehen. Ein solches Mittel ist demnach in mehrere Komponenten aufgeteilt.
  • Erfindungsgemäße Wasch- oder Reinigungsmittel können ausschließlich eine Protease enthalten. Alternativ können sie auch weitere hydrolytische Enzyme oder andere Enzyme in einer für die Wirksamkeit des Mittels zweckmäßigen Konzentration enthalten. Eine weitere Ausführungsform der Erfindung stellen somit Mittel dar, die ferner eines oder mehrere weitere Enzyme umfassen. Als weitere Enzyme bevorzugt einsetzbar sind alle Enzyme, die in dem erfindungsgemäßen Mittel eine katalytische Aktivität entfalten können, insbesondere eine Lipase, Amylase, Cellulase, Hemicellulase, Mannanase, Tannase, Xylanase, Xanthanase, Xyloglucanase, β-Glucosidase, Pektinase, Carrageenase, Perhydrolase, Oxidase, Oxidoreduktase oder andere - von den erfindungsgemäßen Proteasen unterscheidbare - Protease, sowie deren Gemische. Weitere Enzyme sind in dem Mittel vorteilhafterweise jeweils in einer Menge von 1 × 10-8 bis 5 Gewichts-Prozent bezogen auf aktives Protein enthalten. Zunehmend bevorzugt ist jedes weitere Enzym in einer Menge von 1 × 10-7-3 Gew.-%, von 0,00001-1 Gew.-%, von 0,00005-0,5 Gew.-%, von 0,0001 bis 0,1 Gew.-% und besonders bevorzugt von 0,0001 bis 0,05 Gew.-% in erfindungsgemäßen Mitteln enthalten, bezogen auf aktives Protein. Besonders bevorzugt zeigen die Enzyme synergistische Reinigungsleistungen gegenüber bestimmten Anschmutzungen oder Flecken, d.h. die in der Mittelzusammensetzung enthaltenen Enzyme unterstützen sich in ihrer Reinigungsleistung gegenseitig. Ganz besonders bevorzugt liegt ein solcher Synergismus vor zwischen der erfindungsgemäß enthaltenen Protease und einem weiteren Enzym eines erfindungsgemäßen Mittels, darunter insbesondere zwischen der genannten Protease und einer Amylase und/oder einer Lipase und/oder einer Mannanase und/oder einer Cellulase und/oder einer Pektinase. Synergistische Effekte können nicht nur zwischen verschiedenen Enzymen, sondern auch zwischen einem oder mehreren Enzymen und weiteren Inhaltsstoffen des erfindungsgemäßen Mittels auftreten.
  • In den hierin beschriebenen Reinigungsmitteln können die einzusetzenden Enzyme ferner zusammen mit Begleitstoffen, etwa aus der Fermentation, konfektioniert sein. In flüssigen Formulierungen werden die Enzyme bevorzugt als Enzymflüssigformulierung(en) eingesetzt.
  • Die Enzyme werden in der Regel nicht in Form des reinen Proteins, sondern vielmehr in Form stabilisierter, lager- und transportfähiger Zubereitungen bereitgestellt. Zu diesen vorkonfektionierten Zubereitungen zählen beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren oder weiteren Hilfsmitteln versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Die Enzyme können auch in wasserlösliche Filme, wie sie beispielsweise bei der Konfektionierung von Wasch- und Reinigungsmitteln in Einheitsdosisform verwendet werden, eingebracht werden. Ein derartiger Film ermöglicht die Freisetzung der Enzyme nach Kontakt mit Wasser. Wie hierin verwendet, bezieht sich „wasserlöslich“ auf eine Filmstruktur, die vorzugsweise vollständig wasserlöslich ist. Bevorzugt besteht ein solcher Film aus (vollständig oder teilweise hydrolysiertem) Polyvinylalkohol (PVA).
  • Ein weiterer Erfindungsgegenstand ist ein Verfahren zur Reinigung von Textilien oder harten Oberflächen, das dadurch gekennzeichnet ist, dass in mindestens einem Verfahrensschritt ein erfindungsgemäßes Mittel angewendet wird, oder dass in mindestens einem Verfahrensschritt eine erfindungsgemäße Protease katalytisch aktiv wird, insbesondere derart, dass die Protease in einer Menge von 40µg bis 4g, vorzugsweise von 50µg bis 3g, besonders bevorzugt von 100µg bis 2g und ganz besonders bevorzugt von 200µg bis 1g bzw. in den hierin beschriebenen Konzentrationen eingesetzt wird.
  • In verschieden Ausführungsformen zeichnet sich das oben beschriebene Verfahren dadurch aus, dass die Protease bei einer Temperatur von 0-100°C, bevorzugt 0-60°C, weiter bevorzugt 20-40°C und am meisten bevorzugt bei 25°C eingesetzt wird.
  • Hierunter fallen sowohl manuelle als auch maschinelle Verfahren, wobei maschinelle Verfahren bevorzugt sind. Verfahren zur Reinigung von Textilien zeichnen sich im Allgemeinen dadurch aus, dass in mehreren Verfahrensschritten verschiedene reinigungsaktive Substanzen auf das Reinigungsgut aufgebracht und nach der Einwirkzeit abgewaschen werden, oder dass das Reinigungsgut in sonstiger Weise mit einem Waschmittel oder einer Lösung oder Verdünnung dieses Mittels behandelt wird. Entsprechendes gilt für Verfahren zur Reinigung von allen anderen Materialien als Textilien, insbesondere von harten Oberflächen. Alle denkbaren Wasch- oder Reinigungsverfahren können in wenigstens einem der Verfahrensschritte um die Anwendung eines erfindungsgemäßen Wasch- oder Reinigungsmittels oder einer erfindungsgemäßen Protease bereichert werden und stellen dann Ausführungsformen der vorliegenden Erfindung dar. Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße Protease und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehenden erfindungsgemäßen Verfahren gilt.
  • Da erfindungsgemäße Proteasen natürlicherweise bereits eine hydrolytische Aktivität besitzen und diese auch in Medien entfalten, die sonst keine Reinigungskraft besitzen wie beispielsweise in bloßem Puffer, kann ein einzelner und/oder der einzige Schritt eines solchen Verfahrens darin bestehen, dass als einzige reinigungsaktive Komponente eine erfindungsgemäße Protease mit der Anschmutzung in Kontakt gebracht wird, bevorzugt in einer Pufferlösung oder in Wasser. Dies stellt eine weitere Ausführungsform dieses Erfindungsgegenstandes dar.
  • Alternative Ausführungsformen dieses Erfindungsgegenstandes stellen auch Verfahren zur Behandlung von Textilrohstoffen oder zur Textilpflege dar, bei denen in wenigstens einem Verfahrensschritt eine erfindungsgemäße Protease aktiv wird. Hierunter sind Verfahren für Textilrohstoffe, Fasern oder Textilien mit natürlichen Bestandteilen bevorzugt, und ganz besonders für solche mit Wolle oder Seide.
  • Schließlich erfasst die Erfindung auch die Verwendung der hierin beschriebenen Proteasen in Wasch- oder Reinigungsmitteln, beispielsweise wie oben beschrieben, zur (verbesserten) Entfernung von proteinhaltigen Anschmutzungen, beispielsweise von Textilien oder harten Oberflächen. In bevorzugten Ausführungsformen dieser Verwendung wird die Protease im Wasch- oder Reinigungsmittel vor einem Wasch- oder Reinigungsvorgang 3 oder mehr Tage, 4 oder mehr Tage, 7 oder mehr Tage, 10 oder mehr Tage, 12 oder mehr Tage, 14 oder mehr Tage, 21 oder mehr Tage oder 28 oder mehr Tage gelagert.
  • Alle Sachverhalte, Gegenstände und Ausführungsformen, die für erfindungsgemäße Proteasen und sie enthaltende Mittel beschrieben sind, sind auch auf diesen Erfindungsgegenstand anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die vorstehende erfindungsgemäße Verwendung gilt.
  • Beispiele
  • Übersicht über die Mutationen:
  • Diese Erfindung betrifft eine alkalische Protease vom Subtilisin Typ aus Bacillus pumilus. Von dieser Protease (Wildtyp Bacillus pumilus DSM18097 Protease gemäß SEQ ID NO:1), wurden durch Zufallsmutagenese Varianten hergestellt, welche dann u.a. auf verbesserte Waschleistung und/oder Enzymstabilität gescreent wurden. Auf diesem Weg wurde aus der oben genannten Protease (SEQ ID NO:1) eine leistungsverbesserte Mutante (Mutante 1) generiert. Auf dieser Mutante bauen die erfindungsgemäßen Mutanten 2-10 auf.
    Variante Aminosäuresubstitutionen relativ zu SEQ ID NO:1
    Mutante 1 P9T N130D Q271E N144K N252T T133A
    Mutante 2 P9T N130D Q271E N144K N252T T133A T218S
    Mutante 3 P9T N130D Q271E N144K N252T T133A L82F
    Mutante 4 P9T N130D Q271E N144K N252T T133A S156D T1621
    Mutante 5 P9T N130D Q271E N144K N252T T133A T3K V4I
    Mutante 6 P9T N130D Q271E N144K N252T T133A T3A V4A
    Mutante 7 P9T N130D Q271E N144K N252T T133A T3A V4I
    Mutante 8 P9T N130D Q271E N144K N252T T133A T3R
    Mutante 9 P9T N130D Q271E N144K N252T T133A V4A
    Mutante 10 P9T N130D Q271E N144K N252T T133A T3S V4T
  • Verwendete Waschmittelmatrix
  • Dies ist die Waschmittelmatrix (handelsüblich, ohne Enzyme, opt. Aufheller, Parfüm und Farbstoffe), die für den Test verwendet wurde:
    Chemischer Name Gew.-% Aktivsubstanz im Rohmaterial Gew.-% Aktivsubstanz in der Formulierung
    Wasser demin. 100,0 Rest
    Protease Stabilisator 100,0 0,5-1,5
    Zitronensäure 100,0 3-5
    Entschäumer 100,0 <1
    FAEOS 70,0 4-8
    FAEO, nicht-ionisches Tensid 100,0 8-14
    LAS 96,0 12-18
    Palm kernel oil fatty acid 30,0 2-4
    MEA 100,0 4-8
    NaOH 50,0 0,5-2
    Glycerin 99,5 1-3
    Propandiol-1,2 100,0 8-12
    HEDP 60,0 0,5-2
    SRP (soil release polymer) 30,0 0,5-1
    Ohne opt. Aufheller, Parfüm und Enzyme; Dosierung 3,17 g/L
  • Protease-Aktivitätsassays
  • Die Aktivität der Protease wird durch die Freisetzung des Chromophors para-Nitroanilin aus dem Substrat Succinyl Alanin-Alanin-Prolin-Phenylalanin-para-Nitroanilid (AAPFpNA; Bachem L-1400) bestimmt. Die Freisetzung des pNA verursacht eine Zunahme der Extinktion bei 410 nm, deren zeitlicher Verlauf ein Maß für die enzymatische Aktivität ist.
  • Die Messung erfolgte bei einer Temperatur von 25°C, bei pH 8,6 und einer Wellenlänge von 410 nm. Die Messzeit betrug 5 min bei einem Messintervall von 20 bis 60 Sekunden.
    Messansatz:
    • 10 µL AAPF-Lösung (70 mg/mL)
    • 1000 µL Tris/HCI (0,1 M; pH 8,6 mit 0,1 % Brij 35)
    • 10 µL verdünnte Proteaselösung
    • Kinetik erstellt über 5 min bei 25°C (410 nm)
  • Miniwaschtest und Ergebnisse
  • Waschtest mit Bacillus subtilis Kulturüberständen, welche die gescreenten Proteasemutanten durch heterologe Expression enthalten. Die Überstände werden aktivitätsgleich zum Referenzprotein (gemäß SEQ ID NO:1) mit einer marktüblichen Konzentration für Proteasen in Waschmittel eingesetzt. Die Mutanten werden alle auf die Waschleistung der Ausgangsvariante (Mutante 1) bezogen, die gleich 100% gesetzt wird (Summe der 6 Anschmutzungen, korrigiert durch die Leistung des Waschmittels allein).
  • Bedingungen: 40°C, 16°dH Wasser, 1 h
  • Anschmutzungen:
    1. 1. CFT CS038
    2. 2. CFT PC-10
    3. 3. WfK 10N
    4. 4. CFT C-03
    5. 5. CFT C-05
    6. 6. H-MR-B
  • Ausgestanzte Gewebe (Durchmesser = 10 mm) wurden in Mikrotiterplatten vorgelegt, Waschlauge auf 40°C vortemperiert, Endkonzentration 3,17 g/L, Lauge und Enzym auf die Anschmutzung gegeben, für 1 h bei 40°C und 600 rpm inkubiert, anschließend die Anschmutzung mehrmals mit klarem Wasser gespült, trocknen gelassen und mit einem Farbmessgerät die Helligkeit bestimmt. Je heller das Gewebe wird, desto besser ist die Reinigungsleistung. Gemessen wird hier der L-Wert = Helligkeit, je höher desto heller. Angegeben ist die Summe der 6 Anschmutzungen in % bezogen auf die Ausgangsvariante (Mutante 1) korrigiert durch die Leistung des Waschmittels ohne Protease.
    Variante Leistung im Waschtest bei 40°C (bezogen auf Leistung von Mutante 1)
    Mutante 1 100%
    Mutante 2 117%
    Mutante 3 123%
    Mutante 4 106%
    Mutante 5 150%
    Mutante 6 126%
    Mutante 7 118%
    Mutante 8 118%
    Mutante 9 107%
    Mutante 10 107%
  • Alle Varianten zeigen eine erhöhte Waschleistung im Vergleich zur Ausgangsmutante 1.
  • Weiterhin zeigen alle Varianten eine erhöhte Waschleistung im Vergleich zur Ausgangsvariante (Mutante 1).
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 2016175 A1 [0004]
    • WO 2009/121725 [0080]
  • Zitierte Nicht-Patentliteratur
    • „Subtilases: Subtilisin-like Proteases“ von R. Siezen, Seite 75-95 in „Subtilisin enzymes“, herausgegeben von R. Bott und C. Betzel, New York, 1996 [0002]
    • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) „Basic local alignment search tool.“ J. Mol. Biol. 215:403-410 [0027]
    • Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): „Gapped BLAST and PSI-BLAST: a new generation of protein database search programs“; Nucleic Acids Res., 25, S.3389-3402 [0027]
    • Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497-3500 [0027]
    • T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205-217) [0027]
    • A. G. Gornall, C. S. Bardawill und M.M. David, J. Biol. Chem., 177 (1948), S. 751-766 [0037]
    • M. Bender et al., J. Am. Chem. Soc. 88, 24 (1966), S. 5890-5913 [0037]
    • Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3. Edition Cold Spring Laboratory Press. bekannt [0059]

Claims (14)

  1. Protease umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1 (i) an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen aufweist, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie (ii) an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist.
  2. Protease nach Anspruch 1, wobei die Protease ferner eine zusätzliche Aminosäuresubstitution an der Position, die Position 130 entspricht, aufweist, vorzugsweise 130D.
  3. Protease umfassend eine Aminosäuresequenz, die mindestens 70 % Sequenzidentität mit der in SEQ ID NO:1 angegebenen Aminosäuresequenz über deren Gesamtlänge aufweist und jeweils bezogen auf die Nummerierung gemäß SEQ ID NO:1 (A) an mindestens einer der Positionen, die den Positionen 3, 4 und 218 entsprechen, mindestens eine Aminosäuresubstitution aufweist, vorzugsweise ausgewählt aus 3K, 3A, 3R, 3S, 4A, 41, 4T und 218S und/oder (B) an mindestens einer der Positionen, die den Positionen 156 und 162 entsprechen, mindestens eine Aminosäuresubstitution aufweist, ausgewählt aus 156D und 1621.
  4. Protease nach Anspruch 1, wobei a) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K, 3A, 3R und 3S; und/oder b) die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 4A, 4I und 4T; oder c) die Aminosäuresubstitution an der Position, die Position 82 entspricht, ausgewählt wird aus 82F; oder d) die Aminosäuresubstitution an der Position, die Position 156 entspricht, ausgewählt wird aus 156D; und/oder e) die Aminosäuresubstitution an der Position, die Position 162 entspricht, ausgewählt wird aus 1621; oder f) die Aminosäuresubstitution an der Position, die Position 218 entspricht, ausgewählt wird aus 218S.
  5. Protease nach Anspruch 3, wobei a) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K, 3A und 3S; und/oder b) die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 4A, 4I und 4T; oder c) die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3R.
  6. Protease nach einem der Ansprüche 1-4, wobei die Aminosäuresubstitution an der Position, die Position 3 entspricht, ausgewählt wird aus 3K und die Aminosäuresubstitution an der Position, die Position 4 entspricht, ausgewählt wird aus 4I.
  7. Protease, dadurch gekennzeichnet, dass (a) sie aus einer Protease nach Anspruch 1-6 als Ausgangsmolekül erhältlich ist durch ein- oder mehrfache konservative Aminosäuresubstitution, wobei die Protease an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist; oder (b) sie aus einer Protease nach Anspruch 1-6 als Ausgangsmolekül erhältlich ist durch Fragmentierung, Deletions-, Insertions- oder Substitutionsmutagenese und eine Aminosäuresequenz umfasst, die über eine Länge von mindestens 200, 210, 220, 230, 240, 250, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273 oder 274 zusammenhängenden Aminosäuren mit dem Ausgangsmolekül übereinstimmt, wobei die Protease an den Positionen, die den Positionen 9, 133, 144, 252 und 271 entsprechen, Aminosäuresubstitutionen, vorzugsweise ausgewählt aus den Aminosäuresubstitutionen 9T, 133A, 144K, 252T und 271E; sowie an mindestens einer der Positionen, die den Positionen 3, 4, 82, 156, 162 und 218 entsprechen, mindestens eine weitere Aminosäuresubstitution aufweist.
  8. Nukleinsäure kodierend für eine Protease nach einem der Ansprüche 1-7.
  9. Vektor enthaltend eine Nukleinsäure nach Anspruch 8, insbesondere ein Klonierungsvektor oder ein Expressionsvektor.
  10. Nicht-menschliche Wirtszelle, die eine Nukleinsäure nach Anspruch 8 oder einen Vektor nach Anspruch 9 beinhaltet, oder die eine Protease nach einem der Ansprüche 1-7 beinhaltet.
  11. Verfahren zur Herstellung einer Protease umfassend a) Kultivieren einer Wirtszelle gemäß Anspruch 10; und b) Isolieren der Protease aus dem Kulturmedium oder aus der Wirtszelle.
  12. Mittel, insbesondere ein Wasch- oder Reinigungsmittel, dadurch gekennzeichnet, dass es mindestens eine Protease nach einem der Ansprüche 1-7 enthält.
  13. Verfahren zur Reinigung von Textilien oder harten Oberflächen, dadurch gekennzeichnet, dass in mindestens einem Verfahrensschritt ein Mittel nach Anspruch 12 angewendet wird.
  14. Verwendung einer Protease nach einem der Ansprüche 1-7 in einem Wasch- oder Reinigungsmittel zur Entfernung von peptid- oder proteinhaltigen Anschmutzungen.
DE102019111075.0A 2019-04-29 2019-04-29 Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI Withdrawn DE102019111075A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019111075.0A DE102019111075A1 (de) 2019-04-29 2019-04-29 Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI
US17/607,037 US20220064621A1 (en) 2019-04-29 2020-04-14 Improved cleaning performance on protein sensitive soilings vi
PCT/EP2020/060375 WO2020221578A1 (de) 2019-04-29 2020-04-14 Verbesserte reinigungsleistung gegenüber protein-empfindlichen anschmutzungen vi
EP20719389.7A EP3963064A1 (de) 2019-04-29 2020-04-14 Verbesserte reinigungsleistung gegenüber protein-empfindlichen anschmutzungen vi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019111075.0A DE102019111075A1 (de) 2019-04-29 2019-04-29 Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI

Publications (1)

Publication Number Publication Date
DE102019111075A1 true DE102019111075A1 (de) 2020-10-29

Family

ID=70289777

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019111075.0A Withdrawn DE102019111075A1 (de) 2019-04-29 2019-04-29 Verbesserte Reinigungsleistung gegenüber Protein-empfindlichen Anschmutzungen VI

Country Status (4)

Country Link
US (1) US20220064621A1 (de)
EP (1) EP3963064A1 (de)
DE (1) DE102019111075A1 (de)
WO (1) WO2020221578A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022197512A1 (en) 2021-03-15 2022-09-22 The Procter & Gamble Company Cleaning compositions containing polypeptide variants
EP4108767A1 (de) 2021-06-22 2022-12-28 The Procter & Gamble Company Reinigungs- oder behandlungszusammensetzungen mit nuklease-enzymen
CA3238839A1 (en) 2021-12-16 2023-06-22 The Procter & Gamble Company Home care composition
US20230365897A1 (en) 2021-12-16 2023-11-16 The Procter & Gamble Company Fabric and home care composition including a protease
US20240166973A1 (en) 2021-12-16 2024-05-23 The Procter & Gamble Company Automatic dishwashing composition comprising a protease
WO2023114792A1 (en) 2021-12-16 2023-06-22 The Procter & Gamble Company Home care composition comprising an amylase
WO2024050343A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Subtilisin variants and methods related thereto
WO2024050346A1 (en) 2022-09-02 2024-03-07 Danisco Us Inc. Detergent compositions and methods related thereto

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006022224A1 (de) 2006-05-11 2007-11-15 Henkel Kgaa Subtilisin aus Bacillus pumilus und Wasch- und Reinigungsmittel enthaltend dieses neue Subtilisin
DE102008017103A1 (de) 2008-04-02 2009-10-08 Henkel Ag & Co. Kgaa Wasch- und Reinigungsmittel enthaltend Proteasen aus Xanthomonas
DE102016208463A1 (de) * 2016-05-18 2017-11-23 Henkel Ag & Co. Kgaa Leistungsverbesserte Proteasen
EP3679133A1 (de) * 2017-09-05 2020-07-15 Henkel AG & Co. KGaA Leistungsverbesserte proteasevarianten i

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Also Published As

Publication number Publication date
EP3963064A1 (de) 2022-03-09
WO2020221578A1 (de) 2020-11-05
US20220064621A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
EP4114933A1 (de) Leistungsverbesserte proteasevarianten vii
EP3660151B1 (de) Leistungsverbesserte und lagerstabile protease-varianten
WO2021175696A1 (de) Stabilitätsverbesserte proteasevarianten vi
WO2020221579A1 (de) Proteasen mit verbesserter enzymstabilität in wasch- und reinigungsmitteln iii
EP3963064A1 (de) Verbesserte reinigungsleistung gegenüber protein-empfindlichen anschmutzungen vi
WO2020221580A1 (de) Verbesserte reinigungsleistung gegenüber protein-empfindlichen anschmutzungen v
WO2019048495A1 (de) Leistungsverbesserte proteasevarianten i
EP3660146B1 (de) Leistungsverbesserte und lagerstabile protease-varianten
WO2019048486A1 (de) Leistungsverbesserte proteasevarianten ii
EP3433360B1 (de) Proteasen mit verbesserte enzymstabilität in waschmittel
EP3679132B1 (de) Leistungsverbesserte proteasevarianten iii
EP3458583B1 (de) Leistungsverbesserte proteasen
EP3433359B1 (de) Verbesserte reinigungsleistung an protein sensitiven anschmutzungen
DE102018004207A1 (de) Leistungsverbesserte Varianten der alkalischen Protease aus B. lentus
DE102018208778A1 (de) Leistungsverbesserte Proteasevarianten IV
DE102021207704A1 (de) Leistungsverbesserte Proteasevarianten VIII
EP3440203B1 (de) Neue protease mit verbesserter waschleistung
DE102018208777A1 (de) Leistungsverbesserte Proteasevarianten V
DE102017215631A1 (de) Leistungsverbesserte Proteasevarianten II
DE102017215628A1 (de) Leistungsverbesserte Proteasevarianten I
DE102018208444A1 (de) Verbesserte Waschleistung durch eine neue alpha-Amylase aus Trametes hirsuta (Thi)
DE102017220757A1 (de) Amylase und eine solche enthaltendes Wasch- oder Reinigungsmittel
DE102013226729A1 (de) Pilzliche Proteasen und deren Verwendung in Wasch- und Reinigungsmitteln

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee