DE102019110772A1 - Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system - Google Patents

Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system Download PDF

Info

Publication number
DE102019110772A1
DE102019110772A1 DE102019110772.5A DE102019110772A DE102019110772A1 DE 102019110772 A1 DE102019110772 A1 DE 102019110772A1 DE 102019110772 A DE102019110772 A DE 102019110772A DE 102019110772 A1 DE102019110772 A1 DE 102019110772A1
Authority
DE
Germany
Prior art keywords
area
reflection
laser pulse
response
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019110772.5A
Other languages
English (en)
Inventor
Andrew J. Lingg
Samuel W. Beck
Jack G. Stepanian
David H. Clifford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102019110772A1 publication Critical patent/DE102019110772A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/51Display arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/764Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads

Abstract

Die vorliegende Erfindung betrifft im Allgemeinen die Kommunikation und Vermeidung von Gefahren in einer überwachten Fahrumgebung. Genauer gesagt, lehrt die Anwendung ein System zur verbesserten Zielobjekterfassung in einem Fahrzeug, das mit einem Lasererfassungs- und Entfernungs-LIDAR-System ausgestattet ist, durch Bestimmen einer Vielzahl von Bereichen als Reaktion auf eine Vielzahl von Lichtimpulsreflexionen und Bestimmen einer falschen Zielanzeige durch Ausnutzen der erwarteten Kontinuität der Oberflächen in der Umgebung.

Description

  • HINTERGRUND
  • Die vorliegende Anmeldung betrifft im Allgemeinen autonome und halbautonome Fahrzeuge. Genauer gesagt lehrt die Anwendung eine Vorrichtung zur verbesserten Zielobjekterfassung in einem Fahrzeug, das mit einer Lasererfassung und einem LIDAR ausgestattet ist, indem Rauschpunkte im LIDAR eliminiert werden, die von Überlagerungen zwischen Sensoren und Mehrwegeeffekten stammen, indem die erwartete Kontinuität von Oberflächen in der Umgebung genutzt wird.
  • HINTERGRUND-INFORMATIONEN
  • Der Betrieb von modernen Fahrzeugen wird zunehmend automatisierter, d. h. Fahrzeuge übernehmen die Fahrsteuerung mit geringerem Eingriff des Fahrers. Die Fahrzeugautomatisierung wurde kategorisiert nach nummerischen Ebenen von null, entsprechend keiner Automatisierung mit voller menschlicher Kontrolle, bis Fünf, entsprechend der vollen Automatisierung ohne menschliche Kontrolle. Verschiedene automatisierte Fahrerassistenzsysteme, wie beispielsweise Geschwindigkeitsregelung, adaptive Geschwindigkeitsregelung und Parkassistenzsysteme, entsprechen niedrigeren Automatisierungsebenen, während echte „fahrerlose“ Fahrzeuge mit höheren Automatisierungsebenen übereinstimmen.
  • Fahrzeuge werden immer häufiger mit Sensoren an Bord ausgestattet, um ihre Umgebung autonom oder halbautonom zu ermitteln. Ein wertvoller Sensor für diese Aufgabe ist LIDAR, eine Vermessungstechnik, die Strecken misst, indem sie ein Ziel mit einem Laserlicht beleuchtet. Die aktuellen Einstellungen der Geometrie und des Phasenversatzes, die für typische LIDAR-Sensoren in autonomen Fahrzeugen verwendet werden, führen jedoch zu einer erheblichen Anzahl von Überlagerungspunkten, wobei: eine Erkennung, die durch das Licht eines Sensors verursacht wird, vom anderen Sensor gelesen wird. Es wäre wünschenswert, ein Verfahren zur Überlagerungsreduzierung ohne Phasenversatzänderungen bereitzustellen, was auch Geräuschpunkte, die durch Überlagerung von anderen Fahrzeugen und aus Mehrwegeffekten hervorgerufen werden, mit der Fähigkeit, in Echtzeit zu laufen, reduziert.
  • KURZDARSTELLUNG
  • Ausführungsformen gemäß der vorliegenden Offenbarung bieten eine Reihe von Vorteilen. So können Ausführungsformen gemäß der vorliegenden Offenbarung eine unabhängige Validierung von Steuerbefehlen autonomer Fahrzeuge ermöglichen, um die Diagnose von Software- oder Hardwarezuständen im primären Steuersystem zu erleichtern. Somit können Ausführungsformen gemäß der vorliegenden Offenbarung robuster sein, wodurch die Kundenzufriedenheit erhöht wird.
  • Gemäß einem Aspekt der vorliegenden Erfindung umfasst ein Verfahren das Empfangen einer ersten Reflektion eines ersten übertragenen Laserimpulses aus einer ersten Richtung, das Empfangen einer zweiten Reflexion eines zweiten übertragenen Laserimpulses aus einer zweiten Richtung, das Empfangen einer dritten Reflexion eines dritten übertragenen Laserimpulses aus einer dritten Richtung, wobei die zweite Richtung zwischen der ersten Richtung und der dritten Richtung liegt, Bestimmen eines ersten Bereichs, der der ersten Reflexion zugeordnet ist, eines zweiten Bereichs, der der zweiten Reflexion zugeordnet ist, und eines dritten Bereichs, der der dritten Reflexion zugeordnet ist, Verwerfen des zweiten Bereichs als Reaktion auf eine erste Differenz zwischen dem ersten Bereich und dem zweiten Bereich und einer zweiten Differenz zwischen dem zweiten Bereich und dem dritten Bereich, die einen Maximalwert überschreitet, und einer dritten Differenz zwischen dem ersten Bereich und dem dritten Bereich, die keinen Minimumwert überschreiten und Bestimmen eines Ortes eines Objekts als Reaktion auf den ersten Bereich und den dritten Bereich.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung umfasst ein LiDAR-System einen Sender zum übertragen eines ersten Lichtlaserimpulses, eines zweiten Laserimpulses und eines dritten Laserimpulses, einen Detektor zum Erfassen einer ersten Reflexion des ersten Laserimpulses, einer zweiten Reflexion des zweiten Laserimpulses und einer dritten Reflexion des dritten Laserimpulses einen Prozessor zum Bestimmen eines ersten Bereichs als Reaktion auf den ersten Laserimpuls und der ersten Reflexion, einen zweiten Bereich als Reaktion auf den zweiten Laserimpuls und die zweite Reflexion, und einen dritten Bereich als Reaktion auf den dritten Laserimpuls und die dritte Reflexion, wobei der erste Bereich, der zweite Bereich und der dritte Bereich und der Prozessor weiterhin dazu dienen, den zweiten Bereich als Reaktion darauf zu verwerfen, dass eine erste Differenz zwischen dem ersten Bereich und dem dritten Bereich geringer ist als eine zweite Differenz zwischen dem ersten Bereich und dem zweiten Bereich und eine dritte Differenz zwischen dem dritten Bereich und dem zweiten Bereich, und eine Steuerung zum Erzeugen eines Steuersignals als Reaktion auf den ersten Bereich und den dritten Bereich.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung umfasst ein Verfahren zum Erfassen eines Objekts mit einem LIDAR das Übertragen eines ersten Lichtlaserimpulses, eines zweiten Laserimpulses und eines dritten Laserimpulses, Empfangen einer ersten Reflexion des ersten Laserimpulses, einer zweiten Reflexion des zweiten Laserimpulses und einer dritten Reflexion des dritten Laserimpulses, Bestimmen eines ersten Bereichs als Reaktion auf den ersten Laserimpuls und die erste Reflexion, eines zweiten Bereichs als Reaktion auf den zweiten Laserimpuls und die zweite Reflexion und eines dritten Bereichs als Reaktion auf den dritten Laserpuls und die dritte Reflexion, wobei der erste Bereich, der zweite Bereich und der dritte Bereich den zweiten Bereich als Reaktion auf eine erste Differenz zwischen dem ersten Bereich und dem dritten Bereich verwerfen, die kleiner als eine zweite Differenz zwischen dem ersten Bereich und dem zweiten Bereich ist und eine dritte Differenz zwischen dem dritten Bereich und dem zweiten Bereich und Erzeugen eines Steuersignals als Reaktion auf den ersten Bereich und den dritten Bereich.
  • Die vorstehenden Vorteile und andere Vorteile und Merkmale der vorliegenden Offenbarung werden aus der folgenden ausführlichen Beschreibung der bevorzugten Ausführungsformen in Verbindung mit den zugehörigen Zeichnungen ersichtlich.
  • Figurenliste
  • Die zuvor genannten sowie weitere Eigenschaften und Vorteile dieser Erfindung und die Art und Weise, diese zu erzielen, werden augenscheinlicher, und die Erfindung wird besser verstanden anhand der folgenden Beschreibung von Ausführungsformen der Erfindung in Verbindung mit den zugehörigen Zeichnungen, wobei gilt:
    • 1 ist ein schematisches Diagramm eines Kommunikationssystems, das ein autark gesteuertes Fahrzeug gemäß einer Ausführungsform beinhaltet.
    • 2 ist ein schematisches Blockdiagramm eines automatisierten Antriebssystems (ADS) für ein Fahrzeug gemäß einer Ausführungsform.
    • 3 zeigt eine Umgebung zum Implementieren der vorliegenden offenbarten Systeme und Verfahren gemäß einer exemplarischen Ausführungsform.
    • 4 zeigt ein Funktionsblockdiagramm eines LIDAR-Systems gemäß einem exemplarischen Verfahren und System.
    • 5 stellt ein Flussdiagramm eines Verfahrens zur verbesserten LiDAR-Abtastung gemäß einer exemplarischen Ausführungsform dar.
  • Die hierin dargestellten Beispiele zeigen bevorzugte Ausführungsformen der Erfindung, und solche Beispiele sollen in keiner Weise als einschränkend für den Umfang der Erfindung ausgelegt werden.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Die folgende ausführliche Beschreibung dient lediglich als Beispiel und soll die Offenbarung oder die Anwendung und deren Verwendungen nicht einschränken. Darüber hinaus besteht keinerlei Verpflichtung zur Einschränkung auf eine der im vorstehenden Hintergrund oder in der folgenden ausführlichen Beschreibung dargestellten Theorien. So hat z. B. der LIDAR-Sensor der vorliegenden Erfindung einen besonderen Anwendungszweck zur Verwendung an einem Fahrzeug. Jedoch kann der LIDAR-Sensor der Erfindung, wie Fachleute auf dem Gebiet erkennen werden, auch andere Anwendungsmöglichkeiten besitzen.
  • Moderne Fahrzeuge beinhalten manchmal verschiedene aktive Sicherheits- und Steuersysteme, wie Zusammenstoß-Vermeidungssysteme, adaptive Fahrgeschwindigkeits-Regelungssysteme, Spurhaltungssysteme, Fahrspurzentrierungs-Systeme usw., bei denen die Fahrzeugtechnik sich in Richtung halbautonom und vollständig autonom gefahrene Fahrzeuge bewegt. So sind z. B. Zusammenstoß-Vermeidungssysteme im Fachbereich dafür bekannt, dass sie eine automatische Fahrzeugsteuerung bereitstellen, wie z. B. Bremsen, wenn ein potenzieller Zusammenstoß mit einem anderen Fahrzeug oder Objekt erkannt wird, und sie können auch eine Warnung ausgeben, so dass der Fahrer entsprechende Korrekturmaßnahmen einleiten kann, um die Kollision zu vermeiden. Adaptive Fahrgeschwindigkeits-Regelungssysteme sind ebenfalls dafür bekannt, dass sie mit einem nach vom gerichteten Sensor ausgestattet sind, der eine automatische Fahrgeschwindigkeitsregelung und/oder Bremsen bereitstellt, wenn sich das gegenständliche Fahrzeug einem anderen Fahrzeug nähert. Die Objekterfassungssensoren für diese Arten von Systemen können irgendeine von einer Anzahl an Technologien verwenden, wie Kurzstreckenradar, Langstreckenradar, Kameras mit Bildverarbeitung, Laser oder LiDAR, Ultraschall usw. Die Objekterfassungssensoren detektieren Fahrzeuge und andere Objekte im Weg eines Subjektfahrzeugs, und die Anwendungssoftware verwendet die Objekterfassungsinformationen, um Warnungen oder Maßnahmen vorzusehen, wie es angemessen ist.
  • LiDAR-Sensoren werden manchmal in Fahrzeugen eingesetzt, um Objekte und ihre Ausrichtung und Distanz zum Fahrzeug zu erkennen und Reflexionen von den Objekten in Form von multiplen Abtastpunkten bereitzustellen, die zusammen eine Karte von einem Bereich der Punktwolke (Cluster) bilden, auf der für jedes ½° über das gesamte Sichtfeld des Sensors ein separater Abtastpunkt bereitgestellt wird. Wenn daher ein Zielfahrzeug oder ein anderes Objekt vor dem eigenen Fahrzeug erfasst wird, können mehrere Abtastpunkte zurückgegeben werden, die die Entfernung des Zielfahrzeugs von dem betreffenden Fahrzeug identifizieren. Durch die Bereitstellung eines Abtastrückgabepunkt-Clusters können Objekte mit den unterschiedlichsten und willkürlichsten Formen, wie LKW, Anhänger, Fahrräder, Fußgänger, Leitplanken usw., besser erfasst werden. Dabei werden die Objekte umso besser erfasst, je größer bzw. näher sie am betreffenden Fahrzeug sind, da dann mehr Abtastpunkte bereitgestellt werden.
  • Die meisten bekannten LiDAR-Sensoren verwenden einen einzelnen Laser und einen schnell rotierenden Spiegel zur Erzeugung einer dreidimensionalen Punktwolke von Reflexionen oder Rückgabepunkten, die das Fahrzeug umgeben. Wenn sich der Spiegel dreht, gibt der Laser Lichtimpulse ab und der Sensor misst die Zeit, die der Lichtimpuls benötigt, um reflektiert und von Objekten in seinem Sichtfeld zurückgesendet zu werden, um die Entfernung zu den Objekten zu ermitteln, die im Fachbereich als Laufzeitmessungen bekannt sind. Durch sehr schnelles Pulsen des Lasers kann ein dreidimensionales Objektbild im Sichtfeld des Sensors erzeugt werden. Es können mehrere Sensoren eingesetzt werden und die Bilder von diesen können korreliert werden, um ein dreidimensionales Bild jener Objekte zu erzeugen, die das Fahrzeug umgeben.
  • Ein Nachteil der meisten bekannten LiDAR-Sensoren ist die endliche Winkelrasterauflösung. Das LiDAR ist dazu in der Lage, den Laser in diskreten Winkeln um das Fahrzeug herum zu pulsieren. Wenn der Laser beispielsweise mit einer Winkelauflösung von 0,5 Grad bei 50 Metern gepulst wird, beträgt der Abstand des Sichtfeldes etwa 0,5 Meter. Bei einem LiDAR in einer autonomen Fahrzeuganwendung kann ein Zielfahrzeug nur einen oder zwei der gesendeten Laserpulse reflektieren. Einige wenige Treffer eines Zielobjekts in großer Entfernung können unzureichende Informationen über die Objektgrenzen liefern.
  • 1 veranschaulicht schematisch eine Betriebsumgebung, die ein mobiles Fahrzeugkommunikations- und Steuersystem 10 für ein Kraftfahrzeug 12 umfasst. Das Kommunikations- und Steuersystem 10 für das Fahrzeug 12 beinhaltet im Allgemeinen ein oder mehrere Drahtlosträgersysteme 60, ein Festnetz 62, einen Computer 64, eine vernetzte drahtlose Vorrichtung 57, einschließlich, aber nicht beschränkt auf ein Smartphone, Tablet oder eine tragbare Vorrichtung, wie beispielsweise eine Uhr, und eine Fernzugriffszentrale 78.
  • Das Fahrzeug 12, das in 1 schematisch dargestellt ist, beinhaltet ein Antriebssystem 13, das in verschiedenen Ausführungsformen einen Verbrennungsmotor, eine Elektromaschine, wie beispielsweise einen Traktionsmotor und/oder ein Brennstoffzellenantriebssystem beinhalten kann. Das Fahrzeug 12 ist in der dargestellten Ausführungsform als Pkw dargestellt, es ist jedoch zu beachten, dass jedes andere Fahrzeug, einschließlich Motorräder, Lastwagen, Geländelimousinen (SUVs), Wohnmobile (RVs), Wasserfahrzeuge, Luftfahrzeuge usw. ebenfalls verwendet werden kann.
  • Das Fahrzeug 12 beinhaltet zudem ein Getriebe 14, das so konfiguriert ist, dass es Leistung vom Antriebssystem 13 auf eine Vielzahl von Fahrzeugrädern 15 gemäß wählbaren Drehzahlverhältnissen überträgt. Gemäß verschiedenen Ausführungsformen kann das Getriebe 14 ein Stufenverhältnis-Automatikgetriebe, ein stufenlos verstellbares Getriebe oder ein anderes geeignetes Getriebe beinhalten. Das Fahrzeug 12 beinhaltet zusätzlich Radbremsen 17, die so konfiguriert sind, dass sie ein Bremsmoment an die Fahrzeugräder 15 liefern. Die Radbremsen 17 können in verschiedenen Ausführungsformen Reibungsbremsen, ein regeneratives Bremssystem, wie z. B. eine Elektromaschine und/oder andere geeignete Bremssysteme, beinhalten.
  • Das Fahrzeug 12 beinhaltet zudem ein Lenksystem 16. Während in einigen Ausführungsformen innerhalb des Umfangs der vorliegenden Offenbarung zur Veranschaulichung als ein Lenkrad dargestellt, kann das Lenksystem 16 kein Lenkrad beinhalten.
  • Das Fahrzeug 12 beinhaltet ein drahtloses Kommunikationssystem 28, das konfiguriert ist, um drahtlos mit anderen Fahrzeugen („V2V“) und/oder Infrastruktur („V2I“) zu kommunizieren. In einer exemplarischen Ausführungsform ist das drahtlose Kommunikationssystem 28 konfiguriert, um über ein drahtloses lokales Netzwerk (WLAN) unter Verwendung des IEEE 802.11-Standards oder mittels einer mobilen Datenkommunikation zu kommunizieren. Im Geltungsbereich der vorliegenden Offenbarung werden jedoch auch zusätzliche oder alternative Kommunikationsverfahren, wie beispielsweise ein dedizierter Nahbereichskommunikations-(DSRC)-Kanal, berücksichtigt. DSRC-Kanäle beziehen sich auf Einweg- oder Zweiwege-Kurzstrecken- bis Mittelklasse-Funkkommunikationskanäle, die speziell für den Automobilbau und einen entsprechenden Satz von Protokollen und Standards entwickelt wurden.
  • Das Antriebssystem 13, das Getriebe 14, das Lenksystem 16 und die Radbremsen 17 stehen mit oder unter der Steuerung von mindestens einer Steuereinheit 22 in Verbindung. Obgleich zu Veranschaulichungszwecken als eine einzige Einheit dargestellt, kann die Steuereinheit 22 zusätzlich eine oder mehrere andere „Steuereinheiten“ beinhalten. Die Steuerung 22 kann einen Mikroprozessor, wie beispielsweise eine zentrale Verarbeitungseinheit (CPU) oder eine grafische Verarbeitungseinheit (GPU), beinhalten, die mit verschiedenen Arten von computerlesbaren Speichervorrichtungen oder Medien in Verbindung steht. Computerlesbare Speichergeräte oder Medien können flüchtige und nichtflüchtige Speicher in einem Nur-Lese-Speicher (ROM), einem Speicher mit direktem Zugriff (RAM) und einem Aufrechterhaltungsspeicher („Keep-Alive-Memory, KAM“) beinhalten. KAM ist ein persistenter oder nichtflüchtiger Speicher, der verwendet werden kann, um verschiedene Betriebsvariablen zu speichern, während die CPU ausgeschaltet ist. Computerlesbare Speichergeräte oder Medien können unter Verwendung einer beliebigen Anzahl an bekannten Speichergeräten, wie beispielsweise PROMs (programmierbarer Nur-Lese-Speicher), EPROMs (elektrische PROM), EEPROMs (elektrisch löschbarer PROM), Flash-Speicher oder beliebigen anderen elektrischen, magnetischen, optischen oder kombinierten Speichergeräten implementiert sein, die Daten speichern können, von denen einige ausführbare Anweisungen darstellen, die von der Steuereinheit 22 beim Steuern des Fahrzeugs verwendet werden.
  • Die Steuerung 22 beinhaltet ein automatisiertes Antriebssystem (ADS) 24 zum automatischen Steuern verschiedener Stellglieder im Fahrzeug. In einer exemplarischen Ausführungsform ist das ADS 24 ein sogenanntes Level-Vier- oder Level-Fünf-Automatisierungssystem. Ein Level-Vier-System zeigt eine „hohe Automatisierung“ unter Bezugnahme auf die Fahrmodus-spezifische Leistung durch ein automatisiertes Fahrsystem aller Aspekte der dynamischen Fahraufgabe an, selbst wenn ein menschlicher Fahrer nicht angemessen auf eine Anforderung einzugreifen, reagiert. Ein Level-Fünf-System zeigt eine „Vollautomatisierung“ an und verweist auf die Vollzeitleistung eines automatisierten Fahrsystems aller Aspekte der dynamischen Fahraufgabe unter allen Fahrbahn- und Umgebungsbedingungen, die von einem menschlichen Fahrer verwaltet werden können. In einer exemplarischen Ausführungsform ist das ADS 24 so konfiguriert, dass es das Antriebssystem 13, das Getriebe 14, das Lenksystem 16 und die Radbremsen 17 steuert, um die Fahrzeugbeschleunigung, das Lenken und das Bremsen ohne menschliches Eingreifen über eine Vielzahl von Stellgliedern 30 in Reaktion auf Eingaben von einer Vielzahl von Sensoren 26, wie z. B. GPS, RADAR, LIDAR, optischen Kameras, thermischen Kameras, Ultraschallsensoren und/oder zusätzlichen Sensoren, zu steuern.
  • 1 veranschaulicht mehrere vernetzte Geräte, die mit dem drahtlosen Kommunikationssystem 28 des Fahrzeugs 12 kommunizieren können. Eines der vernetzten Geräte, das über das drahtlose Kommunikationssystem 28 mit dem Fahrzeug 12 kommunizieren kann, ist das drahtlose vernetzte Gerät 57. Das drahtlose vernetzte Gerät 57 kann eine Computerverarbeitungsfähigkeit, einen Sender-Empfänger, der mit einem drahtlosen Nahbereichsprotokoll kommunizieren kann, und eine visuelle Anzeige 59 beinhalten. Die Computerverarbeitungsfähigkeit beinhaltet einen Mikroprozessor in Form einer programmierbaren Vorrichtung, die eine oder mehrere in einer internen Speicherstruktur gespeicherte Befehle beinhaltet und angewendet wird, um binäre Eingaben zu empfangen und binäre Ausgaben zu erzeugen. In einigen Ausführungsformen beinhaltet das drahtlose vernetzte Gerät 57 ein GPS-Modul, das GPS-Satellitensignale empfangen und GPS-Koordinaten basierend auf diesen Signalen erzeugen kann. In weiteren Ausführungsformen beinhaltet das drahtlose vernetzte Gerät 57 eine Mobilfunk-Kommunikationsfunktionalität, wodurch das drahtlose vernetzte Gerät 57, wie hierin erläutert, Sprach- und/oder Datenkommunikationen über das Mobilfunkanbietersystem 60 unter Verwendung eines oder mehrerer Mobilfunk-Kommunikationsprotokolle durchführt. Die visuelle Anzeige 59 kann zudem einen Berührungsbildschirm als grafische Benutzeroberfläche beinhalten.
  • Das Mobilfunkanbietersystem 60 ist vorzugsweise ein Mobiltelefonsystem, das eine Vielzahl von Mobilfunktürmen 70 (nur einer dargestellt), eine oder mehrere Mobilvermittlungsstellen (MSCs) 72, sowie alle anderen Netzwerkkomponenten beinhaltet, die zum Verbinden des Mobilfunkanbietersystems 60 mit dem Festnetz 62 erforderlich sind. Jeder Mobilfunkturm 70 beinhaltet Sende- und Empfangsantennen und eine Basisstation, wobei die Basisstationen von unterschiedlichen Mobilfunktürmen mit der MSC 72 entweder direkt oder über zwischengeschaltete Geräte, wie z. B. eine Basisstationssteuereinheit, verbunden sind. Das Drahtlosträgersystem 60 kann jede geeignete Kommunikationstechnologie implementieren, beispielsweise digitale Technologien, wie CDMA (z. B. CDMA2000), LTE (z. B. 4G LTE oder 5G LTE), GSM/GPRS oder andere aktuelle oder neu entstehende drahtlose Technologien. Andere Mobilfunkturm/Basisstation/MSC-Anordnungen sind möglich und könnten mit dem Drahtlosträgersystem 60 verwendet werden. So könnten sich beispielsweise die Basisstation und der Mobilfunkturm an derselben Stelle oder entfernt voneinander befinden, jede Basisstation könnte für einen einzelnen Mobilfunkturm zuständig sein oder eine einzelne Basisstation könnte verschiedene Mobilfunktürme bedienen, oder verschiedene Basisstationen könnten mit einer einzigen MSC gekoppelt werden, um nur einige der möglichen Anordnungen zu nennen.
  • Abgesehen vom Verwenden des Mobilfunkanbietersystems 60 kann ein unterschiedliches Mobilfunkanbietersystem in der Form von Satellitenkommunikation verwendet werden, um unidirektionale oder bidirektionale Kommunikation mit dem Fahrzeug 12 bereitzustellen. Dies kann unter Verwendung von einem oder mehreren Kommunikationssatelliten 66 und einer Uplink-Sendestation 67 erfolgen. Bei der unidirektionalen Kommunikation kann es sich beispielsweise um Satellitenradiodienste handeln, worin die Programmierinhalte (Nachrichten, Musik usw.) von der Sendestation 67 empfangen, für das Hochladen gepackt und anschließend an den Satelliten 66 gesendet wird, der die Programmierung an die Teilnehmer ausstrahlt. Bei der bidirektionalen Kommunikation kann es sich beispielsweise um Satellitentelefondienste handeln, die den Satelliten 66 verwenden, um Telefonkommunikationen zwischen dem Fahrzeug 12 und der Station 67 weiterzugeben. Die Satellitentelefonie kann entweder zusätzlich oder anstelle des Drahtlosträgersystems 60 verwendet werden.
  • Das Festnetz 62 kann ein herkömmliches landgebundenes Telekommunikationsnetzwerk sein, das mit einem oder mehreren Festnetztelefonen verbunden ist und das Mobilfunkanbietersystem 60 mit der Fernzugriffszentrale 78 verbindet. So kann beispielsweise das Festnetz 62 ein öffentliches Telekommunikationsnetz (PSTN) beinhalten, wie es beispielsweise verwendet wird, um fest verdrahtete Telefonie, paketvermittelte Datenkommunikationen und die Internetinfrastruktur bereitzustellen. Ein oder mehrere Segmente des Festnetzes 62 könnten durch Verwenden eines normalen drahtgebundenen Netzwerks, eines Lichtleiter- oder eines anderen optischen Netzwerks, eines Kabelnetzes, von Stromleitungen, anderen drahtlosen Netzwerken, wie z. B. drahtlosen lokalen Netzwerken (WLANs) oder Netzwerken, die drahtlosen Breitbandzugang (BWA) bereitstellen oder einer Kombination derselben implementiert sein. Weiterhin muss die Fernzugriffszentrale 78 nicht über das Festnetz 62 verbunden sein, sondern könnte Funktelefonausrüstung beinhalten, sodass sie direkt mit einem drahtlosen Netzwerk, wie z. B. dem Mobilfunkanbietersystem 60, kommunizieren kann.
  • Obgleich in 1 als ein einziges Gerät dargestellt, kann der Computer 64 eine Anzahl an Computern beinhalten, die über ein privates oder öffentliches Netzwerk, wie z. B. das Internet, zugänglich sind. Jeder Computer 64 kann für einen oder mehrere Zwecke verwendet werden. In einer exemplarischen Ausführungsform kann der Computer 64 als ein Webserver konfiguriert sein, der durch das Fahrzeug 12 über das drahtlose Kommunikationssystem 28 und den Mobilfunkanbieter 60 zugänglich ist. Zu anderen derart zugänglichen Computern 64 können beispielsweise gehören: ein Computer in einer Reparaturwerkstatt, der Diagnoseinformationen und andere Fahrzeugdaten vom Fahrzeug über das drahtlose Kommunikationssystem 28 oder einen Speicherort eines Drittanbieters hochgeladen werden können oder aus welchem Fahrzeugdaten oder sonstigen Informationen, entweder durch Kommunikation mit dem Fahrzeug 12, der Fernzugriffszentrale 78, dem drahtlosen vernetzten Gerät 57 oder einer Kombination aus diesen bereitgestellt werden. Der Computer 64 kann eine durchsuchbare Datenbank und ein Datenbankverwaltungssystem instandhalten, das die Eingabe, Löschung und Änderung von Daten, sowie den Empfang von Anfragen ermöglicht, um Daten innerhalb der Datenbank zu lokalisieren. Der Computer 64 kann zudem für die Bereitstellung von Internetverbindungen, wie z. B. DNS-Diensten, oder als Netzwerkadressenserver verwendet werden, der DHCP oder ein anderes geeignetes Protokoll verwendet, um dem Fahrzeug 12 eine IP-Adresse zuzuweisen.
  • Die Fernzugriffszentrale 78 ist konzipiert, um das drahtlose Kommunikationssystem 28 des Fahrzeugs 12 mit einer Vielzahl von unterschiedlichen Systemfunktionen bereitzustellen, und beinhaltet nach der in 1 gezeigten exemplarischen Ausführungsform im Allgemeinen einen oder mehrere Switches 80, Server 82, Datenbanken 84, Live-Berater 86 sowie ein automatisiertes Sprachausgabesystem (VRS) 88. Diese verschiedenen Komponenten der Fernzugriffszentrale sind bevorzugt miteinander über ein verdrahtetes oder drahtloses lokales Netzwerk 90 gekoppelt. Der Switch 80, der als Nebenstellenanlagen (PBX)-Switch genutzt werden kann, leitet eingehende Signale weiter, sodass Sprachübertragungen gewöhnlich entweder zum Live-Berater 86 über das reguläre Telefon oder automatisiert zum Sprachausgabesystem 88 unter Verwendung von VoIP gesendet werden. Das Live-Berater-Telefon kann auch VoIP verwenden, wie durch die gestrichelte Linie in 1 angezeigt. VoIP und andere Datenkommunikation durch den Switch 80 werden über ein Modem (nicht dargestellt) implementiert, das zwischen dem Switch 80 und Netzwerk 90 verbunden ist. Datenübertragungen werden über das Modem an den Server 82 und/oder die Datenbank 84 weitergegeben. Die Datenbank 84 kann Kontoinformationen, wie beispielsweise Teilnehmerauthentisierungs-Informationen, Fahrzeugkennungen, Profildatensätze, Verhaltensmuster und andere entsprechende Teilnehmerinformationen, speichern. Datenübertragungen können zudem durch drahtlose Systeme, wie z. B. 802.1 Ix, GPRS und dergleichen, erfolgen. Obwohl die veranschaulichte Ausführungsform beschrieben wurde, als ob sie in Verbindung mit einer bemannten Fernzugriffszentrale 78 verwendet werden würde, die den Live-Berater 86 einsetzt, ist es offensichtlich, dass die Fernzugriffszentrale stattdessen VRS 88 als einen automatisierten Berater verwenden kann, oder eine Kombination von VRS 88 und dem Live-Berater 86 verwendet werden kann.
  • Wie in 2 dargestellt, beinhaltet das ADS 24 mehrere verschiedene Steuersysteme, einschließlich mindestens eines Wahrnehmungssystem 32 zum Feststellen des Vorhandenseins, der Position, der Klassifizierung und der Bahn der erkannten Eigenschaften oder Objekte in der Nähe des Fahrzeugs. Das Wahrnehmungssystem 32 ist so konfiguriert, dass es Eingaben, wie beispielsweise in 1 veranschaulicht, von einer Vielzahl von Sensoren 26 empfängt und Sensoreingaben synthetisiert und verarbeitet, um Parameter zu erzeugen, die als Eingaben für andere Steueralgorithmen des ADS 24 verwendet werden.
  • Das Wahrnehmungssystem 32 umfasst ein Sensorfusions- und Vorverarbeitungsmodul 34, das die Sensordaten 27 aus der Vielzahl der Sensoren 26 verarbeitet und synthetisiert. Das Sensorfusions- und Vorverarbeitungsmodul 34 führt eine Kalibrierung der Sensordaten 27 durch, einschließlich, aber nicht beschränkt auf LIDAR-zu-LIDAR-Kalibrierung, Kamera-zu-LIDAR-Kalibrierung, LIDAR-zu-Chassis-Kalibrierung und LIDAR-Strahlintensitätskalibrierung. Das Sensorfusions- und Vorverarbeitungsmodul 34 gibt vorverarbeitete Sensorausgaben 35 aus.
  • Ein Klassifizierungs- und Segmentierungsmodul 36 empfängt die vorverarbeitete Sensorausgabe 35 und führt Objektklassifizierung, Bildklassifizierung, Ampelklassifizierung, Objektsegmentierung, Bodensegmentierung und Objektverfolgungsprozesse durch. Die Objektklassifizierung beinhaltet, ist aber nicht beschränkt auf die Identifizierung und Klassifizierung von Objekten in der Umgebung, einschließlich Identifizierung und Klassifizierung von Verkehrssignalen und -zeichen, RADAR-Fusion und -verfolgung, um die Platzierung und das Sichtfeld (FoV) des Sensors und die falsche positive Ablehnung über die LIDAR-Fusion zu berücksichtigen, um die vielen falschen Positiven zu beseitigen, die in einer städtischen Umgebung existieren, wie zum Beispiel Schachtabdeckungen, Brücken, in die Fahrbahn ragende Bäume oder Lichtmasten und andere Hindernisse mit einem hohen RADAR-Querschnitt, die aber nicht die Fähigkeit des Fahrzeugs beeinflussen, entlang seines Kurses zu fahren. Zusätzliche Objektklassifizierungs- und Verfolgungsprozesse, die durch das Klassifizierungs- und Segmentierungsmodell 36 durchgeführt werden, beinhalten, sind aber nicht beschränkt auf Freespace-Erkennung und High-Level-Tracking, die Daten von RADAR-Spuren, LIDAR-Segmentierung, LIDAR-Klassifizierung, Bildklassifizierung, Objektform-Passmodellen, semantischen Informationen, Bewegungsvorhersage, Rasterkarten, statischen Hinderniskarten und andere Quellen verschmelzen, um qualitativ hochwertige Objektspuren zu erzeugen.
  • Das Klassifizierungs- und Segmentierungsmodul 36 führt zusätzlich eine Verkehrssteuerungs-Klassifizierungs- und Verkehrssteuerungsvorrichtungsverschmelzung mit Spurassoziations- und Verkehrssteuerungsvorrichtungsverhaltensmodellen durch. Das Klassifizierungs- und Segmentierungsmodul 36 erzeugt eine Objektklassifizierungs- und Segmentierungsausgabe 37, die eine Objektidentifikationsinformation enthält.
  • Ein Lokalisierungs- und Abbildungsmodul 40 verwendet die Objektklassifizierungs- und Segmentierungsausgabe 37, um Parameter zu berechnen, einschließlich, aber nicht beschränkt auf Schätzungen der Position und Orientierung des Fahrzeugs 12 in sowohl typischen als auch anspruchsvollen Antriebsszenarien. Zu diesen anspruchsvollen Antriebsszenarien gehören unter anderem dynamische Umgebungen mit vielen Autos (z. B. dichter Verkehr), Umgebungen mit großflächigen Obstruktionen (z. B. Fahrbahnbaustellen oder Baustellen), Hügel, mehrspurige Straßen, einspurige Straßen, eine Vielzahl von Straßenmarkierungen und Gebäuden oder deren Fehlen (z. B. Wohn- und Geschäftsbezirke) und Brücken und Überführungen (sowohl oberhalb als auch unterhalb eines aktuellen Straßensegments des Fahrzeugs).
  • Das Lokalisierungs- und Abbildungsmodul 40 enthält auch neue Daten, die als Ergebnis von erweiterten Kartenbereichen erfasst werden, die durch fahrzeugeigene Abbildungsfunktionen erhalten werden, die von Fahrzeug 12 während des Betriebs ausgeführt werden, und Zuordnungsdaten, die über das drahtlose Kommunikationssystem 28 an das Fahrzeug 12 „geschoben“ werden. Das Lokalisierungs- und Abbildungsmodul 40 aktualisiert die vorherigen Kartendaten mit den neuen Informationen (z. B. neue Spurmarkierungen, neue Gebäudestrukturen, Hinzufügen oder Entfernen von Baustellenzonen usw.), während unbeeinflusste Kartenbereiche unverändert bleiben. Beispiele von Kartendaten, die erzeugt oder aktualisiert werden können, beinhalten, sind aber nicht beschränkt auf die Ausweichspurkategorisierung, die Spurgrenzerzeugung, die Spurverbindung, die Klassifizierung von Neben- und Hauptstraßen, die Klassifizierung der Links- und Rechtskurven und die Kreuzungsspurerstellung.
  • In einigen Ausführungsformen verwendet das Lokalisierungs- und Abbildungsmodul 40 Simultanlokalisierungs- und Abbildungs-(„SLAM“)-Techniken, um Karten der Umgebung zu entwickeln. SLAM ist die Abkürzung für simultane Fehlerlokalisierung und Kartierung. SLAM-Techniken konstruieren eine Karte einer Umgebung und verfolgen die Position eines Objekts innerhalb der Umgebung. GraphSLAM, eine Variante von SLAM, verwendet sparsame Matrizen, die zum Erstellen eines Graphen mit Beobachtungsabhängigkeiten verwendet werden.
  • Die Objektposition innerhalb einer Karte wird durch eine Gaußsche Wahrscheinlichkeitsverteilung dargestellt, die sich um den vorhergesagten Pfad des Objekts zentriert. SLAM verwendet in seiner einfachsten Form drei Einschränkungen: eine anfängliche Standortbeschränkung; eine relative Bewegungseinschränkung, die der Pfad des Objekts ist; und eine relative Messeinschränkung, die eine oder mehrere Messungen eines Objekts zu einer Landmarke ist.
  • Die anfängliche Bewegungseinschränkung ist die Ausgangsposition (z. B. Position und Orientierung) des Fahrzeugs, die sich aus der Position des Fahrzeugs im zweidimensionalen oder dreidimensionalen Raum einschließlich Neigungs-, Drehungs- und Gierdaten zusammensetzt. Die relative Bewegungseinschränkung ist die Verschiebung des Objektes, die eine gewisse Flexibilität zur Anpassung an die Kartenkonsistenz enthält. Die relative Messeinschränkung beinhaltet eine oder mehrere Messungen von den Objektsensoren bis zu einer Landmarke. Die anfängliche Positionsbeschränkung, die relative Bewegungseinschränkung und die relative Messeinschränkung sind typischerweise Gaußsche Wahrscheinlichkeitsverteilungen. Objektortungsverfahren innerhalb einer sensorerzeugten Karte verwenden typischerweise Kalman-Filter, verschiedene statistische Korrelationsverfahren wie die Pearson-Produkt-Moment-Korrelation und/oder Partikelfilter.
  • In einigen Ausführungsformen wird nach dem Erstellen einer Karte die Fahrzeuglokalisierung in Echtzeit über einen Partikelfilter erreicht. Partikelfilter sind im Gegensatz zu Bayes- oder Kalman-Filtern für nichtlineare Systeme geeignet. Zur Ortung eines Fahrzeugs werden Partikel um einen erwarteten Mittelwert über eine Gaußsche Wahrscheinlichkeitsverteilung erzeugt. Jedem Partikel wird ein nummerisches Gewicht zugeordnet, das die Genauigkeit der Partikelposition zur vorhergesagten Position repräsentiert. Die Sensordaten werden berücksichtigt und die Partikelgewichte den Sensordaten angepasst. Je enger die Annäherung des Partikels an die eingestellte Position des Sensors ist, desto größer ist der numerische Wert der Partikelgewichte.
  • Sobald ein Aktionsbefehl auftritt, wird jedes Partikel an eine neue vorhergesagte Position aktualisiert. Die Sensordaten werden an der neuen vorhergesagten Position beobachtet und jedem Partikel wird ein neues Gewicht zugewiesen, das die Genauigkeit der Partikelposition in Bezug auf die vorhergesagte Position und die Sensordaten angibt. Die Partikel werden neu abgetastet, wobei die Gewichte mit der größten numerischen Größe ausgewählt werden, was die Genauigkeit der vorhergesagten und sensorkorrigierten Objektposition erhöht. Typischerweise ergibt sich aus Mittelwert, Varianz und Standardabweichung der neu abgetasteten Daten die Wahrscheinlichkeit einer neuen Obj ektposition.
  • Die Verarbeitung des Partikelfilters wird ausgedrückt als: P ( H t | H t 1 , A t , D t )
    Figure DE102019110772A1_0001
    wobei Ht die aktuelle Hypothese ist, welche die Objektposition ist. Ht-1 ist die vorhergehende Objektposition, At ist die Handlung, die typischerweise ein Motorbefehl ist, und Dt sind die beobachtbaren Daten.
  • In einigen Ausführungsformen behält das Lokalisierungs- und Abbildungsmodul 40 eine Schätzung der globalen Position des Fahrzeugs bei, indem es Daten aus mehreren Quellen einbezieht, wie zuvor in einem erweiterten Kalman-Filter (EKF)-Framework erläutert. Kalman-Filter sind lineare Filter, die auf rekursiven Bayes'schen Filtern basieren. Rekursive Bayes'sche Filter, die auch als Rekursive Bayes'sche Schätzung bezeichnet werden, ersetzen im Wesentlichen das Posterior einer Schätzung in die vorherige Position, um ein neues Posterior auf einer neuen Iteration der Schätzung zu berechnen. Dies ergibt effektiv: P ( H t | H t 1 , D t )
    Figure DE102019110772A1_0002
    wobei die Wahrscheinlichkeit einer Hypothese Ht durch die Hypothese bei der vorhergehenden Iteration Ht-1 und die Daten Dt zur aktuellen Zeit t bewertet wird.
  • Ein Kalman-Filter fügt eine Aktionsvariable At hinzu, wobei t eine Zeit-Iteration ist, woraus sich ergibt: P ( H t | H t 1 , A t , D t )
    Figure DE102019110772A1_0003
    wobei die Wahrscheinlichkeit einer Hypothese Ht auf der vorhergehenden Hypothese Ht-1, einer Handlung At , und der Daten Dt zum gegenwärtigen Zeitpunkt t basiert.
  • Ein Kalman-Filter, in der Robotik verbreitet genutzt, schätzt eine aktuelle Position, die eine gemeinsame Wahrscheinlichkeitsverteilung ist und basierend auf einem Aktionsbefehl eine neue Position voraussagt, die auch eine gemeinsame Wahrscheinlichkeitsverteilung ist, die auch als Zustandsvorhersage bezeichnet wird. Es werden Sensordaten erfasst und eine getrennte gemeinsame Wahrscheinlichkeitsverteilung berechnet, die als Sensorvorhersage bezeichnet wird.
  • Die Zustandsvorhersage wird ausgedrückt als: X t ' = A X t 1 + B μ + ξ t
    Figure DE102019110772A1_0004
    wobei X't ein neuer Zustand ist, der auf dem vorherigen Zustand AXt-1, Bµ und ξt basiert. Die Konstanten A und B sind von der Physik des Interesses bestimmt, wobei µ der Befehl des Robotermotors sein kann und ξt eine Gauß'sche Zustandsfehlervorhersage ist.
  • Die Sensorvorhersage wird ausgedrückt als: Z t ' = C X t + ξ z
    Figure DE102019110772A1_0005
    wobei Z't der neue Sensorschätzwert, C eine Funktion und ξz eine Gauß‘sche Sensorfehlervorhersage ist.
  • Eine neue Schätzung des vorhergesagten Zustandes wird ausgedrückt als: X E S T = X t ' + K ( Z t Z t ' )
    Figure DE102019110772A1_0006
    wobei das Produkt K(Zt - Z't ) als Kalman-Verstärkungsfaktor bezeichnet wird. Wenn der Unterschied zwischen der Sensorvorhersage Z't und den tatsächlichen Sensordaten Zt ist. (das heißt wenn Zt - Z't ) relativ annähernd Null ist, dann gilt X't als die neue Zustandsschätzung. Wenn Zt - Z't relativ größer als Null ist, wird der K(Zt - Z't) Faktor hinzugefügt, um eine neue Zustandsschätzung zu erhalten.
  • Sobald die Fahrzeugbewegungsinformationen empfangen werden, aktualisiert das EKF die Fahrzeugpositionsschätzung und erweitert gleichzeitig die geschätzte Kovarianz. Sobald die Sensorkovarianz in das EKF integriert ist, erzeugt das Lokalisierungs- und Abbildungsmodul 40 einen Lokalisierungs- und Abbildungsausgang 41, der die Position und Orientierung des Fahrzeugs 12 in Bezug auf erfasste Hindernisse und Straßenmerkmale beinhaltet.
  • Ein Fahrzeug-Odometrie-Modul 46 empfängt Daten 27 von den Fahrzeugsensoren 26 und erzeugt eine Fahrzeug-Odometrie-Ausgabe 47, die beispielsweise Fahrzeugkurs- und Geschwindigkeits- und Entfernungsinformationen beinhaltet. Ein absolutes Positionierungsmodul 42 empfängt die Lokalisierungs- und Abbildungsausgabe 41 und die Fahrzeug-Odometrieinformation 47 und erzeugt eine Fahrzeugpositionsausgabe 43, die in getrennten Berechnungen verwendet wird, wie unten erörtert wird.
  • Ein Objektvorhersagemodul 38 verwendet die Objektklassifizierungs- und Segmentierungsausgabe 37, um Parameter zu erzeugen, einschließlich, aber nicht beschränkt auf eine Position eines erkannten Hindernisses relativ zum Fahrzeug, einen vorhergesagten Weg des erkannten Hindernisses relativ zum Fahrzeug und eine Position und Orientierung der Fahrbahnen relativ zum Fahrzeug. Bayes'sche Modelle können in einigen Ausführungsformen verwendet werden, um die Absicht eines Fahrers oder Fußgängers basierend auf semantischen Informationen, vorheriger Trajektorien und unmittelbarer Pose vorherzusagen, wobei die Pose die Kombination von Position und Orientierung eines Objekts ist.
  • Der Bayes'sche Satz, in der Robotik verbreitet genutzt, auch als Bayes'scher Filter bezeichnet, ist eine Form der bedingten Wahrscheinlichkeit. Der Bayes'sche Satz, nachfolgend in Gleichung 7 dargestellt, enthält die These, dass die Wahrscheinlichkeit einer Hypothese H mit Daten D gleich der Wahrscheinlichkeit einer Hypothese H mal die Wahrscheinlichkeit der Daten D mit der Hypothese H ist, dividiert durch die Wahrscheinlichkeit der Daten P (D). P ( H | D ) = P ( H )   P ( D | H ) P ( D )
    Figure DE102019110772A1_0007
  • P(H/D) wird als Posterior bezeichnet und P(H) wird als Prior bezeichnet. Der Bayes'sche Satz misst einen Wahrscheinlichkeitsgrad der Überzeugung in einem Satz vor (dem Vorherigen) und nach (dem Nachfolgenden), wobei in Anbetracht der in den Daten enthaltenen Beweisen D. Bayes' Satz bei der Iteration rekursiv verwendet werden kann. Bei jeder neuen Iteration wird der vorherige Posterior zu dem vorhergehenden, um einen neuen Posterior zu erzeugen, bis die Iteration abgeschlossen ist. Daten über den vorhergesagten Weg von Objekten (einschließlich Fußgänger, umliegende Fahrzeuge und andere bewegte Objekte) werden als Objektvorhersageausgabe 39 ausgegeben und in getrennten Berechnungen verwendet, wie unten erörtert wird.
  • Das ADS 24 enthält auch ein Beobachtungsmodul 44 und ein Interpretationsmodul 48. Das Beobachtungsmodul 44 erzeugt eine Beobachtungsausgabe 45, die vom Interpretationsmodul 48 empfangen wird. Das Beobachtungsmodul 44 und das Interpretationsmodul 48 erlauben den Zugriff durch die Fernzugriffszentrale 78. Ein Live-Experte oder Berater, z.B. der in 1 dargestellte Berater 86 kann optional die Objektvorhersageausgabe 39 überprüfen und zusätzliche Eingabe- und/oder Übersteuerungsautomatik-Fahrvorgänge bereitstellen und den Betrieb des Fahrzeugs annehmen, falls dies durch eine Fahrzeugsituation gewünscht oder erforderlich ist. Das Beobachtungs- und Interpretationsmodul 48 erzeugt eine interpretierte Ausgabe 49, die eine zusätzliche Eingabe durch den Live-Experten beinhaltet, falls vorhanden.
  • Ein Wegplanungsmodul 50 verarbeitet und synthetisiert die Objektvorhersageausgabe 39, die interpretierte Ausgabe 49 und zusätzliche Kursinformationen 79, die von einer Online-Datenbank oder der Fernzugriffszentrale 78 empfangen werden, um einen Fahrzeugweg zu ermitteln, der verfolgt werden soll, um das Fahrzeug unter Beachtung der Verkehrsgesetze und Vermeidung von erkannten Hindernissen auf dem gewünschten Kurs zu halten. Das Wegplanungsmodul 50 verwendet Algorithmen, die konfiguriert sind, um beliebige erkannte Hindernisse in der Nähe des Fahrzeugs zu vermeiden, das Fahrzeug in einer gegenwärtigen Fahrspur zu halten und das Fahrzeug auf dem gewünschten Kurs zu halten. Das Wegplanungsmodul 50 nutzt Positions-Graph-Optimierungstechniken, einschließlich der nichtlinearen kleinstquadratischen Positions-Graph-Optimierung, um die Karte der Fahrzeugtrajektorien in sechs Freiheitsgraden zu optimieren und Wegfehler zu reduzieren. Das Wegplanungsmodul 50 gibt die Fahrzeugweginformationen als Wegplanungsausgabe 51 aus. Der Wegplanungsausgangswert 51 beinhaltet eine vorgegebene Fahrzeugroute auf der Grundlage der Route, eine Fahrzeugposition relativ zu der Route, Position und Orientierung der Fahrspuren und das Vorhandensein und den Weg erfasster Hindernisse.
  • Ein erstes Steuermodul 52 verarbeitet und synthetisiert die Wegplanungsausgabe 51 und die Fahrzeugpositionsausgabe 43 zum Erzeugen einer ersten Steuerausgabe 53. Das erste Steuermodul 52 enthält auch die Kursinformation 79, die von der Fernzugriffszentrale 78 im Falle einer Fernübernahmebetriebsart des Fahrzeugs bereitgestellt wird.
  • Ein Fahrzeugsteuermodul 54 empfängt die erste Steuerausgabe 53 sowie die Geschwindigkeits- und Kursinformation 47, die von der Fahrzeug-Odometrie 46 empfangen wird, und erzeugt einen Fahrzeugsteuerausgabe 55. Die Fahrzeugsteuerausgabe 55 beinhaltet einen Satz Stellgliedbefehle, um den befohlenen Weg vom Fahrzeugsteuermodul 54 zu erreichen, einschließlich, jedoch nicht beschränkt auf einen Lenkbefehl, einen Schaltbefehl, einen Drosselbefehl und einen Bremsbefehl.
  • Die Fahrzeugsteuerausgabe 55 wird an die Stellglieder 30 übermittelt. In einer exemplarischen Ausführungsform beinhalten die Stellglieder 30 eine Lenksteuerung, eine Schaltsteuerung, eine Drosselsteuerung und eine Bremssteuerung. Die Lenksteuerung kann beispielsweise ein Lenksystem 16 steuern, wie in 1 veranschaulicht. Die Gangschaltsteuerung kann beispielsweise ein Getriebe 14 steuern, wie in 1 veranschaulicht. Die Drosselklappensteuerung kann beispielsweise ein Antriebssystem 13 steuern, wie in 1 veranschaulicht. Die Bremssteuerung kann beispielsweise die Radbremsen 17 steuern, wie in 1 veranschaulicht.
  • Es versteht sich, dass das offenbarte Verfahren mit einer beliebigen Anzahl an unterschiedlichen Systemen verwendet werden kann und nicht speziell auf die hierin dargestellte Betriebsumgebung einschränkt ist. Die Architektur, der Aufbau, die Konfiguration und der Betrieb des Systems 10 und dessen einzelne Komponenten sind allgemein bekannt. Darüber hinaus können weitere hier nicht dargestellte Systeme ebenfalls die offenbarten Verfahren verwenden.
  • Nun zeigt 3 eine exemplarische Umgebung 300 zum Implementieren der vorliegenden offenbarten Systeme und Verfahren. Bei der darstellenden Ausführungsform fährt ein Fahrzeug 310 mit einem betriebsbereiten LIDAR-System. Das System hat einen Sender, der betriebsbereit ist und gepulstes Licht oder Laser 330 vom Fahrzeug 310 weg sendet. Ein Teil des gepulsten Lichts trifft an den Objekten 320 um das Fahrzeug herum ein und ein reflektiertes Signal wird an einen Empfänger am Fahrzeug zurückgesandt. Das Fahrzeug 310 ist auch mit einem Prozessor ausgestattet, der das zurückgesendete Signal verarbeitet, um die Amplitude, Laufzeit und Phasenverschiebung unter anderen Merkmalen zu messen, um die Entfernung zu den Objekten 320, sowie die Größe und Geschwindigkeit der Objekte 320 zu ermitteln.
  • Nun zeigt 4 ein funktionelles Blockschaltbild eines LIDAR-Systems 400 nach einem exemplarischen Verfahren und System. Das Fahrzeug 410, das mit einem LIDAR-Empfänger ausgestattet ist, ist betriebsbereit, um einen Laserstrahl 415 zu erzeugen, diesen zu senden und die von einem Objekt innerhalb des Sichtfelds gestreute/reflektierte Laserenergie zu erfassen. Der Scanner 420 bewegt Laserstrahl über die Zielbereiche, sodass ein erstes Ziel 420 beleuchtet und ein zweites Ziel 430 beleuchtet wird. Das erste Ziel 420 hat einen ersten Abstand vom Fahrzeug und das zweite Ziel 430 hat einen zweiten Abstand vom Fahrzeug. In einigen Fällen kann das LIDAR fälschlicherweise ein falsches Ziel 440 als Ergebnis von Rauschen durch Überlagerung zwischen Sensoren und Mehrwegeeffekten erfassen. Das System nutzt dann die erwartete inverse quadratische Beziehung zwischen Intensität und Entfernung zum Ziel
  • Der LIDAR-Empfänger ist betriebsbereit, um einen Laserstrahl zu erzeugen, diesen zum Sichtfeld zu senden und von einem Ziel reflektierte Energie zu erfassen. LIDAR-Sensoren nutzen Laufzeitmessungen, um die Entfernung von Objekten zur ermitteln, von denen die gepulsten Laserstrahlen reflektiert werden. Das oszillierende Lichtsignal wird vom Ziel reflektiert und vom Detektor innerhalb des LIDAR-Empfängers 410 mit einer Phasenverschiebung erfasst, die von der Entfernung des Objekts vom Sensor abhängt. Ein elektronischer Phasenregelkreis (PLL) kann verwendet werden, um die Phasenverschiebung aus dem Signal zu extrahieren und diese Phasenverschiebung wird unter Verwendung bekannter Techniken in eine Entfernung übersetzt. Der Detektor kann auch eine Spitzenerkennung einsetzen.
  • Das System ist wirksam, um die Beobachtung zu nutzen, dass keine großen Änderungen der Entfernungsmesswerte bei der Beleuchtung eines Sichtfeldes erwartet werden. Das System ermittelt dann zu entfernende Punkte als Antwort auf benachbarte Punkte im Sichtfeld. So ist beispielsweise der durch einen einzelnen Laser gemessene Bereich bei dem Zündzeitpunkt n _ mit n = 0 für den ersten Messpunkt, und worin Δ_ die Änderung des Abstands zwischen einem Bereich und einem benachbarten Bereich ist. Δ  sei _ = | _ _ ( + 1 ) |
    Figure DE102019110772A1_0008
  • Da der Laser eine Oberfläche scannt, ist Δ_ klein von der Entfernungsmessung zur angrenzenden Entfernungsmessung. Während sich der Scan zu einer neuen Oberfläche bewegt, ist Δ_ groß, aber beim scannen der neuen Oberfläche ist Δ_ wiederum klein. Gemäß einer exemplarischen Ausführungsform, wenn ein Δ_ zwischen benachbarten Entfernungsmessungen groß ist, aber der anschließende Δ_ klein ist, d. h. klein, groß, klein, wird die Entfernungsmessung beibehalten, da sie wahrscheinlich eine Änderung in Oberflächen anzeigt, wie etwa die Differenz in Bereichen zwischen dem ersten Ziel 420 und dem zweiten Ziel 430. Wenn jedoch zwei aufeinanderfolgende Messungen einen großen Δ_ haben, kann es auf ein falsches Ziel 440 hindeuten.
  • Die Entfernungsdifferenz zwischen benachbarten Punkten, die durch den gleichen Laser auf einer glatten Oberfläche erfasst werden, ergibt sich aus der folgenden Gleichung, wobei der Bereich bis zum näher gelegenen Bereich ist , Δ ist die Winkelauflösung des LIDAR, und ist der Einfallswinkel zwischen dem LIDAR-Strahl und der Oberfläche. Δ r = r ( cos ( Δθ ) + sin ( Δθ ) cot ( ϕ ) 1 )
    Figure DE102019110772A1_0009
  • Da dieser Wert von Δ abhängig vom Bereich ist, kann es wünschenswert sein, die Bereichsdeltamessungen nach dem Bereich zu skalieren, bevor sie als ein Merkmal zur Filterung verwendet wird. Alternativ kann ein hybrider Ansatz verwendet werden, worin ein skalierter Wert im Nahbereich verwendet wird, während der nicht skalierte Wert im Fernbereich verwendet wird.
  • Neben der Reichweitenerkennung können mögliche falsche Erfassungen bestimmt werden, indem die erwartete inverse Quadratbeziehung zwischen Intensität und Entfernung zum Ziel genutzt wird. Die Intensität der LIDAR-Rückgaben nimmt mit dem Quadrat des Bereichs ab. Diese umgekehrte quadratische Beziehung bedeutet, dass bei Fernbereichen hohe Intensitätsrückgaben nicht erwartet werden. Das System kann wirksam sein, um eine Erfassung als Reaktion auf eine unerwartete Intensität und/oder Bereichsabweichung zu verwerfen. Das System ist dann wirksam, um die Ausreißer basierend auf der Verteilung des Bereichs/der Intensität in realen Daten als Reaktion auf einen berechneten Ausreißerschwellenwert für jeden Laser basierend auf repräsentativen Daten zu entfernen.
  • 5 stellt ein Flussdiagramm 500 eines Verfahrens zur verbesserten LiDAR-Abtastung gemäß einer exemplarischen Ausführungsform dar. Das Verfahren ist wirksam, um die Übertragung mehrerer Laserimpulse in einer Reihe von vorbestimmten Richtungen 510 während einer Abtastung des Sichtfeldes zu ermöglichen. Die Laserimpulse werden in bekannten Winkelintervallen mit bekannten Elevationen oder Höhen übertragen. Das Verfahren ermöglicht dann das Erfassen oder die Rückgabe der Reflexionen der gesendeten Laserimpulse 520. Die Rückgaben werden dann chronologisch 530 geordnet. In einer Gruppen-LIDAR-Konfiguration werden die erkannten Reflexionen oder Rückgaben durch einzelne Laser gruppiert und dann wird jede Lasergruppe chronologisch geordnet.
  • Sobald die Rückgaben chronologisch sind, wird aus jeder Rückgabe 540 ein Bereich extrahiert. Das Verfahren ist dann wirksam, um die zurückgegebenen Bereiche in Bezug auf die Zeit 550 zu unterscheiden. Der absolute Wert des Bereichsdelta wird dann berechnet 560. Ein Minimum von Pre-Delta und Post-Delta werden dem Wert 570 zugeordnet, und ein Punkt mit einem minimalen Entfernungsdelta, das einen Schwellenwert überschreitet, wird entfernt 580. Die verbleibenden Punkte werden gespeichert und mit einem Bereichskartengenerator gekoppelt, um eine Zuordnung von erfassten Objekten in der Nähe des LIDAR-Systems 590 zu erstellen. Die Zuordnung der erfassten Objekte wird verwendet, um ein autonomes Fahrzeug oder dergleichen 595 zu steuern.
  • Obwohl diese exemplarische Ausführungsform im Kontext eines voll funktionierenden Computersystems beschrieben wird, versteht es sich, dass Fachleute auf diesem Gebiet erkennen werden, dass die Mechanismen der vorliegenden Offenbarung als ein Programmprodukt mit einer oder mehreren Arten von nicht flüchtigen computerlesbaren Signalträgermedien verbreitet werden können, die verwendet werden, um das Programm und die zugehörigen Befehle zu speichern und deren Verbreitung auszuführen, wie ein nichtflüchtiges computerlesbares Medium, welches das Programm und Computerbefehle enthält, die darin gespeichert sind, um einen Computerprozessor zu veranlassen, das Programm auszuführen. Ein derartiges Programmprodukt kann vielerlei Formen annehmen, wobei die vorliegende Offenbarung in gleicher Weise, unabhängig von der spezifischen für die Verbreitung verwendeten Art von computerlesbarem Signalträgermedium, Anwendung findet. Zu den Beispielen für Signalträgermedien gehören: beschreibbare Medien, wie beispielsweise Disketten, Festplatten, Speicherkarten und optische Speicherplatten, sowie Übertragungsmedien, wie beispielsweise digitale und analoge Kommunikationsverbindungen.

Claims (10)

  1. Verfahren, umfassend: - Empfangen einer ersten Reflexion eines ersten gesendeten Laserimpulses aus einer ersten Richtung; - Empfangen einer zweiten Reflexion eines zweiten gesendeten Laserimpulses aus einer zweiten Richtung; - Empfangen einer dritten Reflexion eines dritten gesendeten Laserimpulses aus einer dritten Richtung, worin die zweite Richtung zwischen der ersten Richtung und der dritten Richtung liegt; - Bestimmen eines ersten Bereichs, der der ersten Reflexion zugeordnet ist, eines zweiten Bereichs, der der zweiten Reflexion zugeordnet ist, und eines dritten Bereichs, der der dritten Reflexion zugeordnet ist; - Verwerfen des zweiten Bereichs als Reaktion auf eine erste Differenz zwischen dem ersten Bereich und dem zweiten Bereich und einer zweiten Differenz zwischen dem zweiten Bereich und dem dritten Bereich, der einen Maximalwert überschreitet, und einer dritten Differenz zwischen dem ersten Bereich und dem dritten Bereich, der einen Minimalwert nicht überschreitet; und - Bestimmen einer Position eines Objekts als Reaktion auf den ersten Bereich und den dritten Bereich.
  2. Verfahren nach Anspruch 1, ferner umfassend das Erzeugen eines Steuersignals als Reaktion auf den Standort des Objekts, worin das Steuersignal verwendet wird, um eine Objektkarte für ein Fahrzeugsteuersystem zu erzeugen.
  3. Verfahren nach Anspruch 1, worin die erste Differenz und die zweite Differenz einen Schwellenwert überschreiten, der als Reaktion auf die dritte Differenz bestimmt wird.
  4. Verfahren nach Anspruch 1, ferner umfassend das chronologische Anordnen der ersten Reflexion, der zweiten Reflexion und der dritten Reflexion.
  5. Verfahren nach Anspruch 1, worin der zweite Bereich in Reaktion auf eine zweite Intensität der zweiten Reflexion verworfen wird, die eine maximale Differenz zwischen einer ersten Intensität der ersten Reflexion und einer dritten Intensität der dritten Reflexion überschreitet.
  6. Verfahren nach Anspruch 1, ferner umfassend das Skalieren des ersten Bereichs, des zweiten Bereichs und des dritten Bereichs in Reaktion auf den ersten Bereich, den zweiten Bereich und den dritten Bereich, der einen Schwellenwert überschreitet.
  7. Verfahren nach Anspruch 1, ferner umfassend das Erzeugen eines Steuersignals in Reaktion auf den Standort des Objekts, worin das Steuersignal zum Steuern eines autonomen Fahrzeugs verwendet wird.
  8. LiDAR-System, umfassend: - einen Sender zum Übertragen eines ersten Lichtimpulses, eines zweiten Laserimpulses und eines dritten Laserimpulses; - einen Detektor zum Erfassen einer ersten Reflexion des ersten Laserimpulses, einer zweiten Reflexion des zweiten Laserimpulses und einer dritten Reflexion des dritten Laserimpulses; - einen Prozessor zum Bestimmen eines ersten Bereichs als Reaktion auf den ersten Laserimpuls und die erste Reflexion, eines zweiten Bereichs als Reaktion auf den zweiten Laserimpuls und die zweite Reflexion und eines dritten Bereichs als Reaktion auf den dritten Laserimpuls und die dritte Reflexion, wobei der erste Bereich, der zweite Bereich und der dritte Bereich und der Prozessor weiterhin dazu dienen, den zweiten Bereich als Reaktion darauf zu verwerfen, dass eine erste Differenz zwischen dem ersten Bereich und dem dritten Bereich kleiner ist als eine zweite Differenz zwischen dem ersten Bereich und dem zweiten Bereich und einer dritten Differenz zwischen dem dritten Bereich und dem zweiten Bereich; und - eine Steuerung zum Erzeugen eines Steuersignals als Reaktion auf den ersten Bereich und den dritten Bereich.
  9. LIDAR-System nach Anspruch 8, worin der zweite Bereich in Reaktion auf eine zweite Intensität der zweiten Reflexion, die eine maximale Differenz zwischen einer ersten Intensität der ersten Reflexion und einer dritten Intensität der dritten Reflexion überschreitet, verworfen wird.
  10. Verfahren zum Erkennen eines Objekts mit einem LIDAR, umfassend: - Übertragen eines ersten Lichtlaserimpulses, eines zweiten Laserimpulses und eines dritten Laserimpulses; - Empfangen einer ersten Reflexion des ersten Laserimpulses, einer zweiten Reflexion des zweiten Laserimpulses und einer dritten Reflexion des dritten Laserimpulses; - Bestimmen eines ersten Bereichs als Reaktion auf den ersten Laserimpuls und die erste Reflexion, eines zweiten Bereichs als Reaktion auf den zweiten Laserimpuls und die zweite Reflexion und eines dritten Bereichs als Reaktion auf den dritten Laserimpuls und die dritte Reflexion, worin der erste Bereich, zweiter Bereich und dritter; und - Verwerfen des zweiten Bereichs als Reaktion auf eine erste Differenz zwischen dem ersten Bereich und dem dritten Bereich, die kleiner als eine zweite Differenz zwischen dem ersten Bereich und dem zweiten Bereich ist, und einer dritten Differenz zwischen dem dritten Bereich und dem zweiten Bereich; und - Erzeugen eines Steuersignals als Reaktion auf den ersten Bereich und den dritten Bereich.
DE102019110772.5A 2018-05-03 2019-04-25 Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system Pending DE102019110772A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/970,336 2018-05-03
US15/970,336 US11156717B2 (en) 2018-05-03 2018-05-03 Method and apparatus crosstalk and multipath noise reduction in a LIDAR system

Publications (1)

Publication Number Publication Date
DE102019110772A1 true DE102019110772A1 (de) 2019-11-07

Family

ID=68276588

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019110772.5A Pending DE102019110772A1 (de) 2018-05-03 2019-04-25 Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system

Country Status (3)

Country Link
US (1) US11156717B2 (de)
CN (1) CN110441790B (de)
DE (1) DE102019110772A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391823B2 (en) * 2018-02-21 2022-07-19 Innovusion, Inc. LiDAR detection systems and methods with high repetition rate to observe far objects
US20200088883A1 (en) * 2018-09-19 2020-03-19 Here Global B.V. One-dimensional vehicle ranging
US11500075B2 (en) * 2019-02-01 2022-11-15 Zoox, Inc. Identifying and/or removing ghost detections from lidar sensor output
KR20210054920A (ko) * 2019-11-06 2021-05-14 삼성전자주식회사 전자 장치 및 그 제어 방법
KR20210086904A (ko) * 2019-12-31 2021-07-09 현대자동차주식회사 자율 발렛 주차를 지원하는 시스템 및 방법, 그리고 이를 위한 인프라 및 차량
WO2021189347A1 (en) * 2020-03-26 2021-09-30 Baidu.Com Times Technology (Beijing) Co., Ltd. Neighbor-based point cloud filter system
WO2021205787A1 (ja) * 2020-04-06 2021-10-14 パナソニックIpマネジメント株式会社 測距装置、およびプログラム
CN115079115A (zh) * 2021-03-10 2022-09-20 上海禾赛科技有限公司 雷达、用于雷达的数据处理方法及设备、可读存储介质
CN113514254B (zh) * 2021-04-30 2022-05-17 吉林大学 一种针对自动驾驶仿真的并行加速测试方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202776B2 (en) * 1997-10-22 2007-04-10 Intelligent Technologies International, Inc. Method and system for detecting objects external to a vehicle
GB2308763B (en) * 1995-12-29 1999-12-22 Barr & Stroud Ltd Laser range finders
US6473027B1 (en) * 2001-05-15 2002-10-29 Northrop Grumman Corporation False reflected target elimination and automatic reflector mapping in secondary surveillance radar
US6898528B2 (en) * 2002-07-23 2005-05-24 Ford Global Technologies, Llc Collision and injury mitigation system using fuzzy cluster tracking
US7250901B2 (en) * 2003-07-03 2007-07-31 Navcom Technology Inc. Synthetic aperture radar system and method for local positioning
US7171328B1 (en) * 2004-08-30 2007-01-30 Sandia Corporation Method for measuring thermal properties using a long-wavelength infrared thermal image
JP4569652B2 (ja) * 2008-03-21 2010-10-27 株式会社デンソー 認識システム
CA2764120C (en) * 2009-01-27 2019-01-08 Xyz Interactive Technologies Inc. A method and apparatus for ranging finding, orienting, and/or positioning of single and/or multiple devices
US20110133914A1 (en) * 2009-12-04 2011-06-09 Delphi Technologies, Inc. Image based vehicle object detection sensor with range finder
US9739881B1 (en) 2016-03-24 2017-08-22 RFNAV, Inc. Low cost 3D radar imaging and 3D association method from low count linear arrays for all weather autonomous vehicle navigation
US10382140B2 (en) 2016-06-07 2019-08-13 California Institute Of Technology Optical sparse phased array receiver
US10192147B2 (en) * 2016-08-30 2019-01-29 Microsoft Technology Licensing, Llc Foreign substance detection in a depth sensing system

Also Published As

Publication number Publication date
US20190339393A1 (en) 2019-11-07
CN110441790B (zh) 2023-09-12
US11156717B2 (en) 2021-10-26
CN110441790A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
DE102018109441A1 (de) Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung
DE102017126877B4 (de) Kraftfahrzeug
DE102019110772A1 (de) Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system
DE102018105293A1 (de) Verfahren und vorrichtung zur vernetzten szenendarstellung und -erweiterung in fahrzeugumgebungen in autonomen fahrsystemen
DE102017126925A1 (de) Automatisierte Co-Pilotsteuerung für autonome Fahrzeuge
DE102018115265A1 (de) Verfahren und vorrichtung zur objektoberflächenschätzung mittels reflexionsverzögerungs-aufspreizung
DE102018119469A1 (de) System und verfahren zur verbesserten hinderniserkennung unter verwendung eines v2x-kommunikationssystems
DE102018118142A1 (de) Vorrichtung zum erhöhen des sichtfeldes für lidar-detektoren und -beleuchter
DE102018102027A1 (de) Effizientes situationsbewusstsein durch ereigniserzeugung und episodischen speicherabruf für autonome antriebssysteme
DE102018118528A1 (de) Verfahren und Vorrichtung zur Segment-übergreifenden Erfassung in einem Lidar-System
DE102018101505A1 (de) Effizientes situationsbewusstsein von wahrnehmungsströmen in autonomen fahrsystemen
DE102018115372A1 (de) Verfahren und vorrichtung zur parallelen beleuchtung durch ein vcsel-array
DE102018123170A1 (de) Verfahren und vorrichtung zur frameratenerhöhung in lidar-arrays
DE102018118679A1 (de) Verfahren und vorrichtung zur parallelen aufnahme in ein lidar-array
DE102018112115A1 (de) Verfahren und Systeme zum Ermitteln der Geschwindigkeit von sich bewegenden Objekten
DE102019110759A1 (de) System und verfahren zum steuern eines autonomen fahrzeugs
DE112016003285T5 (de) Routengenerator, Routenerzeugungsverfahren und Routenerzeugungsprogramm
DE102019108080A1 (de) Selektive Fernsteuerung einer ADAS-Funktionalität eines Fahrzeugs
DE102018106353A1 (de) Vorübergehende datenzuordnungen zum betreiben von autonomen fahrzeugen
DE102019121140A1 (de) Sensorfusion
DE102019112649A1 (de) Vorrichtung und verfahren zur verbesserten radarstrahlformung
DE102020101140A1 (de) Verfahren und system zum bestimmen einer aktion eines autonomen fahrzeugs (av) basierend auf fahrzeug- und edge-sensordaten
DE102015202367A1 (de) Autonome steuerung in einer dichten fahrzeugumgebung
DE102019108644A1 (de) Verfahren und vorrichtung zum automatischen lernen von regeln für autonomes fahren
DE102019115421A1 (de) System und verfahren zur steuerung eines autonomen fahrzeugs

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: MANITZ FINSTERWALD PATENT- UND RECHTSANWALTSPA, DE

R016 Response to examination communication