DE102018109441A1 - Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung - Google Patents

Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung Download PDF

Info

Publication number
DE102018109441A1
DE102018109441A1 DE102018109441.8A DE102018109441A DE102018109441A1 DE 102018109441 A1 DE102018109441 A1 DE 102018109441A1 DE 102018109441 A DE102018109441 A DE 102018109441A DE 102018109441 A1 DE102018109441 A1 DE 102018109441A1
Authority
DE
Germany
Prior art keywords
light pulse
vehicle
pulse
reflected
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102018109441.8A
Other languages
English (en)
Inventor
Michael Slutsky
Oded Bialer
Ariel Lipson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102018109441A1 publication Critical patent/DE102018109441A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09623Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)

Abstract

Die vorliegende Erfindung betrifft im Allgemeinen die Kommunikation und Vermeidung von Gefahren in einer überwachten Fahrumgebung. Genauer gesagt, lehrt die Anwendung ein System und Verfahren zur verbesserten Zielobjekterkennung in einem Fahrzeug, das mit einem Lasererkennungs- und Entfernungs-Messungs-LIDAR-System ausgestattet ist, indem eine variable LIDAR-Impulsrate verwendet wird.

Description

  • HINTERGRUND DER ERFINDUNG
  • Gebiet der Erfindung
  • Die vorliegende Anmeldung betrifft im Allgemeinen autonome und halbautonome Fahrzeuge. Genauer gesagt lehrt die Anwendung ein Verfahren und eine Vorrichtung zur verbesserten Zielobjekterkennung in einem Fahrzeug, das mit Lasererkennung und einem LIDAR-Entfernungsmesssystem ausgestattet ist.
  • Hintergrund-Informationen
  • Der Betrieb von modernen Fahrzeugen wird zunehmend automatisierter, d. h. Fahrzeuge übernehmen die Fahrsteuerung mit geringerem Eingriff des Fahrers. Die Fahrzeugautomatisierung wurde kategorisiert nach nummerischen Ebenen von null, entsprechend keiner Automatisierung mit voller menschlicher Kontrolle, bis Fünf, entsprechend der vollen Automatisierung ohne menschliche Kontrolle. Verschiedene automatisierte Fahrerassistenzsysteme, wie beispielsweise Geschwindigkeitsregelung, adaptive Geschwindigkeitsregelung und Parkassistenzsysteme, entsprechen niedrigeren Automatisierungsebenen, während echte „fahrerlose“ Fahrzeuge mit höheren Automatisierungsebenen übereinstimmen.
  • Fahrzeuge werden immer häufiger mit Sensoren an Bord ausgestattet, um ihre Umgebung autonom oder halbautonom zu ermitteln. Ein wertvoller Sensor für diese Aufgabe ist LIDAR, eine Vermessungstechnik, die Strecken misst, indem sie ein Ziel mit einem Laserlicht beleuchtet. LIDAR hat aufgrund der kürzeren Wellenlänge des Sendesignals eine größere räumliche Auflösung als RADAR. Allerdings schränken die LIDAR-Stromeinschränkungen die fortwährende Übertragung des LIDAR-Signals ein. Es werden gewöhnlich gepulste Übertragungssysteme verwenden, die das Signal-Rausch-Verhältnis reduzieren (SNR), jedoch auch die Bearbeitungsverstärkung des Systems. Es wäre wünschenswert, ein LIDAR-System mit niedriger Energie unter Einsatz eines gepulsten Übertragungssystems mit erhöhter Bearbeitungsverstärkung zu verwenden.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Ausführungsformen gemäß der vorliegenden Offenbarung stellen eine Reihe von Vorteilen bereit. So können Ausführungsformen gemäß der vorliegenden Offenbarung eine unabhängige Validierung von Steuerbefehlen autonomer Fahrzeuge ermöglichen, um die Diagnose von Software- oder Hardwarezuständen im primären Steuersystem zu erleichtern. Somit können Ausführungsformen gemäß der vorliegenden Offenbarung robuster sein, wodurch die Kundenzufriedenheit erhöht wird.
  • Gemäß einem Aspekt der vorliegenden Erfindung eine Vorrichtung mit einem Sender zum Übertragen eines ersten Lichtimpulses und eines zweiten Lichtimpulses mit einem ersten Zeitintervall zwischen dem Senden des ersten Lichtimpulses und des zweiten Lichtimpulses und eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen der Übertragung des dritten Lichtimpulses und des vierten Lichtimpulses, worin das zweite Zeitintervall größer ist als das erste Zeitintervall, einen Empfänger zum Empfangen einer reflektierten Darstellung des ersten Lichtimpulses, eine reflektierte Darstellung des zweiten Lichtimpulses, eine reflektierte Darstellung des dritten Lichtimpulses und eine reflektierte Darstellung des vierten Lichtimpulses und einen Prozessor zum Ermitteln der Entfernung zu einem Objekt in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses und der Entfernung zum Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung eine Vorrichtung mit einem Sender zum Übertragen eines ersten Lichtimpulses und eines zweiten Lichtimpulses mit einem ersten Zeitintervall zwischen dem Senden des ersten Lichtimpulses und des zweiten Lichtimpulses und dem Empfangen einer reflektierten Darstellung des ersten Lichtimpulses und einer eine reflektierten Darstellung des zweiten Lichtimpulses, der Bestimmung der ersten Entfernung zu einem ersten Objekt in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses, Übertragung eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen der Übertragung des dritten Lichtimpulses und des vierten Lichtimpulses, worin der zweite Zeitintervall größer als der erste Zeitintervall ist, das Empfangen einer reflektierten Darstellung des dritten Lichtimpulses und einer reflektierten Darstellung des vierten Lichtimpulses und das Ermitteln einer zweiten Entfernung zum ersten Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung ein Verfahren zum Übertragen eines ersten Reihe von Lichtimpulsen mit einer ersten Impulsrate, Empfangen einer reflektierten Darstellung der ersten Reihe von Lichtimpulsen, Ermitteln eines ersten Standorts einer Vielzahl von Objekten in Reaktion auf die reflektierte Darstellung der ersten Reihe von Lichtimpulsen, das Übertragen einer zweiten Reihe von Lichtimpulsen mit einer zweiten Pulsrate, Empfangen einer reflektierten Darstellung der zweiten Reihe von Lichtimpulsen und Ermitteln eines zweiten Standorts der Vielzahl von Objekten in Reaktion auf die reflektierte Darstellung der zweiten Reihe von Lichtimpulsen.
  • Die vorstehenden Vorteile und andere Vorteile und Merkmale der vorliegenden Offenbarung werden aus der folgenden ausführlichen Beschreibung der bevorzugten Ausführungsformen in Verbindung mit den zugehörigen Zeichnungen ersichtlich.
  • Figurenliste
  • Die zuvor genannten sowie weitere Eigenschaften und Vorteile dieser Erfindung und die Art und Weise, diese zu erzielen, werden augenscheinlicher, und die Erfindung wird besser verstanden anhand der folgenden Beschreibung von Ausführungsformen der Erfindung in Verbindung mit den zugehörigen Zeichnungen, worin gilt:
    • 1 ist ein schematisches Diagramm eines Kommunikationssystems, das ein autonom gesteuertes Fahrzeug gemäß einer Ausführungsform beinhaltet;
    • 2 ist ein schematisches Blockdiagramm eines automatisierten Antriebssystems (ADS) für ein Fahrzeug gemäß einer Ausführungsform.
    • 3 ist ein Diagramm einer exemplarischen Umgebung für die Implementierung der vorliegend offenbarten Systeme und Verfahren;
    • 4 ist ein Blockschaltbild einer exemplarischen Implementierung einer Vorrichtung zur LIDAR-Implementierung in einem Fahrzeug.
    • 5 ist ein Ablaufdiagramm einer exemplarischen Implementierung eines Verfahrens zur LIDAR-Implementierung in einem Fahrzeug.
    • 6 zeigt ein Ablaufdiagramm eines Verfahrens, das Informationen in einem System zur Vermeidung von Unfällen mit ungeschützten Verkehrsteilnehmern verarbeitet.
    • 7 zeigt ein Ablaufdiagramm eines Verfahrens, das Informationen in einem System zur Vermeidung von Unfällen mit ungeschützten Verkehrsteilnehmern verarbeitet.
  • Die hierin dargestellten Beispiele zeigen bevorzugte Ausführungsformen der Erfindung, und solche Beispiele sollen in keiner Weise als einschränkend für den Umfang der Erfindung ausgelegt werden.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Die folgende ausführliche Beschreibung ist ihrer Art nach lediglich exemplarisch und soll die Offenbarung oder die Anwendung und Verwendungen derselben in keiner Weise einschränken. Darüber hinaus besteht keinerlei Verpflichtung zur Einschränkung auf eine der im vorstehenden Hintergrund oder in der folgenden ausführlichen Beschreibung dargestellten Theorien. So hat z. B. der LIDAR-Sensor der vorliegenden Erfindung einen besonderen Anwendungszweck zur Verwendung an einem Fahrzeug. Jedoch kann der LIDAR-Sensor der Erfindung, wie Fachleute auf dem Gebiet erkennen werden, auch andere Anwendungsmöglichkeiten besitzen.
  • Moderne Fahrzeuge beinhalten manchmal verschiedene aktive Sicherheits- und Steuersysteme, wie Zusammenstoß-Vermeidungssysteme, adaptive Fahrgeschwindigkeits-Regelungssysteme, Spurhaltungssysteme, Fahrspurzentrierungs-Systeme usw., bei denen die Fahrzeugtechnik sich in Richtung halbautonom und vollständig autonom gefahrene Fahrzeuge bewegt. So sind z. B. Zusammenstoß-Vermeidungssysteme im Fachbereich dafür bekannt, dass sie eine automatische Fahrzeugsteuerung bereitstellen, wie z. B. Bremsen, wenn ein potenzieller Zusammenstoß mit einem anderen Fahrzeug oder Objekt erkannt wird, und sie können auch eine Warnung ausgeben, so dass der Fahrer entsprechende Korrekturmaßnahmen einleiten kann, um die Kollision zu vermeiden. Adaptive Fahrgeschwindigkeits-Regelungssysteme sind ebenfalls dafür bekannt, dass sie mit einem nach vorn gerichteten Sensor ausgestattet sind, der eine automatische Fahrgeschwindigkeitsregelung und/oder Bremsen bereitstellt, wenn sich das gegenständliche Fahrzeug einem anderen Fahrzeug nähert. Die Objekterfassungssensoren für diese Arten von Systemen können irgendeine von einer Anzahl an Technologien verwenden, wie Kurzstreckenradar, Langstreckenradar, Kameras mit Bildverarbeitung, Laser oder LiDAR, Ultraschall usw. Die Objekterfassungssensoren detektieren Fahrzeuge und andere Objekte im Weg eines Subjektfahrzeugs, und die Anwendungssoftware verwendet die Objekterfassungsinformationen, um Warnungen oder Maßnahmen vorzusehen, wie es angemessen ist.
  • LiDAR-Sensoren werden manchmal in Fahrzeugen eingesetzt, um Objekte und ihre Ausrichtung und Distanz zum Fahrzeug zu erkennen und Reflexionen von den Objekten in Form von multiplen Abtastpunkten bereitzustellen, die zusammen eine Karte von einem Bereich der Punktwolke (Cluster) bilden, auf der für jedes ½° über das gesamte Sichtfeld des Sensors ein separater Abtastpunkt bereitgestellt wird. Wenn daher ein Zielfahrzeug oder ein anderes Objekt vor dem eigenen Fahrzeug erfasst wird, können mehrere Abtastpunkte zurückgegeben werden, die die Entfernung des Zielfahrzeugs von dem betreffenden Fahrzeug identifizieren. Durch die Bereitstellung eines Abtastrückgabepunkt-Clusters können Objekte mit den unterschiedlichsten und willkürlichsten Formen, wie LKW, Anhänger, Fahrräder, Fußgänger, Leitplanken usw., besser erfasst werden. Dabei werden die Objekte umso besser erfasst, je größer bzw. näher sie am betreffenden Fahrzeug sind, da dann mehr Abtastpunkte bereitgestellt werden.
  • Die meisten bekannten LiDAR-Sensoren verwenden einen einzelnen Laser und einen schnell rotierenden Spiegel zur Erzeugung einer dreidimensionalen Punktwolke von Reflexionen oder Rückgabepunkten, die das Fahrzeug umgeben. Wenn sich der Spiegel dreht, gibt der Laser Lichtimpulse ab und der Sensor misst die Zeit, die der Lichtimpuls benötigt, um reflektiert und von Objekten in seinem Sichtfeld zurückgesendet zu werden, um die Entfernung zu den Objekten zu ermitteln, die im Fachbereich als Laufzeitmessungen bekannt sind. Durch sehr schnelles Pulsen des Lasers kann ein dreidimensionales Objektbild im Sichtfeld des Sensors erzeugt werden. Es können mehrere Sensoren eingesetzt werden und die Bilder von diesen können korreliert werden, um ein dreidimensionales Bild jener Objekte zu erzeugen, die das Fahrzeug umgeben.
  • 1 veranschaulicht schematisch eine Betriebsumgebung, die ein mobiles Fahrzeugkommunikations- und Steuersystem 10 für ein Kraftfahrzeug 12 umfasst. Das Kommunikations- und Steuersystem 10 für das Fahrzeug 12 beinhaltet im Allgemeinen ein oder mehrere Drahtlosträgersysteme 60, ein Festnetz 62, einen Computer 64, eine vernetzte drahtlose Vorrichtung 57, einschließlich, aber nicht beschränkt auf ein Smartphone, Tablet oder eine tragbare Vorrichtung, wie beispielsweise eine Uhr, und eine Fernzugriffszentrale 78.
  • Das Fahrzeug 12, das in 1 schematisch dargestellt ist, beinhaltet ein Antriebssystem 13, das in verschiedenen Ausführungsformen einen Verbrennungsmotor, eine Elektromaschine, wie z. B. einen Traktionsmotor und/oder ein Brennstoffzellenantriebssystem, beinhalten kann. Das Fahrzeug 12 ist in der dargestellten Ausführungsform als Pkw dargestellt, es ist jedoch zu beachten, dass jedes andere Fahrzeug, einschließlich Motorräder, Lastwagen, Geländelimousinen (SUVs), Wohnmobile (RVs), Wasserfahrzeuge, Luftfahrzeuge usw. ebenfalls verwendet werden kann.
  • Das Fahrzeug 12 beinhaltet zudem ein Getriebe 14, das so konfiguriert ist, dass es Leistung von dem Antriebssystem 13 auf eine Vielzahl von Fahrzeugrädern 15 gemäß wählbaren Drehzahlverhältnissen überträgt. Nach verschiedenen Ausführungsformen kann das Getriebe 14 ein Stufenverhältnis-Automatikgetriebe, ein stufenlos verstellbares Getriebe oder ein anderes geeignetes Getriebe beinhalten. Das Fahrzeug 12 beinhaltet zusätzlich Radbremsen 17, die so konfiguriert sind, dass sie ein Bremsmoment an die Fahrzeugräder 15 liefern. Die Radbremsen 17 können in verschiedenen Ausführungsformen Reibungsbremsen, ein regeneratives Bremssystem, wie z. B. eine Elektromaschine und/oder andere geeignete Bremssysteme, beinhalten.
  • Das Fahrzeug 12 beinhaltet zudem ein Lenksystem 16. Während in einigen Ausführungsformen innerhalb des Umfangs der vorliegenden Offenbarung zur Veranschaulichung als ein Lenkrad dargestellt, kann das Lenksystem 16 kein Lenkrad beinhalten.
  • Das Fahrzeug 12 beinhaltet ein drahtloses Kommunikationssystem 28, das dazu konfiguriert ist, drahtlos mit anderen Fahrzeugen („V2V“) und/oder Infrastruktur („V2I“) zu kommunizieren. In einer exemplarischen Ausführungsform ist das drahtlose Kommunikationssystem 28 konfiguriert, um über ein drahtloses lokales Netzwerk (WLAN) unter Verwendung des IEEE 802.11-Standards oder mittels einer mobilen Datenkommunikation zu kommunizieren. Im Geltungsbereich der vorliegenden Offenbarung werden jedoch auch zusätzliche oder alternative Kommunikationsverfahren, wie beispielsweise ein dedizierter Nahbereichskommunikations (DSRC)-Kanal, berücksichtigt. DSRC-Kanäle beziehen sich auf Einweg- oder Zweiwege-Kurzstrecken- bis Mittelklasse-Funkkommunikationskanäle, die speziell für den Automobilbau und einen entsprechenden Satz von Protokollen und Standards entwickelt wurden.
  • Das Antriebssystem 13, das Getriebe 14, das Lenksystem 16 und die Radbremsen 17 stehen mit oder unter der Steuerung von mindestens einer Steuereinheit 22 in Verbindung. Obgleich zu Veranschaulichungszwecken als eine einzige Einheit dargestellt, kann die Steuereinheit 22 zusätzlich eine oder mehrere andere „Steuereinheiten“ beinhalten. Die Steuerung 22 kann einen Mikroprozessor, wie beispielsweise eine zentrale Verarbeitungseinheit (CPU) oder eine grafische Verarbeitungseinheit (GPU), beinhalten, die mit verschiedenen Arten von computerlesbaren Speichervorrichtungen oder Medien in Verbindung steht. Computerlesbare Speichergeräte oder Medien können flüchtige und nichtflüchtige Speicher in einem Nur-Lese-Speicher (ROM), einem Speicher mit direktem Zugriff (RAM) und einem Aufrechterhaltungsspeicher („Keep-Alive-Memory, KAM“) beinhalten. KAM ist ein persistenter oder nichtflüchtiger Speicher, der verwendet werden kann, um verschiedene Betriebsvariablen zu speichern, während die CPU ausgeschaltet ist. Computerlesbare Speichergeräte oder Medien können unter Verwendung einer beliebigen Anzahl an bekannten Speichergeräten, wie beispielsweise PROMs (programmierbarer Nur-Lese-Speicher), EPROMs (elektrische PROM), EEPROMs (elektrisch löschbarer PROM), Flash-Speicher oder beliebigen anderen elektrischen, magnetischen, optischen oder kombinierten Speichergeräten implementiert sein, die Daten speichern können, von denen einige ausführbare Anweisungen darstellen, die von der Steuereinheit 22 beim Steuern des Fahrzeugs verwendet werden.
  • Die Steuereinheit 22 beinhaltet ein automatisiertes Antriebssystem (ADS) 24 zum automatischen Steuern verschiedener Stellglieder im Fahrzeug. In einer exemplarischen Ausführungsform ist das ADS 24 ein sogenanntes Level-Vier- oder Level-Fünf-Automatisierungssystem. Ein Level-Vier-System zeigt eine „hohe Automatisierung“ unter Bezugnahme auf die Fahrmodus-spezifische Leistung durch ein automatisiertes Fahrsystem aller Aspekte der dynamischen Fahraufgabe an, selbst wenn ein menschlicher Fahrer nicht angemessen auf eine Anforderung einzugreifen, reagiert. Ein Level-Fünf-System zeigt eine „Vollautomatisierung“ an und verweist auf die Vollzeitleistung eines automatisierten Fahrsystems aller Aspekte der dynamischen Fahraufgabe unter allen Fahrbahn- und Umgebungsbedingungen, die von einem menschlichen Fahrer verwaltet werden können. In einer exemplarischen Ausführungsform ist das ADS 24 so konfiguriert, dass es das Antriebssystem 13, das Getriebe 14, das Lenksystem 16 und die Radbremsen 17 steuert, um die Fahrzeugbeschleunigung, das Lenken und das Bremsen ohne menschliches Eingreifen über eine Vielzahl von Stellgliedern 30 in Reaktion auf Eingaben von einer Vielzahl von Sensoren 26, wie z. B. GPS, RADAR, LIDAR, optischen Kameras, thermischen Kameras, Ultraschallsensoren und/oder zusätzlichen Sensoren, zu steuern.
  • 1 veranschaulicht mehrere vernetzte Geräte, die mit dem drahtlosen Kommunikationssystem 28 des Fahrzeugs 12 kommunizieren können. Eines der vernetzten Geräte, das über das drahtlose Kommunikationssystem 28 mit dem Fahrzeug 12 kommunizieren kann, ist das drahtlose vernetzte Gerät 57. Das drahtlose vernetzte Gerät 57 kann eine Computerverarbeitungsfähigkeit, einen Sender-Empfänger, der mit einem drahtlosen Nahbereichsprotokoll kommunizieren kann, und eine visuelle Anzeige 59 beinhalten. Die Computerverarbeitungsfähigkeit beinhaltet einen Mikroprozessor in Form einer programmierbaren Vorrichtung, die eine oder mehrere in einer internen Speicherstruktur gespeicherte Befehle beinhaltet und angewendet wird, um binäre Eingaben zu empfangen und binäre Ausgaben zu erzeugen. In einigen Ausführungsformen beinhaltet das drahtlose vernetzte Gerät 57 ein GPS-Modul, das GPS-Satellitensignale empfangen und GPS-Koordinaten basierend auf diesen Signalen erzeugen kann. In weiteren Ausführungsformen beinhaltet das drahtlose vernetzte Gerät 57 eine Mobilfunk-Kommunikationsfunktionalität, wodurch das drahtlose vernetzte Gerät 57, wie hierin erläutert, Sprach- und/oder Datenkommunikationen über das Mobilfunkanbietersystem 60 unter Verwendung eines oder mehrerer Mobilfunk-Kommunikationsprotokolle durchführt. Die visuelle Anzeige 59 kann zudem einen Berührungsbildschirm als grafische Benutzeroberfläche beinhalten.
  • Das Mobilfunkanbietersystem 60 ist vorzugsweise ein Mobiltelefonsystem, das eine Vielzahl von Mobilfunktürmen 70 (nur einer dargestellt), eine oder mehrere Mobilvermittlungsstellen (MSCs) 72, sowie alle anderen Netzwerkkomponenten beinhaltet, die zum Verbinden des Mobilfunkanbietersystems 60 mit dem Festnetz 62 erforderlich sind. Jeder Mobilfunkturm 70 beinhaltet Sende- und Empfangsantennen und eine Basisstation, wobei die Basisstationen von unterschiedlichen Mobilfunktürmen mit der MSC 72 entweder direkt oder über zwischengeschaltete Geräte, wie z. B. eine Basisstationssteuereinheit, verbunden sind. Das Drahtlosträgersystem 60 kann jede geeignete Kommunikationstechnologie implementieren, beispielsweise digitale Technologien, wie CDMA (z. B. CDMA2000), LTE (z. B. 4G LTE oder 5G LTE), GSM/GPRS oder andere aktuelle oder neu entstehende drahtlose Technologien. Andere Mobilfunkturm/Basisstation/MSC-Anordnungen sind möglich und könnten mit dem Mobilfunkanbietersystem 60 verwendet werden. So könnten sich beispielsweise die Basisstation und der Mobilfunkturm an derselben Stelle oder entfernt voneinander befinden, jede Basisstation könnte für einen einzelnen Mobilfunkturm zuständig sein oder eine einzelne Basisstation könnte verschiedene Mobilfunktürme bedienen, oder verschiedene Basisstationen könnten mit einer einzigen MSC gekoppelt werden, um nur einige der möglichen Anordnungen zu nennen.
  • Abgesehen vom Verwenden des Mobilfunkanbietersystems 60 kann ein unterschiedliches Mobilfunkanbietersystem in der Form von Satellitenkommunikation verwendet werden, um unidirektionale oder bidirektionale Kommunikation mit dem Fahrzeug 12 bereitzustellen. Dies kann unter Verwendung von einem oder mehreren Kommunikationssatelliten 66 und einer Uplink-Sendestation 67 erfolgen. Bei der unidirektionalen Kommunikation kann es sich beispielsweise um Satellitenradiodienste handeln, worin die Programmierinhalte (Nachrichten, Musik usw.) von der Sendestation 67 empfangen, für das Hochladen gepackt und anschließend an den Satelliten 66 gesendet wird, der die Programmierung an die Teilnehmer ausstrahlt. Bei der bidirektionalen Kommunikation kann es sich beispielsweise um Satellitentelefondienste handeln, die den Satelliten 66 verwenden, um Telefonkommunikationen zwischen dem Fahrzeug 12 und der Station 67 weiterzugeben. Die Satellitentelefonie kann entweder zusätzlich oder anstelle des Mobilfunkanbietersystems 60 verwendet werden.
  • Das Festnetz 62 kann ein herkömmliches landgebundenes Telekommunikationsnetzwerk sein, das mit einem oder mehreren Festnetztelefonen verbunden ist und das Mobilfunkanbietersystem 60 mit der Fernzugriffszentrale 78 verbindet. So kann beispielsweise das Festnetz 62 ein öffentliches Telekommunikationsnetz (PSTN) beinhalten, wie es beispielsweise verwendet wird, um fest verdrahtete Telefonie, paketvermittelte Datenkommunikationen und die Internetinfrastruktur bereitzustellen. Ein oder mehrere Segmente des Festnetzes 62 könnten durch Verwenden eines normalen drahtgebundenen Netzwerks, eines Lichtleiter- oder eines anderen optischen Netzwerks, eines Kabelnetzes, von Stromleitungen, anderen drahtlosen Netzwerken, wie z. B. drahtlosen lokalen Netzwerken (WLANs) oder Netzwerken, die drahtlosen Breitbandzugang (BWA) bereitstellen oder einer Kombination derselben implementiert sein. Weiterhin muss die Fernzugriffszentrale 78 nicht über das Festnetz 62 verbunden sein, sondern könnte Funktelefonausrüstung beinhalten, sodass sie direkt mit einem drahtlosen Netzwerk, wie z. B. dem Mobilfunkanbietersystem 60, kommunizieren kann.
  • Obgleich in 1 als ein einziges Gerät dargestellt, kann der Computer 64 eine Anzahl an Computern beinhalten, die über ein privates oder öffentliches Netzwerk, wie z. B. das Internet, zugänglich sind. Jeder Computer 64 kann für einen oder mehrere Zwecke verwendet werden. In einer exemplarischen Ausführungsform kann der Computer 64 als ein Webserver konfiguriert sein, der durch das Fahrzeug 12 über das drahtlose Kommunikationssystem 28 und den Mobilfunkanbieter 60 zugänglich ist. Zu anderen derart zugänglichen Computern 64 können beispielsweise gehören: ein Computer in einer Reparaturwerkstatt, der Diagnoseinformationen und andere Fahrzeugdaten vom Fahrzeug über das drahtlose Kommunikationssystem 28 oder einen Speicherort eines Drittanbieters hochgeladen werden können oder aus welchem Fahrzeugdaten oder sonstigen Informationen, entweder durch Kommunikation mit dem Fahrzeug 12, der Fernzugriffszentrale 78, dem drahtlosen vernetzten Gerät 57 oder einer Kombination aus diesen bereitgestellt werden. Der Computer 64 kann eine durchsuchbare Datenbank und ein Datenbankverwaltungssystem instandhalten, das die Eingabe, Löschung und Änderung von Daten, sowie den Empfang von Anfragen ermöglicht, um Daten innerhalb der Datenbank zu lokalisieren. Der Computer 64 kann zudem für die Bereitstellung von Internetverbindungen, wie z. B. DNS-Diensten, oder als Netzwerkadressenserver verwendet werden, der DHCP oder ein anderes geeignetes Protokoll verwendet, um dem Fahrzeug 12 eine IP-Adresse zuzuweisen.
  • Die Fernzugriffszentrale 78 ist konzipiert, um das drahtlose Kommunikationssystem 28 des Fahrzeugs 12 mit einer Vielzahl von unterschiedlichen Systemfunktionen bereitzustellen, und beinhaltet nach der in 1 gezeigten exemplarischen Ausführungsform im Allgemeinen einen oder mehrere Switches 80, Server 82, Datenbanken 84, Live-Berater 86 sowie ein automatisiertes Sprachausgabesystem (VRS) 88. Diese verschiedenen Komponenten der Fernzugriffszentrale sind bevorzugt miteinander über ein verdrahtetes oder drahtloses lokales Netzwerk 90 gekoppelt. Der Switch 80, der als Nebenstellenanlagen (PBX)-Switch genutzt werden kann, leitet eingehende Signale weiter, sodass Sprachübertragungen gewöhnlich entweder zum Live-Berater 86 über das reguläre Telefon oder automatisiert zum Sprachausgabesystem 88 unter Verwendung von VoIP gesendet werden. Das Live-Berater-Telefon kann auch VoIP verwenden, wie durch die gestrichelte Linie in 1 angezeigt. VoIP und andere Datenkommunikation durch den Switch 80 werden über ein Modem (nicht dargestellt) implementiert, das zwischen dem Switch 80 und Netzwerk 90 verbunden ist. Datenübertragungen werden über das Modem an den Server 82 und/oder die Datenbank 84 weitergegeben. Die Datenbank 84 kann Kontoinformationen, wie beispielsweise Teilnehmerauthentisierungs-Informationen, Fahrzeugkennungen, Profildatensätze, Verhaltensmuster und andere entsprechende Teilnehmerinformationen, speichern. Datenübertragungen können zudem durch drahtlose Systeme, wie z. B. 802.11x, GPRS und dergleichen, erfolgen. Obwohl die veranschaulichte Ausführungsform beschrieben wurde, als ob sie in Verbindung mit einer bemannten Fernzugriffszentrale 78 verwendet werden würde, die den Live-Berater 86 einsetzt, ist es offensichtlich, dass die Fernzugriffszentrale stattdessen VRS 88 als einen automatisierten Berater verwenden kann, oder eine Kombination von VRS 88 und dem Live-Berater 86 verwendet werden kann.
  • Wie in 2 dargestellt, beinhaltet das ADS 24 mehrere verschiedene Steuersysteme, einschließlich mindestens eines Wahrnehmungssystems 32 zum Feststellen des Vorhandenseins, der Position, der Klassifizierung und der Bahn der erkannten Eigenschaften oder Objekte in der Nähe des Fahrzeugs. Das Wahrnehmungssystem 32 ist so konfiguriert, dass es Eingaben, wie beispielsweise in 1 veranschaulicht, von einer Vielzahl von Sensoren 26 empfängt und Sensoreingaben synthetisiert und verarbeitet, um Parameter zu erzeugen, die als Eingaben für andere Steueralgorithmen des ADS 24 verwendet werden.
  • Das Wahrnehmungssystem 32 beinhaltet ein Sensorfusions- und Vorverarbeitungsmodul 34, das die Sensordaten 27 aus der Vielzahl der Sensoren 26 verarbeitet und synthetisiert. Das Sensorfusions- und Vorverarbeitungsmodul 34 führt eine Kalibrierung der Sensordaten 27 durch, einschließlich, aber nicht beschränkt auf LIDAR-zu-LIDAR-Kalibrierung, Kamera-zu-LIDAR-Kalibrierung, LIDAR-zu-Chassis-Kalibrierung und LIDAR-Strahlintensitätskalibrierung. Das Sensorfusions- und Vorverarbeitungsmodul 34 gibt vorverarbeitete Sensorausgaben 35 aus.
  • Ein Klassifizierungs- und Segmentierungsmodul 36 empfängt die vorverarbeitete Sensorausgabe 35 und führt Objektklassifizierung, Bildklassifizierung, Ampelklassifizierung, Objektsegmentierung, Bodensegmentierung und Objektverfolgungsprozesse durch. Die Objektklassifizierung beinhaltet, ist aber nicht beschränkt auf die Identifizierung und Klassifizierung von Objekten in der Umgebung, einschließlich Identifizierung und Klassifizierung von Verkehrssignalen und -zeichen, RADAR-Fusion und -verfolgung, um die Platzierung und das Sichtfeld (FoV) des Sensors und die falsche positive Ablehnung über die LIDAR-Fusion zu berücksichtigen, um die vielen falschen Positiven zu beseitigen, die in einer städtischen Umgebung existieren, wie zum Beispiel Schachtabdeckungen, Brücken, in die Fahrbahn ragende Bäume oder Lichtmasten und andere Hindernisse mit einem hohen RADAR-Querschnitt, die aber nicht die Fähigkeit des Fahrzeugs beeinflussen, entlang seines Kurses zu fahren. Zusätzliche Objektklassifizierungs- und Verfolgungsprozesse, die durch das Klassifizierungs- und Segmentierungsmodell 36 durchgeführt werden, beinhalten, sind aber nicht beschränkt auf Freespace-Erkennung und High-Level-Tracking, die Daten von RADAR-Spuren, LIDAR-Segmentierung, LIDAR-Klassifizierung, Bildklassifizierung, Objektform-Passmodellen, semantischen Informationen, Bewegungsvorhersage, Rasterkarten, statischen Hinderniskarten und andere Quellen verschmelzen, um qualitativ hochwertige Objektspuren zu erzeugen.
  • Das Klassifizierungs- und Segmentierungsmodul 36 führt zusätzlich eine Verkehrssteuerungs-Klassifizierungs- und Verkehrssteuerungsvorrichtungsverschmelzung mit Spurassoziations- und Verkehrssteuerungsvorrichtungsverhaltensmodellen durch. Das Klassifizierungs- und Segmentierungsmodul 36 erzeugt eine Objektklassifizierungs- und Segmentierungsausgabe 37, die eine Objektidentifikationsinformation enthält.
  • Ein Lokalisierungs- und Abbildungsmodul 40 verwendet die Objektklassifizierungs- und Segmentierungsausgabe 37, um Parameter zu berechnen, einschließlich, aber nicht beschränkt auf Schätzungen der Position und Orientierung des Fahrzeugs 12 in sowohl typischen als auch anspruchsvollen Antriebsszenarien. Zu diesen anspruchsvollen Antriebsszenarien gehören unter anderem dynamische Umgebungen mit vielen Autos (z. B. dichter Verkehr), Umgebungen mit großflächigen Obstruktionen (z. B. Fahrbahnbaustellen oder Baustellen), Hügel, mehrspurige Straßen, einspurige Straßen, eine Vielzahl von Straßenmarkierungen und Gebäuden oder deren Fehlen (z. B. Wohn- und Geschäftsbezirke) und Brücken und Überführungen (sowohl oberhalb als auch unterhalb eines aktuellen Straßensegments des Fahrzeugs).
  • Das Lokalisierungs- und Abbildungsmodul 40 enthält auch neue Daten, die als Ergebnis von erweiterten Kartenbereichen erfasst werden, die durch fahrzeugeigene Abbildungsfunktionen erhalten werden, die durch das Fahrzeug 12 während des Betriebs ausgeführt werden, und Kartierungsdaten, die über das drahtlose Kommunikationssystem 28 an das Fahrzeug 12 „geschoben“ werden. Das Lokalisierungs- und Abbildungsmodul 40 aktualisiert die vorherigen Kartendaten mit den neuen Informationen (z. B. neue Spurmarkierungen, neue Gebäudestrukturen, Hinzufügen oder Entfernen von Baustellenzonen usw.), während unbeeinflusste Kartenbereiche unverändert bleiben. Beispiele von Kartendaten, die erzeugt oder aktualisiert werden können, beinhalten, sind aber nicht beschränkt auf die Ausweichspurkategorisierung, die Spurgrenzerzeugung, die Spurverbindung, die Klassifizierung von Neben- und Hauptstraßen, die Klassifizierung der Links- und Rechtskurven und die Kreuzungsspurerstellung.
  • In einigen Ausführungsformen verwendet das Lokalisierungs- und Abbildungsmodul 40 Simultanlokalisierungs- und Abbildungs („SLAM“)-Techniken, um Karten der Umgebung zu entwickeln. SLAM ist die Abkürzung für simultane Fehlerlokalisierung und Kartierung. SLAM-Techniken konstruieren eine Karte einer Umgebung und verfolgen die Position eines Objekts innerhalb der Umgebung. GraphSLAM, eine Variante von SLAM, verwendet sparsame Matrizen, die zum Erstellen eines Graphen mit Beobachtungsabhängigkeiten verwendet werden.
  • Die Objektposition innerhalb einer Karte wird durch eine Gaußsche Wahrscheinlichkeitsverteilung dargestellt, die sich um den vorhergesagten Pfad des Objekts zentriert. SLAM verwendet in seiner einfachsten Form drei Einschränkungen: eine anfängliche Standortbeschränkung; eine relative Bewegungseinschränkung, die der Pfad des Objekts ist; und eine relative Messeinschränkung, die eine oder mehrere Messungen eines Objekts zu einer Landmarke ist.
  • Die anfängliche Bewegungseinschränkung ist die Ausgangsposition (z. B. Position und Orientierung) des Fahrzeugs, die sich aus der Position des Fahrzeugs im zweidimensionalen oder dreidimensionalen Raum einschließlich Neigungs-, Drehungs- und Gierdaten zusammensetzt. Die relative Bewegungseinschränkung ist die Verschiebung des Objektes, die eine gewisse Flexibilität zur Anpassung an die Kartenkonsistenz enthält. Die relative Messeinschränkung beinhaltet eine oder mehrere Messungen von den Objektsensoren bis zu einer Landmarke. Die anfängliche Positionsbeschränkung, die relative Bewegungseinschränkung und die relative Messeinschränkung sind typischerweise Gaußsche Wahrscheinlichkeitsverteilungen. Objektortungsverfahren innerhalb einer sensorerzeugten Karte verwenden typischerweise Kalman-Filter, verschiedene statistische Korrelationsverfahren wie die Pearson-Produkt-Moment-Korrelation und/oder Partikelfilter.
  • In einigen Ausführungsformen wird nach dem Erstellen einer Karte die Fahrzeuglokalisierung in Echtzeit über einen Partikelfilter erreicht. Partikelfilter sind im Gegensatz zu Bayes- oder Kalman-Filtern für nichtlineare Systeme geeignet. Zur Ortung eines Fahrzeugs werden Partikel um einen erwarteten Mittelwert über eine Gaußsche Wahrscheinlichkeitsverteilung erzeugt. Jedem Partikel wird ein nummerisches Gewicht zugeordnet, das die Genauigkeit der Partikelposition zur vorhergesagten Position repräsentiert. Die Sensordaten werden berücksichtigt und die Partikelgewichte den Sensordaten angepasst. Je enger die Annäherung des Partikels an die eingestellte Position des Sensors ist, desto größer ist der nummerische Wert der Partikelgewichte.
  • Sobald ein Aktionsbefehl auftritt, wird jedes Partikel an eine neue vorhergesagte Position aktualisiert. Die Sensordaten werden an der neuen vorhergesagten Position beobachtet und jedem Partikel wird ein neues Gewicht zugewiesen, das die Genauigkeit der Partikelposition in Bezug auf die vorhergesagte Position und die Sensordaten angibt. Die Partikel werden neu abgetastet, wobei die Gewichte mit der größten nummerischen Größe ausgewählt werden, was die Genauigkeit der vorhergesagten und sensorkorrigierten Objektposition erhöht. Typischerweise ergibt sich aus Mittelwert, Varianz und Standardabweichung der neu abgetasteten Daten die Wahrscheinlichkeit einer neuen Objektposition.
  • Die Verarbeitung des Partikelfilters wird ausgedrückt als: P ( H t | H t 1 , A t , D t )
    Figure DE102018109441A1_0001
    wobei Ht die aktuelle Hypothese ist, welche die Objektposition ist. Ht-1 ist die vorhergehende Objektposition, At ist die Handlung, die typischerweise ein Motorbefehl ist, und Dt sind die beobachtbaren Daten.
  • In einigen Ausführungsformen behält das Lokalisierungs- und Abbildungsmodul 40 eine Schätzung der globalen Position des Fahrzeugs bei, indem es Daten aus mehreren Quellen einbezieht, wie zuvor in einem erweiterten Kalman-Filter (EKF)-Framework erläutert. Kalman-Filter sind lineare Filter, die auf rekursiven Bayes'schen Filtern basieren. Rekursive Bayes'sche Filter, die auch als Rekursive Bayes'sche Schätzung bezeichnet werden, ersetzen im Wesentlichen das Posterior einer Schätzung in die vorherige Position, um ein neues Posterior auf einer neuen Iteration der Schätzung zu berechnen. Dies ergibt effektiv: P ( H t | H t 1 , D t )
    Figure DE102018109441A1_0002
    wobei die Wahrscheinlichkeit einer Hypothese Ht durch die Hypothese bei der vorhergehenden Iteration Ht-1 und die Daten Dt zur aktuellen Zeit t bewertet wird.
  • Ein Kalman-Filter fügt eine Aktionsvariable At hinzu, wobei t eine Zeit-Iteration ist, woraus sich ergibt: P ( H t | H t 1 , A t , D t )
    Figure DE102018109441A1_0003
    wobei die Wahrscheinlichkeit einer Hypothese Ht auf der vorhergehenden Hypothese Ht-1, einer Handlung At, und der Daten Dt zum gegenwärtigen Zeitpunkt t basiert.
  • Ein Kalman-Filter, in der Robotik verbreitet genutzt, schätzt eine aktuelle Position, die eine gemeinsame Wahrscheinlichkeitsverteilung ist und basierend auf einem Aktionsbefehl eine neue Position voraussagt, die auch eine gemeinsame Wahrscheinlichkeitsverteilung ist, die auch als Zustandsvorhersage bezeichnet wird. Es werden Sensordaten erfasst und eine getrennte gemeinsame Wahrscheinlichkeitsverteilung berechnet, die als Sensorvorhersage bezeichnet wird.
  • Die Zustandsvorhersage wird ausgedrückt als: X t ' = A X t 1 + B μ + ε t
    Figure DE102018109441A1_0004
    wobei X't ein neuer Zustand ist, der auf dem vorherigen Zustand AXt-1, Bµ und ξt basiert. Die Konstanten A und B sind von der Physik des Interesses bestimmt, wobei µ der Befehl des Robotermotors sein kann und ξt eine Gauß'sche Zustandsfehlervorhersage ist.
  • Die Sensorvorhersage wird ausgedrückt als: Z t ' = C X t + ε t
    Figure DE102018109441A1_0005
    wobei Z't der neue Sensorschätzwert, C eine Funktion und ξz eine Gauß'sche Sensorfehlervorhersage ist.
  • Eine neue Schätzung des vorhergesagten Zustandes wird ausgedrückt als: X E S T = X t ' + K ( Z t Z t ' )
    Figure DE102018109441A1_0006
    wobei das Produkt K(Zt - Z't) als Kalman-Verstärkungsfaktor bezeichnet wird. Wenn der Unterschied zwischen der Sensorvorhersage Z't und den tatsächlichen Sensordaten Zt ist. (das heißt wenn Zt - Z't) relativ annähernd Null ist, dann gilt X't als die neue Zustandsschätzung. Wenn Zt - Z't relativ größer als Null ist, wird der K(Zt - Z't) Faktor hinzugefügt, um eine neue Zustandsschätzung zu erhalten.
  • Sobald die Fahrzeugbewegungsinformationen empfangen werden, aktualisiert das EKF die Fahrzeugpositionsschätzung und erweitert gleichzeitig die geschätzte Kovarianz. Sobald die Sensorkovarianz in das EKF integriert ist, erzeugt das Lokalisierungs- und Abbildungsmodul 40 einen Lokalisierungs- und Abbildungsausgang 41, der die Position und Orientierung des Fahrzeugs 12 in Bezug auf erfasste Hindernisse und Straßenmerkmale beinhaltet.
  • Ein Fahrzeug-Odometrie-Modul 46 empfängt Daten 27 von den Fahrzeugsensoren 26 und erzeugt eine Fahrzeug-Odometrie-Ausgabe 47, die beispielsweise Fahrzeugkurs- und Geschwindigkeits- und Entfernungsinformationen beinhaltet. Ein absolutes Positionierungsmodul 42 empfängt die Lokalisierungs- und Abbildungsausgabe 41 und die Fahrzeug-Odometrieinformation 47 und erzeugt eine Fahrzeugpositionsausgabe 43, die in getrennten Berechnungen verwendet wird, wie unten erörtert wird.
  • Ein Objektvorhersagemodul 38 verwendet die Objektklassifizierungs- und Segmentierungsausgabe 37, um Parameter zu erzeugen, einschließlich, aber nicht beschränkt auf eine Position eines erkannten Hindernisses relativ zum Fahrzeug, einen vorhergesagten Weg des erkannten Hindernisses relativ zum Fahrzeug und eine Position und Orientierung der Fahrbahnen relativ zum Fahrzeug. Bayes'sche Modelle können in einigen Ausführungsformen verwendet werden, um die Absicht eines Fahrers oder Fußgängers basierend auf semantischen Informationen, vorheriger Trajektorien und unmittelbarer Pose vorherzusagen, wobei die Pose die Kombination von Position und Orientierung eines Objekts ist.
  • Der Bayes'sche Satz, in der Robotik verbreitet genutzt, auch als Bayes'scher Filter bezeichnet, ist eine Form der bedingten Wahrscheinlichkeit. Der Bayes'sche Satz, nachfolgend in Gleichung 7 dargestellt, enthält die These, dass die Wahrscheinlichkeit einer Hypothese H mit Daten D gleich der Wahrscheinlichkeit einer Hypothese H mal die Wahrscheinlichkeit der Daten D mit der Hypothese H ist, dividiert durch die Wahrscheinlichkeit der Daten P (D). P ( H | D ) = P ( H )   P ( D | H ) P ( D )
    Figure DE102018109441A1_0007
  • P(H/D) wird als Posterior bezeichnet und P(H) wird als Prior bezeichnet. Der Bayes'sche Satz misst einen Wahrscheinlichkeitsgrad der Überzeugung in einem Satz vor (dem Vorherigen) und nach (dem Nachfolgenden), wobei in Anbetracht der in den Daten enthaltenen Beweisen D. Bayes' Satz bei der Iteration rekursiv verwendet werden kann. Bei jeder neuen Iteration wird der vorherige Posterior zu dem vorhergehenden, um einen neuen Posterior zu erzeugen, bis die Iteration abgeschlossen ist. Daten über den vorhergesagten Weg von Objekten (einschließlich Fußgänger, umliegende Fahrzeuge und andere bewegte Objekte) werden als Objektvorhersageausgabe 39 ausgegeben und in getrennten Berechnungen verwendet, wie unten erörtert wird.
  • Das ADS 24 beinhaltet auch ein Beobachtungsmodul 44 und ein Interpretationsmodul 48. Das Beobachtungsmodul 44 erzeugt eine Beobachtungsausgabe 45, die vom Interpretationsmodul 48 empfangen wird. Das Beobachtungsmodul 44 und das Interpretationsmodul 48 erlauben den Zugriff durch die Fernzugriffszentrale 78. Ein Live-Experte oder Berater, z.B. der in 1 dargestellte Berater 86 kann optional die Objektvorhersageausgabe 39 überprüfen und zusätzliche Eingabe- und/oder Übersteuerungsautomatik-Fahrvorgänge bereitstellen und den Betrieb des Fahrzeugs annehmen, falls dies durch eine Fahrzeugsituation gewünscht oder erforderlich ist. Das Beobachtungs- und Interpretationsmodul 48 erzeugt eine interpretierte Ausgabe 49, die eine zusätzliche Eingabe durch den Live-Experten beinhaltet, falls vorhanden.
  • Ein Wegplanungsmodul 50 verarbeitet und synthetisiert die Objektvorhersageausgabe 39, die interpretierte Ausgabe 49 und zusätzliche Kursinformationen 79, die von einer Online-Datenbank oder der Fernzugriffszentrale 78 empfangen werden, um einen Fahrzeugweg zu ermitteln, der verfolgt werden soll, um das Fahrzeug unter Beachtung der Verkehrsgesetze und Vermeidung von erkannten Hindernissen auf dem gewünschten Kurs zu halten. Das Wegplanungsmodul 50 verwendet Algorithmen, die konfiguriert sind, um beliebige erkannte Hindernisse in der Nähe des Fahrzeugs zu vermeiden, das Fahrzeug in einer gegenwärtigen Fahrspur zu halten und das Fahrzeug auf dem gewünschten Kurs zu halten. Das Wegplanungsmodul 50 nutzt Positions-Graph-Optimierungstechniken, einschließlich der nichtlinearen kleinstquadratischen Positions-Graph-Optimierung, um die Karte der Fahrzeugtrajektorien in sechs Freiheitsgraden zu optimieren und Wegfehler zu reduzieren. Das Wegplanungsmodul 50 gibt die Fahrzeugweginformationen als Wegplanungsausgabe 51 aus. Der Wegplanungsausgangswert 51 beinhaltet eine vorgegebene Fahrzeugroute auf der Grundlage der Route, eine Fahrzeugposition relativ zu der Route, Position und Orientierung der Fahrspuren und das Vorhandensein und den Weg erfasster Hindernisse.
  • Ein erstes Steuermodul 52 verarbeitet und synthetisiert die Wegplanungsausgabe 51 und die Fahrzeugpositionsausgabe 43 zum Erzeugen einer ersten Steuerausgabe 53. Das erste Steuermodul 52 enthält auch die Kursinformation 79, die von der Fernzugriffszentrale 78, im Falle einer Fernübernahmebetriebsart des Fahrzeugs bereitgestellt wird.
  • Ein Fahrzeugsteuermodul 54 empfängt die erste Steuerausgabe 53 sowie die Geschwindigkeits- und Kursinformation 47, die von der Fahrzeug-Odometrie 46 empfangen wird, und erzeugt einen Fahrzeugsteuerausgabe 55. Die Fahrzeugsteuerausgabe 55 beinhaltet einen Satz Stellgliedbefehle, um den befohlenen Weg vom Fahrzeugsteuermodul 54 zu erreichen, einschließlich, jedoch nicht beschränkt auf einen Lenkbefehl, einen Schaltbefehl, einen Drosselbefehl und einen Bremsbefehl.
  • Die Fahrzeugsteuerausgabe 55 wird an die Stellglieder 30 übermittelt. In einer exemplarischen Ausführungsform beinhalten die Stellglieder 30 eine Lenksteuerung, eine Schaltsteuerung, eine Drosselsteuerung und eine Bremssteuerung. Die Lenksteuerung kann beispielsweise ein Lenksystem 16 steuern, wie in 1 veranschaulicht. Die Gangschaltsteuerung kann beispielsweise ein Getriebe 14 steuern, wie in 1 veranschaulicht. Die Drosselklappensteuerung kann beispielsweise ein Antriebssystem 13 steuern, wie in 1 veranschaulicht. Die Bremssteuerung kann beispielsweise die Radbremsen 17 steuern, wie in 1 veranschaulicht.
  • Es versteht sich, dass das offenbarte Verfahren mit einer beliebigen Anzahl an unterschiedlichen Systemen verwendet werden kann und nicht speziell auf die hierin dargestellte Betriebsumgebung einschränkt ist. Die Architektur, der Aufbau, die Konfiguration und der Betrieb des Systems 10 und dessen einzelne Komponenten sind allgemein bekannt. Darüber hinaus können weitere hier nicht dargestellte Systeme ebenfalls die offenbarten Verfahren verwenden.
  • Nun zeigt 3 eine exemplarische Umgebung 300 zum Implementieren der vorliegenden offenbarten Systeme und Verfahren. Bei der darstellenden Ausführungsform fährt ein Fahrzeug 310 mit einem betriebsbereiten LIDAR-System. Das System hat einen Sender, der betriebsbereit ist und gepulstes Licht oder Laser 330 vom Fahrzeug 310 weg sendet. Ein Teil des gepulsten Lichts trifft an den Objekten 320 um das Fahrzeug herum ein und ein reflektiertes Signal wird an einen Empfänger am Fahrzeug zurückgesandt. Das Fahrzeug ist auch mit einem Prozessor ausgestattet, der das zurückgesendete Signal verarbeitet, um die Amplitude, Laufzeit und Phasenverschiebung unter anderen Merkmalen zu messen, um die Entfernung zu den Objekten 320, sowie die Größe und Geschwindigkeit der Objekte 320 zu ermitteln.
  • Nun zeigt 4 ein funktionelles Blockschaltbild eines LIDAR-Systems 400 nach einem exemplarischen Verfahren und System. Der LIDAR-Empfänger 410 ist betriebsbereit, um einen Laserstrahl zu erzeugen, diesen zu senden und die von einem Objekt innerhalb des Sichtfelds gestreuten/reflektierte Laserenergie zu erfassen. Der Scanner 420 bewegt den Laserstrahl über die Zielbereiche, das Positions-Lagemesssystem (POS) misst die Sensorposition und -lage 430, der Systemprozessor 440 steuert alle oben genannten Aktionen, das Fahrzeugsteuersystem und die Benutzeroberfläche 450, Datenspeicher 460.
  • Der LIDAR-Empfänger 410 ist betriebsbereit, um einen Laserstrahl zu erzeugen, diesen zum Sichtfeld zu senden und von einem Ziel reflektierte Energie zu erfassen. LIDAR-Sensoren nutzen Laufzeitmessungen, um die Entfernung von Objekten zur ermitteln, von denen die gepulsten Laserstrahlen reflektiert werden. Das oszillierende Lichtsignal wird vom Ziel reflektiert und vom Detektor innerhalb des LIDAR-Empfängers 410 mit einer Phasenverschiebung erfasst, die von der Entfernung des Objekts vom Sensor abhängt. Ein elektronischer Phasenregelkreis (PLL) kann verwendet werden, um die Phasenverschiebung aus dem Signal zu extrahieren und diese Phasenverschiebung wird unter Verwendung bekannter Techniken in eine Entfernung übersetzt.
  • Der Scanner 420 dient zum Bewegen des Laserstrahls über das Sichtfeld. In einer exemplarischen Anwendung, wird ein Drehspiegel verwendet, um einen stationären Laser über das Sichtfeld hinweg zu reflektieren. In einer weiteren exemplarischen Anwendung wird eine Anzahl an festen Lasern in unterschiedliche Richtungen gepulst, um ein Sichtfeld-Objektmodell zu generieren.
  • Ein POS 430 wird verwendet, um die Zeit, Position und Ausrichtung des Scanners 420 zu ermitteln, wenn ein Laser gepulst wird. Das System kann einen GPS-Sensor, ein inertiales Messsystem und weitere Sensoren beinhalten. Der POS kann weiter betriebsbereit sein, um die Entfernungsmessung, den Scanwinkel, die Sensorposition, die Sensorausrichtung und die Signalamplitude zu ermitteln. Die vom POS 430 generierten Daten können mit den vom LIDAR-Empfänger 410 generierten Daten kombiniert werden, um ein Sichtfeld-Objektmodell zu generieren.
  • Der Systemprozessor 440 ist betriebsbereit, um Steuersignale an den LIDAR-Empfänger 410, den POS 430 und den Scanner 420 zu senden und um Daten von diesen Vorrichtungen zu empfangen. Der Systemprozessor 240 empfängt die Daten und ermittelt den Standort von Objekten innerhalb des Sichtfelds und er kann weitere Informationen, wie die Geschwindigkeit von Objekten, die Zusammensetzung von Objekten, die Signalfilterung usw., ermitteln. Der Speicher 460 ist betriebsbereit, um digitale Darstellungen von zurückgesendeten Signalimpulsen zu speichern und/oder um digitale Daten zu speichern, die vom Systemprozessor 440 berechnet wurden. Das Fahrzeugsteuersystem/die Bedienoberfläche 450 ist betriebsbereit, um Eingaben von einem Benutzer zu empfangen, um nach Bedarf Ergebnisse anzuzeigen und als Option, um Fahrzeugsteuersignale in Reaktion auf die vom Systemprozessor 440 generierten Daten zu generieren. Fahrzeugsteuersignale können zur Steuerung eines autonomen Fahrzeugs verwendet werden, die u. a. zum Vermeiden von Zusammenstößen oder als Fahrerwarnsystem genutzt werden können.
  • Nun zeigt 5 ein Blockschaltbild einer exemplarischen Implementierung des offenbarten Systems zur verbesserten Erkennung eines Zielobjektes in einem Fahrzeug, das mit einem Lasererkennungs- und LIDAR-Entfernungsmesssystem ausgestattet ist. Das System ist betriebsbereit, um die Lichtimpulse mit unterschiedlichen Impulsraten zu übertragen. Eine längere Impulsrate führt zu einem niedrigeren Signal-Rausch-Verhältnis, da weniger Impulse dekodiert werden müssen und weniger zurückgesendete Impulse sich gegenseitig stören können. Jedoch führen längere Impulsraten dazu, dass das System weniger Daten über Objekte im Sichtfeld empfängt, was zu einem weniger präzisen Sichtfeld-Objektmodell führt. Eine schnellere Impulsrate führt aufgrund der großen Anzahl an Impulsen, die sich mit der Zeit überlappen können, zu einem höheren Signal-Rausch-Verhältnis. Eine hohe Impulsrate ermöglicht ein detaillierteres, jedoch mehrdeutiges Sichtfeld-Objektmodell. Somit ist es wünschenswert, das Sichtfeld zunächst mit einer schnelleren Impulsrate zuzuordnen und anschließend die Sichtfeld-Objektkarte mit einer langsameren Impulsrate zu bestätigen.
  • Der Sender 510 ist betriebsbereit, um einen ersten Lichtimpuls und einen zweiten Lichtimpuls mit einem ersten Zeitintervall zwischen dem Übertragen des ersten Lichtimpulses und des zweiten Lichtimpulses, und einen dritten Lichtimpuls und einen vierten Lichtimpuls mit einem zweiten Zeitintervall zwischen dem Übertragen des dritten Lichtimpulses und des vierten Lichtimpulses zu übertragen, worin das zweite Zeitintervall größer ist als das erste Zeitintervall. Eine fortwährende LIDAR-Übertragung wird durch Stromeinschränkungen eingeschränkt; daher nutzt ein LIDAR-System stattdessen gepulste Übertragungen. Impulsübertragung umfasst die Übertragung des Lasers für eine festgelegte Zeitspanne, was man als Impulsbreite bezeichnet und dann das Abbrechen der Laserübertragung für eine zweite Zeitspanne. Die Zeit zwischen dem Beginn des ersten Impulses und dem Beginn des zweiten Impulses wird als Periode bezeichnet. Wird ein einzelner Impuls gesendet, hat der empfangene einzelne Impuls ein sehr niedriges Signal-Rausch-Verhältnis, was diesen sehr wirksam über weite Entfernung und bei der Erkennung von dunklen Zielen macht. Ein höheres Signal-Rausch-Verhältnis tritt auf, wenn mehrere Impulsrücksendungen innerhalb einer Zeitspanne empfangen werden und sich gegenseitig stören. Eine zuverlässige Erkennung von Objekten in einem Sichtfeld erfordert das Übertragen einer Impulssequenz und das Integrieren der empfangenen Impulse. Für gut definierte Bereichsschätzungen ist die Impulsperiode größer als die maximale Verzögerung des reflektierten Signals. Das Erreichen einer großen Bearbeitungsverstärkung erfordert eine lange Integrationszeit, allerdings ist diese Integrationszeit eingeschränkt, da der Reflexionspunktbereich und der Winkel sich mit der Zeit verändern, was zu einer eingeschränkten Bearbeitungsverstärkung führt. Für eine gegebene Integrations-Zeiteinschränkung erhöht eine Vermehrung der Anzahl der übertragenen Impulse die Bearbeitungsverstärkung sowie das Signal-Rausch-Verhältnis.
  • Empfänger 530 ist betriebsbereit, um die gepulsten Lasersignale zu empfangen, nachdem diese von Objekten innerhalb des Sichtfelds reflektiert werden. Der Empfänger kann Verstärker, Mischer, Zirkulatoren und dergleichen beinhalten, um das empfangene gepulste Lasersignal in ein Zwischenfrequenzsignal zu konvertieren, das vom Prozessor 540 manipuliert werden kann. Der Empfänger 530 kann auch weiter betriebsbereit sein, um die empfangenen gepulsten Lasersignale in digitale Darstellungen zu konvertieren. Diese digitalen Darstellungen können die empfangenen gepulsten Lasersignale oder das umgewandelte ZF-Signal darstellen.
  • Der Prozessor 540 ist betriebsbereit, um Steuersignale zu generieren, die den Empfänger 530 und den Sender 510 steuern. Diese Steuersignale können betriebsbereit sein, um die Impulsrate des Laserimpulses und die Impulsbreite des Impulses zu steuern. Zusätzlich können die Steuersignale den Empfänger 530 steuern, so dass der Empfänger 530 betriebsbereit ist, um reflektierte gepulsten Lasersignale bei unterschiedlichen Impulsraten und Impulsbreiten zu empfangen. In einer exemplarischen Ausführungsform generiert der Prozessor ein Steuersignal, so dass der Sender 510 einen ersten Lichtimpuls und einen zweiten Lichtimpuls mit einem ersten Zeitintervall zwischen dem Übertragen des ersten Lichtimpulses und des zweiten Lichtimpulses und eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen dem Übertragen des dritten Lichtimpulses und des vierten Lichtimpulses überträgt, worin das zweite Zeitintervall größer ist als das erste Zeitintervall. Der Prozessor 540 generiert ferner ein Steuersignal, sodass der Empfänger 530 betriebsbereit ist, um eine reflektierte Darstellung des ersten Lichtimpulses, eine reflektierte Darstellung des zweiten Lichtimpulses, eine reflektierte Darstellung des dritten Lichtimpulses und eine reflektierte Darstellung des vierten Lichtimpulses zu empfangen. Der Prozessor empfängt Daten vom Sender 510 und/oder dem Empfänger 530 in Reaktion auf die Steuersignale.
  • Sobald die Daten vom Sender 510 und/oder vom Empfänger 530 empfangen wurden, ermittelt der Prozessor 540 die Entfernung zu einem Objekt in Reaktion auf die Daten, welche die reflektierte Darstellung des ersten Lichtimpulses und die Entfernung zum Objekt in Reaktion auf die Daten, welche die reflektierte Darstellung des dritten Lichtimpulses darstellen. Bei der ersten höheren Impulsrate ist der Prozessor betriebsbereit, um die Entfernung von wahrscheinlichen Objekten innerhalb des Sichtfelds zu ermitteln. Diese wahrscheinlichen Objekte weisen eine hohe Mehrdeutigkeit auf und können daher weniger zuverlässig beim Ermitteln des Objektstandorts sein. Der Prozessor 540 kann dann ein Steuersignal generieren, das den Sender 510 anweist, mit der zweiten, niedrigeren Impulsrate zu übertragen. Der Sender 540 empfängt dann zweite Daten vom Empfänger 530, um die Entfernung dieser Objekte im Sichtfeld erneut zu ermitteln. Diese zweiten Daten erleichtern die Bestätigung der Standorte der Objekte an der ersten Impulsrate, wobei die Bestätigung mit weniger Mehrdeutigkeit als die höhere Impulsrate entschieden wird.
  • Nun zu 6, die exemplarische Impuls-Zeitdiagramme darstellt. Das Zeitdiagramm 610 zeigt eine erste Sequenz mit einer kurzen Periode, T1, was zu einer größeren Anzahl an Impulsen während einer Zeitdauer führt. Während der Übertragung nach dieser Zeitsequenz ist das System betriebsbereit, um eine finite Anzahl an mehrdeutigen Hypothesen zu erkennen, die bei einem hohen Signal-Rausch-Verhältnis erkannt werden. Das Zeitdiagramm 620 zeigt eine zweite Sequenz mit einer längeren Periode, T2, was zu einer geringeren Anzahl an Wiederholungen mit weniger Mehrdeutigkeit führt. Während der Übertragung nach dieser Zeitsequenz ist das System betriebsbereit, um die wahre Hypothese aus einem finiten mehrdeutigen Bereich mit einem niedrigeren Signal-Rausch-Verhältnis zu ermitteln.
  • Nun zeigt 7 ein exemplarisches Verfahren einer Impulswiederholfrequenz mit hoher Bearbeitungsverstärkung. Das Verfahren ist zunächst betriebsbereit, um einen ersten Lichtimpuls an 710 zu übertragen und einen zweiten Lichtimpuls mit einem ersten Zeitintervall zwischen dem Senden des ersten Lichtimpulses und des zweiten Lichtimpulses. Anschließend empfängt das Verfahren 720 eine reflektierte Darstellung des ersten Lichtimpulses und eine reflektierte Darstellung des zweiten Lichtimpulses. Ein Ermitteln 730 der Entfernung zu einem Objekt wird dann in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses 730 angestellt. Nach einer gewissen Zeitperiode wird ein Steuersignal generiert, was zum Übertragen eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen dem Senden des dritten Lichtimpulses und des vierten Lichtimpulses führt, worin das zweite Zeitintervall größer ist als das erste Zeitintervall 730. Nun ist das System betriebsbereit, um eine reflektierte Darstellung des dritten Lichtimpulses und eine reflektierte Darstellung des vierten Lichtimpulses 740 zu empfangen. Das System ermittelt nun die Entfernung zum Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses 750.
  • Alternativ wird das Steuersignal generiert, das zum Übertragen eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen dem Senden des dritten Lichtimpulses und des vierten Lichtimpulses führt, worin das zweite Zeitintervall größer ist als das erste Zeitintervall, in Reaktion auf eine Bestimmung, dass die erste Messung zum Objekt mehrdeutig ist. So kann das System z. B. eine Entfernung mit einer ersten Gewissheitsstufe zu einem Objekt ermitteln und weiterhin Lichtimpulse mit einer ersten Impulsrate senden. Wenn jedoch ein Objekt mit einer Gewissheitsstufe erkannt wird, die unter einem Schwellenwert liegt, kann das System die Impulsrate auf eine langsamere Impulsrate abändern, um den Standort des Objekts zu bestätigen und die Gewissheitsstufe über eine bestimmte Stufe zu erhöhen.
  • Obwohl diese exemplarische Ausführungsform im Kontext eines voll funktionierenden Computersystems beschrieben wird, versteht es sich, dass Fachleute auf diesem Gebiet erkennen werden, dass die Mechanismen der vorliegenden Offenbarung als ein Programmprodukt mit einer oder mehreren Arten von nicht flüchtigen computerlesbaren Signalträgermedien verbreitet werden können, die verwendet werden, um das Programm und die zugehörigen Befehle zu speichern und deren Verbreitung auszuführen, wie ein nichtflüchtiges computerlesbares Medium, welches das Programm und Computerbefehle enthält, die darin gespeichert sind, um einen Computerprozessor zu veranlassen, das Programm auszuführen. Ein derartiges Programmprodukt kann vielerlei Formen annehmen, wobei die vorliegende Offenbarung in gleicher Weise, unabhängig von der spezifischen für die Verbreitung verwendeten Art von computerlesbarem Signalträgermedium, Anwendung findet. Zu den Beispielen für Signalträgermedien gehören: beschreibbare Medien, wie z. B. Disketten, Festplatten, Speicherkarten und optische Speicherplatten, sowie Übertragungsmedien, wie z. B. digitale und analoge Kommunikationsverbindungen.

Claims (10)

  1. Verfahren, umfassend: - das Übertragen eines ersten Lichtimpulses und eines zweiten Lichtimpulses mit einem ersten Zeitintervall zwischen dem Senden des ersten Lichtimpulses und des zweiten Lichtimpulses; - das Empfangen einer reflektierten Darstellung des ersten Lichtimpulses und einer reflektierten Darstellung des zweiten Lichtimpulses; - das Ermitteln einer ersten Entfernung zu einem ersten Objekt in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses; - das Übertragen eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen dem Senden des dritten Lichtimpulses und des vierten Lichtimpulses, worin das zweite Zeitintervall größer ist als das erste Zeitintervall; - das Empfangen einer reflektierten Darstellung des dritten Lichtimpulses und einer reflektierten Darstellung des vierten Lichtimpulses; und - das Ermitteln einer zweiten Entfernung zum ersten Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses.
  2. Verfahren nach Anspruch 1, worin der erste Lichtimpuls und der dritte Lichtimpuls auf das erste Objekt innerhalb eines Sichtfelds treffen.
  3. Verfahren nach Anspruch 1, worin das Verfahren mit einem LIDAR-System durchgeführt wird.
  4. Verfahren nach Anspruch 1, worin das Ermitteln der zweiten Entfernung zum ersten Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses durchgeführt wird, um die erste Entfernung zur ersten Objekt zu bestätigen, die in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses ermittelt wurde.
  5. Verfahren nach Anspruch 1, worin die erste Entfernung zum ersten Objekt in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses und die reflektierte Darstellung des zweiten Lichtimpulses ermittelt wurde.
  6. Verfahren nach Anspruch 1, worin die zweite Entfernung zum ersten Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses und die reflektierte Darstellung des vierten Lichtimpulses ermittelt wurde.
  7. Verfahren nach Anspruch 1, worin das Übertragen des dritten Lichtimpulses und des vierten Lichtimpulses in Reaktion auf eine mehrdeutige Ermittlung der ersten Entfernung durchgeführt wird.
  8. Vorrichtung, umfassend: - einen Sender zum Übertragen eines ersten Lichtimpulses und eines zweiten Lichtimpuls mit einem ersten Zeitintervall zwischen dem Übertragen des ersten Lichtimpulses und des zweiten Lichtimpulses und eines dritten Lichtimpulses und eines vierten Lichtimpulses mit einem zweiten Zeitintervall zwischen dem Übertragen des dritten Lichtimpulses und des vierten Lichtimpulses, worin das zweite Zeitintervall größer ist als das erste Zeitintervall; - einen Empfänger zum Empfangen einer reflektierten Darstellung des ersten Lichtimpulses, einer reflektierten Darstellung des zweiten Lichtimpulses, einer reflektierten Darstellung des dritten Lichtimpulses und einer reflektierten Darstellung des vierten Lichtimpulses; und - einen Prozessor zum Ermitteln der Entfernung zu einem Objekt in Reaktion auf die reflektierte Darstellung des ersten Lichtimpulses und der Entfernung um Objekt in Reaktion auf die reflektierte Darstellung des dritten Lichtimpulses.
  9. Vorrichtung nach Anspruch 8, worin der erste Lichtimpuls und der dritte Lichtimpuls auf das Objekt innerhalb eines Sichtfelds treffen.
  10. Verfahren, umfassend: - das Übertragen einer ersten Reihe von Lichtimpulsen mit einer ersten Impulsrate; - das Empfangen einer reflektierten Darstellung der ersten Reihe von Lichtimpulsen; - das Ermitteln eines ersten Standorts einer Vielzahl von Objekten in Reaktion auf die reflektierte Darstellung der ersten Reihe von Lichtimpulsen; - das Übertragen einer zweiten Reihe von Lichtimpulsen mit einer zweiten Impulsrate; - das Empfangen einer reflektierten Darstellung der zweiten Reihe von Lichtimpulsen; und - das Ermitteln eines zweiten Standorts einer Vielzahl von Objekten in Reaktion auf die reflektierte Darstellung der zweiten Reihe von Lichtimpulsen.
DE102018109441.8A 2017-04-21 2018-04-19 Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung Withdrawn DE102018109441A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/493,705 US20180306927A1 (en) 2017-04-21 2017-04-21 Method and apparatus for pulse repetition sequence with high processing gain
US15/493,705 2017-04-21

Publications (1)

Publication Number Publication Date
DE102018109441A1 true DE102018109441A1 (de) 2018-10-25

Family

ID=63714282

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018109441.8A Withdrawn DE102018109441A1 (de) 2017-04-21 2018-04-19 Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung

Country Status (3)

Country Link
US (1) US20180306927A1 (de)
CN (1) CN108761474A (de)
DE (1) DE102018109441A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127990A1 (de) * 2018-11-08 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Verarbeitungseinheit zur Ermittlung von Information in Bezug auf ein Objekt in einem Umfeld eines Fahrzeugs

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908262B2 (en) 2016-02-18 2021-02-02 Aeye, Inc. Ladar transmitter with optical field splitter/inverter for improved gaze on scan area portions
US9933513B2 (en) 2016-02-18 2018-04-03 Aeye, Inc. Method and apparatus for an adaptive ladar receiver
US10754015B2 (en) 2016-02-18 2020-08-25 Aeye, Inc. Adaptive ladar receiver
US10042159B2 (en) 2016-02-18 2018-08-07 Aeye, Inc. Ladar transmitter with optical field splitter/inverter
US10209349B2 (en) 2017-02-17 2019-02-19 Aeye, Inc. Method and system for ladar pulse deconfliction to detect and track other ladar systems
US10605924B2 (en) * 2017-08-02 2020-03-31 GM Global Technology Operations LLC Method and apparatus cross segment detection in a lidar system
US10495757B2 (en) 2017-09-15 2019-12-03 Aeye, Inc. Intelligent ladar system with low latency motion planning updates
US10551501B1 (en) * 2018-08-09 2020-02-04 Luminar Technologies, Inc. Dual-mode lidar system
US10656252B1 (en) 2018-10-25 2020-05-19 Aeye, Inc. Adaptive control of Ladar systems using spatial index of prior Ladar return data
US11513223B2 (en) 2019-04-24 2022-11-29 Aeye, Inc. Ladar system and method with cross-receiver
CN110531759B (zh) * 2019-08-02 2020-09-22 深圳大学 机器人探索路径生成方法、装置、计算机设备和存储介质
CN110749898B (zh) * 2019-10-18 2022-05-27 深圳奥锐达科技有限公司 一种激光雷达测距系统及其测距方法
US11486977B2 (en) 2021-03-26 2022-11-01 Aeye, Inc. Hyper temporal lidar with pulse burst scheduling
US11604264B2 (en) 2021-03-26 2023-03-14 Aeye, Inc. Switchable multi-lens Lidar receiver
US11686845B2 (en) 2021-03-26 2023-06-27 Aeye, Inc. Hyper temporal lidar with controllable detection intervals based on regions of interest
US11635495B1 (en) 2021-03-26 2023-04-25 Aeye, Inc. Hyper temporal lidar with controllable tilt amplitude for a variable amplitude scan mirror
US11630188B1 (en) 2021-03-26 2023-04-18 Aeye, Inc. Hyper temporal lidar with dynamic laser control using safety models
US11460552B1 (en) 2021-03-26 2022-10-04 Aeye, Inc. Hyper temporal lidar with dynamic control of variable energy laser source
US11500093B2 (en) 2021-03-26 2022-11-15 Aeye, Inc. Hyper temporal lidar using multiple matched filters to determine target obliquity

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6850314B2 (en) * 2002-08-08 2005-02-01 Board Of Reagents University Of Houston Method for optical sensing
US7342651B1 (en) * 2004-12-27 2008-03-11 Northrop Grumman Corporation Time modulated doublet coherent laser radar
US7944548B2 (en) * 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses
US9091754B2 (en) * 2009-09-02 2015-07-28 Trimble A.B. Distance measurement methods and apparatus
EP3171201B1 (de) * 2012-03-07 2018-05-09 Safran Vectronix AG Entfernungsmesser
EP2680028A1 (de) * 2012-06-27 2014-01-01 Leica Geosystems AG Distanzmessverfahren und Distanzmesser
CN104730535A (zh) * 2015-03-20 2015-06-24 武汉科技大学 一种车载多普勒激光雷达距离测量方法
KR20170096723A (ko) * 2016-02-17 2017-08-25 한국전자통신연구원 라이다 시스템 및 이의 다중 검출 신호 처리 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018127990A1 (de) * 2018-11-08 2020-05-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Verarbeitungseinheit zur Ermittlung von Information in Bezug auf ein Objekt in einem Umfeld eines Fahrzeugs

Also Published As

Publication number Publication date
CN108761474A (zh) 2018-11-06
US20180306927A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
DE102018109441A1 (de) Verfahren und Vorrichtung zur Pulswiederholungssequenz mit hoher Bearbeitungsverstärkung
DE102017126877B4 (de) Kraftfahrzeug
DE102018115265A1 (de) Verfahren und vorrichtung zur objektoberflächenschätzung mittels reflexionsverzögerungs-aufspreizung
DE102018105293A1 (de) Verfahren und vorrichtung zur vernetzten szenendarstellung und -erweiterung in fahrzeugumgebungen in autonomen fahrsystemen
DE102017126925A1 (de) Automatisierte Co-Pilotsteuerung für autonome Fahrzeuge
DE102019110772A1 (de) Verfahren und vorrichtung zum überlagern und zur mehrweggeräuschminderung in einem lidar-system
DE102018119469A1 (de) System und verfahren zur verbesserten hinderniserkennung unter verwendung eines v2x-kommunikationssystems
DE102018118142A1 (de) Vorrichtung zum erhöhen des sichtfeldes für lidar-detektoren und -beleuchter
DE102018118528A1 (de) Verfahren und Vorrichtung zur Segment-übergreifenden Erfassung in einem Lidar-System
DE102018102027A1 (de) Effizientes situationsbewusstsein durch ereigniserzeugung und episodischen speicherabruf für autonome antriebssysteme
DE102018115372A1 (de) Verfahren und vorrichtung zur parallelen beleuchtung durch ein vcsel-array
DE102018118679A1 (de) Verfahren und vorrichtung zur parallelen aufnahme in ein lidar-array
DE102018123170A1 (de) Verfahren und vorrichtung zur frameratenerhöhung in lidar-arrays
DE102018101505A1 (de) Effizientes situationsbewusstsein von wahrnehmungsströmen in autonomen fahrsystemen
DE102020101140A1 (de) Verfahren und system zum bestimmen einer aktion eines autonomen fahrzeugs (av) basierend auf fahrzeug- und edge-sensordaten
DE102019112649A1 (de) Vorrichtung und verfahren zur verbesserten radarstrahlformung
DE102016119130A1 (de) Probabilistische Folgerung unter Verwendung gewichteter Integrale und Summen durch Hashing zur Objektverfolgung
DE102019110759A1 (de) System und verfahren zum steuern eines autonomen fahrzeugs
DE102018117708A1 (de) Implementierungsentscheidung zum bereitstellen einer adas-funktionsaktualisierung für ein fahrzeug
DE102019108644A1 (de) Verfahren und vorrichtung zum automatischen lernen von regeln für autonomes fahren
DE102019115421A1 (de) System und verfahren zur steuerung eines autonomen fahrzeugs
DE102018111252A1 (de) Diagnoseverfahren für einen stellantrieb in einem autonomen fahrzeug
DE102019115984A1 (de) System und verfahren zur steuerung eines autonomen fahrzeugs
DE102018110811A1 (de) System und verfahren zur kollisionsminderung und -vermeidung in autonomen fahrzeugen
DE102019115003A1 (de) Lidarsystem und steuerverfahren dafür

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: LKGLOBAL ] LORENZ & KOPF PARTG MBB PATENTANWAE, DE

R016 Response to examination communication
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee