-
Die Erfindung betrifft ein Aufrau-Werkzeug zum mechanischen Aufrauen einer Werkstück-Zylinderbohrung nach dem Oberbegriff des Anspruches 1 sowie ein Verfahren nach dem Anspruch 14.
-
Die Zylinder-Laufbahn in einem Aluminium-Zylinderkurbelgehäuse eines Kraftfahrzeugs kann in einer Prozesskette hergestellt werden, bei der zunächst in einem Anlieferungszustand das Zylinderkurbelgehäuse mit einer zum Beispiel konischen Vorbohrung bereitgestellt wird. In einem Aufbohr-Schritt wird die Vorbohrung zu der durchmessergrößeren Zylinderbohrung ausgeweitet. Anschließend erfolgt ein Zirkularfräs-Schritt, bei dem am Bohrungsgrund ein Honfreigang erzeugt wird. Danach wird in einem Aufrau-Schritt die Innenwandung der Zylinderbohrung mittels eines Aufrau-Werkzeugs mechanisch aufgeraut. Anschließend kann eine APS-Beschichtung erfolgen, bei der mittels eines Brenners ein aufgeschmolzenes APS-Beschichtungsmaterial auf die Innenwandung der Zylinderbohrung aufgeschleudert wird. Der Brenner nutzt den Honfreigang als einen Werkzeugauslauf, in den der Brenner einfahrbar ist und an einem Umkehrpunkt in Reversierrichtung reversierbar ist. Nach dem Aushärten der aufgeschleuderten APS-Schicht erfolgt eine Honbearbeitung der APS-Schicht, und zwar unter Bildung der Zylinder-Laufbahn in der Zylinderbohrung.
-
In einem gattungsgemäßen Aufrau-Schritt wird das Aufrau-Werkzeug mit einem Vorschub sowie mit damit synchronisierter Drehzahl in die Zylinderbohrung abgesenkt, so dass das Aufrau-Werkzeug unter Spanbearbeitung eine spiralförmige Aufraustruktur in der Innenwandung der Zylinderbohrung erzeugt. Die spiralförmige Aufraustruktur kann im Querschnitt ein Schwalbenschwanzprofil mit Hinterschnitten aufweisen, wodurch nach erfolgter APS-Beschichtung eine feste Formschlussverbindung zwischen der APS-Schicht und der Aufraustruktur sichergestellt ist.
-
Zum Ende eines Aufrau-Hubes ist das Aufrau-Werkzeug im Honfreigang angeordnet, in dem es zur Vorbereitung des Reversier-Hubes um einen Radialversatz freigefahren wird. Dadurch ist gewährleistet, dass im Reversier-Hub das Aufrau-Werkzeug belastungsfrei sowie außer Eingriff mit der Aufraustruktur aus der Zylinderbohrung herausführbar ist.
-
Um ein störkonturfreies radiales Freifahren sicherzustellen, ist ein konventionelles Aufrau-Werkzeug wie folgt aufgebaut: So weist das Aufrau-Werkzeug einen Werkzeug-Grundkörper auf, an dessen Außenumfang genau ein Schneidelement (insbesondere eine Wendeschneidplatte) befestigt ist. An der zum Schneidelement diametral gegenüberliegenden Seite ist der Querschnitt des Werkzeug-Grundkörpers nach radial innen reduziert. Dadurch ergibt sich ein Werkzeug-Freiraum zwischen dem Werkzeug-Außenumfang und einer Schneidenkontur-Kreisbahn, auf der sich die Schneidenkontur des Werkzeugs bewegt. Beim radialen Freifahren wird der Werkzeug-Freiraum teilweise aufgebraucht, damit das Aufrau-Werkzeug im anschließenden Reversier-Hub belastungsfrei sowie außer Eingriff mit der erzeugten Aufraustruktur aus der Zylinderbohrung herausgeführt werden kann.
-
Im obigen konventionellen Aufrau-Schritt ist das genau eine Schneidelement des Aufrau-Werkzeugs hohen Werkzeug-Belastungen ausgesetzt. Zur Reduzierung dieser Werkzeug-Belastungen kann der Vorschub sowie die damit synchronisierte Drehzahl verringert werden. Dadurch ergeben sich jedoch längere Prozesszeiten.
-
Aus der
DE 10 2006 045 275 B3 ist ein Verfahren zur Herstellung eines Produktes mittels eines Schneidwerkzeugs bekannt.
-
Die Aufgabe der Erfindung besteht darin, ein Aufrau-Werkzeug bereitzustellen, bei dem der Aufrau-Schritt im Vergleich zum Stand der Technik mit reduzierter Prozesszeit und oder reduzierter Werkzeug-Belastung durchführbar ist.
-
Die Aufgabe ist durch die Merkmale des Anspruches 1 oder 14 gelöst. Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen offenbart.
-
Gemäß dem kennzeichnenden Teil des Anspruches weist das Aufrau-Werkzeug nicht mehr nur genau ein Schneidelement auf, sondern vielmehr zumindest ein erstes Schneidelement und ein zweites Schneidelement. Die beiden Schneidelemente sind in der Werkzeug-Umfangsrichtung um einen Schneidenwinkel voneinander beabstandet. Beide Schneidelemente erzeugen im Aufrau-Schritt unter Spanbearbeitung die Aufraustruktur in der Innenwandung der Zylinderbohrung. Auf diese Weise kann im Aufrau-Schritt die Werkzeug-Belastung auf die beiden Schneidelemente aufgeteilt werden. Zudem kann der Aufrau-Schritt im Vergleich zum Stand der Technik mit reduzierter Prozesszeit durchgeführt werden.
-
In einer technischen Umsetzung ist der Schneidenwinkel in Kombination mit dem verfügbaren Radialversatz so zu bemessen, dass das Aufrau-Werkzeug mitsamt der beiden Schneidelement im Reversier-Hub belastungsfrei sowie außer Eingriff mit der Aufraustruktur aus der Zylinderbohrung herausführbar ist. Der zwischen dem ersten Schneidelement und dem zweiten Schneidelement aufgespannte Schneidenwinkel kann rein exemplarisch kleiner als 180°, z.B. im Bereich von 120°, sein.
-
Zusätzlich zu den ersten und zweiten Schneidelementen kann das Aufrau-Werkzeug zumindest ein weiteres, drittes Schneidelement aufweisen, das in der Werkzeug-Umfangsrichtung zwischen den beiden ersten und zweiten Schneidelementen positionierbar ist. Die Schneidelemente können jeweils eine radial äußere, in Axialrichtung verlaufende Schneidenkontur aufweisen.
-
Die Schneidenkontur kann zumindest einen, insbesondere mehrere Profilzähne aufweisen. Diese können in der Axialrichtung voneinander beabstandet sein. Die Profilzähne bewirken im Aufrau-Schritt eine Vorbearbeitung, Zwischenbearbeitung und Fertigbearbeitung der spiralförmigen Aufraustruktur. Hierzu sind die auf der Schneidenkontur ausgebildeten Profilzähne in der Axialrichtung voneinander über Zahnabstände beabstandet.
-
Alternativ und/oder zusätzlich kann die Schneidenkontur des ersten Schneidelementes und/oder des zweiten Schneidelementes zumindest eine Spindelschneide aufweisen, mittels der der Zylinderbohrungsdurchmesser ausweitbar ist, um einen definierten Materialabtrag an den Profilzähnen der Schneidenkontur zu gewährleisten. Jeder der Profilzähne kann von einem Schneidengrund nach radial außen um eine Zahnhöhe abragen. Der jeweilige Profilzahn kann eine radial äußere, axial verlaufende Längsschneidkante aufweisen, die axial beidseitig an Schneidenecken in radial verlaufende Querschneidkanten übergehen. Diese erstrecken sich bis zum Schneidengrund. Der Profilzahn kann die Spindelschneide in der Werkzeug-Radialrichtung um ein vordefiniertes Übermaß überragen.
-
In einer ersten Ausführungsvariante kann das erste Schneidelement ausschließlich die zumindest eine Spindelschneide, ohne Profilzahn, aufweisen. Demgegenüber kann das zweite Schneidelement ausschließlich den zumindest einen Profilzahn, ohne Spindelschneide, aufweisen. Auf diese Weise wirkt das erste Schneidelement als ein Vorbearbeitungs-Schneidelement, das den Durchmesser der Innenwandung der Zylinderbohrung unter Materialabtrag geringfügig ausweitet. Das zweite Schneidelement wirkt dagegen als ein Aufraustruktur-Schneidelement, mittels dem die Aufraustruktur in der Innenwandung der Zylinderbohrung erzeugt wird.
-
Alternativ dazu können in beliebiger Anzahl und/oder in beliebiger axialer Reihenfolge dem ersten Schneidelement und/oder dem zweiten Schneidelement Spindelschneiden und/oder Profilzähne zugeordnet sein. Beispielhaft kann die Schneidenkontur eines Schneidelementes in Axialrichtung in abwechselnder Reihenfolge Profilzähne und Spindelschneiden aufweisen.
-
Um ein störkonturfreies Freifahren des Aufrau-Werkzeugs in der Radialrichtung zu unterstützen, kann nachfolgend der Werkzeug-Querschnitt im Bereich der Werkzeugspitze angepasst sein. Der Werkzeug-Querschnitt ist aufteilbar in einen ersten Werkzeug-Querschnitt, der außerhalb eines vom Schneidenwinkel aufgespannten Drehwinkelbereiches liegt, und in einen zweiten Werkzeug-Querschnitt innerhalb des Drehwinkelbereiches. Der außerhalb des Drehwinkelbereiches liegende ersten Werkzeug-Querschnitt kann bevorzugt - im Vergleich zum zweiten Werkzeug-Querschnitt - nach radial innen reduziert sein, und zwar unter Bildung eines Werkzeug-Freiraums zwischen dem Werkzeug-Außenumfang und der Schneidenkontur-Kreisbahn. Der Werkzeug-Freiraum wird beim Freifahren in der Radialrichtung teilweise aufgebraucht, damit das Aufrau-Werkzeug mitsamt der beiden Schneidelemente im Reversier-Hub belastungsfrei sowie außer Eingriff mit der Aufraustruktur aus der Zylinderbohrung herausgeführt werden kann.
-
Nachfolgend ist eins Ausführungsbeispiel der Erfindung anhand der beigefügten Figuren beschrieben.
-
Es zeigen:
- 1 einen Ausschnitt aus einem Zylinderkurbelgehäuse mit einer Zylinderbohrung, an deren Bohrungsgrund ein Honfreigang ausgebildet ist;
- 2 in vergrößerter Teilansicht eine Aufraustruktur in der Innenwandung der Zylinderbohrung;
- 3 und 4 jeweils Ansichten eines Aufrau-Werkzeugs;
- 5 und 6 jeweils Ansichten eines ersten Schneidelements und eines zweiten Schneidelements;
- 7 bis 9 jeweils Ansichten, die einen Aufrau-Schritt veranschaulichen;
- 10 und 11 ein konventionelles Bohrwerkzeug in unterschiedlichen Ansichten;
- 12 und 13 ein Ausführungsbeispiel der Erfindung in Ansichten entsprechend der 10 und 11; sowie
- 14 und 15 ein weiteres Ausführungsbeispiel der Erfindung in Ansichten entsprechend der 10 und 11.
-
In der 1 ist ein Ausschnitt aus einem Zylinderkurbelgehäuse 1 mit einer Zylinderbohrung 3 gezeigt. Die Zylinderbohrung 3 weist einen um die Bohrungsachse B rotationssymmetrischen Honfreigang 5 auf, der in einer Bohrungstiefe tB an einem Bohrungsgrund 7 der Zylinderbohrung 3 ausgebildet ist. Der Honfreigang 5 ist als eine ringförmige Umlaufnut mit einem radial äußeren Nutboden in einer Innenwandung der Zylinderbohrung 3 ausgebildet. Der Nutboden-Durchmesser dN des Honfreigangs 5 ist größer bemessen als der Durchmesser dz der Zylinderbohrung 3.
-
Auf der Oberfläche der Innenwandung der Zylinderbohrung 3 ist eine spiralförmige Aufraustruktur 9 ausgebildet, die nach Art eines Innengewindes mit einer Gewindesteigung β verläuft. In der 2 ist die Aufraustruktur 9 in stark vergrößerter Ansicht als eine nutförmige Schwalbenschwanzkontur mit seitlichen Hinterschnitten realisiert. Dadurch ist eine feste formschlüssige Verbindung zwischen der nicht gezeigten APS-Schicht und der Innenwandung der Zylinderbohrung 3 gewährleistet.
-
Die Aufraustruktur 9 wird mit Hilfe eines in den 3 und 4 gezeigten Aufrau-Werkzeugs in einem später beschriebenen Aufrau-Schritt erzeugt. Das Aufrau-Werkzeug weist einen, an einer gestrichelt angedeuteten Maschinenspindel 11 (3) befestigbaren Werkzeug-Grundkörper 13 auf. An einer Werkzeugspitze 15 weist der Werkzeug-Grundkörper 13 außenumfangsseitig zwei als Wendeschneidplatten realisierte Schneidelemente 17 und 19 auf. Die beiden Schneidelemente 17, 19 sind auf gleicher axialer Höhe am Aufrau-Werkzeug positioniert. Die beiden Schneidelemente 17, 19 sind in der Werkzeug-Umfangsrichtung um einen Schneidenwinkel α ( 4) voneinander beabstandet. Jedes der beiden Schneidelemente 17, 19 weist eine radial äußere sowie achsparallel verlaufende Schneidenkontur SK1, SK2 auf, die später anhand der 5 und 6 beschrieben wird. An der Schneidenkontur SK1, SK2 laufen in der 4 jeweils eine in einer Rotationsrichtung vorauseilende Spanfläche 21 mit einer radial äußeren umfangsseitigen Freifläche 23 zusammenlaufen. Die Spanfläche 21 begrenzt in der 4 einen nutförmigen Spanraum 25.
-
In der 5 ist in vergrößerter Darstellung das erste Schneidelement 17 gezeigt, das über eine Schraubverbindung 27 am Werkzeug-Grundkörper 13 befestigt ist. Die Schneidenkontur SK1 des ersten Schneidelementes 17 weist unmittelbar an der Werkzeugspitze 15 eine Spindelschneide 29 auf. Die Spindelschneide 29 ist mit einer in Axialrichtung verlaufenden Längsschneidkante 31 ausgebildet, die an einer gerundeten Schneidenecke 32 in eine stirnseitige Querschneidkante 33 übergeht. Die Längsschneidkante 31 der Spindelschneide 29 liegt in der 5 auf einem Spindelschneiden-Durchmesser ds, der größer bemessen ist als ein Schneidengrund-Durchmesser dG , auf dem ein radial zurückgesetzter Schneidengrund 35 liegt, der im Aufrau-Schritt außer Materialeingriff mit dem Werkstückmaterial ist.
-
In der 6 ist das zweite Schneidelement 19 gezeigt, deren Schneidenkontur SK2 unterschiedlich zur Schneidenkontur SK1 des ersten Schneidelementes 17 ist. Die Schneidenkontur SK2 des zweiten Schneidelementes 19 weist im Unterschied zum Schneidelement 17 keine Spindelschneide 29 auf, sondern eine Vielzahl von Profilzähnen 37, die von einem Schneidengrund 35 der Schneidenkontur SK2 radial nach außen in unterschiedlichen Zahnhöhen radial abragen. Mittels der Profilzähne 37 wird im Aufrau-Schritt die in der 3 gezeigte spiralförmige Schwalbenschwanzstruktur 9 erzeugt, wobei jeder der Profilzähne 37 unterschiedliche Schneidaufgaben übernimmt, um die in der 2 gezeigte Schwalbenschwanzstruktur 9 auszubilden.
-
Von daher wirkt das erste Schneidelement 17 (5) als ein Vorbearbeitungs-Schneidelement, das im später beschriebenen Aufrau-Schritt zur Vorbereitung des mechanischen Aufrauens den Durchmesser der Zylinderbohrung 3 unter Materialabtrag geringfügig ausweitet. Das zweite Schneidelement 19 wirkt als ein Aufraustruktur-Schneidelement, mittels dem die in der 2 gezeigte Schwalbenschwanzstruktur 9 profiliert wird.
-
Jeder der Profilzähne 37 (6) der Schneidenkontur SK2 des zweiten Schneidelements 19 weist eine, in der Axialrichtung verlaufende Längsschneidkante 39 auf, die axial beidseitig an Schneidenecken 41 in radial verlaufende Querschneidkanten 43 übergehen. Die Querschneidkanten 43 gehen jeweils in den zurückgesetzten Schneidengrund 35 über.
-
Nachfolgend wird anhand der 7 bis 9 ein Aufrau-Schritt beschrieben: So wird das Aufrau-Werkzeug in einem Aufrau-Hub I (7) mit einem Vorschub fA sowie mit einer damit synchronisierten Drehzahl nA in die Zylinderbohrung 3 abgesenkt, und zwar bei einer zur Bohrungsachse B koaxialen Werkzeug-Rotationsachse R. Auf diese Weise erzeugen die beiden Schneidelemente 17, 19 des Aufrau-Werkzeugs unter Spanbearbeitung die spiralförmige Aufraustruktur 9 der Innenwandung der Zylinderbohrung 3, und zwar mit einer Gewindesteigung β, deren Größe von den Prozessparametern (d.h. Vorschub fA und Drehzahl nA ) abhängt. Zum Ende des Aufrau-Hubs I ( 8) sind die beiden Schneidenkonturen SK1, SK2 der Schneidelemente 17, 19 im Honfreigang 5 positioniert.
-
Anschließend wird in der 9 das Aufrau-Werkzeug zur Vorbereitung eines Reversier-Hubes II um einen Radialversatz Δr freigefahren. Auf diese Weise ist gewährleistet, dass im Reversier-Hub II das Aufrau-Werkzeug belastungsfrei sowie außer Eingriff mit der Aufraustruktur 9 aus der Zylinderbohrung 3 herausführbar ist.
-
Um ein störkonturfreies Freifahren des Aufrau-Werkzeugs in der Radialrichtung zu unterstützen, ist ein in der 4 gezeigter Werkzeug-Querschnitt im Bereich der Werkzeugspitze 15 aufteilbar in einen ersten Werkzeug-Querschnitt 47, der außerhalb eines vom Schneidenwinkel α aufgespannten Drehwinkelbereiches liegt, und in einen zweiten Werkzeug-Querschnitt 49 innerhalb dieses vom Schneidenwinkel α aufgespannten Drehwinkelbereiches. Der außerhalb des Drehwinkelbereiches liegende ersten Werkzeug-Querschnitt 47 ist in der 4 - im Vergleich zum zweiten Werkzeug-Querschnitt 49 - nach radial innen reduziert. Dadurch ergibt sich ein Werkzeug-Freiraum 51 (4) zwischen dem Werkzeug-Außenumfang und einer gedachten Schneidenkontur-Kreisbahn 45. Der Werkzeug-Freiraum 51 wird beim Freifahren in der Radialrichtung teilweise aufgebraucht, damit das Aufrau-Werkzeug mitsamt der beiden Schneidelemente 17, 19 im Reversier-Hub II belastungsfrei sowie außer Eingriff mit der Aufraustruktur 9 aus der Zylinderbohrung 3 herausführbar sind.
-
Erfindungsgemäß ist der Schneidenwinkel α in Kombination mit dem verfügbaren Radialversatz Δr so bemessen, dass das Aufrau-Werkzeug mitsamt der beiden Schneidelemente 17, 19 im Reversier-Hub II belastungsfrei sowie außer Eingriff mit der Aufraustruktur 9 aus der Zylinderbohrung 3 herausführbar ist.
-
Allgemein sind bei der Auslegung eines Bohr-Prozessschrittes die Prozessparameter (das heißt Drehzahl n sowie Vorschub f des Bohrwerkzeugs) so mit den Positionen der Schneidelemente am Bohrwerkzeug abzustimmen, dass die Schneidelement-Belastung pro Schneidelement in etwa gleich ist, das heißt der Vorschub vfz (Zahnvorschub) pro Schneidelement idealerweise gleich ist. Dies wird bei einem konventionellen Bohrwerkzeug 61 (10 und 11) durch einen konstanten Teilungsabstand a zwischen den Schneidelementen 17, 19, 63, 65 erzielt. In der 11 ist die Mantelfläche des konventionellen Bohrwerkzeugs 61 in einer Abwicklung gezeigt. Demnach sind die Schneidelemente 17, 19, 63, 65 allesamt auf gleicher axialer Höhe H positioniert. Die Schneidelemente 17, 19, 63, 65 sind in der 11 jeweils über identische Schnittbreiten s in Spaneingriff mit der Innenwandung einer Werkstück-Bohrung. In der 11 sind die sich im Bohrprozess ergebenden Schnittwege w1 bis w4 der ersten bis vierten Schneidelemente 17, 19, 63, 65 eingezeichnet. Die Schnittwege w1 bis w4 verlaufen mit einem Steigungswinkel β spiralförmig entlang der Bohrungs-Innenwandung, so dass sich in der Abwicklung (11) ein geradliniger Verlauf der Schnittwege w1 bis w4 ergibt. Die Schnittwege w1 bis w4 überlappen sich in der 11 nicht, sondern gehen vielmehr in der Axialrichtung überlappungsfrei ineinander über.
-
In dem Ausführungsbeispiel der 12 und 13 sind die Schneidelemente 17, 19, 63, 65 nicht mehr in identischen Teilungsabständen a gleichmäßig umfangsverteilt angeordnet. Vielmehr spannen in der 12 und 13 das erste Schneidelement 17 und das zweite Schneidelement 19 einen Schneidenwinkel α (hier beispielhaft etwa 120°) auf. Zwischen den ersten und zweiten Schneidelementen 17, 19 sind ein drittes und ein viertes Schneidelement 63, 65 positioniert. Aus der Abwicklung der 13 geht hervor, dass die Schneidelemente 17, 19, 63, 65 allesamt auf gleicher axialer Höhe H positioniert sind.
-
Im Ausführungsbeispiel der 12 und 13 sind - im Unterschied zur 10 und 11 -die Teilungsabstände a, b, c zwischen den vier Schneidelementen 17, 19, 63, 65 nicht mehr identisch, sondern zumindest teilweise unterschiedlich. Entsprechend ist in der 13 auch der Vorschub vfz pro Schneidelement nicht mehr für jedes Schneidelement gleich, sondern unterschiedlich. Das heißt, dass die Schneidelemente 17, 19, 63, 65 im Aufrau-Schritt nicht mehr gleichmäßig, sondern unterschiedlich stark belastet sind. Gemäß der 13 ist dem ersten Schneidelement 17 der größte Vorschub vfz pro Schneidelement zugeordnet, d.h. das ersten Schneidelement 17 ist der größten Schneidenbelastung ausgesetzt.
-
Um trotz der teilweise unterschiedlicher Teilungsabstände a, b, c eine gleichmäßige Belastung der Schneidelemente 17, 19, 63, 65 zu gewährleisten, sind in dem Ausführungsbeispiel der 14 und 15 die Schneidelemente 17, 19, 63, 65 nicht mehr auf gleicher axialer Höhe H positioniert, sondern vielmehr auf unterschiedlichen Höhenpositionen H, H1 , H2 , H3 . Diese Höhenpositionen sind so gewählt, dass sich eine gleichmäßige Schneidelement-Belastung der vier Schneidelemente 17, 19, 63, 65 ergibt. Die Höhenpositionen sind in Abhängigkeit von den Prozessparametern im Aufrau-Schritt (das heißt Werkzeug-Drehzahl nA , Werkzeug-Vorschub fA ) sowie in Abhängigkeit von den jeweiligen Teilungsabständen a, b, c gewählt.
-
Wie aus der 15 hervorgeht, sind die Schneidelemente 17, 19, 63, 65 - analog zur 11 - jeweils über identische Schnittbreiten s in Spaneingriff mit der Bohrungs-Innenwandung. Zudem überlappen die Schnittwege w1 bis w4 einander nicht, sondern gehen diese vielmehr überlappungsfrei ineinander über.
-
Die Höhenpositionen
H1 bis H
n der Schneidelemente sind allgemein mit folgenden Formeln zu bestimmen:
....,
wobei
- z
- Anzahl der Schneidelemente
- Vfz
- Vorschub pro Schneidelement
- D
- Durchmesser Aufrau-Werkzeug
a, b, c,...Teilungsabstände.
-
Bei einem Aufrau-Werkzeug mit vier Schneidelementen
17,
19,
53,
65 (d.h. z = 4) gemäß dem Ausführungsbeispiel der
14 und
15 ergeben sich daher die folgende Formeln, wonach
-
Bezugszeichenliste
-
- 1
- Werkstück
- 3
- Zylinderbohrung
- 5
- Honfreigang
- 7
- Bohrungsgrund
- 9
- Aufraustruktur
- 11
- Maschinenspindel
- 13
- Werkzeug-Grundkörper
- 15
- Werkzeugspitze
- 17, 19
- Schneidelemente
- 21
- Spanfläche
- 23
- Freifläche
- 25
- Spanraum
- 27
- Schraubverbindung
- 29
- Spindelschneide
- 31
- Längsschneidkante
- 32
- gerundete Schneidenecke
- 33
- Querschneidkante
- 35
- zurückgesetzter Schneidengrund
- 37
- Profilzähne
- 39
- Längsschneidkante
- 43
- Querschneidkante
- 45
- Kreisbahn
- 47,49
- Werkzeug-Querschnitte
- 51
- Werkzeug-Freiraum
- 61
- konventionelles Bohrwerkzeug
- 63, 65
- drittes und viertes Schneidelement
- SK1, SK2
- Schneidenkonturen
- B
- Zylinderbohrungsachse
- R
- Werkzeug-Rotationsachse
- α
- Schneidenwinkel
- β
- Gewindesteigung
- Δr
- Radialversatz
- fA
- Vorschub
- nA
- Drehzahl
- I
- Aufrau-Hub
- II
- Reversier-Hub
- dz
- Zylinderbohrungs-Durchmesser
- dK
- Schneidenkontur-Durchmesser
- dS
- Spindelschneiden-Durchmesser
- dP
- Profilzahn-Durchmesser
- tB
- Bohrungstiefe
- dN
- Nutboden-Durchmesser
- dG
- Schneidengrund-Durchmesser
- w1 bis w4
- Schnittwege der Schneidelemente
- a, b, c
- Teilungsabstände
- H, H1, H2, H3
- Höhenpositionen
- s
- Schnittbreite
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- DE 102006045275 B3 [0007]