DE102018120755A1 - Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu - Google Patents

Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu Download PDF

Info

Publication number
DE102018120755A1
DE102018120755A1 DE102018120755.7A DE102018120755A DE102018120755A1 DE 102018120755 A1 DE102018120755 A1 DE 102018120755A1 DE 102018120755 A DE102018120755 A DE 102018120755A DE 102018120755 A1 DE102018120755 A1 DE 102018120755A1
Authority
DE
Germany
Prior art keywords
unit
carrier
mobile device
data
carrier system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102018120755.7A
Other languages
English (en)
Inventor
Stephan Hußmann
Florian Johannes Knoll
Vitali Czymmek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Naiture & Co KG GmbH
Original Assignee
Naiture & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naiture & Co KG GmbH filed Critical Naiture & Co KG GmbH
Priority to DE102018120755.7A priority Critical patent/DE102018120755A1/de
Priority to FIEP19765969.1T priority patent/FI3841444T3/fi
Priority to SI201930520T priority patent/SI3841444T1/sl
Priority to KR1020217008621A priority patent/KR20210047918A/ko
Priority to RS20230316A priority patent/RS64154B1/sr
Priority to PT197659691T priority patent/PT3841444T/pt
Priority to HUE19765969A priority patent/HUE061887T2/hu
Priority to CN201980055947.3A priority patent/CN112955841A/zh
Priority to AU2019324525A priority patent/AU2019324525A1/en
Priority to PL19765969.1T priority patent/PL3841444T3/pl
Priority to DK19765969.1T priority patent/DK3841444T3/da
Priority to HRP20230366TT priority patent/HRP20230366T1/hr
Priority to ES19765969T priority patent/ES2942444T3/es
Priority to US17/268,529 priority patent/US20220117146A1/en
Priority to CA3111249A priority patent/CA3111249A1/en
Priority to PCT/EP2019/072521 priority patent/WO2020039045A1/de
Priority to EP19765969.1A priority patent/EP3841444B1/de
Priority to LTEPPCT/EP2019/072521T priority patent/LT3841444T/lt
Publication of DE102018120755A1 publication Critical patent/DE102018120755A1/de
Priority to IL281046A priority patent/IL281046A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B39/00Other machines specially adapted for working soil on which crops are growing
    • A01B39/12Other machines specially adapted for working soil on which crops are growing for special purposes, e.g. for special culture
    • A01B39/18Other machines specially adapted for working soil on which crops are growing for special purposes, e.g. for special culture for weeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M21/00Apparatus for the destruction of unwanted vegetation, e.g. weeds
    • A01M21/02Apparatus for mechanical destruction

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Die Erfindung betrifft ein Trägersystem (10) mit einem Träger (12) und einer mobilen Vorrichtung (14) zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna, wobei der Träger (12) einen Antrieb (16) zum Bewegen des Trägersystems (10), eine Steuereinrichtung (12b), eine Energiequelle (24), welche mit dem Antrieb (16) zusammenwirkt und die notwendige Spannung für den Betrieb zur Verfügung stellt, eine Aufnahme (12a) zum Aufnehmen und Verbinden mit der mobilen Vorrichtung (14), eine Kommunikationseinheit (30), eine erste mit der Kommunikationseinheit (30) zusammenwirkende Kommunikationsschnittstelle (36a) zum Datenaustausch mit der mobilen Vorrichtung (14), welche eine zugeordnete Schnittstelle (36b) aufweist, sowie eine zweite mit der Kommunikationseinheit (30) zusammenwirkende Kommunikationsschnittstelle (32) aufweist, welche zumindest Steuerungsdaten empfängt und an die Steuerungseinrichtung (12b) zum vorbestimmten Bewegen des Trägersystems (10) weitergibt.

Description

  • Die Erfindung betrifft ein Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna nach Anspruch 1 und ein Verfahren zur Echtzeitregelung der Bearbeitung des Bodens und/oder der Manipulation von Flora und Fauna durch das Trägersystem nach Anspruch 22.
  • Die Unkrautregulierung in der Landwirtschaft ist eine sehr arbeitsintensive Aufgabe, besonders im biologischen Anbau, die den Einsatz von Chemikalien verbietet oder einschränkt. Je nach angebauter Kultur ist die Unkrautregulierung in unmittelbarer Nähe der Nutzpflanze notwendig. Diese Regulierung findet im Allgemeinen im frühen Wachstumszustand statt. Sowohl Nutzpflanze auf der einen Seite als auch Unkraut bzw. Beikraut auf der anderen Seite sind da noch sehr klein und nahe beieinander. Um eine Beschädigung der Nutzpflanze zu vermeiden, ist es zielführend selektive Methoden anzuwenden. Dies erfolgt im biologischen Anbau, zum Beispiel für Möhren, durch eine arbeitsintensive, körperschädigende manuelle Arbeit mit sogenannten „Jäte-Fliegern“. Saison-Arbeitskräfte liegen dabei auf dem Bauch auf einer Pritsche und entfernen die Unkräuter.
  • Für Sonderkulturen mit größeren Pflanzenabständen, wie zum Beispiel Zuckerrüben, oder Salat, sind Traktoranbaugeräte bekannt, welche in der Lage sind, einzelne Nutzpflanzen zu erkennen und entsprechende Werkzeuge so anzusteuern, dass die Fläche der Nutzpflanze unbearbeitet bleibt. Für diese Aufgabe ist keine Selektivität notwendig. D.h., dass diese Systeme nicht die zu überarbeitenden Flächen überprüfen, sondern vielmehr das Werkzeug „auf Blind“ anhand der bekannten Nutzpflanzenposition steuern. Allgemein definiert der Abstand zur Nutzpflanze die Genauigkeitsanforderungen.
  • Aus der DE 40 39 797 A1 ist eine Vorrichtung zur Unkrautbekämpfung bekannt, wobei ein Aktor zur Vernichtung des Beikrauts permanent läuft und erst, wenn durch einen Sensor eine Kulturpflanze erkannt wird, dieser kurzzeitig unterbrochen wird. Der Träger wird dabei durch einen Wagen gebildet.
  • Aus der DE 10 2015 209 879 A1 ist eine Vorrichtung zur Beschädigung von Beikraut bekannt, welches ein Bearbeitungswerkzeug aufweist. Dieses Bearbeitungswerkzeug dient dazu, das Beikraut zu beschädigen. Zudem ist eine Klassifizierungseinheit vorgesehen, welche die Positionsdaten des Beikrauts entweder aufweist oder das Beikraut erkennt und die Positionsdaten ermittelt. Eine Lokalisierungseinheit ermittelt eine Relativposition zwischen dem Bearbeitungswerkzeug und dem Beikraut. Eine Manipulatoreinheit in Form eines Wagens positioniert das Bearbeitungswerkzeug in Abhängigkeit der ermittelten Relativpositionen entsprechend.
  • Ein entsprechendes Gerät mit einer Druckfördereinheit und einer Flüssigkeitsabgabeeinheit ist aus der DE 10 2015 209 891 A1 bekannt. Bei dieser Ausführungsform wird das Beikraut durch Aufsprühen von Flüssigkeit unter Druck vernichtet. Der Träger ist dabei ein Wagen.
  • Aus der DE 10 2015 209 888 A1 ist es bekannt, die Flüssigkeit impulsmäßig auf das Beikraut aufzubringen und somit dieses zu beschädigen. Auch hier wird der Träger durch einen Wagen gebildet.
  • In der DE 10 2013 222 776 A1 wird ein in einem Wagen gelagerter Stempel offenbart, der in einer Führungseinrichtung zur Führung des Stempels angeordnet ist. Hierbei wird der Stempel auf das Beikraut aufgesetzt und mit Druck beaufschlagt. Über den Druck beaufschlagt wird das Beikraut vernichtet.
  • Mit Agrarrobotern und Erntemaschinen, die automatisiert und mit Telematik Einrichtung versehen die Landwirtschaft technisch unterstützen, werden derzeit neue Wege beschritten. Vielfach können technische Prinzipien und Erkenntnisse aus der Raumfahrt, der Fernerkundung und der Robotik für die Fragestellungen in der Landwirtschaft übernommen werden, jedoch sind diese an die Aufgabenstellungen in der Landwirtschaft gezielt anzupassen und erfordern neue Vorrichtungen und Verfahren.
  • Beispielsweise sind die oben genannten bestehenden automatisierten Agrarroboter systembedingt darauf ausgerichtet, nur eine Pflanzenreihe nach der anderen abzufahren. Eingriffe erfolgen nur in die Flora und dies nur seriell. Eine Kontrolle erfolgt in der Regel anschließend durch Begehung, zum Beispiel durch den qualifizierten Menschen.
  • Nachteilig an den bekannten Vorrichtungen ist auch, dass es sich bei den Trägern jeweils um Spezialkonstruktionen von Wagen handelt, welche jeweils nur reihenweise die Nutzpflanzen abfahren und relativ unflexibel einsetzbar sind.
  • Weiterhin sind Flugdrohnen als Tragesysteme bekannt, welche als Spezialanfertigungen für den Einsatz in der Landwirtschaft ausgebildet sind. Auch hier handelt es sich um Spezialkonstruktionen welche eine geringe Flexibilität für unterschiedliche Anforderungsprofile in der Landwirtschaft aufweisen.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna sowie ein Verfahren zur Echtzeitregelung der Bearbeitung des Bodens und/oder der Manipulation von Flora und Fauna durch das Trägersystem anzugeben, welches eine in Echtzeit geregelte, qualifizierte Beseitigung der detektierten Flora und/oder Fauna sowie auch eine parallele Analyse von Flora und Fauna ermöglicht. Vorzugsweise soll das Trägersystem modulartig mit unterschiedlichen mobilen Vorrichtungen verbindbar sein, welche je nach Einsatzbedürfnisse optimale Sensoren und/oder Werkzeugeinheiten aufweisen.
  • Diese Aufgabe wird für das Trägersystem durch die Merkmale des Anspruches 1 und für das Verfahren durch die Merkmale des Anspruches 22 gelöst.
  • Die Unteransprüche bilden vorteilhafte Weiterbildungen der Erfindung.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass ein Trägersystem, welches gemeinsame Funktionen von Träger und mobiler Vorrichtung in dem Träger vorsieht und lediglich von der mobilen Vorrichtung benötigte Aggregate des Trägersystems in der mobilen Vorrichtung anordnet, eine deutlich höhere Flexibilität für das Trägersystem erzeugt, insbesondere dann, wenn die mobile Vorrichtung mit dem Träger lösbar verbunden und gegen andere mobile Vorrichtungen austauschbar ist.
  • Die Erfindung betrifft daher ein Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna. Der Träger ist mit einem Antrieb zum Bewegen des Trägersystems, mit einer Steuereinrichtung, mit einer Energiequelle, welche mit dem Antrieb zusammenwirkt und die notwendige Spannung für den Betrieb zur Verfügung stellt, mit einer Aufnahme zum Aufnehmen und Verbinden mit der mobilen Vorrichtung, mit einer Kommunikationseinheit, mit einer ersten mit der Kommunikationseinheit zusammenwirkenden Kommunikationsschnittstelle zum Datenaustausch mit der mobilen Vorrichtung, welche eine zugeordnete Schnittstelle aufweist, sowie mit einer zweiten mit der Kommunikationseinheit zusammenwirkenden Kommunikationsschnittstelle versehen. Über die zweite Kommunikationsschnittstelle werden zumindest Steuerungsdaten empfangen und mittels der Kommunikationseinheit an die Steuerungseinrichtung zum vorbestimmten Bewegen des Trägersystems weitergegeben. Hierdurch wird eine Flexibilität des Trägersystems geschaffen, das einen breiten Einsatzbereich ermöglicht, aber auch unterschiedlichen Bedürfnissen in der Landwirtschaft gerecht wird, indem bedarfsgerecht mobile Vorrichtungen mit einem einheitlichen Träger verbunden werden können.
  • Vorzugsweise kann der Träger als unbemanntes Luftfahrzeug (Flugdrohne), unbemanntes Landfahrzeug, unbemanntes Wasserfahrzeug, oder unbemanntes Unterwasserfahrzeug, beispielsweise für Aquakulturen, ausgebildet sein. Je nach Einsatzbereich wird der eine oder andere Träger genommen.
  • Gemäß einer Ausführungsform der Erfindung ist die zweite Kommunikationsschnittstelle eine Antenne, welche zum Datenaustausch mit einem zentralen, vorzugsweise ortsfesten, von dem Träger separaten Rechner ausgebildet ist. Hierdurch wird ermöglicht, dass Geräte, beispielsweise für die Telemetrie und oder die Auswertung der ermittelten Daten, unabhängig vom Träger bearbeitet und ausgewertet werden können. Der Träger kann dadurch leicht gewichtiger ausgebildet werden.
  • Um aber auch einen Datenaustausch mit der mobilen Vorrichtung zu ermöglichen, ist die zweite Kommunikationsschnittstelle hierfür ausgebildet.
  • Der Träger benötigt beispielsweise zum Betrieb des Antriebs eine Spannungsquelle. Um eine solche Spannungsquelle nur einmal vorzusehen und somit Gewicht im Trägersystem einzusparen weisen der Träger und die mobile Vorrichtung jeweils einen Spannungsanschluss auf, über den auch die mobile Vorrichtung mit Spannung versorgbar ist. Es ist somit nur eine Energiequelle für den Träger und die mobile Vorrichtung vorgesehen.
  • Um die Austauschbarkeit des Trägers mit verschiedenen mobilen Vorrichtungen zu gewährleisten, weisen der Träger und die mobile Vorrichtung Mittel zum bedarfsweisen Verbinden miteinander auf.
  • Beispielsweise können der Träger einen Greifer und die mobile Vorrichtung dem Greifer zugeordnete Aufnahmen aufweisen, über den die mobile Vorrichtung ergriffen und lösbar mit dem Träger verbunden ist. Alternativ oder ergänzend können der Träger und die mobile Vorrichtung einander zugeordnete Kupplungsmittel aufweisen, über welche die mobile Vorrichtung lösbar mit dem Träger verbindbar ist.
  • Gemäß einer Ausführungsform der Erfindung weist der Träger eine GPS-Einheit zur fortlaufenden Erfassung der Positionskoordinaten des Trägers auf. Auf diese Weise können die Positionskoordinaten den über den Sensor ermittelten Daten zugeordnet werden. Eine Auswertung wird hierdurch vereinfacht.
  • Vorzugsweise ist die mobile Vorrichtung mit zumindest einem Sensor, einer Werkzeugeinheit mit zumindest einem motorisch angetriebenen Werkzeug, einem Aktor zum Verfahren zumindest des Werkzeugs der Werkzeugeinheit, einem Motor zum Antreiben der Werkzeugeinheit und/oder des Aktors, einer Datenbank, einer ersten Kommunikationseinheit mit Schnittstelle und einem ersten Rechner versehen. Der Rechner dient zum Steuern des Motors, des Sensors, der Werkzeugeinheit und/oder des Aktors aufgrund generierter Steuerbefehle. Die über den Sensor erfassten Daten werden dabei mit den in der Datenbank hinterlegten Daten fortlaufend abgeglichen, um entsprechende Steuersignale für den Motor, den Sensor, die Werkzeugeinheit und/oder den Aktor zu generieren. Durch diese Vorrichtung wird eine Mobilität und Flexibilität geschaffen, gemäß der die mobile Vorrichtung eine eigene Einheit bildet, mit der sämtliche Daten in Echtzeit abgearbeitet, Steuersignale für die Werkzeugeinheit generiert und umgehend die Werkzeugeinheit gemäß den Steuersignalen arbeiten kann. Hierdurch ergeben sich Möglichkeiten der Kombination beispielsweise mit verschiedenen Trägern, welche die Vorrichtung bedarfsweise über das Feld bewegen.
  • Vorzugsweise erfolgt der Datenabgleich der durch den Sensor ermittelten Daten mit der Datenbank in Echtzeit, insbesondere mit einer Verifikation und Klassifikation der durch den Sensor ermittelten Daten. Dies erhöht die Reaktionsfähigkeit der Vorrichtung. Unter Echtzeit wird die Möglichkeit verstanden, Analyse- und Bearbeitungsvorgänge in einem Arbeitsgang in situ durchführen zu können.
  • Gemäß einer Ausführungsform der Erfindung ist der Sensor eine visuelle Detektionseinheit mit einer Kamera. Die zu verarbeitenden Daten sind somit Bilddaten, welche ohne weiteres mit einer Datenbank abgeglichen werden können.
  • Um einzelne Komponenten einfach austauschen zu können und somit die Rüstzeiten zu verringern, ist die Vorrichtung zweigeteilt ausgebildet. Hierbei ist in einer ersten Einheit der Sensor, die Werkzeugeinheit, der Motor zum Antreiben der Werkzeugeinheit und/oder des Aktors, der Aktor, der erste Rechner und die erste Kommunikationseinheit mit Schnittstelle vorgesehen. In der zweiten Einheit sind die Datenbank, ein zweiter Rechner und eine zweite Kommunikationseinheit mit Schnittstelle vorgesehen. Die erste Einheit und die zweite Einheit sind über die Schnittstelle zum Datenaustausch miteinander verbindbar. Zudem ist es durch die Zweiteilung auch möglich, dass die beiden Einheiten räumlich getrennt voneinander angeordnet werden können. Dies ist beispielsweise dann von Vorteil, wenn das Gewicht der bewegten Teile der Vorrichtung möglichst gering sein soll. In diesem Fall könnte die zweite Einheit zentral fix angeordnet werden und die erste Einheit auf dem Feld bewegt werden.
  • Hierbei ist es günstig, wenn die erste Einheit ein erstes Gehäuse und die zweite Einheit ein zweites Gehäuse umfasst, welches die in den Einheiten vorgesehenen Aggregate vor äußeren Einflüssen schützt.
  • Das erste und das zweite Gehäuse können über eine Steckverbindung lösbar miteinander verbunden sein. Hierdurch ist ein modulartiges Zusammenfügen der beiden Einheiten, aber auch ein Austausch bei Ausfall einer Einheit, ohne weiteres möglich.
  • Die Werkzeugeinheit weist vorzugsweise mindestens eine Vorschubeinheit und eine Rotationseinheit auf, welche mit dem Motor zusammenwirkt. Der Einsatzbereich des Werkzeugs wird hierdurch auf einfache Weise erweitert, ohne dass die Vorrichtung bewegt werden muss.
  • Vorzugsweise ist die Rotationseinheit an einem distalen Ende mit zumindest dem einen Werkzeug versehen, insbesondere mit einer Fräse oder mit einer Messereinheit. Mit Rotation beispielsweise der Messereinheit können zum Beispiel kleine Kerbtiere oder Beikraut selektiv zerstört werden.
  • Um das Gewicht der Vorrichtung weiter zu reduzieren, ist ein Spannungsanschluss für eine externe Spannungsversorgung vorgesehen. Dabei kann der Spannungsanschluss an der ersten Einheit vorgesehen sein. Im zusammengebauten Zustand von erster Einheit und zweiter Einheit kann die zweite Einheit über diesen Spannungsanschluss die erste Einheit als auch die zweite Einheit mit Spannung versorgen. Vorzugsweise wird dabei die Spannungsquelle eines Trägers zur Spannungsversorgung genutzt.
  • Bevorzugt ist die dem Träger zugeordnete Schnittstelle der mobilen Vorrichtung für den Datenaustausch, beispielsweise mit einem externen Rechner, in der zweiten Einheit angeordnet.
  • Gemäß einer Ausführungsform der Erfindung sind mehrere unterschiedliche mobile Vorrichtungen vorgesehen, wobei jeweils nur eine mobile Vorrichtung in der Aufnahme angeordnet ist. Vorzugsweise weisen die mobilen Vorrichtungen unterschiedliche Sensoren und/oder Werkzeugeinheiten auf. Bedarfsweise wird die eine oder andere mobile Vorrichtung mit den Träger verbunden, insbesondere in Abhängigkeit der durch den Sensor ermittelten Daten und der sich daraus ergebenden Auswertung. Hierdurch kann das Trägersystem bedarfsgerecht an die Anforderungen in der Landwirtschaft und der sich aktuell ergebenen Situation angepasst werden.
  • Die oben erwähnte Aufgabe wird auch durch ein Verfahren zur Echtzeitregelung der Bearbeitung des Bodens und/oder der Manipulation von Flora und Fauna durch das Trägersystem der eben genannten Art gelöst, wobei das Verfahren folgende Schritte aufweist:
    • - Ermitteln der notwendigen Maßnahmen;
    • - Durchführen der ermittelten Maßnahmen.
  • Zwischen dem Ermitteln der notwendigen Maßnahmen und dem Durchführen der ermittelten Maßnahmen können noch folgende Schritte durchgeführt werden:
    • - Aussuchen der mobilen Vorrichtung aus den zur Verfügung stehenden Vorrichtungen;
    • - Verbinden der Vorrichtung mit dem Träger.
  • Vorzugsweise wird die mobile Vorrichtung nach Durchführen der Maßnahme gegen eine andere mobile Vorrichtung ausgetauscht und eine weitere Maßnahme durchgeführt. Die Flexibilität des Trägersystems und die Möglichkeiten erhöhen sich dadurch erheblich.
  • Das Ermitteln der notwendigen Maßnahmen kann durch die mobile Vorrichtung wie folgt durch geführt werden:
    • - zeitlich kontinuierliche Aufnahme datentechnisch definierter Voxel und/oder Pixel durch den Sensor der mobilen Vorrichtung;
    • - Übermittlung der Aufnahmedaten an die Datenbank;
    • - Speicherung der Aufnahmedaten in der Datenbank;
    • - qualitativer Datenabgleich der Aufnahmedaten mit den in der Datenbank hinterlegten Daten, vorzugsweise mit Durchführung einer Segmentierung, einer Datenreduktion und/oder einer Verifikation der Aufnahmedaten durch den Rechner;
    • - Bewertung der abgeglichenen Aufnahmedaten mit bestehenden definierten Datensätzen in der Datenbank durch einen Klassifikator in Verbindung mit dem Rechner;
    • - Verarbeitung und Umsetzung der Bewertung durch den Rechner in regelungs- und/oder steuerungstechnische Daten für den Motor, den Aktor, die Werkzeugeinheit und/oder dem Träger.
  • Insbesondere erfolgt das Durchführen der ermittelten Maßnahmen auf Basis der Umsetzung der Bewertung durch den Rechner in regelungs- und/oder steuerungstechnische Daten für den Motor, den Aktor, die Werkzeugeinheit und/oder ggfs. dem Träger sowie durch Anfahren des Motors, des Aktors, der Werkzeugeinheit und/oder des Trägers zur Bearbeitung des Bodens und/oder zur Manipulation von Flora und Fauna.
  • Die Bewertung wird vorzugsweise in einem mit dem Klassifikator zusammenwirkenden Rechner, insbesondere in dem zweiten Rechner, und die Verarbeitung und Umsetzung der Bewertung in regelungstechnische Daten in einem anderen Rechner, insbesondere in dem ersten Rechner, durchgeführt. Hierfür wird die Bewertung von dem einen Rechner an den anderen Rechner übermittelt. Die Rechenleistung kann dadurch erhöht werden, indem die Rechner parallel die Daten verarbeiten können.
  • Die Speicherung, der qualitative Datenabgleich der Aufnahmedaten mit in der Datenbank hinterlegten Daten und/oder die Bewertung durch den Klassifikator werden vorzugsweise durch Künstliche Intelligenz unterstützt. Die Effektivität des Trägersystems und des Verfahrens wird hierdurch erheblich verbessert.
  • Weitere Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung in Verbindung mit den in den Zeichnungen dargestellten Ausführungsbeispielen.
  • In der Beschreibung, in den Ansprüchen und in der Zeichnung werden die in der unten aufgeführten Liste der Bezugszeichen verwendeten Begriffe und zugeordneten Bezugszeichen verwendet. In der Zeichnung bedeutet:
    • 1 eine schematische Darstellung eines Tragsystems mit räumlich getrennten Gehäusen einer mobilen Vorrichtung gemäß einer ersten Ausführungsform der Erfindung;
    • 2 eine schematische Darstellung eines Tragsystems mit räumlich getrennten Gehäusen einer mobilen Vorrichtung, die über eine Steckverbindung miteinander verbunden sind, gemäß einer zweiten Ausführungsform der Erfindung;
    • 3 eine Seitenansicht auf das Tragsystem gemäß der ersten Ausführungsform der Erfindung mit Anbindung der mobilen Vorrichtung an eine Flugdrohne;
    • 4 ein Flussdiagramm, welches die Schritte eines Verfahrens mit dem Tragsystem veranschaulicht;
    • 5 ein Flussdiagramm, welches die Schritte des Verfahrens zur Ermittlung der notwendigen Maßnahmen darstellt;
    • 6 ein durch die visuelle Detektionseinheit aufgenommenes Bild;
    • 7 ein schematischer Aufbau eines Convolution Neuronalen Netzwerkes ausgehend von dem Bild von 6;
    • 8 ein Flussdiagramm, welches ein Verfahren der Segmentierungs- und Datenreduktionseinheit zeigt;
    • 9 ein aus der Segmentierungs- und Datenreduktionseinheit erstelltes Zwischenbild;
    • 10 einen Teilausschnitt des Zwischenbildes mit drei unterschiedlichen Fällen für den Klassifikator;
    • 11 zwei prinzipielle Darstellungen von weiteren Pixelfeldern für die Bewertung durch den Klassifikator;
    • 12 zwei prinzipielle Darstellungen von weiteren Pixelfeldern für die Bewertung durch den Klassifikator;
    • 13 ein durch den Klassifikator erstelltes und bewertetes Bild, und
    • 14 die prinzipielle Darstellungen der Arbeitsweise des Klassifikators.
  • In 1 ist schematisch ein Trägersystem 10 dargestellt, welches aus einem Träger in Form einer Flugdrohne 12 und einer mobilen Vorrichtung 14 zur Bearbeitung des Bodens und zur Manipulation der Flora und Fauna in der Landwirtschaft besteht. Die Flugdrohne 12 umfasst einen Antrieb 16, der vier Elektromotoren 18 und über diese angetriebene Propeller 20 umfasst, siehe 3. Zudem ist die Flugdrohne 12 mit 4 Füßen 22 unterhalb der Elektromotoren 18 versehen.
  • Gemäß der ersten Ausführungsform der Erfindung umfasst die Flugdrohne 12 eine Energiequelle in Form von Batterien 24, welche die Energieversorgung für den Antrieb 16 als auch für die weiteren Aggregate der Flugdrohne 12 sowie die mobile Vorrichtung 14 liefert. Hierfür ist eine Spannungsschnittstelle 26a an der Flugdrohne 12 und eine zu dieser Spannungsschnittstelle 26a korrespondierende Spannungsschnittstelle 26b an der mobilen Vorrichtung 14 vorgesehen, welche über eine lösbare Steckverbindung 28 miteinander verbunden sind. Zudem ist eine Kommunikationseinheit 30 mit einer Antenne 32 und eine GPS Einheit 34 vorgesehen, welche fortlaufend den Standort der Flugdrohne 12 ermittelt, diese Standortdaten der Flugdrohne 12 an die mobile Vorrichtung 14 für die Zuordnung zu den von der mobilen Vorrichtung 14 erfassten Daten sowie an eine entfernt gelegene zentrale Recheneinheit übermittelt, die hier nicht näher dargestellt ist. Mithilfe der GPS Einheit 34, der Kommunikationseinheit 30 und der mobilen Vorrichtung 14 kann Telemetrie durchgeführt werden. Zudem ist eine Steuereinrichtung 12b vorgesehen, welche den Antrieb 16 steuert.
  • Die Kommunikationseinheit 30 der Flugdrohne 12 umfasst neben der Antenne 32 eine weitere Schnittstelle 36a, welche einer zugeordneten Schnittstelle 36b der mobilen Vorrichtung 14 zugeordnet ist und über eine lösbare Steckverbindung 38 zum Datenaustausch hierüber miteinander verbunden sind.
  • Die mobile Vorrichtung 14 besteht aus zwei Einheiten 14a, 14b, nämlich einer ersten Einheit 14a mit einem ersten Gehäuse 40 und einer zweiten Einheit 14b mit einem zweiten Gehäuse 42. Das erste Gehäuse 40 und das zweite Gehäuse 42 sind lösbar über eine Steckverbindung 44 miteinander zu einer die mobile Vorrichtung 14 bildenden Einheit verbunden. Es gibt einen Satz unterschiedliche erste Einheiten 14a auf der einen Seite und einen Satz unterschiedlicher zweite Einheiten 14b auf der anderen Seite, welche durch einfaches miteinander verbinden individuell konfiguriert und an die Bedürfnisse angepasst werden können.
  • In dem ersten Gehäuse 40 ist ein erster Rechner 46, ein Aktor in Form eines beweglichen, motorisch angetriebenen Arms 48, ein mit dem Arm 48 zusammenwirkender Motor 50, ein an dem Arm 48 angeordnete Werkzeugeinheit 52, welche eine Vorschubeinheit 54 und eine Rotationseinheit 56 aufweist. An dem distalen Ende der Rotationseinheit 56 ist eine Fräse 58 als Werkzeug vorgesehen. Der Motor 50 treibt sowohl den Arm 48 als auch die Vorschubeinheit 54, die Rotationseinheit 56 und damit auch die Fräse 58 an. Der Arm 48 kann mehrteilig ausgebildet sein und über verschiedene Gelenke verfügen, welche im Einzelnen nicht dargestellt sind, da derartige motorisch betriebene Kinematiken bekannt sind. Über den Arm 48 wird die Werkzeugeinheit 52 relativ zur Flugdrohne 12 zu ihrem Einsatzbereich bewegt, so dass die Werkzeugeinheit 52 mit der Vorschubeinheit 54 und der Rotationseinheit 56 die Fräse 58 zur Bearbeitung der Pflanzen, beispielsweise Entfernen von Beikraut, und/oder zum Bearbeiten des Bodens einsetzen kann.
  • Weiterhin ist in der ersten Einheit 14a eine Kommunikationseinheit 60 und eine visuelle Detektionseinheit 62 vorgesehen. Die visuelle Detektionseinheit 62 umfasst eine Kamera 64, mit der Bilder erfasst werden, eine Segmentierungs- und Datenreduktionseinrichtung 66, einen Klassifikator 68, der auf Basis eines von der Segmentierung- und Datenreduzierungseinrichtung 66 erzeugten Zwischenbildes oder Zwischendaten die Klassifikation mehrerer aus Pixeln bestehender Pixelfelder übernimmt, wie weiter unten noch näher beschrieben wird. Die visuelle Detektionseinheit 62 ist mit der Kommunikationseinheit 60 verbunden.
  • Die erste Einheit 14a weist eine Schnittstelle 70a auf, welche einer Schnittstelle 70b der zweiten Einheit 14b zugeordnet ist. Über eine Kommunikationsverbindung 72 ist die Kommunikationseinheit 60 über die Schnittstelle 70a mit der Schnittstelle 70b und darüber mit einer Kommunikationseinheit 74 in der zweiten Einheit 14b verbunden. Die Kommunikationseinheit 74 der zweiten Einheit 14b ist über die Schnittstelle 36b über die Steckverbindung 38 mit der Schnittstelle 36a und der Kommunikationseinheit 30 der Flugdrohne 12 verbunden.
  • In der zweiten Einheit 14b sind zudem ein zweiter Rechner 76 und eine Datenbank 78 vorgesehen.
  • In der 2 ist eine weitere Ausführungsform des Trägersystems 10 dargestellt, wobei die Flugdrohne 12 identisch mit der ersten Ausführungsform ausgebildet ist. Lediglich die mobile Vorrichtung 14 unterscheidet sich durch eine Steckverbindung 80 zwischen der ersten Einheit 14a und der zweiten Einheit 14b, welche zudem auch die Kommunikationseinheit 60 der ersten Einheit 14a mit der Kommunikationseinheit 74 lösbar verbindet. Durch einfaches Zusammenstecken können unterschiedliche erste Einheiten 14a mit unterschiedlichen zweiten Einheiten 14b kombiniert und zu einer mobilen Einheit 14 zusammengefügt werden.
  • In 3 ist die Flugdrohne 12 in Seitenansicht dargestellt, wobei dadurch lediglich zwei von vier Elektromotoren 18 mit zugeordneten Propellern 20 sichtbar sind. Unterhalb der Elektromotoren 18 sind jeweils die Füße 22 angeordnet. Zwischen den Füßen 22 sind zwei Greifarme 82a, 82b vorgesehen, welche die mobile Vorrichtung 14 bedarfsweise ergreifen und anheben und wieder absetzen und ablegen. Die mobile Vorrichtung 14 besteht aus den beiden Einheiten 14a und 14b, welche über die Steckverbindung 80 miteinander lösbar verbunden sind. In der ersten Einheit 14a ist die Kamera 64 als Teil der visuellen Detektionseinheit 62 sowie die Fräse 58 an dem distalen Ende der Rotationseinheit 56 erkennbar.
  • Die mobile Vorrichtung 14 kann auch mit mehreren unterschiedlichen Werkzeugeinheiten 52 ausgerüstet sein, welche mit einem gemeinsamen Arm 48 und beispielsweise einen Werkzeugrevolver versehen ist, der die benötigte Werkzeugeinheit 52 in die Aktivierungsposition bringt. Denkbar ist aber auch, dass die unterschiedlichen Werkzeugeinheiten jeweils einen eigenen Aktor aufweisen.
  • In 4 sind in einem Flussdiagramm die Schritte aufgezeigt, welche nacheinander durchlaufen werden, um mit dem Trägersystem 10 eine Bearbeitung des Bodens und die Manipulation von Flora und Fauna in der Landwirtschaft durchzuführen.
  • In einem ersten Schritt 84 werden zunächst mit dem Trägersystem 10 die notwendigen Maßnahmen auf der zugeordneten landwirtschaftlichen Fläche ermittelt. Beispielsweise wird hierfür das Trägersystem 10 zu einer zu bearbeitenden landwirtschaftlichen Fläche, beispielsweise zu einem landwirtschaftlichen Feld, gebracht oder direkt von einem zentralen Ort aus dorthin geflogen. Die Flugdrohne 12 mit der mobilen Vorrichtung 14 startet und fliegt das landwirtschaftliche Feld ab. Über eine ortsfeste zentrale Recheneinheit erhält das Trägersystem 10 die notwendigen Daten über das zu begutachtende landwirtschaftliche Feld. Die zentrale Recheneinheit kann hierbei auch ein Smartphone sein. Über die visuelle Detektionseinheit 62 mit der Kamera 64 der mobilen Vorrichtung 14 wird das landwirtschaftliche Feld in Bildern erfasst. Die Bilder werden ausgewertet und mit einem Abgleich in der Datenbank 78 die notwendigen Maßnahmen für dieses landwirtschaftliche Feld schlussendlich ermittelt.
  • In einem nächsten Schritt 86 wird auf Grundlage der ermittelten Maßnahmen für das landwirtschaftliche Feld oder für Teilbereiche des landwirtschaftlichen Feldes aus einem Satz erster Einheiten 14a und einem Satz unterschiedlicher zweiter Einheiten 14b die für die notwendige Maßnahme geeignete mobile Einheit 14 zusammengestellt und die beiden Einheiten 14a, 14b miteinander verbunden.
  • In einem nächsten Schritt 88 wird die mobile Vorrichtung 14 mit der Flugdrohne 12 über den Greifarm 82a und den Greifarm 82b jeweils seitlich ergriffen und durch diesen in Richtung Flugdrohne 12 nach oben in eine Aufnahme 12a der Flugdrohne 12 verfahren. Dabei werden die Spannungsschnittstellen 26a, 26b über die Steckverbindung 28 und die Schnittstellen 36a, 36b über die Steckverbindung 38 miteinander verbunden. Hierdurch wird die mobile Vorrichtung 14 mit Spannung aus der Batterie 24 der Flugdrohne 12 versorgt und ein Datenaustausch über die Antenne 32 der Kommunikationseinheit 30 der Flugdrohne 12 mit den Kommunikationseinheiten 60 und 74 der mobilen Vorrichtung 14 auf der einen Seite und einer zentralen Recheneinheit auf der anderen Seite ermöglicht. Wie oben ausgeführt, kann die zentrale Recheneinheit, welche vom Trägersystem 10 unabhängig ist, auch ein Smartphone sein.
  • In einem nächsten Schritt 90 werden die ermittelten Maßnahmen mit dem Trägersystem 10 auf dem landwirtschaftlichen Feld durchgeführt. Beispielsweise fliegt die Flugdrohne 12 zu dem zu bearbeitenden Bereich des landwirtschaftlichen Feldes. Der Arm 48 mit der Werkzeugeinheit 52 fährt zu dem zu entfernenden Beikraut. Die Vorschubeinheit 54 verfährt die Fräse 58 so zu dem Beikraut, dass dieses mit Aktivieren der Rotationseinheit 56 weggefräst wird.
  • In einem fünften Schritt 92 fliegt dann die Flugdrohne 12 zurück, und tauscht die mobile Vorrichtung 14 gegen eine andere mobile Vorrichtung 14 aus, welche für eine andere Maßnahme optimiert ist, beispielsweise mit einer Ausbringvorrichtung für Schädlingsbekämpfungsmittel oder Dünger.
  • Alternativ können die Schritte 86 und 88 auch entfallen, wenn die Flugdrohne 12 bereits fertig für die durchzuführende Maßnahme gerüstet ist.
  • Anhand der 5 wird nunmehr das Ermitteln der notwendigen Maßnahmen durch das Trägersystem 10, insbesondere durch die mobile Vorrichtung 14 im Einzelnen dargelegt.
  • In einem ersten Schritt 94 erfolgt die kontinuierliche Aufnahme von Daten technisch definierter Voxel und/oder Pixel und/oder Bilder durch die visuelle Detektionseinheit 62 der mobilen Vorrichtung 14. Die Voxel, Pixel und Bilder bilden Aufnahmedaten, welche fortlaufend an die Datenbank 78 übermittelt werden - zweiter Schritt 96.
  • In einem dritten Schritt 98 erfolgt die erfolgt die Speicherung der Aufnahmedaten.
  • In einem vierten Schritt 100 erfolgt ein qualitativer Datenabgleich der Aufnahmedaten mit den in der Datenbank 78 hinterlegten Daten. Hierbei erfolgt die Durchführung einer Segmentierung und Datenreduktion der Aufnahmedaten durch die Segmentierung- und Datenreduktioneinrichtung 66. Insbesondere kann auch eine Verifikation der Aufnahmedaten durch den zweiten Rechner 76 erfolgen.
  • In einem fünften Schritt 102 erfolgt die Bewertung durch den Klassifikator 68 in Verbindung mit dem zweiten Rechner 76 durch Unterstützung von Künstlicher Intelligenz, wie weiter unten noch ausführlich dargelegt wird.
  • In einem sechsten Schritt 104 erfolgt schließlich die Verarbeitung und Umsetzung der Bewertung durch den ersten Rechner 46 in regelungs- und steuerungstechnische Daten für den Motor 50, den Arm 48, die Werkzeugeinheit 52 und die Flugdrohne 12.
  • In einem siebten Schritt 106 erfolgt schließlich das Anfahren des Motors 50, des Arms 48 und der Werkzeugeinheit 52 zur Bearbeitung des Bodens oder zur Manipulation von Flora und Fauna.
  • Sofern in dieser Anmeldung von Künstlicher Intelligenz gesprochen wird, handelt es sich unter anderem um die Verwendung eines klassischen Convolutional Neural Networks - CNN - aus einem oder mehreren Convolutional Layer, gefolgt von einem Pooling Layer. Diese Folge aus Convolutional Layer und Pooling Layer kann sich prinzipiell beliebig oft wiederholen. In der Regel liegt die Eingabe als zwei- oder dreidimensionale Matrix, z. B. die Pixel eines Graustufen- oder Farbbildes, vor. Dementsprechend sind die Neuronen im Convolutional Layer angeordnet.
  • Die Aktivität jedes Neurons wird über eine diskrete Faltung (convolutional) berechnet. Intuitiv wird dabei schrittweise eine vergleichsweise kleine Faltungsmatrix (Filterkernel) über die Eingabe bewegt. Die Eingabe eines Neurons im Convolutional Layer berechnet sich als inneres Produkt des Filterkernels mit dem aktuell unterliegenden Bildausschnitt. Dementsprechend reagieren benachbarte Neuronen im Convolutional Layer auf sich überlappende Bereiche.
  • Ein Neuron in diesem Layer reagiert nur auf Reize in einer lokalen Umgebung des vorherigen Layers. Dies folgt dem biologischen Vorbild des rezeptiven Feldes. Zudem sind die Gewichte für alle Neuronen eines Convolutional Layers identisch (geteilte Gewichte, englisch: shared weights). Dies führt dazu, dass beispielsweise jedes Neuron im ersten Convolutional Layer codiert, zu welcher Intensität eine Kante in einem bestimmten lokalen Bereich der Eingabe vorliegt. Die Kantenerkennung als erster Schritt der Bilderkennung besitzt hohe biologische Plausibilität. Aus den shared weights folgt unmittelbar, dass Translationsinvarianz eine inhärente Eigenschaft von CNNs ist.
  • Der mittels diskreter Faltung ermittelte Input eines jeden Neurons wird nun von einer Aktivierungsfunktion, bei CNNs üblicherweise Rectified Linear Unit, kurz ReLu (f(x) = max(0, x), in den Output verwandelt, der die relative Feuerfrequenz eines echten Neurons modellieren soll. Da Backpropagation die Berechnung der Gradienten verlangt, wird in der Praxis eine differenzierbare Approximation von ReLu benutzt: f(x) = In(1 + ex). Analog zum visuellen Cortex steigt in tiefer gelegenen Convolutional Layers sowohl die Größe der rezeptiven Felder als auch die Komplexität der erkannten Features.
  • Im folgenden Schritt, dem Pooling, werden überflüssige Informationen verworfen. Zur Objekterkennung in Bildern etwa, ist die exakte Position einer Kante im Bild von vernachlässigbarem Interesse - die ungefähre Lokalisierung eines Features ist hinreichend. Es gibt verschiedene Arten des Poolings. Mit Abstand am stärksten verbreitet ist das Max-Pooling, wobei aus jedem 2 × 2 Quadrat aus Neuronen des Convolutional Layers nur die Aktivität des aktivsten (daher „Max“) Neurons für die weiteren Berechnungsschritte beibehalten wird; die Aktivität der übrigen Neuronen wird verworfen. Trotz der Datenreduktion (im Beispiel 75 %) verringert sich in der Regel die Performance des Netzwerks nicht durch das Pooling.
  • Der Einsatz des Convolutional Neural Networks und der Segmentierung- und Datenreduzierungseinrichtung 66 wird im Folgenden anhand der Bilder 6 bis 14 näher erläutert.
  • Für die Klassifikation durch den Klassifikator 68 aller Objekte in einem Bild existieren verschiedene Ansätze. Viele Ansätze beginnen damit die einzelnen Objekte erst im Bild zu finden und anschließend zu klassifizieren. Dies ist jedoch nicht immer möglich. Als Beispiel soll hier die Klassifikation von Pflanzen 108 eines Feldes herangezogen werden. Ein Beispielbild 108 zeigt 6.
  • In 6 sind verschiedene Pflanzen 108 abgebildet und sollen durch den Klassifikator 68 alle klassifiziert werden und dies in Echtzeit. Die Echtzeit soll in diesem Fall hier der Kameratakt von 10 Bilder pro Sekunde sein. Da wie hier im Beispiel nicht einfach unterschieden werden kann, wo genau eine Pflanze 110 endet, muss eine andere Herangehensweise verwendet werden, da die Rechenzeit nicht ausreicht, erst die Pflanzen 110 an sich zu unterscheiden und anschließend noch zu klassifizieren.
  • Das Bild 108 von 6 besteht aus Pixeln und jeder Pixel kann logischerweise nur genau eine Klasse beinhalten. Daher wäre ein trivialer Ansatz das gesamte Bild 108 pixelweise zu klassifizieren. Das soll heißen jeder Pixel wird nacheinander einer Klasse zugeordnet.
  • Da jedoch ein einzelner Pixel nicht die nötige Information enthält, um eine Aussage über die Klassenzugehörigkeit zu treffen, muss eine umliegende Fläche zur Klassifikation herangezogen werden. Diese Fläche kann dann mit einen Convolution Neuronalen Netzwerk (CNN), wie es oben beschrieben wurde, klassifiziert werden. Das Netzwerk kann dabei einen Folge wie 7 aufweisen.
  • Das Eingangsbild 110 ist hier das Bild von 6. Auf dieses Eingangsbild 110 werden nun die Elemente des CNN angewendet. In diesem Beispiel wären das die Convolution 112 mit den Featuren, ein anschließendes Pooling 114, eine weitere Convolution mit weiteren Featuren, ein erneutes Pooling und eine Zusammenfassung in der Dense Schicht 116. Der Ausgang des Netzwerkes gibt dann die Klassenzugehörigkeit des mittleren Pixels des Eingangsbildes 110 aus, beziehungsweise eines Pixels des Bildes 110 von 6.
  • Anschließend wird ein neuer Bildausschnitt, in der Regel ein Bildausschnitt das um einen Pixel verschoben ist, gewählt und wieder mittels CNN klassifiziert. Dieses Vorgehen hat zur Folge, dass die Berechnungen, die das Convolution Neuronale Netzwerk benötigt, für die Anzahl der zur klassifizierenden Pixeln wiederholt werden muss. Dies ist zeitaufwändig. Das Bild 110 von 6 hat eine Auflösung von 2000 × 1000 Pixeln. Das CNN müsste also zwei Millionen Mal berechnet werden. Das Ausgangsproblem ist jedoch nur die Klassifikation der Pflanzen 108 an sich. Im Durchschnitt enthält ein solches Bild etwa 5% Pflanzenpixel, das entsprechen etwa nur 100.000 Pixel.
  • Mittels einfacher Segmentierung und Datenreduktion durch die Segmentierungs- und Datenreduktionseinheit 66 kann herausgefunden werden, ob es sich bei einem Pixel um die Darstellung eines Teils einer Pflanze 108 oder um Hintergrund 118 handelt. Diese Segmentierung ist von der Berechnung nicht so komplex wie ein CNN und daher schneller. Die Segmentierung und Datenreduktion durch die Segmentierung- und Datenreduktioneinheit 66 erfolgt dabei analog der 8. In 8 sind die einzelnen Schritte dargestellt.
  • In einem ersten Schritt 120 wird jedes an die Datenbank 78 übermittelte Bild aus mehreren Pixeln in das RGB-(Red, Green, Blue)-Farbmodell überführt.
  • In einem nächsten Schritt 122 wird jedes Pixel des übermittelten Bildes basierend auf dem RGB-Farbmodell in ein HSV (hue, saturation, value)-Farbmodell transferiert.
  • In einem nächsten Schritt 124 wird dieses HSV-Farbmodell bewertet.
  • Jedes Pixel basierend auf dem HSV-Farbmodell wird im Hinblick auf die Farbsättigung (saturation) anhand eines Schwellenwertes bewertet, wobei wenn der Wert der Farbsättigung einen Schwellenwert übersteigt, dass Pixel dem binären Wert 1 zugeordnet wird, und wenn der Wert der Farbsättigung einen Schwellenwert unterschreitet, das Pixel dem binären Wert 0 zugeordnet wird.
  • Parallel hierzu wird jedes Pixel basierend auf dem HSV-Farbmodell im Hinblick auf den Farbwinkel (hue) anhand eines vorbestimmten Bereiches bewertet, wobei wenn der Farbwinkel in dem vorbestimmten Bereich liegt, das Pixel dem binären Wert 1 zugeordnet wird, und wenn der Farbwinkel außerhalb des Bereichs liegt, das Pixel dem binären Wert 0 zugeordnet wird.
  • In einem nächsten Schritt 126 wird aus den binären Informationen des Farbwinkels und der Farbsättigung ein Zwischenbild erzeugt, welches erheblich weniger Daten als das von der Kamera erzeugte Bild 108 enthält.
  • Aus der Segmentierung aus 8 ergibt sich die im Folgenden angegebene Formel, die auf jeden Pixel angewendet werden muss. Das segmentierte Bild S(x,y) wird über die Aufteilung des RGB Bildes ψ(x,y) in seine drei Bestandteile Rot, Grün und Blau aufgeteilt. Ein Pixel des segmentierten Bildes wird dann auf 1 gesetzt wenn der minimale Wert von Rot, Grün oder Blau eines Pixels durch den Grünen Pixel geteilt kleiner oder gleich ist wie ein Schwellenwert (THs). Wobei der Schwellenwert in den 8 Bit Raum des Bildes über die Skalierung mittels 255 erfolgt. Sollte der Schwellenwert nicht erreicht werden, wird wie in Gleichung 1 der Pixel des segmentierten Bildes auf 0 gesetzt.
    Figure DE102018120755A1_0001
  • Damit ergibt sich die erste Optimierung: Bevor das gesamte Bild 108 in zwei Millionen Bilder zerlegt wird, wird die Segmentierung, gemäß 8, angewendet. Das heißt das gesamte Bild 108 wird durchlaufen und mittels der oben angegebenen Formel entschieden, ob es sich um ein Pflanzenpixel handelt oder nicht. Zum einen wird das Bild 108 segmentiert, das heißt der Hintergrund 118 wird auf Schwarz (0) gesetzt, wie dies in 9 dargestellt ist. Zum anderen wird, sofern es sich um ein Pflanzenpixel handelt, dessen Koordinaten in eine Liste geschrieben. Anschließend werden nur noch die Koordinaten in das CNN gegeben, die auch in dieser Liste stehen. Die unnötigen Pixel der Erde, also des Hintergrundes 118, entfallen. Damit wird das CNN in etwa 20-mal weniger aufgerufen.
  • Durch die Segmentierung wird der Hintergrund 118 auf den Wert 0 gesetzt. Auch die Bildelemente die das CNN betrachtet, besitzen nun segmentierte Bilder. Normalerweise würde auf eine Convolution-Schicht die Feature-Berechnung auf jeden Pixel des Bildelementes angewendet werden. Damit ergeben sich jedoch drei Fälle 128, 130, 132 für die Berechnung die in 10 dargestellt sind, jeweils für einen Feature 134 der Größe 5x5.
  • Der Rote Fall 128 zeigt eine Feature-Berechnung, in dem das Feature komplett auf dem Hintergrund 118 liegt. Hier wird jedes Element mit 0 multipliziert, das hat zur Folge, dass die gesamte Berechnung 0 ergibt, beziehungsweise den Biaswert. Das Ergebnis dieser Berechnung ist daher schon vor der Rechnung bekannt. Selbst wenn der Hintergrund 118 nicht Null wäre, also Erde aufweisen würde, würde diese Berechnung keine Information über die Pflanze 110 beinhalten, daher kann das Ergebnis einfach eine konstanter fiktiver Wert sein.
  • Im Gelben Fall 130 liegt der mittlere Feature-Wert nicht auf einer Pflanze 110. Das heißt, dass ein Teil ebenfalls eine Multiplikation mit Null ist. Dieser Fall verzehrt die Pflanze 110 im Randbereich und macht diese Größe in der Feature-Map.
  • Im Blauen Fall 132 liegt mindestens der mittlere Pixel des Features auf einer Pflanze.
  • Nach Betrachtung dieser drei Fälle 128, 130, 132 müssen nur der Gelbe und Blaue Fall 130 und 132 berechnet werden. Also die Fälle 130, 132 in denen das Feature mindestens einen Eingangswert ungleich Null hat. Von allen anderen Feature-Berechnungen sind Ergebnisse vor der Berechnung bekannt, sie sind Null beziehungsweise weisen lediglich den Bias Wert auf. Die Koordinaten in denen der Blaue Fall 132 auftritt, sind bekannt. Das sind die Koordinaten die bei der Segmentierung gespeichert werden. Der Gelbe Fall 130 benötigt wiederum eine Berechnung, ob diese eingetreten ist. Dies verlangt eine Überprüfung jedes in der Segmentierung gefundenen Pflanzenpixels. Da diese Kontrolle ein zu großer Aufwand ist und der Gelbe Fall 130 nur im Randbereich einer Pflanze 110 auftritt, soll dieser Fall ignoriert werden.
  • Daher kann die Berechnung dahingehend optimiert werden, dass die Feature-Berechnung und alle anderen Elemente des CNNs nur auf die gefundenen Pflanzenpixel angewendet werden sollen.
  • In 11 ist schematisch dargestellt, wie sich zwei benachbarte Pflanzenpixel 136, 138 unterscheiden. Links ein Pflanzenpixel 136 und rechts der Nachbar-Pflanzenpixel 138. Der Blaue/Purpur Bereich 140, 142 könnten verschiedene Pflanzen sein, die klassifiziert werden müssen. Der Rote/Purpur Bereich 144, 142 stellt das Bildelement da, das das CNN betrachtet, um den orangenen Pixel 146 zu klassifizieren.
  • Bei genauer Betrachtung kann festgestellt werden, dass der betrachtete Bereich (Rot/Purpur) 144, 142 sich stark überlappt. Das bedeutet wiederum dass in beiden Bildelementen 136, 138 größtenteils dieselben Werte stehen. Wenn nun das CNN das Feature in der Convolution-Schicht berechnet, würde auch aus der Feature-Berechnung dieselben Werte errechnet werden.
  • In 12 ist schematisch ein Feature 148 mit der Größe von 5 × 5 Pixel in Grün skizziert. Dieses Feature 148 steht an denselben Koordinaten innerhalb des gesamten Bildes, jedoch ist es verschoben innerhalb des vom CNN zu betrachtenden Bildelementes (Rot/Purpur) 144, 142. Da die Örtlichkeit jedoch im gesamten Bild dieselbe ist würde die Berechnung für den mittleren schwarzen Kasten 150 denselben Wert sowohl im linken Bild 136 als auch im rechten Bild 138 ergeben. Diese Erkenntnis lässt sich auf alle Elemente eines CNN anwenden. Dadurch kann, sofern der Randbereich ignoriert wird, die einzelne Feature-Berechnung zuerst auf das gesamte Bild angewendet werden. Theoretisch spielt die Zerlegung des Eingangsbildes 108 erst mit dem Dense-Layer 116 eine entscheidende Rolle. Das Dense-Layer 116 kann jedoch genauso wie eine Convolution 112 berechnet werden. Die Featuregröße ergibt sich dabei aus dem Zusammenspiel von Eingangsbildgröße und den vorhandenen Pooling Layern im Netzwerk. Damit lässt sich die Klassifikation weiter optimieren, es werden nun die CNN Elemente lediglich auf die gefundenen Pflanzenpixel angewendet. Die Feature-Map, die aus der letzten Convolution errechnet wird, stellt das Klassifikationsergebnis dar, wie dies in 13 dargestellt ist. Hier sind in Grün alle Karottenpflanzen 152 und in Rot das gesamte Unkraut 154 Pixelweise klassifiziert.
  • Durch diese Optimierungen erfolgen jedoch auch Veränderungen am Ergebnis der Klassifikation. Den größten Einfluss haben hierbei die Pooling Schichten. Bei jedem Pooling wird Information aus dem Netzwerk entfernt. Durch das nicht mehr vorhandene einzelne Betrachten der Bildelemente verliert das Pooling jedoch einen örtlichen Bezug. Die 14 veranschaulicht das Problem.
  • In der 14 ist jeweils ein Bildelement 156 als roter Rahmen 158 dargestellt. Vor der Optimierung, würde jedes Bildelement einzeln durch das CNN laufen um seinen mittleren Pixel zu klassifizieren. Das rechte Bildelement 160 ist um ein Pixel weiter nach rechts verschoben. Die vier Farben: Purpur, Blau, Gelb und Grün zeigen die einzelnen Anwendungen des Poolings an. Wie zu sehen ist, können sie verschiedene Ergebnisse ergeben, da das Pooling immer am Rand beginnt und um ein Pooling Element (hier zwei Felder) weiter wandert. Dadurch ergeben sich aus zwei benachbarten Bildelementen 156, 160 zwei verschiedene Pooling Elemente. Das hat zur Folge, wenn dies in der Optimierung berücksichtigt werden soll, würden sich mit jedem Pooling zwei neue Zweige für die weitere Berechnung ergeben. Da das Pooling einmal auf das gesamte Bild angewendet werden müsste mit Startpunkt oben links und ein weiteres Pooling mit den Startpunkt oben links plus ein Pixel. In der weiteren Berechnung müssten dann beide Pooling Ergebnisse separat weiterverarbeitet werden. Bei einem weiteren zweiten Pooling würden sich wieder zwei neue Pfade ergeben, so dass vier separate Ergebnisse berechnet werden müssten. Das Ergebnis setzt sich anschließend aus den vier Ergebnissen Pixelweise rotierend durch die Ergebnisse zusammen. Wird nur ein Pfad nach dem Pooling betrachtet, wäre das Ausgangsbild nach zweimaligem Pooling kleiner. Die Länge und Breite des Ausgangsbildes wäre dann jeweils nur ¼ so groß wie das Eingangsbild. Bei der Betrachtung aller Pfade würde etwa die Eingangsbildgröße herauskommen.
  • Ein weiterer Unterschied stellen die fehlenden Randbereiche der Pflanzen dar. Da die Features nicht auf alle Elemente angewendet werden indem sie irgendeine Überlappung mit der Pflanze besitzen, existieren hier Berechnungsunterschiede. Auch dies kann das Klassifikationsergebnis verändern zu der herkömmlichen Berechnung.
  • Die fehlende Berechnung der Feature-Werte außerhalb der Pflanze können dahingehend andere Werte hervorrufen, da das Ergebnis mit Null ausgewiesen wird, was allerdings in Wirklichkeit der Biaswert ist.
  • Zwar beeinflussen diese drei Faktoren die Ergebnisse, jedoch zeigt sich dass das CNN sehr robust ist und damit die Ergebnisse immer noch einen sehr hohen Genauigkeitswert erfüllen.
  • Der nächste Schritt wäre, das Netzwerk direkt mit diesen Modifikationen zu trainieren, damit das Netzwerk sich noch besser auf seine neue Berechnung einstellen kann und somit etwaige Fehler direkt in der Berechnung kompensiert.
  • Die Segmentierung- und Datenreduktionseinrichtung versieht die Pixel betreffend das Unkraut 154 mit Lagekoordinaten.
  • Bezugszeichenliste
  • 10
    Trägersystem
    12
    Flugdrohne
    12a
    Aufnahme, Aufnahmeraum der Flugdrohne 12
    12b
    Steuereinrichtung der Flugdrohne
    14
    mobile Vorrichtung
    14a
    erste Einheit
    14b
    zweite Einheit
    14c
    Aufnahme für Greifarm an der mobilen Vorrichtung 14
    16
    Antrieb
    18
    Elektromotor
    20
    Propeller
    22
    Füße
    24
    Batterie
    26a
    Spannungsschnittstelle an der Flugdrohne 12
    26b
    Spannungsschnittstelle an der mobilen Vorrichtung 14
    28
    Steckverbindung
    30
    Kommunikationseinheit
    32
    Antenne
    34
    GPS Einheit
    36a
    Schnittstelle an der Flugdrohne 12
    36b
    Schnittstelle an der mobilen Vorrichtung 14
    38
    Steckverbindung
    40
    erstes Gehäuse der ersten Einheit 14a
    42
    zweites Gehäuse der zweiten Einheit 14b
    44
    Steckverbindung
    46
    erster Rechner
    48
    Arm als Aktor
    50
    Motor
    52
    Werkzeugeinheit
    54
    Vorschubeinheit
    56
    Rotationseinheit
    58
    Fräse
    60
    erste Kommunikationseinheit der ersten Einheit 14a
    62
    visuelle Detektionseinheit
    64
    Kamera
    66
    Segmentierung- und Datenreduktioneinrichtung
    68
    Klassifikator
    70a
    Schnittstelle der ersten Einheit 14a
    70b
    Schnittstelle der zweiten Einheit 14b
    72
    Kommunikationsverbindung
    74
    zweite Kommunikationseinheit der zweiten Einheit 14b
    76
    zweiter Rechner
    78
    Datenbank
    80
    Steckverbindung
    82a
    Greifarm, links
    82b
    Greifarm, rechts
    84
    erster Schritt: Ermitteln der notwendigen Maßnahmen
    86
    zweiter Schritt: Aussuchen der mobilen Vorrichtung 14 aus der zur Verfügung stehenden mobilen Vorrichtungen 14
    88
    dritter Schritt: Verbinden der Vorrichtung mit der Flugdrohne 12
    90
    vierter Schritt: Durchführen der ermittelten Maßnahmen
    92
    fünfter Schritt: austauschen der mobilen Vorrichtung 14 gegen eine andere mobile Vorrichtung 14 und Durchführung einer weiteren Maßnahme
    94
    erster Schritt: kontinuierliche Aufnahme
    96
    zweiter Schritt: Übermittlung der Daten
    98
    dritter Schritt: Speicherung der Daten
    100
    vierter Schritt: Datenabgleich
    102
    fünfter Schritt: Bewertung durch den Klassifikator 68
    104
    sechster Schritt: Umsetzung in Regelung-und steuerungstechnische Daten
    106
    siebter Schritt: Anfahren der Aggregate
    108
    Beispielsbild, Eingangsbild
    110
    Pflanze
    112
    Convolution
    114
    Pooling
    116
    Zusammenfassung in einer Dense-Schicht
    118
    Hintergrund
    120
    erster Schritt: Überführen in ein RGB-Farbmodell
    122
    zweiter Schritt: Transferieren in ein HSV-Farbmodell
    124
    dritter Schritt: Bewertung des HSV-Bildes
    126
    vierter Schritt: Erzeugen eines Zwischenbildes
    128
    erster Fall, rot
    130
    zweiter Fall, gelb
    132
    dritter Fall, blau
    134
    Feature
    136
    Pflanzenpixel, links
    138
    Pflanzenpixel, rechts
    140
    blauer Bereich
    142
    purpurner Bereich
    144
    roter Bereich
    146
    oranger Bereich
    148
    Feature, grün
    150
    mittlerer schwarzer Kasten
    152
    Karottenpflanze
    154
    Unkraut, Beikraut
    156
    Bildelement, links
    158
    roter Rahmen
    160
    Bildelement, rechts
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 4039797 A1 [0004]
    • DE 102015209879 A1 [0005]
    • DE 102015209891 A1 [0006]
    • DE 102015209888 A1 [0007]
    • DE 102013222776 A1 [0008]

Claims (28)

  1. Trägersystem (10) mit einem Träger (12) und einer mobilen Vorrichtung (14) zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna, wobei der Träger (12) einen Antrieb (16) zum Bewegen des Trägersystems (10), eine Steuereinrichtung (12b), eine Energiequelle (24), welche mit dem Antrieb (16) zusammenwirkt und die notwendige Spannung für den Betrieb zur Verfügung stellt, eine Aufnahme (12a) zum Aufnehmen und Verbinden mit der mobilen Vorrichtung (14), eine Kommunikationseinheit (30), eine erste mit der Kommunikationseinheit (30) zusammenwirkende Kommunikationsschnittstelle (36a) zum Datenaustausch mit der mobilen Vorrichtung (14), welche eine zugeordnete Schnittstelle (36b) aufweist, sowie eine zweite mit der Kommunikationseinheit (30) zusammenwirkende Kommunikationsschnittstelle (32) aufweist, welche zumindest Steuerungsdaten empfängt und an die Steuerungseinrichtung (12b) zum vorbestimmten Bewegen des Trägers (10) weitergibt.
  2. Trägersystem nach Anspruch 1, dadurch gekennzeichnet, dass der Träger (12) als unbemanntes Luftfahrzeug (Flugdrohne), unbemanntes Landfahrzeug, unbemanntes Wasserfahrzeug, oder unbemanntes Unterwasserfahrzeug ausgebildet ist.
  3. Trägersystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweite Kommunikationsschnittstelle eine Antenne (32) zum Datenaustausch mit einem zentralen, vorzugsweise ortsfesten, von dem Träger (12) separaten Rechner ist.
  4. Trägersystem nach Anspruch 3, dadurch gekennzeichnet, dass die zweite Kommunikationsschnittstelle (32) auch für einen Datenaustausch mit der mobilen Vorrichtung (14) und dem zentralen Rechner ausgebildet ist.
  5. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (12) und die mobile Vorrichtung (14) einen Spannungsanschluss (26a, 26b) aufweisen, über den die mobile Vorrichtung (14) mit Spannung versorgbar ist.
  6. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (12) und die mobile Vorrichtung (14) Mittel (12a, 14c, 82a, 82b) zum bedarfsweise Verbinden miteinander aufweisen.
  7. Trägersystem nach Anspruch 6, dadurch gekennzeichnet, dass der Träger (12) einen Greifer (82a, 82b) und die mobile Vorrichtung (14) dem Greifer (82a, 82b) zugeordnete Aufnahmen (14c) aufweist, über den die mobile Vorrichtung (14) ergriffen wird und lösbar mit dem Träger (12) verbunden ist.
  8. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (12) und die mobile Vorrichtung (14) einander zugeordnete Kupplungsmittel (28, 72) aufweisen, über welche die mobile Vorrichtung (14) lösbar mit dem Träger (12) verbunden ist.
  9. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Träger eine GPS-Einheit (34) zur Erfassung der Positionskoordinaten des Trägers (10) aufweist.
  10. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mobile Vorrichtung (14) zumindest einen Sensor (62), eine Werkzeugeinheit (52) mit zumindest einem motorisch angetriebenen Werkzeug (58), einen Aktor (48) zum Verfahren zumindest des Werkzeugs (58) der Werkzeugeinheit (52), einen Motor (50) zum Antreiben der Werkzeugeinheit (52) und/oder des Aktors (48), eine Datenbank (78), eine erste Kommunikationseinheit (60, 74) mit Schnittstelle (70a, 70b; 36a, 36b) und einen ersten Rechner (46, 76) zum Steuern des Motors (50), des Sensors (62), der Werkzeugeinheit (52) und/oder des Aktors (48) aufgrund generierter Steuerbefehle aufweist, wobei die über den Sensor (62) erfassten Daten mit den in der Datenbank (78) hinterlegten Daten fortlaufend abgeglichen werden, um entsprechende Steuersignale für den Motors (50), den Sensor (62), die Werkzeugeinheit (52), den Aktor (48) und/oder den Träger (12) zu generieren.
  11. Trägersystem nach Anspruch 10, dadurch gekennzeichnet, dass der Datenabgleich in der mobilen Vorrichtung (14) der durch den Sensor (62) ermittelten Daten mit der Datenbank (78) in Echtzeit erfolgt, insbesondere mit einer Verifikation und Klassifikation der durch den Sensor (62) ermittelten Daten.
  12. Trägersystem nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Sensor der mobilen Vorrichtung (14) eine visuelle Detektionseinheit (62) mit einer Kamera (64) ist.
  13. Trägersystem nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass die mobile Vorrichtung (14) zweigeteilt ausgebildet ist, wobei in einer ersten Einheit (14a) der Sensor (62), die Werkzeugeinheit (52), der Motor (50) zum Antreiben der Werkzeugeinheit (52) und/oder des Aktors (48), der Aktor (48), der erste Rechner (46) und die erste Kommunikationseinheit (60) der Vorrichtung (14) mit Schnittstelle (70a) vorgesehen sind und in der zweiten Einheit (14b) die Datenbank (78), ein zweiter Rechner (76) und eine zweite Kommunikationseinheit (74) der Vorrichtung (14) mit Schnittstelle (36b, 70b) vorgesehen sind, wobei die erste Einheit (14a) und die zweite Einheit (14b) über die beiden Schnittstelle (70a, 70b) zum Datenaustausch miteinander verbindbar sind.
  14. Trägersystem nach Anspruch 13, dadurch gekennzeichnet, dass die erste Einheit (14a) ein erstes Gehäuse (40) und die zweite Einheit (14b) ein zweites Gehäuse (42) umfasst.
  15. Trägersystem nach Anspruch 14, dadurch gekennzeichnet, dass das erste und das zweite Gehäuse (40, 42) über eine Steckverbindung (44, 80) lösbar miteinander verbunden sind.
  16. Trägersystem nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass die Werkzeugeinheit (52) der mobilen Vorrichtung (14) mindestens eine Vorschubeinheit (54) und eine Rotationseinheit (56) aufweisen, welche mit dem Motor (50) zusammenwirken.
  17. Trägersystem nach Anspruch 16, dadurch gekennzeichnet, dass die Rotationseinheit (56) an einem distalen Ende zumindest das Werkzeug (58) aufweist, insbesondere eine Fräse oder eine Messereinheit.
  18. Trägersystem nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, dass der Spannungsanschluss (26b) an der ersten Einheit (14a) vorgesehen ist und über diesen die erste Einheit (14a) als auch die zweite Einheit (14b) mit Spannung versorgt ist.
  19. Trägersystem nach einem der Ansprüche 13 bis 18, dadurch gekennzeichnet, dass die dem Träger (12) zugeordnete Schnittstelle (36b) für den Datenaustausch der mobilen Vorrichtung (14) in der zweiten Einheit (14b) angeordnet ist.
  20. Trägersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehrere unterschiedliche mobile Vorrichtungen (14) vorgesehen sind, wobei jeweils nur eine mobile Vorrichtung (14) in der Aufnahme (12a) angeordnet ist.
  21. Trägersystem nach Anspruch 20, dadurch gekennzeichnet, dass die mobilen Vorrichtungen (14) unterschiedliche Sensoren (62) und/oder Werkzeugeinheiten (52) aufweisen.
  22. Verfahren zur Echtzeitregelung der Bearbeitung des Bodens und/oder der Manipulation von Flora und Fauna durch das Trägersystem (10) nach einem der vorangegangenen Ansprüche mit den folgenden Schritten: - Ermitteln der notwendigen Maßnahmen; - Durchführen der ermittelten Maßnahmen.
  23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass zwischen dem Ermitteln der notwendigen Maßnahmen und dem Durchführen der ermittelten Maßnahmen noch folgende Schritte durchgeführt werden: - Aussuchen der mobilen Vorrichtung (14) aus den zur Verfügung stehenden Vorrichtungen (14); - Verbinden der Vorrichtung (14) mit dem Träger (12);
  24. Verfahren nach Anspruch 22 oder 23, dadurch gekennzeichnet, dass die mobile Vorrichtung (14) nach Durchführen der Maßnahme gegen eine andere mobile Vorrichtung (14) ausgetauscht wird und eine weitere Maßnahme durchgeführt wird.
  25. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass das Ermitteln der notwendigen Maßnahmen durch die mobile Vorrichtung (14) wie folgt durch geführt wird: a. zeitlich kontinuierliche Aufnahme datentechnisch definierter Voxel und/oder Pixel und/oder Bilder durch den Sensor (62) der mobilen Vorrichtung (14); b. Übermittlung der Aufnahmedaten an die Datenbank (78); c. Speicherung der Aufnahmedaten in der Datenbank (78); d. qualitativer Datenabgleich der Aufnahmedaten mit den in der Datenbank (78) hinterlegten Daten, vorzugsweise mit Durchführung einer Segmentierung, Datenreduktion, und/oder einer Verifikation der Aufnahmedaten durch den Rechner (46, 76); e. Bewertung der abgeglichenen Aufnahmedaten mit bestehenden definierten Datensätzen in der Datenbank (78) durch einen Klassifikator (68) in Verbindung mit dem Rechner (46, 76); f. Verarbeitung und Umsetzung der Bewertung durch den Rechner (46, 76) in regelungs- und steuerungstechnische Daten für den Motor (50), den Aktor (48), die Werkzeugeinheit (52) und/oder den Träger (12).
  26. Verfahren nach einem der Ansprüche 22 bis 24, dadurch gekennzeichnet, dass das Durchführen der ermittelten Maßnahmen auf Basis der Umsetzung der Bewertung durch den Rechner (46, 76) in regelungs- und/oder steuerungstechnische Daten für den Motor (50), den Aktor (48), die Werkzeugeinheit (52) und/oder den Träger (12) erfolgt und durch Anfahren des Motors (50), des Aktors (48), der Werkzeugeinheit (52) und/oder des Trägers (12) zur Bearbeitung des Bodens und/oder zur Manipulation von Flora und Fauna.
  27. Verfahren nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass die Bewertung in einem mit dem Klassifikator (68) zusammenwirkenden Rechner (46, 76), insbesondere in dem zweiten Rechner (76), und die Verarbeitung und Umsetzung der Bewertung in regelungs- und/oder steuerungstechnische Daten in einem anderen Rechner (46, 76), insbesondere in dem ersten Rechner (46), durchgeführt wird, wofür die Bewertung von dem einen Rechner (46, 76) an den anderen Rechner (46, 76) übermittelt wird.
  28. Verfahren nach einem der Ansprüche 24 oder 26, dadurch gekennzeichnet, dass die Speicherung, der qualitative Datenabgleich der Aufnahmedaten mit in der Datenbank (78) hinterlegten Daten und/oder die Bewertung durch den Klassifikator (68) durch Künstliche Intelligenz unterstützt werden.
DE102018120755.7A 2018-08-24 2018-08-24 Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu Ceased DE102018120755A1 (de)

Priority Applications (19)

Application Number Priority Date Filing Date Title
DE102018120755.7A DE102018120755A1 (de) 2018-08-24 2018-08-24 Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu
PL19765969.1T PL3841444T3 (pl) 2018-08-24 2019-08-22 System nośnika zawierający nośnik i urządzenie mobilne do obróbki gleby i/lub do manipulacji florą i fauną oraz sposób do tego
DK19765969.1T DK3841444T3 (da) 2018-08-24 2019-08-22 Bærersystem med en bærer og en mobil indretning til bearbejdning af jorden og/eller til manipulation af floraen og faunaen og fremgangsmåde hertil
KR1020217008621A KR20210047918A (ko) 2018-08-24 2019-08-22 캐리어와 토양의 경작 및/또는 동식물 조종을 위한 모바일 장치를 포함하는 캐리어 시스템과 그 방법
RS20230316A RS64154B1 (sr) 2018-08-24 2019-08-22 Sistem nosača sa nosačem i mobilnim uređajem za obradu tla i/ili manipulaciju flore i faune i postupak
PT197659691T PT3841444T (pt) 2018-08-24 2019-08-22 Sistema de suporte com um suporte e um dispositivo móvel para o tratamento do solo e/ou para a manipulação da flora e fauna e processo para este fim
HUE19765969A HUE061887T2 (hu) 2018-08-24 2019-08-22 Hordozót és a talaj megmûvelésére és/vagy a flóra és fauna kezelésére szolgáló mobil szerkezetet magában foglaló hordozórendszer és hozzá eljárás
CN201980055947.3A CN112955841A (zh) 2018-08-24 2019-08-22 用于土壤处理和/或动植物群分析操作的带有输送载体和移动装置的输送载体系统及其方法
AU2019324525A AU2019324525A1 (en) 2018-08-24 2019-08-22 Carrier system comprising a carrier and a mobile device for tilling the soil and/or for manipulating flora and fauna, and method therefor
FIEP19765969.1T FI3841444T3 (fi) 2018-08-24 2019-08-22 Kantolaitejärjestelmä, joka käsittää kantolaitteen ja mobiililaitteen maaperän muokkaamista ja/tai kasviston ja eläimistön käsittelemistä varten ja menetelmä niiden suorittamista varten
SI201930520T SI3841444T1 (sl) 2018-08-24 2019-08-22 Sistem nosilca z nosilcem in premično napravo za obdelovanje tal in/ali za manipulacijo flore in favne ter postopek za to
HRP20230366TT HRP20230366T1 (hr) 2018-08-24 2019-08-22 Nosivi sustav s nosačem i mobilnim uređajem za obradu tla i/ili za manipuliranje florom i faunom i postupak za to
ES19765969T ES2942444T3 (es) 2018-08-24 2019-08-22 Sistema de portador con un portador y un dispositivo móvil para el procesamiento del suelo y/o para la manipulación de la flora y fauna y procedimiento para ello
US17/268,529 US20220117146A1 (en) 2018-08-24 2019-08-22 Carrier system comprising a carrier and a mobile device for tilling the soil and/or for manipulating flora and fauna, and method therefor
CA3111249A CA3111249A1 (en) 2018-08-24 2019-08-22 Carrier system comprising a carrier and a mobile device for tilling the soil and/or for manipulating flora and fauna, and method therefor
PCT/EP2019/072521 WO2020039045A1 (de) 2018-08-24 2019-08-22 Trägersystem mit einem träger und einer mobilen vorrichtung zur bearbeitung des bodens und/oder zur manipulation der flora und fauna und verfahren hierzu
EP19765969.1A EP3841444B1 (de) 2018-08-24 2019-08-22 Trägersystem mit einem träger und einer mobilen vorrichtung zur bearbeitung des bodens und/oder zur manipulation der flora und fauna und verfahren hierzu
LTEPPCT/EP2019/072521T LT3841444T (lt) 2018-08-24 2019-08-22 Nešančioji sistema, apimanti nešiklį ir mobilųjį įrenginį, skirtą dirvai apdirbti ir (arba) manipuliavimui su augalija ir gyvūnija, ir tam skirtas būdas
IL281046A IL281046A (en) 2018-08-24 2021-02-23 A carrier system that includes a carrier and a mobile device for cultivating the soil and/or for operating the animals and plants and a method for this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018120755.7A DE102018120755A1 (de) 2018-08-24 2018-08-24 Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu

Publications (1)

Publication Number Publication Date
DE102018120755A1 true DE102018120755A1 (de) 2020-02-27

Family

ID=69412545

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018120755.7A Ceased DE102018120755A1 (de) 2018-08-24 2018-08-24 Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu

Country Status (1)

Country Link
DE (1) DE102018120755A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039797A1 (de) * 1990-12-13 1991-09-26 Manfred Prof Dr Hoffmann Sensorgesteuerte pflegetechnik und unkrautregulation
FR2953365A1 (fr) * 2009-11-30 2011-06-10 Creation E C B Et Tracteur enjambeur
WO2014111387A1 (fr) * 2013-01-18 2014-07-24 Naio Technologies Dispositif agricole automatisé autonome
DE102013222776A1 (de) * 2013-11-08 2015-05-13 Robert Bosch Gmbh Einrichtung, System und Verfahren zur Beschädigung eines Beikrauts
DE102015209891A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung
DE102015209888A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung
DE102015209879A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039797A1 (de) * 1990-12-13 1991-09-26 Manfred Prof Dr Hoffmann Sensorgesteuerte pflegetechnik und unkrautregulation
FR2953365A1 (fr) * 2009-11-30 2011-06-10 Creation E C B Et Tracteur enjambeur
WO2014111387A1 (fr) * 2013-01-18 2014-07-24 Naio Technologies Dispositif agricole automatisé autonome
DE102013222776A1 (de) * 2013-11-08 2015-05-13 Robert Bosch Gmbh Einrichtung, System und Verfahren zur Beschädigung eines Beikrauts
DE102015209891A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung
DE102015209888A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung
DE102015209879A1 (de) * 2015-05-29 2016-12-01 Robert Bosch Gmbh Unkrautregulierungsvorrichtung

Similar Documents

Publication Publication Date Title
DE102018120756A1 (de) Mobile Analyse- und Bearbeitungsvorrichtung, Verfahren und Trägersystem
EP3434092A1 (de) Im aussenbereich selbsttätig verfahrbares arbeitsgerät
EP3782467A1 (de) Verfahren zum identifizieren von beikräutern innerhalb einer definierten pflanzenreihe einer landwirtschaftlichen fläche
EP3434090A1 (de) System zur erfassung von dreidimensionalen umgebungsdaten, insbesondere zur pflanzenpflege sowie sensormodul
EP3840559A1 (de) Mobile analyse- und bearbeitungsvorrichtung
EP4088223A1 (de) Verfahren zum generieren einer vielzahl von annotierten bildern
DE102019218192A1 (de) Verfahren zum Bearbeiten von Pflanzen auf einem Feld
EP3841444B1 (de) Trägersystem mit einem träger und einer mobilen vorrichtung zur bearbeitung des bodens und/oder zur manipulation der flora und fauna und verfahren hierzu
EP3575912A1 (de) Mähroboter
DE102018120755A1 (de) Trägersystem mit einem Träger und einer mobilen Vorrichtung zur Bearbeitung des Bodens und/oder zur Manipulation der Flora und Fauna und Verfahren hierzu
DE102019216379A1 (de) Verfahren zum Trainieren eines neuronalen Faltungs-Netzwerkes zum Bestimmen einer Lokalisierungs-Pose
EP4064819A1 (de) Verfahren zum bearbeiten von pflanzen auf einem feld, zum generieren von trainingsdaten und zum trainieren eines neuronalen netzes
WO2021105017A1 (de) Verfahren zum bearbeiten von pflanzen auf einem feld
EP4064818B1 (de) Verfahren zum bearbeiten von pflanzen auf einem feld
EP4245135A1 (de) Durchführen und dokumentieren einer applikation von pflanzenschutzmittel
DE102022207830A1 (de) Unkrauterkennung mit Polarmasken
DE202022101733U1 (de) Ein auf künstlicher Intelligenz und maschinellem Lernen basierendes System zur Erntezählung
DE102022206224A1 (de) Verfahren zum automatischen Labeln von Eingangsbildern, Trainingsbilder, Verfahren zum Trainieren oder Nachtrainieren eines Unkrautanalysators, Analysevorrichtung, Computerprogramm sowie maschinenlesbares Speichermedium
DE102020215877A1 (de) Verfahren zum Klassifizieren von Pflanzen für landwirtschaftliche Zwecke
DE102022115549A1 (de) Verfahren zur optimierten Konfiguration eines Kamerasystems zur Reihenerkennung in einem Feldbestand
DE102020002721A1 (de) Mehrreihige Maschine und Verfahren zur mechanischen Regulierung von Beikräutern und Schädlingen.
DE102022110279A1 (de) Schwarmassistenzsystem zum Planen und Steuern des Einsatzes mindestens einer autonomen landwirtschaftlichen Universal-Arbeitsmaschine
Carpio et al. An Autonomous Sucker Management Architecture for Large-scale Hazelnut Orchards

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: PUSCHMANN BORCHERT BARDEHLE PATENTANWAELTE PAR, DE

Representative=s name: PUSCHMANN BORCHERT KAISER KLETTNER PATENTANWAE, DE

R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final