DE102018119599A1 - Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine - Google Patents
Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine Download PDFInfo
- Publication number
- DE102018119599A1 DE102018119599A1 DE102018119599.0A DE102018119599A DE102018119599A1 DE 102018119599 A1 DE102018119599 A1 DE 102018119599A1 DE 102018119599 A DE102018119599 A DE 102018119599A DE 102018119599 A1 DE102018119599 A1 DE 102018119599A1
- Authority
- DE
- Germany
- Prior art keywords
- exhaust gas
- catalytic converter
- scr
- downstream
- exhaust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000003197 catalytic effect Effects 0.000 claims abstract description 85
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 56
- 239000002245 particle Substances 0.000 claims abstract description 45
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 41
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 28
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 23
- 239000007789 gas Substances 0.000 claims description 106
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 90
- 239000003054 catalyst Substances 0.000 claims description 50
- 238000010531 catalytic reduction reaction Methods 0.000 claims description 14
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 10
- 239000004202 carbamide Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 230000008929 regeneration Effects 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- 239000000446 fuel Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2340/00—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
- F01N2340/02—Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/021—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/026—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1812—Flow rate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/18—Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
- F01N2900/1806—Properties of reducing agent or dosing system
- F01N2900/1821—Injector parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Die Erfindung betrifft ein Abgasnachbehandlungssystem für einen Verbrennungsmotor (10) mit einer Abgasanlage (40). Die Abgasanlage (40) weist einen Abgaskanal (42) auf, in welchem in Strömungsrichtung eines Abgases des Verbrennungsmotors (10) durch den Abgaskanal (42) ein erster Katalysator (38, 46), stromabwärts des ersten Katalysators (38, 46) ein Partikelfilter (48), weiter stromabwärts ein erster SCR-Katalysators (56), und noch weiter stromabwärts ein zweiter SCR-Katalysator (58) angeordnet sind. Stromabwärts des Partikelfilters (48) und stromaufwärts des ersten SCR-Katalysators (56) ist ein Dosierventil (54) zur Eindosierung eines Reduktionsmittels in den Abgaskanal (42) vorgesehen. Stromabwärts des ersten SCR-Katalysators (56) und stromaufwärts des zweiten SCR-Katalysators (58) ist ein Kombisensor (62) zur Erfassung der NO-Konzentration und zur Erfassung der Ammoniakkonzentration im Abgas stromabwärts des ersten SCR-Katalysators (56) angeordnet.Die Erfindung betrifft ferner ein Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors (10) mit einem solchen Abgasnachbehandlungssystem.The invention relates to an exhaust gas aftertreatment system for an internal combustion engine (10) with an exhaust gas system (40). The exhaust system (40) has an exhaust duct (42), in which a first catalytic converter (38, 46) in the flow direction of an exhaust gas of the internal combustion engine (10) through the exhaust duct (42), and a particle filter downstream of the first catalytic converter (38, 46) (48), further downstream a first SCR catalytic converter (56), and still further downstream a second SCR catalytic converter (58) are arranged. A metering valve (54) for metering a reducing agent into the exhaust gas duct (42) is provided downstream of the particle filter (48) and upstream of the first SCR catalytic converter (56). A combination sensor (62) is arranged downstream of the first SCR catalytic converter (56) and upstream of the second SCR catalytic converter (58) for detecting the NO concentration and for detecting the ammonia concentration in the exhaust gas downstream of the first SCR catalytic converter (56) The invention further relates to a method for exhaust gas aftertreatment of an internal combustion engine (10) with such an exhaust gas aftertreatment system.
Description
Die Erfindung betrifft ein Abgasnachbehandlungssystem zur Abgasnachbehandlung eines Verbrennungsmotors, insbesondere eines Dieselmotors, sowie ein Verfahren zum Betreiben eines solchen Abgasnachbehandlungssystems.The invention relates to an exhaust gas aftertreatment system for exhaust gas aftertreatment of an internal combustion engine, in particular a diesel engine, and a method for operating such an exhaust gas aftertreatment system.
Die aktuelle und eine zukünftig immer schärfer werdende Abgasgesetzgebung stellen hohe Anforderungen an die motorischen Rohemissionen und die Abgasnachbehandlung von Verbrennungsmotoren. Dabei stellen die Forderungen nach einem weiter sinkenden Verbrauch und die weitere Verschärfung der Abgasnormen hinsichtlich der zulässigen StickoxidEmissionen eine Herausforderung für die Motorenentwickler dar. Bei Ottomotoren erfolgt die Abgasreinigung in bekannter Weise über einen Drei-Wege-Katalysator, sowie dem Drei-Wege-Katalysator vor- und nachgeschaltete weitere Katalysatoren. Bei Dieselmotoren finden aktuell Abgasnachbehandlungssysteme Verwendung, welche einen Oxidationskatalysator, einen Katalysator zur selektiven katalytischen Reduktion von Stickoxiden (SCR-Katalysator) sowie einen Partikelfilter zur Abscheidung von Rußpartikeln und gegebenenfalls weitere Katalysatoren aufweisen. Als Reduktionsmittel wird dabei bevorzugt Ammoniak verwendet. Weil der Umgang mit reinem Ammoniak aufwendig ist, wird bei Fahrzeugen üblicherweise eine synthetische, wässrige Harnstofflösung verwendet, welche mit dem heißen Abgasstrom des Verbrennungsmotors vermischt wird. Durch diese Vermischung wird die wässrige Harnstofflösung erhitzt, wobei die wässrige Harnstofflösung Ammoniak im Abgaskanal freisetzt. Eine handelsübliche, wässrige Harnstofflösung setzt sich im Allgemeinen aus 32,5 % Harnstoff und 67,5 % Wasser zusammen.The current exhaust gas legislation, which will become increasingly stringent in the future, places high demands on raw engine emissions and exhaust gas aftertreatment of internal combustion engines. The demands for a further decrease in consumption and the further tightening of the exhaust gas standards with regard to the permissible nitrogen oxide emissions represent a challenge for the engine developers. In gasoline engines, the exhaust gas cleaning takes place in a known manner using a three-way catalytic converter and the three-way catalytic converter - And downstream further catalysts. Exhaust gas aftertreatment systems are currently used in diesel engines, which have an oxidation catalytic converter, a catalytic converter for the selective catalytic reduction of nitrogen oxides (SCR catalytic converter) and a particle filter for the separation of soot particles and, if appropriate, further catalytic converters. Ammonia is preferably used as the reducing agent. Because the use of pure ammonia is complex, a synthetic, aqueous urea solution is usually used in vehicles, which is mixed with the hot exhaust gas stream of the internal combustion engine. This mixing heats the aqueous urea solution, the aqueous urea solution releasing ammonia in the exhaust gas duct. A commercially available, aqueous urea solution generally consists of 32.5% urea and 67.5% water.
Zur Einhaltung strengster Abgasnormen sind neben einer stetigen Minderung der Rohemissionen immer höhere Konvertierungsraten des Abgasnachbehandlungssystems erforderlich. Bezüglich der Stickoxidemissionen bei mager laufenden Verbrennungsmotoren, insbesondere bei mager laufenden Dieselmotoren oder Otto-Magermotoren, sind somit zusätzliche Katalysatoren notwendig, um die bei der Verbrennung auftretenden Stickoxide zu konvertieren. Aus dem Stand der Technik sind sogenannte Twin-Dosing-Systeme bekannt, mit welchen in Abhängigkeit der Temperatur und/oder der Leistung des Verbrennungsmotors an zwei unterschiedlichen Stellen Harnstofflösung in den Abgaskanal eindosiert werden kann. Dabei ist vorzugsweise der SCR-Katalysator als SCR-beschichteter Partikelfilter ausgeführt. Nachteilig an einer solchen Lösung ist jedoch, dass der Partikelfilter mit der SCR-Beschichtung zur Regeneration eine Temperatur benötigt, welche oberhalb der Temperatur zur selektiven katalytischen Reduktion von Stickoxiden liegt. Somit ist die SCR-Funktion des Partikelfilters während der Regeneration eingeschränkt. Hohe Abgastemperaturen führen zudem zu einer Alterung von SCR-Katalysatoren, woraus eine Abnahme der Konvertierungsleistung über die Lebensdauer des SCR-Katalysators resultiert.In addition to a constant reduction in raw emissions, ever higher conversion rates of the exhaust gas aftertreatment system are required to comply with the strictest exhaust gas standards. With regard to the nitrogen oxide emissions in lean-running internal combustion engines, in particular in lean-running diesel engines or Otto lean-burn engines, additional catalysts are therefore necessary in order to convert the nitrogen oxides that occur during combustion. So-called twin-dosing systems are known from the prior art, with which, depending on the temperature and / or the power of the internal combustion engine, urea solution can be metered into the exhaust gas duct at two different points. The SCR catalytic converter is preferably designed as an SCR-coated particle filter. A disadvantage of such a solution, however, is that the particle filter with the SCR coating requires a temperature for regeneration which is above the temperature for the selective catalytic reduction of nitrogen oxides. The SCR function of the particle filter is therefore restricted during regeneration. High exhaust gas temperatures also lead to aging of the SCR catalytic converters, which results in a decrease in the conversion performance over the life of the SCR catalytic converter.
Aus der
Die
Aus der
Der Erfindung liegt nun die Aufgabe zugrunde, die Abgasnachbehandlung eines Verbrennungsmotors zu verbessern und insbesondere die Konvertierungsleistung bezüglich Stickoxidemissionen weiter zu verbessern.The invention is based on the object of improving the exhaust gas aftertreatment of an internal combustion engine and, in particular, of further improving the conversion performance with regard to nitrogen oxide emissions.
Erfindungsgemäß wird diese Aufgabe durch ein Abgasnachbehandlungssystem für einen Verbrennungsmotor, umfassend eine Abgasanlage mit einem ersten Abgaskanal, in welchem in Strömungsrichtung eines Abgases des Verbrennungsmotors durch den Abgaskanal ein erster Katalysator, stromabwärts des ersten Katalysators ein Partikelfilter, stromabwärts des Partikelfilters ein erster SCR-Katalysator und weiter stromabwärts ein zweiter SCR-Katalysator angeordnet sind. Dabei ist vorgesehen, dass stromabwärts des Partikelfilters und stromaufwärts des ersten SCR-Katalysators ein Dosierventil zur Eindosierung eines Reduktionsmittels in den Abgaskanal, insbesondere zur Eindosierung wässriger Harnstofflösung, vorgesehen ist. Dabei ist stromabwärts des ersten SCR-Katalysators und stromaufwärts des zweiten SCR-Katalysators ein Kombisensor zur Erfassung der Ammoniakkonzentration und zur Erfassung der Stickoxidkonzentration im Abgas stromabwärts des ersten SCR-Katalysators angeordnet. Durch ein solches Abgasnachbehandlungssystem ist es möglich, bei beiden SCR-Katalysatoren mit einem einzigen Dosierventil zu versorgen. Dabei wird eine Menge von Reduktionsmittel eindosiert, welche höher ist, als die vom ersten SCR-Katalysator zur selektiven katalytischen Reduktion benötigte Reduktionsmittel. Als Reduktionsmittel ist insbesondere eine wässrige Harnstofflösung vorgesehen, aus welcher Ammoniak gewonnen wird. Der Überschuss an Ammoniak kann durch den Kombisensor stromabwärts des erstes SCR-Katalysators detektiert werden, sodass das verbleibende Reduktionsmittel auf dem zweiten SCR-Katalysator umgesetzt werden kann. Durch den Kombisensor kann die dem zweiten SCR-Katalysator zugeführte Ammoniakmenge geregelt werden, um eine möglichst effiziente Umsetzung von Stickoxiden zu ermöglichen. Somit steht ein größeres Katalysatorvolumen zur Konvertierung des Stickoxidemissionen zur Verfügung, wodurch insbesondere bei großen Abgasvolumina und hohen Abgasgeschwindigkeiten infolge von hohen Drehzahlen, hoher Leistung und hohen Abgastemperaturen des Verbrennungsmotors, eine bessere Konvertierung dieser Stickoxidemissionen erfolgen kann.According to the invention, this object is achieved by an exhaust gas aftertreatment system for an internal combustion engine, comprising an exhaust system with a first exhaust gas duct, in which a first catalytic converter in the flow direction of an exhaust gas of the internal combustion engine through the exhaust gas duct A particle filter is arranged downstream of the first catalytic converter, a first SCR catalytic converter is arranged downstream of the particle filter, and a second SCR catalytic converter is arranged further downstream. It is provided that a metering valve for metering a reducing agent into the exhaust gas channel, in particular for metering aqueous urea solution, is provided downstream of the particle filter and upstream of the first SCR catalytic converter. A combination sensor for detecting the ammonia concentration and for detecting the nitrogen oxide concentration in the exhaust gas is arranged downstream of the first SCR catalytic converter downstream of the first SCR catalytic converter and upstream of the second SCR catalytic converter. Such an exhaust gas aftertreatment system makes it possible to supply both SCR catalytic converters with a single metering valve. An amount of reducing agent is metered in, which is higher than the reducing agent required by the first SCR catalytic converter for selective catalytic reduction. An aqueous urea solution from which ammonia is obtained is in particular provided as the reducing agent. The excess ammonia can be detected by the combination sensor downstream of the first SCR catalytic converter, so that the remaining reducing agent can be converted on the second SCR catalytic converter. The amount of ammonia supplied to the second SCR catalytic converter can be regulated by the combination sensor in order to enable the most efficient conversion of nitrogen oxides. This means that a larger catalyst volume is available for converting the nitrogen oxide emissions, which means that, especially with large exhaust gas volumes and high exhaust gas speeds due to high speeds, high output and high exhaust gas temperatures of the internal combustion engine, a better conversion of these nitrogen oxide emissions can take place.
Durch die in den abhängigen Ansprüchen genannten Merkmale sind vorteilhafte Weiterentwicklungen und nicht triviale Verbesserungen des im unabhängigen Anspruch angegebenen Abgasnachbehandlungssystems möglich.Advantageous further developments and non-trivial improvements of the exhaust gas aftertreatment system specified in the independent claim are possible due to the features mentioned in the dependent claims.
In einer bevorzugten Ausführungsform des Abgasnachbehandlungssystems ist vorgesehen, dass dem zweiten SCR-Katalysator ein Ammoniak-Sperrkatalysator nachgeschaltet ist. Durch einen Ammoniak-Sperrkatalysator kann Reduktionsmittel, welches durch den zweiten SCR-Katalysator gelangt ist, zurückgehalten werden, so dass ein Durchbruch von Ammoniak durch diesen zweiten SCR-Katalysator nicht zwangsläufig zu einer Erhöhung der Endrohremissionen des Verbrennungsmotors führt.In a preferred embodiment of the exhaust gas aftertreatment system it is provided that the second SCR catalytic converter is followed by an ammonia blocking catalytic converter. An ammonia blocking catalyst can be used to retain reducing agent which has passed through the second SCR catalyst, so that a breakthrough of ammonia through this second SCR catalyst does not necessarily lead to an increase in the tailpipe emissions of the internal combustion engine.
In einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass der Partikelfilter eine Beschichtung zur selektiven katalytischen Reduktion von Stickoxiden (SCR-Beschichtung) aufweist und somit einen dritten SCR-Katalysator ausbildet, wobei in dem Abgaskanal stromabwärts des ersten Katalysators und stromaufwärts des Partikelfilters ein weiteres Dosierventil zur Eindosierung eines Reduktionsmittels angeordnet ist. Durch eine SCR-Beschichtung des Partikelfilters kein ein weiterer SCR-Katalysator ausgebildet werden, wodurch die Konvertierungsleistung weiter gesteigert werden kann. Dabei können drei SCR-Katalysatoren mit nur zwei Dosierventilen mit Reduktionsmittel versorgt werden, wodurch ein weiteres Dosierventil entfallen kann. Dadurch können die Kosten und der Montageaufwand für das Abgasnachbehandlungssystem reduziert werden. Ferner stehen bei einem Ausfall eines SCR-Katalysators immer noch zwei funktionierende SCR-Katalysatoren zur Verfügung, wodurch selbst bei einem Totalausfall eines der SCR-Katalysatoren eine weiterhin hohe Konvertierungsleistung durch das Abgasnachbehandlungssystem erreicht wird.In an advantageous embodiment of the invention it is provided that the particle filter has a coating for the selective catalytic reduction of nitrogen oxides (SCR coating) and thus forms a third SCR catalyst, with a further metering valve in the exhaust gas duct downstream of the first catalyst and upstream of the particle filter is arranged for metering a reducing agent. No further SCR catalytic converter can be formed by an SCR coating of the particle filter, as a result of which the conversion performance can be further increased. Three SCR catalytic converters can be supplied with reducing agent using only two metering valves, which means that an additional metering valve can be dispensed with. As a result, the costs and the assembly effort for the exhaust gas aftertreatment system can be reduced. Furthermore, in the event of a failure of an SCR catalytic converter, two functioning SCR catalytic converters are still available, as a result of which a high conversion performance is still achieved by the exhaust gas aftertreatment system even in the event of a total failure of one of the SCR catalysts.
In einer bevorzugten Ausführungsvariante des Abgasnachbehandlungssystems ist vorgesehen, dass am Abgaskanal stromabwärts des Partikelfilters und stromaufwärts des Dosierventils eine Verzweigung vorgesehen ist, an welcher eine Niederdruck-Abgasrückführungsleitung aus dem Abgaskanal abzweigt. Dadurch können der erste SCR-Katalysator und der zweite SCR-Katalysator mit Reduktionsmittel versorgt werden, ohne dass die Gefahr besteht, dass bei einer Überdosierung unverbrauchtes Reduktionsmittel in die Niederdruck-Abgasrückführung gelangt. Somit können Ablagerungen und Kondensatbildung in der Niederdruck-Abgasrückführung vermieden werden, wodurch eine unerwünschte Rückführung von Ammoniak in das Luftversorgungssystem ausgeschlossen wird.In a preferred embodiment variant of the exhaust gas aftertreatment system, it is provided that a branch is provided on the exhaust gas duct downstream of the particle filter and upstream of the metering valve, at which a low-pressure exhaust gas recirculation line branches off from the exhaust gas duct. As a result, the first SCR catalytic converter and the second SCR catalytic converter can be supplied with reducing agent without the risk that unused reducing agent can get into the low-pressure exhaust gas recirculation system in the event of an overdose. Deposits and condensate formation in the low-pressure exhaust gas recirculation can thus be avoided, as a result of which undesirable recirculation of ammonia into the air supply system is excluded.
Bevorzugt ist dabei, wenn der erste SCR-Katalysator und der zweite SCR-Katalysator stromabwärts der Verzweigung angeordnet sind.It is preferred if the first SCR catalytic converter and the second SCR catalytic converter are arranged downstream of the branch.
In einer weiteren bevorzugten Ausführungsform des Abgasnachbehandlungssystems ist vorgesehen, dass der Partikelfilter in einer motornahen Position und die beiden SCR-Katalysatoren in einer motorfernen Position angeordnet sind. Unter einer motornahen Position ist in diesem Zusammenhang eine Position des Partikelfilters mit einer Abgaslauflänge von weniger als 80cm, vorzugsweise von weniger als 50cm, ab dem Auslass des Verbrennungsmotors zu verstehen. Unter einer motorfernen Position ist in diesem Zusammenhang eine Position in der Abgasanlage mit einer Abgaslauflänge von mehr als 100cm, vorzugsweise von mehr als 120cm, ab dem Auslass des Verbrennungsmotors zu verstehen. Durch die motornahe Position ist ein besonders schnelles Aufheizen des Partikelfilters nach einem Kaltstart des Verbrennungsmotors möglich. Ferner kann der Partikelfilter in dieser Position leichter und schneller auf seine zur Oxidation des zurückgehaltenen Rußes notwendige Regenerationstemperatur aufgeheizt werden. Durch die motorferne Position der beiden weiteren SCR-Katalysatoren kühlt sich das Abgas auf dem Weg vom Verbrennungsmotor durch die Abgasanlage ab. Somit können die beiden weiteren SCR-Katalysatoren insbesondere bei einem Hochlastbetrieb und/oder bei einer Regeneration des Partikelfilters in einem Temperaturfenster betrieben werden, in welchem eine effiziente Konvertierung von Stickoxiden möglich ist. Dabei überschreitet die Temperatur am Partikelfilter dieses Temperaturfenster, sodass der Partikelfilter mit der SCR-Beschichtung nur noch eingeschränkt zur Konvertierung des Stickoxidemissionen beitragen kann.In a further preferred embodiment of the exhaust gas aftertreatment system, it is provided that the particle filter is arranged in a position close to the engine and the two SCR catalysts are arranged in a position remote from the engine. In this context, a position near the engine means a position of the particle filter with an exhaust gas run length of less than 80 cm, preferably less than 50 cm, from the outlet of the internal combustion engine. In this context, a position remote from the engine means a position in the exhaust system with an exhaust gas run length of more than 100 cm, preferably of more than 120 cm, from the outlet of the internal combustion engine. The position close to the engine enables the particulate filter to heat up particularly quickly after a cold start of the internal combustion engine. Furthermore, the particle filter can be in this position easier and faster on its to oxidize retained soot, the necessary regeneration temperature can be heated. The position of the two further SCR catalytic converters away from the engine cools the exhaust gas on the way from the internal combustion engine through the exhaust system. The two further SCR catalytic converters can thus be operated in a temperature window in which an efficient conversion of nitrogen oxides is possible, in particular during high-load operation and / or during regeneration of the particle filter. The temperature at the particle filter exceeds this temperature window, so that the particle filter with the SCR coating can only make a limited contribution to converting the nitrogen oxide emissions.
Besonders bevorzugt ist dabei, wenn die beiden SCR-Katalysatoren in einer Unterbodenposition eines Kraftfahrzeuges angeordnet sind. In einer Unterbodenposition werden die SCR-Katalysatoren von einem unter dem Fahrzeug durchgeführten Luftstrom abgekühlt, sodass zusätzlich eine konvektive Wärmeabfuhr erfolgt. Somit können die SCR-Katalysatoren auch bei Höchstlast in dem zur selektiven katalytischen Reduktion von Stickoxiden notwendigen Temperaturbereich betrieben werden.It is particularly preferred if the two SCR catalysts are arranged in an underbody position of a motor vehicle. In an underbody position, the SCR catalytic converters are cooled by an air flow carried under the vehicle, so that additional convective heat dissipation takes place. This means that the SCR catalysts can also be operated at maximum load in the temperature range required for the selective catalytic reduction of nitrogen oxides.
Erfindungsgemäß wird ein Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors mit einem erfindungsgemäßen Abgasnachbehandlungssystem vorgeschlagen, wobei ein Reduktionsmittel durch das Dosierventil eindosiert wird, und wobei die Stickoxidkonzentration und die Ammoniakkonzentration stromabwärts des ersten SCR-Katalysators und stromaufwärts des zweiten SCR-Katalysators ermittelt wird. Dadurch können zwei SCR-Katalysatoren mit nur einem Dosierventil mit einem Reduktionsmittel versorgt werden. Auf diese Weise kann ein Dosierventil eingespart werden, wodurch die Herstellkosten und der Montageaufwand für das Abgasnachbehandlungssystem reduziert werden können.According to the invention, a method for exhaust gas aftertreatment of an internal combustion engine with an exhaust gas aftertreatment system according to the invention is proposed, wherein a reducing agent is metered in through the metering valve, and wherein the nitrogen oxide concentration and the ammonia concentration are determined downstream of the first SCR catalytic converter and upstream of the second SCR catalytic converter. This means that two SCR catalytic converters can be supplied with a reducing agent using just one metering valve. In this way, a metering valve can be saved, as a result of which the manufacturing costs and the assembly outlay for the exhaust gas aftertreatment system can be reduced.
In einer vorteilhaften Ausführungsform des Verfahrens ist vorgesehen, dass eine Überdosierung von Reduktionsmittel erfolgt, wenn sowohl der erste SCR-Katalysator als auch der zweite SCR-Katalysator ihre Betriebstemperatur erreicht haben. Durch eine Überdosierung kann der zweite SCR-Katalysator mit Reduktionsmittel, insbesondere mit Ammoniak, versorgt werden, sodass der zweite SCR-Katalysator zusätzliche Katalysatorvolumen bereitstellt. Dadurch kann die Effizienz der Stickoxidkonvertierung insbesondere bei hohen Lastpunkten und/oder hohen Drehzahlen des Verbrennungsmotors verbessert werden.In an advantageous embodiment of the method it is provided that the reducing agent is overdosed when both the first SCR catalytic converter and the second SCR catalytic converter have reached their operating temperature. The second SCR catalytic converter can be supplied with a reducing agent, in particular ammonia, by overdosing, so that the second SCR catalytic converter provides additional catalyst volumes. As a result, the efficiency of the nitrogen oxide conversion can be improved, in particular at high load points and / or high speeds of the internal combustion engine.
Gemäß einer weiteren Verbesserung des Verfahrens ist vorgesehen, dass der Partikelfilter eine Beschichtung zur selektiven katalytischen Reduktion von Stickoxiden aufweist und stromaufwärts des Partikelfilters ein weiteres Dosierventil angeordnet ist, wobei die Eindosierung von Reduktionsmittel in Abhängigkeit von der Abgastemperatur und/oder der Temperatur der SCR-Katalysatoren durch das Dosierventil oder durch das weitere Dosierventil erfolgt. Dadurch kann die selektive katalytische Reduktion an die in der Abgasanlage vorherrschenden Temperaturen angepasst werden, sodass immer derjenige oder diejenigen SCR-Katalysatoren mit Reduktionsmittel versorgt werden, welche eine bestmögliche Konvertierung von Stickoxiden erwarten lassen. Somit kann der Reduktionsmittelverbrauch reduziert und die Effizienz der Abgasnachbehandlung gesteigert werden.According to a further improvement of the method, it is provided that the particle filter has a coating for the selective catalytic reduction of nitrogen oxides and a further metering valve is arranged upstream of the particle filter, the metering of reducing agent depending on the exhaust gas temperature and / or the temperature of the SCR catalysts through the metering valve or through the further metering valve. As a result, the selective catalytic reduction can be adapted to the temperatures prevailing in the exhaust system, so that one or more SCR catalysts are always supplied with reducing agents which give the best possible conversion of nitrogen oxides. This reduces the consumption of reducing agents and increases the efficiency of exhaust gas aftertreatment.
Die verschiedenen in dieser Anmeldung genannten Ausführungsformen der Erfindung sind, sofern im Einzelfall nicht anders ausgeführt, mit Vorteil miteinander kombinierbar.The various embodiments of the invention mentioned in this application can be combined with one another with advantage, unless otherwise stated in the individual case.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:
-
1 einen Verbrennungsmotor mit einem Luftversorgungssystem und einer Abgasanlage mit einem erfindungsgemäßen Abgasnachbehandlungssystem; und -
2 ein Ablaufdiagramm zur Durchführung eines erfindungsgemäßen Verfahrens zur Abgasnachbehandlung eines Verbrennungsmotors.
-
1 an internal combustion engine with an air supply system and an exhaust system with an exhaust gas aftertreatment system according to the invention; and -
2 a flowchart for performing an inventive method for exhaust gas aftertreatment of an internal combustion engine.
Das Luftversorgungssystem
Die Abgasanlage
Die Abgasrückführung
In der Abgasanlage
Der Verbrennungsmotor
Eine Abgasnachbehandlung mit einem erfindungsgemäßen Abgasnachbehandlungssystem ist in
Durch den Kombisensor
BezugszeichenlisteLIST OF REFERENCE NUMBERS
- 1010
- Verbrennungsmotorinternal combustion engine
- 1212
- Brennraumcombustion chamber
- 1414
- Kraftstoffinjektorfuel injector
- 1616
- Einlassinlet
- 1818
- Auslass outlet
- 2020
- LuftversorgungssystemAir supply system
- 2222
- Luftfilterair filter
- 2424
- LuftmassenmesserAir flow sensor
- 2626
- Verdichtercompressor
- 2828
- Ansaugkanal intake port
- 3030
- Drosselklappethrottle
- 3232
- LadeluftkühlerIntercooler
- 3434
- Einmündungjunction
- 3636
- Abgasturboladerturbocharger
- 3838
- NOx-Speicherkatalysator NO x storage catalytic converter
- 4040
- Abgasanlageexhaust system
- 4242
- Abgaskanalexhaust duct
- 4444
- Turbineturbine
- 4646
- Oxidationskatalysatoroxidation catalyst
- 4848
- Partikelfilter particulate Filter
- 5050
- erstes Dosierventilfirst metering valve
- 5252
- SCR-BeschichtungSCR coating
- 5454
- zweites Dosierventilsecond metering valve
- 5656
- erster SCR-Katalysatorfirst SCR catalytic converter
- 5858
- zweiter SCR-Katalysator second SCR catalytic converter
- 6060
- Ammoniak-SperrkatalysatorAmmonia slip catalyst
- 6262
- KombisensorKombisensor
- 6464
- Temperatursensortemperature sensor
- 6666
- DifferenzdrucksensorDifferential Pressure Sensor
- 6868
- Verzweigung branch
- 7070
- AbgasrückführungExhaust gas recirculation
- 7272
- AbgasrückführungskühlerExhaust gas recirculation cooler
- 7474
- AbgasrückführungsventilExhaust gas recirculation valve
- 7676
- AbgasrückführungsleitungExhaust gas recirculation line
- 7878
- Abgasklappe exhaust flap
- 8080
- Steuergerätcontrol unit
- 8282
- SCR-KatalysatorSCR catalyst
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of documents listed by the applicant has been generated automatically and is only included for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturPatent literature cited
- DE 102012015046 A1 [0004]DE 102012015046 A1 [0004]
- DE 112009000968 T5 [0005]DE 112009000968 T5 [0005]
- DE 112011102569 T5 [0006]DE 112011102569 T5 [0006]
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018119599.0A DE102018119599A1 (en) | 2018-08-13 | 2018-08-13 | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018119599.0A DE102018119599A1 (en) | 2018-08-13 | 2018-08-13 | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102018119599A1 true DE102018119599A1 (en) | 2020-02-13 |
Family
ID=69185860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102018119599.0A Pending DE102018119599A1 (en) | 2018-08-13 | 2018-08-13 | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102018119599A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090272099A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | Apparatus, system, and method for determining the degradation of an scr catalyst |
US20100242440A1 (en) * | 2008-12-05 | 2010-09-30 | Cummins Ip, Inc. | APPARATUS, SYSTEM, AND METHOD FOR ESTIMATING AN NOx CONVERSION EFFICIENCY OF A SELECTIVE CATALYTIC REDUCTION CATALYST |
EP2317090A1 (en) * | 2008-10-24 | 2011-05-04 | Delphi Technologies, Inc. | Method for operating exhaust gas treatment system |
DE112009000968T5 (en) * | 2008-04-30 | 2011-07-28 | Cummins IP, Inc., Minn. | Apparatus, system and method for reducing NOx emissions in an SCR catalyst |
DE112011102569T5 (en) * | 2010-09-02 | 2013-05-29 | GM Global Technology Operations LLC | Exhaust treatment system and assembly method |
EP2684597A1 (en) * | 2012-07-14 | 2014-01-15 | Deutz AG | Method for reducing nitrogen oxides in diesel engine exhaust |
DE102012015046A1 (en) * | 2012-07-31 | 2014-02-06 | Albonair Gmbh | Reducing agent dosing system with dosing chamber for exact dosing quantity adjustment |
-
2018
- 2018-08-13 DE DE102018119599.0A patent/DE102018119599A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090272099A1 (en) * | 2008-04-30 | 2009-11-05 | Phanindra Garimella | Apparatus, system, and method for determining the degradation of an scr catalyst |
DE112009000968T5 (en) * | 2008-04-30 | 2011-07-28 | Cummins IP, Inc., Minn. | Apparatus, system and method for reducing NOx emissions in an SCR catalyst |
EP2317090A1 (en) * | 2008-10-24 | 2011-05-04 | Delphi Technologies, Inc. | Method for operating exhaust gas treatment system |
US20100242440A1 (en) * | 2008-12-05 | 2010-09-30 | Cummins Ip, Inc. | APPARATUS, SYSTEM, AND METHOD FOR ESTIMATING AN NOx CONVERSION EFFICIENCY OF A SELECTIVE CATALYTIC REDUCTION CATALYST |
DE112011102569T5 (en) * | 2010-09-02 | 2013-05-29 | GM Global Technology Operations LLC | Exhaust treatment system and assembly method |
EP2684597A1 (en) * | 2012-07-14 | 2014-01-15 | Deutz AG | Method for reducing nitrogen oxides in diesel engine exhaust |
DE102012015046A1 (en) * | 2012-07-31 | 2014-02-06 | Albonair Gmbh | Reducing agent dosing system with dosing chamber for exact dosing quantity adjustment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3660287B1 (en) | Exhaust gas aftertreatment system and method for treating the waste gas of a combustion engine | |
DE102018101929A1 (en) | Device and method for exhaust aftertreatment of an internal combustion engine | |
DE102018118091A1 (en) | Device and method for exhaust gas aftertreatment of an internal combustion engine | |
DE102018126621A1 (en) | Exhaust gas aftertreatment system and method for exhaust gas aftertreatment of an internal combustion engine | |
DE102018104151A1 (en) | Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine | |
DE102018124869A1 (en) | Method for operating an internal combustion engine and internal combustion engine | |
DE102017118455A1 (en) | Exhaust after-treatment system for an internal combustion engine and method for exhaust aftertreatment of an internal combustion engine | |
DE102019119123B4 (en) | Method for heating up an exhaust aftertreatment system and an exhaust aftertreatment system | |
DE102018102111A1 (en) | Device and method for exhaust aftertreatment of an internal combustion engine | |
DE102019124728A1 (en) | Process for exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system | |
DE102020106911A1 (en) | Process for exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system | |
DE102018123586A1 (en) | Device and method for exhaust gas aftertreatment of an internal combustion engine | |
DE102018132833A1 (en) | Method for exhaust gas aftertreatment of an internal combustion engine and exhaust gas aftertreatment system | |
DE102018103230A1 (en) | Exhaust gas aftertreatment system and method for exhaust aftertreatment of an internal combustion engine | |
EP4074948A1 (en) | Cooling system for a reducing agent metering system and combustion engine with such a cooling system | |
DE102018101665A1 (en) | Device and method for exhaust aftertreatment of an internal combustion engine | |
EP4026994A1 (en) | Waste gas treatment system and method for treating the waste gas of a combustion engine | |
DE102018119599A1 (en) | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine | |
DE102020117418A1 (en) | Process for exhaust gas aftertreatment of an internal combustion engine as well as internal combustion engine with exhaust gas aftertreatment system | |
DE102019123453A1 (en) | Exhaust aftertreatment system and method for temperature management of an SCR catalytic converter in the exhaust system of an internal combustion engine | |
DE102019107544A1 (en) | Method for operating an exhaust aftertreatment system and an exhaust aftertreatment system | |
DE102018127643A1 (en) | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine | |
DE102020126135B4 (en) | Combustion engine and method for internal engine reduction of nitrogen oxide emissions of a combustion engine | |
DE102019115960A1 (en) | Exhaust aftertreatment system and method for exhaust aftertreatment of an internal combustion engine | |
DE102019105748A1 (en) | Process for exhaust aftertreatment of an internal combustion engine and exhaust aftertreatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R012 | Request for examination validly filed | ||
R083 | Amendment of/additions to inventor(s) | ||
R016 | Response to examination communication | ||
R082 | Change of representative |