-
Die Erfindung betrifft ein Verfahren zur automatischen Unterstützung des Landens eines Luftfahrzeuges auf einer Landeplattform mittels eines Halteseils, das das Luftfahrzeug mit der Landeplattform verbindet, und einer Seilwinde, mit der das Halteseil automatisch eingerollt und abgerollt werden kann. Die Erfindung betrifft außerdem ein Computerprogramm mit Programmcodemitteln, eingerichtet zur Durchführung eines Verfahrens der zuvor genannten Art, wenn das Computerprogramm auf einem Rechner ausgeführt wird. Die Erfindung betrifft außerdem ein System zur automatischen Unterstützung des Landens eines Luftfahrzeuges auf einer Landeplattform mittels eines Halteseils, wobei das System wenigstens eine Steuereinrichtung, eine Sensorik und eine von der Steuereinrichtung steuerbare Seilwinde aufweist, auf der das Halteseil motorisch einrollbar und abrollbar ist.
-
Das Landen eines Luftfahrzeuges auf einer Landeplattform kann in bestimmten Situationen mit besonderen Schwierigkeiten verbunden sein, z.B. wenn sich die Landeplattform auf einem Hochhaus befindet und starke und gegebenenfalls böige Winde vorhanden sind. Eine weitere schwierige Landesituation tritt auf, wenn das Luftfahrzeug auf einer auf einem Schiff befindlichen Landeplattform, z.B. auf einem Schiffsdeck, landen soll. Die Landung kann hierbei insbesondere durch hohen Seegang und starke und wechselhafte Winde erschwert werden.
-
Im Bereich bemannter Hubschrauber ist das Recovery Assist, Secure and Traverse System (RAST) der Firma Curtiss-Wright bekannt. Bei diesem System wird vom Piloten zunächst ein normaler Anflug zur Landeplattform auf einem Schiff durchgeführt und dann in einen Schwebeflugzustand übergegangen. Es wird ein Pilotseil vom Hubschrauber zur Landeplattform heruntergelassen und durch auf dem Schiff befindliches Personal mit einem Haupt-Halteseil des Schiffs verbunden. Das Haupt-Halteseil wird dann mittels des Pilotseils zum Hubschrauber hochgezogen und dort verriegelt. Sobald eine Phase geringer Schiffsbewegungen auftritt, fordert der Pilot das Personal an Bord des Schiffs auf, das Haupt-Halteseil anzuspannen. Der weitere Landeanflug zur Landeplattform wird dann vom Piloten gesteuert, wobei das Haupt-Halteseil durch manuelle Bedienung des Systems durch das Personal an Bord des Schiffs unter Spannung gehalten wird. Dieser ganze Vorgang erfordert einen erheblichen manuellen Bedienaufwand.
-
Der Erfindung liegt die Aufgabe zugrunde, das Landen eines Luftfahrzeuges auf einer Landeplattform mittels eines Halteseils dahingehend zu verbessern, dass das Verfahren weitgehend automatisch durchgeführt werden kann und dementsprechend weniger oder gar keine manuellen Eingriffe erforderlich sind. Insbesondere soll sich das Verfahren auch für Landevorgänge von unbemannten bzw. autonomen Luftfahrzeugen eignen.
-
Diese Aufgabe wird gelöst durch ein Verfahren der eingangs genannten Art, mit einem oder beiden der nachfolgenden Schritte a), b):
- a) Durchführen einer Positionsregelung des Luftfahrzeuges, bei der eine Ist-Position des Luftfahrzeuges basierend auf wenigstens einem Signal einer Sensorik auf eine Soll-Position relativ zur Landeplattform geregelt wird,
- b) Durchführen einer Fluglage-Anpassungsregelung, durch die die aktuelle Fluglage des Luftfahrzeuges auf eine Soll-Lage relativ zur Landeplattform geregelt wird, basierend auf die Ist-Lage der Landeplattform charakterisierenden Signalen der Sensorik.
-
Das erfindungsgemäße Verfahren hat den Vorteil, dass durch die mechanisch vom Halteseil auf das Luftfahrzeug ausgeübte Zugkraft das Luftfahrzeug stabilisiert wird. Zudem wird der wirksame Rotorschub des Luftfahrzeuges erhöht, wodurch das Luftfahrzeug gegenüber Böen und Nachlaufeffekten von in der Umgebung befindlichen Gegenständen, wie z.B. Gebäuden oder Schiffsaufbauten, stabilisiert wird. Durch das Halteseil wird das Luftfahrzeug hinsichtlich Positionsveränderungen eingeschränkt und zentriert. Die möglichen Freiheitsgrade des Luftfahrzeuges werden durch das Halteseil begrenzt, sodass eine rückstellende Kraft in Richtung des Ankerpunkts des Halteseils, an dem das Halteseil an der Landeplattform befestigt ist, erzeugt wird, sobald eine laterale oder longitudinale Verschiebung des Luftfahrzeuges gegenüber der Landeplattform auftritt.
-
Durch das Durchführen der Positionsregelung des Luftfahrzeuges kann eine zusätzliche Stabilisierung des Luftfahrzeuges gegenüber der Landeplattform erreicht werden. Durch die Positionsregelung werden Abweichungen der Position des Luftfahrzeuges von der Soll-Position minimiert. Die Soll-Position kann z.B. der Ankerpunkt des Halteseils sein. Die Positionsregelung kann beispielsweise aufgrund von Sensorik-Signalen durchgeführt werden. Ein Positionssignal kann grundsätzlich an Bord des Luftfahrzeugs erfasst werden, z.B. durch optische Erfassung von Markierungen an der Landeplattform oder durch die Messung des Seilkraftvektors, oder an der Landeplattform angeordnete Sensoren, wie z.B. Laserscanner, Sonarabstandssensoren oder Radarsensoren, durch die das Luftfahrzeug erfasst werden kann. Durch die Positionsregelung wird die stabilisierende Funktion des Halteseils noch weiter gefördert und das Halteseil vor übermäßigen Schwankungen der Belastung geschont.
-
Die Seilwinde kann an dem Luftfahrzeug und/oder an der Landeplattform angeordnet sein. Als Regelung im Sinne der vorliegenden Anmeldung wird eine Regelung verstanden, bei der zumindest eine zu regelnde Größe anhand von einem oder mehreren erfassten Sensorsignalen in Bezug auf einen Sollwert geregelt wird, derart, dass die Regelabweichung zwischen dem Istwert der zu regelnden Größe und dem Sollwert minimiert wird oder im Idealfall gleich Null ist.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Positionsregelung basierend auf einem die Seilkraft des Halteseils repräsentierenden Signal der Sensorik durchgeführt wird. Das die Seilkraft des Halteseils repräsentierende Signal ist somit zumindest eine Eingangsgröße der Positionsregelung. Auf diese Weise kann durch die Positionsregelung eine gleichbleibende Belastung des Halteseils gefördert werden.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Positionsregelung basierend auf einem Winkelsignal der Sensorik durchgeführt wird, das einen Seilwinkel des Halteseils relativ zum Luftfahrzeug und/oder einen Seilwinkel des Halteseils relativ zur Landeplattform repräsentiert. Dementsprechend kann das Winkelsignal zumindest eine Eingangsgröße für die Positionsregelung sein. Da die Ausrichtung des Halteseils relativ zum Luftfahrzeug und/oder relativ zur Landeplattform ein Indikator für die Abweichung der Ist-Position des Luftfahrzeuges gegenüber der Soll-Position ist, kann auf diese Weise mit wenig Aufwand eine geeignete Eingangsgröße für die Positionsregelung gewonnen werden.
-
Hierbei kann zusätzlich die verbleibende Seillänge des Halteseils, die ein Maß für den Abstand zwischen dem Luftfahrzeug und der Landeplattform ist, ergänzend herangezogen werden. Durch die Berücksichtigung solcher Sensorsignale kann ebenfalls die Position des Luftfahrzeuges relativ zur Landeplattform bestimmt werden. Hierdurch entfallen aufwendige Instrumentierungen des Landedecks oder Datenübertragungsanlagen, mit denen Daten zwischen dem Luftfahrzeug und der Landeplattform ausgetauscht werden können. Der Seilwinkel des Halteseils relativ zum Luftfahrzeug bzw. relativ zur Landeplattform kann dabei insbesondere zwei räumliche Komponenten umfassen, beispielsweise eine longitudinale und eine laterale Komponente des Seilwinkels.
-
Das Luftfahrzeug wird mittels des Halteseils zuverlässig zur Landeplattform geführt. Das Halteseil begrenzt die Freiheitsgrade des Luftfahrzeuges zunehmend, wenn sich das Luftfahrzeug der Landeplattform nähert. Dadurch kann die Abweichung des Luftfahrzeuges bezüglich der Landeposition kontrolliert werden. Zudem wird aufgrund des Seilwinkels eine rückstellende Kraft auf das Luftfahrzeug aufgebracht.
-
Im Unterschied zu dem RAST-System, das für bemannte Hubschrauber ausgelegt ist, kann die vorliegende Erfindung auch zur Landung unbemannter und/oder autonomer Luftfahrzeuge eingesetzt werden. Aufgrund der erfassten Sensorsignale, die durch das Halteseil gemessen werden können, ist es möglich, einen Regler bereitzustellen, der die relative Position des Luftfahrzeuges zum Ankerpunkt an der Landeplattform hält und dabei eine Sinkgeschwindigkeit des Luftfahrzeuges unter Berücksichtigung des Hubes der Landeplattform ausregeln kann.
-
Es ist dabei vorteilhaft, das erfindungsgemäße Verfahren mit einer Regelung der Seilkraft des Halteseils zu kombinieren, beispielsweise derart, dass die Seilkraft des Halteseils auf einen vorgegebenen Seilkraft-Sollwert geregelt wird, basierend auf wenigstens einem Eingangssignal der Sensorik. Das entsprechende Eingangssignal der Sensorik kann z.B. durch Messung der aktuellen Seilkraft durchgeführt werden, beispielsweise mittels eines Kraftsensors oder eines Spannungssensors. Hierdurch kann nicht nur ein unerwünschtes Durchhängen des Halteseils detektiert oder im Voraus vermieden werden. Es kann zudem in zuverlässiger Weise eine stetige Annäherung des Luftfahrzeuges an die Landeplattform erzeugt werden, z.B. durch eine Kraftfolgeregelung. Alternativ oder zusätzlich ist es vorteilhaft, ein Halteseil mit ausreichender Elastizität einzusetzen, sodass über Dehnungseffekte des Halteseils zusätzlich ein unerwünschtes Durchhängen des Seils vermieden werden kann.
-
Die zuvor erwähnte Fluglage-Anpassungsregelung ermöglicht es, die Fluglage des Luftfahrzeuges an die jeweils vorhandene Ist-Lage der Landeplattform anzupassen, was insbesondere bei Schiffsdecklandungen bei hohem Seegang von großer Bedeutung ist. Dies ermöglicht es, das Landewerk des Luftfahrzeuges insbesondere zum Ende des Landevorgangs parallel zur Landeplattform auszurichten und somit auch bei deutlichen Schräglagen der Landeplattform noch sicher landen zu können. Die Erfindung ermöglicht es, durch eine Begrenzung des Bewegungsumfangs des Luftfahrzeuges eine bessere Anpassung von dessen Lage an die Lage der Landeplattform zu erreichen. Damit können beispielsweise Hubschrauber auf deutlich schrägerem Untergrund als bisher landen, weil hierdurch die Mastmomente am Rotormast signifikant reduziert werden können. Dies ist ein wichtiger Beitrag zur Allwetterfähigkeit bei Schiffsdecklandungen.
-
Die Fluglage-Anpassungsregelung kann beispielsweise während des gesamten mittels des Halteseils unterstützten Landevorgangs des Luftfahrzeuges durchgeführt werden.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Fluglage-Anpassungsregelung aktiviert wird, wenn nach Durchführung eines Einrollvorgangs des Halteseils durch die Seilwinde die Distanz zwischen dem Luftfahrzeug und der Landeplattform einen Mindestwert unterschreitet. Dementsprechend ist die Fluglage-Anpassungsregelung nicht permanent während des durch das Halteseil geführten Landevorgangs des Luftfahrzeuges aktiv, sondern lediglich in einer Endphase des Landeanflugs, in der sich das Luftfahrzeug bereits relativ nahe an der Landeplattform befindet. Hierzu ist zunächst ein gewisser Einrollvorgang des Halteseils durchzuführen, beispielsweise eine Halbierung gegenüber der anfänglichen Seillänge. Dann wird die Fluglage-Anpassungsregelung aktiviert. Das Aktivierungskriterium für die Fluglage-Anpassungsregelung, nämlich das Unterschreiten eines Mindestwerts der Distanz zwischen dem Luftfahrzeug und der Landeplattform, kann aufgrund unterschiedlicher sensorisch erfasster Daten bestimmt werden. Beispielsweise kann die Distanz durch die verbleibende Seillänge des Halteseils bestimmt werden. Alternativ oder zusätzlich kann Sensorik des Luftfahrzeuges hierzu eingesetzt werden, z.B. Abstandssensoren am Luftfahrzeug, wie Laserscanner, Sonarabstandssensoren, Radarsensoren. Alternativ oder zusätzlich können Sensoren an der Landeplattform eingesetzt werden, beispielsweise Sensoren vergleichbaren Typs, wie zuvor erwähnt.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Positionsregelung abgeschaltet ist, wenn die Fluglage-Anpassungsregelung aktiviert ist, oder die Positionsregelung beim Aktivieren der Fluglage-Anpassungsregelung ausgeblendet wird. Hierdurch wird ein eventueller Konflikt zwischen den Regelungssystemen Positionsregelung und Fluglage-Anpassungsregelung vermieden. Der Übergang zwischen der Positionsregelung und der Fluglage-Anpassungsregelung kann abrupt durch Umschaltung erfolgen, oder mit einem weichen Übergang, nämlich durch das erwähnte Ausblenden der Positionsregelung. Parallel dazu kann die Fluglage-Anpassungsregelung eingeblendet werden.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass das Luftfahrzeug einen Fluglageregler aufweist, der dazu eingerichtet ist, das Luftfahrzeug automatisch in der horizontalen Fluglage zu halten. Dies ist insbesondere für unbemannte und/oder autonome Luftfahrzeuge vorteilhaft. Durch den Fluglageregler wird das Luftfahrzeug automatisch in der horizontalen Fluglage stabilisiert.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass eine Regelung der Seilkraft des Halteseils auf einen vorgegebenen Seilkraft-Sollwert basierend auf wenigstens einem Eingangssignal der Sensorik durchgeführt wird. Das Eingangssignal kann die gemessene Ist-Seilkraft des Halteseils sein. Hierdurch kann ein Durchhängen des Halteseils vermieden und ein gleichmäßiges Heranführen des Luftfahrzeuges an die Landeplattform erzielt werden. Es kann z.B. ein stetiges Einziehen des Halteseils erfolgen, sodass sich im Mittel der Abstand des Luftfahrzeuges zur Landeplattform stetig verringert. Der Seilkraft-Sollwert kann beispielsweise anhand der maximalen Zuladung des Luftfahrzeuges (Nutzlast) bestimmt werden, z.B. als ein Drittel der Zuladung.
-
Wird eine solche Regelung der Seilkraft durchgeführt, so kann die durch die Sensorik erfasste Ist-Seilkraft zugleich als Eingangsgröße für die Positionsregelung genutzt werden. Hierbei kann die Positionsregelung als übergeordnete Regelung zur Seilkraft-Regelung ausgebildet sein, d.h. die Seilkraft-Regelung ist der Positionsregelung dabei unterlagert.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass das Luftfahrzeug ein unbemanntes und/oder ein vertikallandefähiges Luftfahrzeug ist und/oder die Landeplattform sich auf einem auf See befindlichen Wasserfahrzeug befindet. Das Luftfahrzeug kann z.B. ein Hubschrauber oder jede andere Art von vertikallandefähigem Luftfahrzeug sein. Das Wasserfahrzeug kann beispielsweise ein Schiff oder, insbesondere bei kleineren unbemannten Luftfahrzeugen, eine Boje sein.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass zumindest ein Teil der Sensorik an der Landeplattform angeordnet ist, wobei zur automatischen Unterstützung des Landens die im Luftfahrzeug benötigten Signale der Sensorik über eine drahtlose Kommunikation von der Landeplattform zu dem Luftfahrzeug übertragen werden. Auf diese Weise kann der Datenaustausch zur Unterstützung der automatischen Landung des Luftfahrzeuges weiter optimiert werden. Beispielsweise kann das Luftfahrzeug und die Landeplattform jeweils eine Drahtlos-Kommunikationseinrichtung aufweisen, z.B. zur Kommunikation über Funksignale oder optische Signale.
-
Die eingangs genannte Aufgabe wird zudem gelöst durch ein Computerprogramm mit Programmcodemitteln, eingerichtet zur Durchführung eines Verfahrens der zuvor erläuterten Art, wenn das Computerprogramm auf einem Rechner ausgeführt wird. Der Rechner kann z.B. ein Mikrocontroller oder Mikroprozessor sein, beispielsweise ein Rechner einer Steuereinrichtung des nachfolgend erläuterten Systems. Das Computerprogramm kann dabei in einem Datenträger gespeichert sein, z.B. in einem Speicher des nachfolgend erläuterten Systems. Auch hierdurch können die zuvor erläuterten Vorteile realisiert werden.
-
Die eingangs genannte Aufgabe wird außerdem gelöst durch ein System zur automatischen Unterstützung des Landens eines Luftfahrzeuges auf einer Landeplattform mittels eines Halteseils, wobei das System wenigstens eine Steuereinrichtung, eine Sensorik und eine von der Steuereinrichtung steuerbare Seilwinde aufweist, auf der das Halteseil motorisch einrollbar und abrollbar ist, wobei die Steuereinrichtung zur automatischen Durchführung einer, mehrerer oder aller Schritte eines Verfahrens der zuvor erläuterten Art eingerichtet ist. Auch hierdurch können die zuvor erläuterten Vorteile realisiert werden.
-
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Sensorik einen, mehrere oder alle der nachfolgenden Sensoren aufweist:
- a) Laserscanner am Luftfahrzeug und/oder an der Landeplattform,
- b) Inertialsensorik an der Landeplattform,
- c) Sonarabstandssensoren an dem Luftfahrzeug und/oder an der Landeplattform,
- d) Radarsensoren an dem Luftfahrzeug und/oder an der Landeplattform,
- e) Seilkraftsensor zur Erfassung der Seilkraft des Halteseils,
- f) Winkelmesseinrichtung am Luftfahrzeug zur Ermittlung des Seilwinkels des Halteseils relativ zum Luftfahrzeug und/oder eine Winkelmesseinrichtung an der Landeplattform zur Erfassung des Seilwinkels des Halteseils relativ zur Landeplattform,
- g) eine Kamera oder Multikamera am Luftfahrzeug und/oder an der Landeplattform
- h) Seillängenmesser zur Erfassung der verbleibenden Seillänge zwischen dem Luftfahrzeug und der Landeplattform.
-
Auf diese Weise kann das System an die jeweils vorliegenden Erfordernisse der Unterstützung des Landens des Luftfahrzeuges angepasst werden.
-
Die Durchführung der Fluglage-Anpassungsregelung erfordert es, dass die Ist-Lage der Landeplattform bestimmt wird. Dies kann beispielsweise durch Inertialsensoren erfolgen, die auf oder an der Landeplattform verbaut sind und die aktuelle Ist-Lage der Landeplattform über drahtlose Kommunikation an das Luftfahrzeug übertragen. Alternativ oder zusätzlich können auch am Luftfahrzeug verbaute Sensoren benutzt werden, z.B. indem über mehrere berührungslose Entfernungsmessungen, z.B. mindestens drei räumlich verteilte Entfernungsmessungen, die Ist-Lage der Landeplattform vom Luftfahrzeug aus erfasst wird. Hierzu können beispielsweise scannende und flashende Laserscanner, Mutlikamerasysteme, Sonarabstandssensoren und Radarsensoren eingesetzt werden. Die Erfassung der Ist-Lage der Landeplattform kann während der Durchführung der Fluglage-Anpassungsregelung kontinuierlich erfolgen.
-
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels unter Verwendung von Zeichnungen näher erläutert.
-
Es zeigen
- 1 ein Landevorgang eines Luftfahrzeuges in einer ersten Landephase und
- 2 den Landevorgang des Luftfahrzeuges in einer zweiten Landephase.
-
Die in den Zeichnungen verwendeten Bezugszeichen haben folgende Bedeutung:
- 1
- Luftfahrzeug
- 2
- Landeplattform
- 3
- Halteseil
- 4
- Seilwinde
- 5
- Steuereinrichtung
- 6
- Sensorik
- 7
- Seilkraft
- 8
- Ankerpunkt
- 9
- Kugeloberflächensegment
- α
- Seilwinkel
-
Die 1 zeigt ein Luftfahrzeug 1, das einen Landevorgang auf einer in diesem Fall schrägliegend dargestellten Landeplattform 2 durchführen soll. Das Luftfahrzeug 1 weist ein System zur automatischen Unterstützung des Landens auf der Landeplattform 2 mittels eines Halteseils 3 auf. Das System weist eine Steuereinrichtung 5, eine Sensorik 6 sowie eine von der Steuereinrichtung steuerbare Seilwinde 4 auf. Im dargestellten Ausführungsbeispiel ist die Seilwinde 4 am Luftfahrzeug 1 angeordnet, alternativ kann die Seilwinde 4 auch an der Landeplattform 2 angeordnet sein.
-
Die 1 zeigt einen Zustand, bei dem das Halteseil 3 bereits an einem Ankerpunkt 8 an der Landeplattform 2 befestigt ist. Hierdurch ist die mögliche Bewegungsfreiheit des Luftfahrzeuges 1 auf ein Kugeloberflächensegment 9 begrenzt. Über die Sensorik 6 wird zumindest die im Halteseil 3 auftretende Seilkraft 7 sowie der Seilwinkel α des Halteseils bestimmt. In der in 1 dargestellten ersten Landephase ist das Luftfahrzeug 1 noch relativ weit von der Landeplattform 2 entfernt. Durch Einrollen des Halteseils 3 mittels der Seilwinde 4 verringert sich dieser Abstand. In der in 1 dargestellten ersten Landephase wird zunächst eine Positionsregelung des Luftfahrzeuges 1 relativ zur Landeplattform 2 durchgeführt, derart, dass das Luftfahrzeug 1 vertikal möglichst genau über dem Ankerpunkt 8 stabilisiert wird.
-
Die 2 zeigt die Landung des Luftfahrzeuges in einer zweiten Landephase, die auf die erste Landephase folgt. Das Luftfahrzeug 1 befindet sich nun deutlich näher an der Landeplattform 2, d.h. die verbleibende Seillänge des Halteseils 3 ist deutlich geringer. In dieser zweiten Landephase wird nicht mehr die zuvor erwähnte Positionsregelung durchgeführt. Stattdessen wird eine Fluglage-Anpassungsregelung durchgeführt, durch die das Luftfahrzeug nun parallel zur Landeplattform 2 geregelt wird. Verändert sich die Ist-Lage der Landeplattform 2, wird durch die Fluglage-Anpassungsregelung auch automatisch die Fluglage des Luftfahrzeuges daran angepasst.
-
Der gesamte Landevorgang des Luftfahrzeuges 1 auf der Landeplattform 2 kann sich beispielsweise in folgenden Phasen abspielen:
- 1. Das Luftfahrzeug 1 führt einen Anflug auf die Landeplattform 2 mit konventioneller Navigation durch, z.B. durch autonome Steuerung bei gleichzeitiger Fluglageregelung, die das Luftfahrzeug 1 automatisch in der horizontalen Fluglage hält.
- 2. Abrollen des Halteseils 3 mittels der Seilwinde 4 und Befestigung des Halteseils 3 am Ankerpunkt 8, oder alternativ an einer an der Landeplattform 2 befindlichen Seilwinde.
- 3. Stetiges Einrollen des Halteseils 3 mittels der Seilwinde 4 unter Durchführung der Positionsregelung des Luftfahrzeuges 1, gegebenenfalls zusätzlich durch eine Horizontallage-Regelung des Luftfahrzeuges 1 durch den Fluglageregler.
- 4. Übergang von der Positionsregelung auf die Fluglage-Anpassungsregelung, wenn sich das Luftfahrzeug 1 in der zweiten Landephase (gemäß 2) befindet, z.B. wenn die Distanz zwischen dem Luftfahrzeug 1 und der Landeplattform 2 einen Mindestwert unterschreitet. In diesem Fall ist zudem der Fluglageregler abgeschaltet, da durch die Fluglage-Anpassungsregelung die Fluglage des Luftfahrzeuges 1 parallel zur Landeplattform 2 ausgerichtet wird.