DE102018104932A1 - Verfahren zur Herstellung eines Mehrschichtoptikelements - Google Patents

Verfahren zur Herstellung eines Mehrschichtoptikelements Download PDF

Info

Publication number
DE102018104932A1
DE102018104932A1 DE102018104932.3A DE102018104932A DE102018104932A1 DE 102018104932 A1 DE102018104932 A1 DE 102018104932A1 DE 102018104932 A DE102018104932 A DE 102018104932A DE 102018104932 A1 DE102018104932 A1 DE 102018104932A1
Authority
DE
Germany
Prior art keywords
layer
optical
substrate
refractive index
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018104932.3A
Other languages
English (en)
Inventor
Georg Roßbach
Hubert Halbritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102018104932.3A priority Critical patent/DE102018104932A1/de
Priority to PCT/EP2019/055044 priority patent/WO2019170523A1/de
Priority to US16/971,529 priority patent/US11067727B2/en
Publication of DE102018104932A1 publication Critical patent/DE102018104932A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00769Producing diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines Mehrschichtoptikelements (100) angegeben mit den Schritten:
A) Bereitstellung eines Substrats (10),
B) Aufbringen einer ersten Optikschicht (1) mit den Teilschritten:
B1) Aufbringen einer ersten Schicht (11) aufweisend ein dielektrisches erstes Material (4) mit einem ersten Brechungsindex,
B2) Strukturierung der ersten Schicht,
B3) Auffüllen der ersten Zwischenräume mit einem dielektrischen zweiten Material (5) mit einem zweiten, vom ersten Brechungsindex verschiedenen Brechungsindex, so dass das zweite Material zumindest eine gleiche Höhe wie das erste Material aufweist,
C) Aufbringen zumindest einer zweiten Optikschicht (2) mit den Teilschritten:
C1) Aufbringen einer zweiten Schicht (21) aufweisend das erste Material,
C2) Strukturierung der zweiten Schicht, so dass die erste Optikschicht in zweiten Zwischenräumen zwischen zweiten Bereichen mit dem ersten Material freigelegt wird,
C3) Auffüllen der zweiten Zwischenräume mit dem zweiten Material, so dass das zweite Material zumindest eine gleiche Höhe wie das erste Material aufweist.

Description

  • Es wird ein Verfahren zur Herstellung eines Mehrschichtoptikelements angegeben.
  • Beispielsweise zur Formung oder Aufspaltung eines Lichtstrahls wie etwa eines Laserstrahls sind optische Elemente in Form von diffraktiven optischen Elementen (DOE: „diffractive optical element“) bekannt, die durch Ausnutzung des Prinzips der Beugung an einem optischen Gitter Interferenzeffekte erzeugen. Es gibt Anwendungen, bei denen DOE-Strukturen auf Basis dielektrischer Schichten vorteilhaft sind. Solche DOEs sind meist Epoxid-basiert und können beispielsweise mittels Nanoprägelithografie („nanoimprint lithography“) mit mehreren Stufen oder durch Abformung eines Masters in Epoxid hergestellt werden. Jedoch können solche DOEs Probleme beispielsweise in Bezug auf eine Reflow-Lötfähigkeit mit sich bringen. Falls die Strukturen nämlich weich werden und sich entsprechend verformen, kann zum Beispiel im Zusammenhang mit Lasern die Augensicherheit nicht mehr gegeben sein. Anorganische Materialien bieten zwar den Vorteil, dass sie Reflow-lötfähig und temperaturstabil sind, jedoch ist die Ätzung hochgenauer, mehrstufiger DOE-Strukturen mit hohem Aspektverhältnis sehr schwierig.
  • Zumindest eine Aufgabe von bestimmten Ausführungsformen ist es, ein Verfahren zur Herstellung eines Mehrschichtoptikelements anzugeben.
  • Diese Aufgabe wird durch einen Verfahren gemäß dem unabhängigen Patentanspruch gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen des Verfahrens sind in den abhängigen Ansprüchen gekennzeichnet und gehen weiterhin aus der nachfolgenden Beschreibung und den Zeichnungen hervor.
  • Gemäß zumindest einer Ausführungsform werden zur Herstellung eines Mehrschichtoptikelements mehrere Optikschichten auf einem Substrat aufgebracht. Das Mehrschichtoptikelement kann insbesondere als diffraktives optisches Element ausgebildet sein. Jede der Optikschichten kann ein sogenanntes binäres Gitter bilden, also eine räumliche Anordnung von Bereichen mit unterschiedlichen Brechungsindizes. Entsprechend kann das fertiggestellte Mehrschichtoptikelement eine Mehrzahl von solchen Optikschichten übereinander aufweisen, mit anderen Worten also eine Mehrzahl von übereinander angeordneten binären Gittern, so dass das Mehrschichtoptikelement als Mehrschicht-DOE ausgebildet sein kann. Die nachfolgende Beschreibung bezieht sich gleichermaßen auf das Mehrschichtoptikelement wie auch auf das Verfahren zur Herstellung des Mehrschichtoptikelements.
  • Gemäß einer weiteren Ausführungsform wird ein Substrat bereitgestellt, auf dem eine erste Optikschicht aufgebracht wird. Auf der ersten Optikschicht wird zumindest eine zweite Optikschicht aufgebracht. Besonders bevorzugt weist das Mehrschichtoptikelement somit zumindest zwei Optikschichten auf. Weiterhin kann auf der zweiten Optikschicht zumindest eine dritte Optikschicht aufgebracht werden, sodass das Mehrschichtoptikelement zumindest drei Optikschichten aufweisen kann. Darüber hinaus sind auch mehr als drei Optikschichten möglich. Die Optikschichten können besonders bevorzugt unmittelbar aufeinander sowie unmittelbar auf dem Substrat aufgebracht werden.
  • Gemäß einer weiteren Ausführungsform wird zum Aufbringen der ersten Optikschicht eine erste Schicht aufweisend ein dielektrisches erstes Material mit einem ersten Brechungsindex auf dem Substrat aufgebracht. Die erste Schicht kann insbesondere unmittelbar auf dem Substrat aufgebracht werden, sodass entsprechend auch die erste Optikschicht unmittelbar auf dem Substrat angeordnet werden kann. Die erste Schicht mit dem dielektrischen ersten Material kann insbesondere großflächig und unstrukturiert auf dem Substrat aufgebracht werden. Anschließend kann die erste Schicht durch bereichsweises Entfernen des ersten Materials strukturiert werden. Das kann insbesondere bedeuten, dass das erste Material in Bereichen vom Substrat vollständig entfernt wird, sodass das erste Material nur in gewünschten ersten Bereichen verbleibt und zwischen diesen ersten Bereichen erste Zwischenräume erzeugt werden, in denen das Substrat freigelegt wird. Weiterhin kann auch ein dünnerer Rest des ersten Materials in den ersten Zwischenräumen verbleiben. Hierbei kann die Ätztiefe aber maßgeblich für die Funktion und Qualität des Mehrschichtoptikelements sein und es kann notwendig sein, diese sehr genau kontrollieren zu können.
  • Gemäß einer weiteren Ausführungsform erfolgt die Strukturierung mittels eines Ätzverfahrens. Insbesondere kann hierfür ein trockenchemisches Ätzverfahren wie beispielsweise reaktives Ionenätzen verwendet werden. Das Ätzverfahren kann insbesondere unter Verwendung einer Maskentechnologie durchgeführt werden. Beispielsweise kann die Strukturierung derart durchgeführt werden, dass bei der Strukturierung einer Schicht wie beispielsweise der ersten Schicht genau bis zur darunterliegenden Schicht, im Falle der ersten Schicht also das Substrat, geätzt wird. Alternativ hierzu kann es auch möglich sein, dass bei der Strukturierung einer Schicht wie beispielsweise der ersten Schicht in die darunterliegende Schicht, im Falle der ersten Schicht also in das Substrat, geätzt wird, so dass die darunterliegende Schicht in den freigelegten Zwischenräumen eine geringere Dicke als in den Bereichen aufweist, in denen das erste Material verbleibt.
  • Alternativ zu einem großflächigen Aufbringen des ersten Materials und einer anschließenden Strukturierung der so gebildeten ersten Schicht durch bereichsweises Entfernen des ersten Materials, sodass das Substrat in ersten Zwischenräumen zwischen ersten Bereichen mit dem ersten Material freigelegt wird, kann das Aufbringen und die Strukturierung auch in einem gemeinsamen Verfahrensschritt, also in Form von strukturiertem Aufbringen, beispielsweise mithilfe einer Maskentechnologie, erfolgen. Hierdurch kann das erste Material bereits beim Aufbringen nur auf den gewünschten ersten Bereichen auf dem Substrat aufgebracht werden, während das Substrat in ersten Zwischenräumen zwischen diesen ersten Bereichen freibleibt.
  • Gemäß einer weiteren Ausführungsform werden die ersten Zwischenräume mit einem dielektrischen zweiten Material mit einem zweiten, vom ersten Brechungsindex verschiedenen Brechungsindex aufgefüllt. Das kann insbesondere bedeuten, dass dielektrisches zweites Material in den ersten Zwischenräumen vom Substrat aus gesehen bis zu einer Höhe aufgebracht wird, die zumindest gleich der Höhe des ersten Materials in den ersten Bereichen ist. Darüber hinaus kann es auch möglich sein, dass das zweite Material mit einer größeren Höhe als das erste Material aufgebracht wird. Insbesondere kann durch das Auffüllen der ersten Zwischenräume das zweite Material derart aufgebracht werden, dass es über das erste Material hinausragt und/oder das erste Material durch das zweite Material bedeckt wird.
  • Gemäß einer weiteren Ausführungsform wird nach dem Aufbringen des zweiten Materials ein Teil eines über das erste Material hinausragenden Teils des zweiten Materials entfernt. Das Entfernen kann beispielsweise durch Ätzen oder Dünnschleifen erfolgen. Hierbei kann alles zweite Material, das über das erste Material hinausragt, entfernt werden, sodass auch bei einem Aufbringen des zweiten Materials bis zu einer größeren Höhe im Vergleich zum ersten Material das zweite Material nach dem Entfernen dieselbe Höhe wie das erste Material aufweist. Weiterhin kann es auch möglich sein, dass ein Teil des zweiten Materials, der über das erste Material hinausragt und der insbesondere auch das erste Material bedecken kann, verbleibt. Ein solcher, über das erste Material hinausragende Teil des zweiten Materials, der verbleibt, kann eine Zwischenschicht bilden, die frei vom ersten Material ist.
  • Insbesondere können durch das zweite Material alle ersten Zwischenräume gefüllt werden. Die hieraus resultierende durchgängige und lückenlose erste Optikschicht weist somit erste Bereiche mit dem ersten Material und dazwischen angeordnete mit dem zweiten Material verfüllte Zwischenräume auf, die eine zusammenhängende Schicht bilden. Ragt ein Teil des zweiten Materials über das erste Material hinaus und bedeckt dieses insbesondere, kann hierdurch eine Zwischenschicht gebildet werden. Besonders vorteilhaft kann es sein, wenn die Zwischenschicht eine Dicke aufweist, die kleiner als die Hälfte und bevorzugt kleiner als ein Viertel der Wellenlänge des Lichts ist, für das das Mehrschichtoptikelement verwendet werden soll. Soweit nicht anders erwähnt beziehen sich Angaben zu Wellenlängen in Verbindung mit einer Schicht oder einem Material hier und im Folgenden auf die entsprechende Wellenlänge in der Schicht oder dem Material.
  • Gemäß einer weiteren Ausführungsform wird auf der ersten Optikschicht zumindest eine zweite Optikschicht mit Verfahrensschritten analog zum Aufbringen der ersten Optikschicht aufgebracht. Dies kann insbesondere bedeuten, dass eine zweite Schicht aufweisend das erste Material auf der ersten Optikschicht aufgebracht wird. Anschließend kann eine Strukturierung der zweiten Schicht durch bereichsweises Entfernen des ersten Materials erfolgen, sodass die erste Optikschicht in zweiten Zwischenräumen zwischen zweiten Bereichen mit dem ersten Material freigelegt wird. Wie für die erste Optikschicht beschrieben kann es auch möglich sein, dass bei der Strukturierung bis zur oder auch in die darunterliegende Schicht, also im vorliegenden Fall bis zur oder auch in die erste Optikschicht, geätzt wird. Außerdem können das Aufbringen und die Strukturierung der zweiten Schicht in einem gemeinsamen Verfahrensschritt, also durch strukturiertes Aufbringen, erfolgen. Die zweiten Zwischenräume können mit dem zweiten Material derart aufgefüllt werden, sodass das zweite Material zumindest eine gleiche Höhe wie das erste Material aufweist. Insbesondere können alle zweiten Zwischenräume mit dem zweiten Material aufgefüllt werden. Wird das zweite Material derart aufgebracht, dass das zweite Material über das erste Material hinausragt, kann das zweite Material entsprechend der vorherigen Beschreibung eine Zwischenschicht bilden oder durch teilweises Entfernen zu einer Zwischenschicht ausgebildet werden.
  • Analog zum Aufbringen der zweiten Optikschicht kann in einem weiteren Verfahrensschritt auf der zweiten Optikschicht zumindest eine dritte Optikschicht aufgebracht werden. Darüber hinaus können auch noch weitere Optikschichten in analogen Verfahrensschritten aufgebracht werden. Gemäß einer weiteren Ausführungsform kann das Substrat nach dem Aufbringen der Optikschichten zumindest teilweise entfernt werden. Beispielsweise kann das Entfernen mittels Dünnschleifen erfolgen. Hierbei kann das Substrat gedünnt oder ganz entfernt werden.
  • Gemäß einer weiteren Ausführungsform wird mit den vorab beschriebenen Verfahrensschritten ein Verbund einer Mehrzahl von Mehrschichtoptikelementen hergestellt. Mit anderen Worten wird als Substrat beispielsweise ein Wafer bereitgestellt, auf dem in nebeneinander angeordneten Bereichen das erste und zweite Material entsprechend der Optikschichten der Mehrzahl der Mehrschichtoptikelementen aufgebracht werden. Durch eine Vereinzelung, beispielsweise durch Sägen oder Lasertrennen, kann der Verbund nach Fertigstellung der Optikschichten und gegebenenfalls nach einem zumindest teilweisen Entfernen des Substrats in einzelne Mehrschichtoptikelemente getrennt werden.
  • Das hier beschriebene Verfahren zeichnet sich insbesondere dadurch aus, dass es ein relativ einfacher, gut skalierbarer Prozess ist, bei dem eine beliebige Abfolge von binäre Gitter bildenden Optikschichten aufeinander aufgebracht werden können. Somit werden jeweils „einfache“ binäre, also Zwei-Stufen-Optikschichten beziehungsweise diffraktive Zwei-Stufen-Optikelemente bildende Optikschichten hergestellt, bei denen jeweils der letzte Verfahrensschritt eine Planarisierung und ein Dünnschleifen des zweiten Materials sein kann. Die einzelnen Optikschichten sind also besonders bevorzugt planar ausgebildet, mit vergrabenen Bereichen mit unterschiedlichen Brechungsindizes, gebildet durch die Bereiche mit dem ersten und zweiten Material. Die Verfahrensschritte zur Herstellung einer Optikschicht werden hierbei wie vorab beschrieben repliziert, sodass sukzessive ein in Summe mehrstufiges diffraktives optisches Element hergestellt werden kann. Um Interferenzen zu vermeiden, ist es wie oben beschrieben vorteilhaft, wenn die Zwischenschichten, mit denen Optikschichten an die jeweils unmittelbar darüber angeordnete Optikschicht angrenzen können, eine Dicke von weniger als einem Viertel der Wellenlänge des für das Mehrschichtoptikelement vorgesehenen Lichts aufweisen.
  • Gemäß einer weiteren Ausführungsform weist das Substrat ein anorganisches Material auf oder ist daraus. Als Substrat kann beispielsweise Glas oder Silizium oder ein anderes anorganisches Material, insbesondere in Form eines Wafers, verwendet werden. Verbleibt das Substrat dauerhaft als Teil des Mehrschichtoptikelements weist das Substrat vorzugsweise ein transparentes Material, insbesondere transparent bei der für das Mehrschichtoptikelement in der Verwendung vorgesehene Licht, auf oder ist daraus. Besonders bevorzugt können eines oder mehrere der folgenden Materialien für das Substrat, insbesondere für ein transparentes Substrat, ausgewählt werden: Glas, Saphir, SiC, GaN, AlN. Das erste und das zweite Material können ebenfalls bevorzugt ein anorganisches Material aufweisen oder daraus sein. Insbesondere können das erste und/oder das zweite Material ein Oxid, Nitrid oder Oxinitrid aufweisen oder daraus sein, beispielsweise mit einem oder mehreren Materialien ausgewählt aus Si, Zr, Al, Ga. Weiterhin sind beispielsweise auch Fluoride wie MgF2 und CaF2 möglich. Das erste und/oder das zweite Material können beispielsweise mittels Sputtern, Verdampfen, beispielsweise Elektronenstrahlverdampfung, oder chemischer Gasphasenabscheidung aufgebracht werden. Besonders bevorzugt können eines oder mehrere der folgenden Materialien für das erste und/oder das zweite Material ausgewählt werden: SiO2, SiNx, Al2O3, MgF2, ZrO2, Ta2O5, TiO2, Nb2O5, GaN, ZnO, Indiumzinnoxid (ITO). Beispielsweise für den Infrarot-Bereich mit Wellenlängen von größer als 850 nm oder sogar größer als 950 nm können weiterhin auch zum Beispiel Silizium, (Al)GaAs und (Al)GaP geeignet sein, da diese eigentlich typischen Halbleitermaterialien im angegebenen Wellenlängenbereich ausreichend transparent sein können. Dank des großen Brechungsindexes dieser Materialien in einem typischen Bereich von etwa 2,5 bis etwa 3,5 können die benötigten Schichtdicken auch sehr dünn sein. Hieraus können sich Synergien mit bestehenden Halbleiterprozessen ergeben. Die Zuordnung der genannten Materialien zum ersten und zweiten Material kann prinzipiell frei wählbar sein, sofern sichergestellt wird, dass der Brechungsindex unterschiedlich ist. Somit kann entweder das erste Material oder das zweite Material einen höheren Brechungsindex als das andere Material aufweisen.
  • Beispielsweise können das erste und das zweite Material derart gewählt sein, dass der zweite Brechungsindex größer als der erste Brechungsindex ist. Das Substrat kann im Wesentlichen denselben Brechungsindex wie das erste oder zweite Material aufweisen. In einer besonders bevorzugten Ausführungsform weisen das Substrat Glas, insbesondere Si-basiertes Glas, das erste Material Siliziumnitrid und das zweite Material Siliziumdioxid auf. Hierdurch kann erreicht werden, dass das erste und das zweite Material einen Brechungsindexunterschied von etwa 0,5 bei einer Wellenlänge von 850 nm aufweisen, während das Substrat und das zweite Material im Wesentlichen denselben Brechungsindex aufweisen.
  • Dielektrische Schichten, insbesondere dielektrische Schichten mit anorganischen dielektrischen Materialien, sind prinzipiell Reflow-lötfähig, sodass das hier beschriebene Mehrschichtoptikelement entsprechend Reflow-lötfähig sein kann. Die Strukturierung des ersten Materials durch ein Ätzverfahren wie beispielsweise durch einen trockenchemischen oder nasschemischen Ätzprozess ermöglicht die Herstellung von sehr steilen Flanken, was die Qualität der Strahlformung des Mehrschichtoptikelements fördern kann. Weiterhin können auch flachere Flanken ausreichen, da mit dem beschriebenen Verfahren definiert produziert werden kann. Außerdem kann es bei dem hier beschriebenen Verfahren möglich sein, dass keine Ätzstoppschichten verwendet werden müssen, sodass der hier beschriebene Ätzprozess ohne entsprechende Stoppschichten prinzipiell sehr einfach und hoch tolerant sein kann. Insbesondere können die Optikschichten in üblichen CMOS-Abscheideanlagen hergestellt werden, für die die Herstellung dielektrischer Schichten mit einer Dicke von mehr als 1 µm problematisch ist, da das Mehrschichtoptikelement beziehungsweise die Optikschichten in aufeinanderfolgenden Durchgängen hergestellt werden und beispielsweise für einen Anwendungswellenlängenbereich für das Mehrschichtoptikelement von 850 nm bis 1000 nm die Optikschichten eine Dicke von weniger als 1 µm aufweisen. Bei einer Anwendungswellenlänge von 850 nm beispielsweise kann es im Falle von Siliziumnitrid für das erste Material und Siliziumdioxid für das zweite Material vorteilhaft sein, wenn die Dicke des ersten Materials in den Optikschichten jeweils im Bereich von etwa 850 nm oder weniger liegt und beispielsweise einen Wert D = λ/(2+Δn) (mit λ: Anregungswellenlänge und Δn: Brechungsindexunterschied) aufweist, während die Dicke von durch das zweite Material gebildeten Zwischenschichten bevorzugt kleiner als 280 nm (Zwischenschichtdicke im Bereich der halben Wellenlänge) oder sogar kleiner als 140 nm (Zwischenschichtdicke im Bereich eines Viertels der Wellenlänge) ist. Ein bevorzugt dreischichtiges Mehrschichtoptikelement, also ein Mehrschichtoptikelement mit drei Optikschichten, würde in diesem entsprechenden Ausführungsbeispiel im Hinblick auf die Optikschichten eine entsprechende Gesamtdicke aufweisen, die der Summe der angegebenen Werte für die einzelnen Schichten entspricht.
  • Das hier beschriebene Mehrschichtoptikelement kann zuverlässig herstellbar sein und ein mehrstufiges diffraktives optisches Element bilden, das beispielsweise mehrere serielle binäre diffraktive optische Elemente ersetzen kann. Im Vergleich zu solchen seriellen binären dielektrischen Optikelementen kann das hier beschriebene Mehrschichtoptikelement eine höhere Transparenz und damit geringere optische Verluste aufweisen und somit eine effizientere Strahlformung oder Strahlaufspaltung ermöglichen. Im Vergleich zur Herstellung von binären diffraktiven Elementen kann das hier beschriebene Herstellungsverfahren ähnlich kostengünstig durchführbar sein.
  • Weitere Vorteile, vorteilhafte Ausführungsformen und Weiterbildungen ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
  • Es zeigen:
    • 1A bis 1H Verfahrensschritte eines Verfahrens zur Herstellung eines Mehrschichtoptikelements gemäß einem Ausführungsbeispiel,
    • 2 einen Verfahrensschritt eines Verfahrens zur Herstellung eines Mehrschichtoptikelements gemäß einem weiteren Ausführungsbeispiel und
    • 3 ein Mehrschichtoptikelement gemäß einem weiteren Ausführungsbeispiel.
  • In den Ausführungsbeispielen und Figuren können gleiche, gleichartige oder gleich wirkende Elemente jeweils mit denselben Bezugszeichen versehen sein. Die dargestellten Elemente und deren Größenverhältnisse untereinander sind nicht als maßstabsgerecht anzusehen, vielmehr können einzelne Elemente, wie zum Beispiel Schichten, Bauteile, Bauelemente und Bereiche, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.
  • In Verbindung mit den 1A bis 1H ist ein Verfahren zur Herstellung eines Mehrschichtoptikelements 100 gezeigt, das als mehrstufiges diffraktives optisches Element ausgebildet ist. Rein beispielhaft ist das Mehrschichtoptikelement für einen Wellenlängenanwendungsbereich im nahinfraroten Wellenlängenbereich, also in einem Wellenlängenbereich von 850 nm bis 1000 nm, ausgebildet. Die im Folgenden beschriebenen Materialien und Dimensionen sind besonders geeignet für einen solchen Wellenlängenbereich. Alternativ hierzu können auch andere Materialien wie beispielsweise im allgemeinen Teil beschrieben verwendet werden. Weiterhin kann das Mehrschichtoptikelement auch bei entsprechender Material- und Geometriewahl für andere Anwendungswellenlängenbereiche ausgebildet werden.
  • Wie in 1A gezeigt ist, wird in einem ersten Verfahrensschritt ein Substrat 10 bereitgestellt. Das Substrat kann bevorzugt Glas aufweisen oder daraus sein, insbesondere Si-basiertes Glas, das einen Brechungsindex im Bereich von etwa 1,5 für Licht im nahinfraroten Wellenlängenbereich aufweist. Das Substrat 10 ist dazu vorgesehen und eingerichtet, dass gemäß den im Folgenden beschriebenen Verfahrensschritten zumindest zwei Optikschichten aufgebracht werden können, von denen jede ein planares binäres DOE bildet.
  • Zur Herstellung einer ersten Optikschicht 1, die beispielsweise in 1D gezeigt ist, wird hierzu in einem weiteren Verfahrensschritt, wie in 1B gezeigt ist, eine erste Schicht 11 auf dem Substrat 10 aufgebracht. Die erste Schicht 11 weist ein dielektrisches erstes Material 4 auf und wird großflächig und unstrukturiert beispielsweise durch Sputtern, Verdampfen oder chemische Gasphasenabscheidung aufgebracht. Das erste Material 4 wird im gezeigten Ausführungsbeispiel durch Siliziumnitrid gebildet, das im nahinfraroten Wellenlängenbereich einen Brechungsindex von etwa 2 aufweist. Die erste Schicht 11 kann im gezeigten Ausführungsbeispiel bevorzugt eine typische Höhe von etwa 575 nm aufweisen.
  • Anschließend wird die erste Schicht 11, wie in 1C gezeigt ist, durch bereichsweises Entfernen des ersten Materials 4 strukturiert. Hierzu wird das erste Material 4 in vorgewählten Regionen vollständig vom Substrat 10 entfernt. In ersten Bereichen 12 verbleibt das erste Material 4 somit entsprechend der gewünschten Struktur, während zwischen den ersten Bereichen 12 erste Zwischenräume 13 erzeugt werden, in denen das Substrat 10 freigelegt wird. Die in den vorliegenden Figuren angedeuteten, durch das erste Material gebildeten Strukturen sind rein beispielhaft und im Hinblick auf die Geometrie, also beispielsweise die Form, Größe und Anzahl, nicht beschränkend zu verstehen. Insbesondere kann eine Vielzahl von ersten Bereichen mit dem ersten Material in einer zweidimensionalen Anordnung auf dem Substrat mit einer vorgewählten Regel- oder Unregelmäßigkeit ausgebildet werden, um gewünschte Beugungseffekte erzeugen zu können.
  • Nach der Strukturierung der ersten Schicht 11 werden die ersten Zwischenräume 13 mit einem dielektrischen zweiten Material 5 aufgefüllt, wie in 1D gezeigt ist. Das zweite Material 5 kann beispielsweise durch Sputtern, Verdampfen oder chemische Gasphasenabscheidung aufgebracht werden. Das zweite Material 5 weist insbesondere einen zweiten, vom ersten Brechungsindex verschiedenen Brechungsindex auf. Im gezeigten Ausführungsbeispiel kann das zweite Material besonders bevorzugt durch Siliziumdioxid gebildet werden, das im Nahinfraroten einen Brechungsindex von etwa 1,5 aufweist. Somit weisen das erste und zweite Material 4, 5 einen Brechungsindexunterschied von etwa 0,5 bei einer Wellenlänge von etwa 850 nm auf, während das Substrat 10 und das zweite Material 5 im Wesentlichen einen gleichen Brechungsindex aufweisen.
  • Die Strukturierung des ersten Materials 4 erfolgt mittels eines Ätzverfahrens. Insbesondere kann hierfür ein trockenchemisches Ätzverfahren wie beispielsweise reaktives Ionenätzen verwendet werden, durch das, gegebenenfalls unter Verwendung geeigneter Ätzmasken, sehr steile Flanken und damit scharfe Übergänge zwischen dem ersten und zweiten Material erzeugt werden können. Wie in 1C angedeutet ist, kann die Strukturierung derart durchgeführt werden, dass das erste Material 4 genau bis zum darunterliegenden Substrat 10 geätzt wird. Es kann jedoch auch möglich sein, dass bei der Strukturierung der ersten Schicht 11 auch das Substrat 10 in den Zwischenräumen 13 angeätzt wird, so dass das Substrat 10 dann in den freigelegten Zwischenräumen 13 eine geringere Dicke als in den ersten Bereichen 12 aufweist, in denen das erste Material 4 verbleibt. Da als zweites Material 5 im gezeigten Ausführungsbeispiel ein Material verwendet wird, das im Wesentlichen den gleichen Brechungsindex wie das Substrat 10 aufweist, entstehen hierdurch keine negativen optischen Effekte, so dass das Ätzen in das Substrat 10 nicht verhindert werden muss. Somit kann beispielsweise auf eine Ätzstoppschicht verzichtet werden.
  • Das zweite Material 5 wird in den ersten Zwischenräumen 13 vom Substrat 10 aus gesehen bis zu einer Höhe aufgebracht, die zumindest gleich der Höhe des ersten Materials 4 in den ersten Bereichen 12 ist. Wie in 1D gezeigt ist, ist es auch möglich, dass das zweite Material 5 mit einer größeren Höhe als das erste Material 4 aufgebracht wird. Hierbei kann durch das Auffüllen der ersten Zwischenräume 13 das zweite Material 5 derart aufgebracht werden, dass es über das erste Material 4 hinausragt, so dass besonders bevorzugt, wie in 1D gezeigt ist, das erste Material 4 durch das zweite Material 5 bedeckt wird. Überstehendes zweites Material, also etwa ein Teil des über das erste Material 4 hinausragenden Teils des zweiten Materials 5, kann nach dem Aufbringen des zweiten Materials 5 entfernt werden, beispielsweise durch Ätzen oder Dünnschleifen, wodurch die dem Substrat 10 abgewandte Seite der so gebildeten ersten Optikschicht 1 planarisiert werden kann. Hierbei kann alles zweite Material 5, das über das erste Material 4 hinausragt, entfernt werden, sodass auch bei einem Aufbringen des zweiten Materials 5 bis zu einer größeren Höhe im Vergleich zum ersten Material 4 das zweite Material 5 nach dem Entfernen dieselbe Höhe wie das erste Material 4 aufweist. Wie gezeigt kann es auch möglich sein, dass ein Teil des zweiten Materials 5, der über das erste Material 4 hinausragt und der insbesondere das erste Material 4 bedeckt, verbleibt. Der über das erste Material 4 hinausragende Teil des zweiten Materials 5 bildet eine durch die gestrichelte Linie angedeutete Zwischenschicht 6, die frei vom ersten Material 4 ist. Um bei der späteren Verwendung Interferenzen aufgrund der Zwischenschicht 6 zu vermeiden, ist es vorteilhaft, wenn die Zwischenschicht 6 eine Dicke von weniger als einem Viertel der Anwendungswellenlänge aufweist. Im gezeigten Ausführungsbeispiel kann die Zwischenschicht 6 somit bevorzugt eine Dicke von weniger als 250 nm aufweisen.
  • Auf die derart hergestellte erste Optikschicht 1, die durch die vergrabene räumliche Struktur des ersten und zweiten Materials 4, 5 ein planares binäres DOE bildet, wird in analogen Verfahrensschritten, wie in den 1E bis 1G gezeigt ist, zumindest eine zweite Optikschicht 2 aufgebracht. Insbesondere wird, wie in 1E gezeigt ist, eine zweite Schicht 21 aufweisend das erste Material 4 auf der ersten Optikschicht 1 großflächig und zusammenhängend aufgebracht und anschließend wie im Falle der ersten Optikschicht 1 durch bereichsweises Entfernen des ersten Materials 4 strukturiert, sodass die erste Optikschicht 1 in zweiten Zwischenräumen 23 zwischen zweiten Bereichen 22 mit dem ersten Material 4 freigelegt wird. Wie für die erste Optikschicht 1 beschrieben und wie in 1F angedeutet ist, kann es insbesondere möglich sein, dass bei der Strukturierung in die erste Optikschicht 1 geätzt wird. Die zweiten Zwischenräume 23 werden wiederum mit dem zweiten Material 5 derart aufgefüllt und gegebenenfalls planarisiert, dass das zweite Material 5 zumindest eine gleiche Höhe wie das erste Material 4 aufweist. Wird das zweite Material 5 derart aufgebracht, dass das zweite Material 5 über das erste Material 4 hinausragt, kann das zweite Material 5 entsprechend der vorherigen Beschreibung das erste Material 4 überdecken und so eine der Zwischenschicht 6 entsprechende Schicht bilden. Die Dicke des ersten und zweiten Materials 4, 5 der zweiten Optikschicht 2 kann insbesondere der Dicke des ersten und zweiten Materials 4, 5 der ersten Optikschicht 1 entsprechen. Die strukturelle Anordnung der zweiten Bereiche 22 der zweiten Optikschicht 2 mit dem ersten Material 4 kann je nach gewünschter optischer Wirkung gleich oder, wie gezeigt, unterschiedlich zur Anordnung der ersten Bereiche 12 der ersten Optikschicht 1 mit dem ersten Material 4 sein.
  • Nach der Fertigstellung der Optikschichten kann das Substrat 10 zumindest teilweise entfernt werden, also zumindest gedünnt werden, wie in 1H gezeigt ist. Das zumindest teilweise Entfernen kann beispielsweise durch Dünnschleifen erfolgen.
  • In den 1A bis 1H ist das Verfahren zur Herstellung des Mehrschichtoptikelements 100 anhand der Herstellung eines einzelnen Mehrschichtoptikelements beschrieben. Besonders bevorzugt kann die Herstellung auch in einem Verbund erfolgen, so dass parallel eine Mehrzahl von Mehrschichtoptikelementen hergestellt werden kann. Hierzu wird anstelle eines einzelnen Substrats ein Wafer als Substrat bereitgestellt, auf dem in nebeneinander angeordneten Bereichen das erste und zweite Material zur Herstellung der Optikschichten entsprechend der gewünschten optischen Eigenschaften der Mehrschichtoptikelemente aufgebracht werden. Die Strukturen der parallel auf dem Substrat hergestellten Mehrschichtoptikelemente können gleich oder verschieden sein. In 2 ist ein Ausschnitt eines Verbunds 200 einer Mehrzahl von rein beispielhaft gleichartigen Mehrschichtoptikelementen 100 gezeigt, deren Struktur der des Mehrschichtoptikelements des vorhergehenden Ausführungsbeispiels entsprechen. Entlang der durch die gestrichelten Linien angedeuteten Vereinzelungsbereiche kann der Verbund 200 nach den in Verbindung mit den 1A bis 1H beschriebenen Verfahrensschritten in einzelne Mehrschichtoptikelemente 100 zerteilt werden.
  • Alternativ zu den vorherigen Ausführungsbeispielen kann das Mehrschichtoptikelement 100 mit mehr als zwei Optikschichten 1, 2 hergestellt werden. In 3 ist ein bevorzugtes Ausführungsbeispiel für ein Mehrschichtoptikelement 100 gezeigt, das zusätzlich noch eine dritte Optikschicht 3 aufweist, die analog zur zweiten Optikschicht 2 auf dieser hergestellt ist. Das in 3 gezeigte Mehrschichtoptikelement 100 weist Zwischenschichten 6 auf, die bevorzugt möglichst dünn und besonders bevorzugt nicht vorhanden sind. In diesem Fall kann das Mehrschichtoptikelement 100 im Hinblick auf die vorab beschriebenen Materialien drei binäre DOE gebildet durch die drei Optikschichten 1, 2, 3 aufweisen, die von der Substratoberseite aus gesehen auf einer Höhe von 0 nm, 575 nm und 1150 nm angeordnet sind. Alternativ zum Ausführungsbeispiel der 3 sind auch mehr als drei Optikschichten möglich.
  • Die in den in Verbindung mit den Figuren beschriebenen Merkmale und Ausführungsbeispiele können gemäß weiteren Ausführungsbeispielen miteinander kombiniert werden, auch wenn nicht alle Kombinationen explizit beschrieben sind. Weiterhin können die in Verbindung mit den Figuren beschriebenen Ausführungsbeispiele alternativ oder zusätzlich weitere Merkmale gemäß der Beschreibung im allgemeinen Teil aufweisen.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele auf diese beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1, 2, 3
    Optikschicht
    4
    erstes Material
    5
    zweites Material
    6
    Zwischenschicht
    10
    Substrat
    11
    erste Schicht
    12
    erster Bereich
    13
    erster Zwischenraum
    21
    zweite Schicht
    22
    zweiter Bereich
    23
    zweiter Zwischenraum
    100
    Mehrschichtoptikelement
    200
    Verbund

Claims (19)

  1. Verfahren zur Herstellung eines Mehrschichtoptikelements (100) mit den Schritten: A) Bereitstellung eines Substrats (10), B) Aufbringen einer ersten Optikschicht (1) mit den Teilschritten: B1) Aufbringen einer ersten Schicht (11) aufweisend ein dielektrisches erstes Material (4) mit einem ersten Brechungsindex, B2) Strukturierung der ersten Schicht durch bereichsweises Entfernen des ersten Materials, B3) Auffüllen der ersten Zwischenräume mit einem dielektrischen zweiten Material (5) mit einem zweiten, vom ersten Brechungsindex verschiedenen Brechungsindex, so dass das zweite Material zumindest eine gleiche Höhe wie das erste Material aufweist, C) Aufbringen zumindest einer zweiten Optikschicht (2) mit den Teilschritten: C1) Aufbringen einer zweiten Schicht (21) aufweisend das erste Material, C2) Strukturierung der zweiten Schicht durch bereichsweises Entfernen des ersten Materials, so dass die erste Optikschicht in zweiten Zwischenräumen zwischen zweiten Bereichen mit dem ersten Material freigelegt wird, C3) Auffüllen der zweiten Zwischenräume mit dem zweiten Material, so dass das zweite Material zumindest eine gleiche Höhe wie das erste Material aufweist.
  2. Verfahren nach dem vorherigen Anspruch, bei dem das erste und/oder zweite Material mittels Sputtern, Verdampfen oder chemischer Gasphasenabscheidung aufgebracht werden.
  3. Verfahren nach einem der vorherigen Ansprüche, bei dem die Strukturierung mittels eines Ätzverfahrens erfolgt.
  4. Verfahren nach dem vorherigen Anspruch, bei dem das Ätzverfahren ein trockenchemisches oder nasschemisches Ätzverfahren ist.
  5. Verfahren nach einem der beiden vorherigen Ansprüche, bei dem bei der Strukturierung einer Schicht in die jeweilige darunter liegende Schicht geätzt wird.
  6. Verfahren nach einem der vorherigen Ansprüche, bei dem das Substrat im Wesentlichen denselben Brechungsindex wie das erste oder das zweite Material aufweist.
  7. Verfahren nach einem der vorherigen Ansprüche, bei dem der zweite Brechungsindex größer als der erste Brechungsindex ist oder umgekehrt.
  8. Verfahren nach einem der vorherigen Ansprüche, bei dem das Substrat, das erste Material und das zweite Material jeweils ein anorganisches Material aufweisen.
  9. Verfahren nach einem der vorherigen Ansprüche, bei dem das Substrat Glas aufweist.
  10. Verfahren nach einem der vorherigen Ansprüche, bei dem das erste Material Siliziumnitrid und das zweite Material Siliziumdioxid aufweisen.
  11. Verfahren nach einem der vorherigen Ansprüche, bei dem das erste Material Siliziumdioxid und das zweite Material Siliziumnitrid aufweisen.
  12. Verfahren nach einem der vorherigen Ansprüche, bei dem das zweite Material bei der Herstellung der ersten und/oder zweiten Optikschicht mit einer derartigen Höhe aufgebracht wird, dass das zweite Material über das erste Material hinausragt und das erste Material bedeckt wird.
  13. Verfahren nach dem vorherigen Anspruch, bei dem der über das erste Material hinausragende Teil des zweiten Materials eine Zwischenschicht (6) bildet, die frei vom ersten Material ist.
  14. Verfahren nach einem der beiden vorherigen Ansprüche, bei dem nach dem Aufbringen des zweiten Materials ein Teil eines über das erste Material hinausragenden Teils des zweiten Materials entfernt wird.
  15. Verfahren nach dem vorherigen Anspruch, bei dem das Entfernen durch Dünnschleifen erfolgt.
  16. Verfahren nach einem der vorherigen Ansprüche, bei dem analog zum Verfahrensschritt C zumindest eine dritte Optikschicht (3) auf der zweiten Optikschicht aufgebracht wird.
  17. Verfahren nach einem der vorherigen Ansprüche, bei dem ein Verbund (200) einer Mehrzahl von Mehrschichtoptikelementen hergestellt wird, die durch Vereinzelung voneinander getrennt werden.
  18. Verfahren nach einem der vorherigen Ansprüche, bei dem das Substrat nach dem Aufbringen der Optikschichten zumindest teilweise entfernt wird.
  19. Verfahren nach dem vorherigen Anspruch, bei dem das Entfernen mittels Dünnschleifen erfolgt.
DE102018104932.3A 2018-03-05 2018-03-05 Verfahren zur Herstellung eines Mehrschichtoptikelements Pending DE102018104932A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102018104932.3A DE102018104932A1 (de) 2018-03-05 2018-03-05 Verfahren zur Herstellung eines Mehrschichtoptikelements
PCT/EP2019/055044 WO2019170523A1 (de) 2018-03-05 2019-02-28 Verfahren zur herstellung eines mehrschichtoptikelements
US16/971,529 US11067727B2 (en) 2018-03-05 2019-02-28 Method of manufacturing a multilayer optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018104932.3A DE102018104932A1 (de) 2018-03-05 2018-03-05 Verfahren zur Herstellung eines Mehrschichtoptikelements

Publications (1)

Publication Number Publication Date
DE102018104932A1 true DE102018104932A1 (de) 2019-09-05

Family

ID=65657459

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018104932.3A Pending DE102018104932A1 (de) 2018-03-05 2018-03-05 Verfahren zur Herstellung eines Mehrschichtoptikelements

Country Status (3)

Country Link
US (1) US11067727B2 (de)
DE (1) DE102018104932A1 (de)
WO (1) WO2019170523A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134648A1 (en) * 2009-12-08 2011-06-09 Industrial Technology Research Institute Light uniformization structure and light emitting module
DE102016115918A1 (de) * 2016-08-26 2018-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil mit einem Streuelement
DE102016116749A1 (de) * 2016-09-07 2018-03-08 Osram Opto Semiconductors Gmbh Diffraktives optisches element und verfahren zum herstellen eines diffraktiven optischen elements

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187211B1 (en) * 1998-12-15 2001-02-13 Xerox Corporation Method for fabrication of multi-step structures using embedded etch stop layers
US6545809B1 (en) * 1999-10-20 2003-04-08 Flex Products, Inc. Color shifting carbon-containing interference pigments
JP5100146B2 (ja) * 2006-02-28 2012-12-19 キヤノン株式会社 光学素子及び光学素子の製造方法
JP5462443B2 (ja) 2008-03-27 2014-04-02 株式会社東芝 反射スクリーン、表示装置及び移動体
CN106457871B (zh) * 2014-05-16 2018-06-01 Ccl证券私人有限公司 用于安全证件或标记的混合安全装置
EP3782190A4 (de) * 2018-04-16 2022-05-04 Applied Materials, Inc. Optische mehrstapelelemente mit verwendung temporärer und permanenter bindung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134648A1 (en) * 2009-12-08 2011-06-09 Industrial Technology Research Institute Light uniformization structure and light emitting module
DE102016115918A1 (de) * 2016-08-26 2018-03-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauteil mit einem Streuelement
DE102016116749A1 (de) * 2016-09-07 2018-03-08 Osram Opto Semiconductors Gmbh Diffraktives optisches element und verfahren zum herstellen eines diffraktiven optischen elements

Also Published As

Publication number Publication date
US20210088704A1 (en) 2021-03-25
US11067727B2 (en) 2021-07-20
WO2019170523A1 (de) 2019-09-12

Similar Documents

Publication Publication Date Title
EP2052419B1 (de) Halbleiterchip und verfahren zur herstellung eines halbleiterchips
DE102005048408A1 (de) Dünnfilm-Halbleiterkörper
DE102017117135A1 (de) Verfahren zur Herstellung einer Mehrzahl von Laserdioden und Laserdiode
DE102006017573A1 (de) Optoelektronischer Halbleiterkörper und Verfahren zu dessen Herstellung
WO2017005346A1 (de) Sicherheitselement mit farbfilterndem gitter
DE102011012928A1 (de) Verfahren zur Herstellung eines Dünnfilm-Halbleiterkörpers und Dünnfilm-Halbleiterkörper
DE112015002127B4 (de) Herstellungsverfahren für eine Aufnahmestruktur für Gitterelemente
DE102012103443B4 (de) Reflexionsbeugungsgitter und Verfahren zu dessen Herstellung
DE102018104932A1 (de) Verfahren zur Herstellung eines Mehrschichtoptikelements
DE102017122325A1 (de) Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung von strahlungsemittierenden Halbleiterbauelementen
DE102012216695A1 (de) Mikrolinsenarray und verfahren zum herstellen eines mikrolinsenarrays
DE202011110173U1 (de) Optisches Element mit einer Antireflexionsbeschichtung
DE19641303B4 (de) Verfahren zur Herstellung eines optischen Elementes
DE10137575A1 (de) Verfahren zur Erzeugung einer Maske sowie Verfahren zur Herstellung einer Halbleitervorrichtung
DE102017117136A1 (de) Verfahren zur Herstellung einer Mehrzahl von Laserdioden und Laserdiode
DE102012101555B4 (de) Beugungsgitter und Verfahren zu dessen Herstellung
DE102007047681A1 (de) Monolithischer dielektrischer Spiegel
DE202023103227U1 (de) In Regenbogenfarben schillernder Gegenstand
DE102011111882A1 (de) Planarer hyperspektraler optischer Filter
WO2016131971A1 (de) Verfahren zur strukturierung einer nitridschicht, strukturierte dielektrikumschicht, optoelektronisches bauelement, ätzverfahren zum ätzen von schichten und umgebungssensor
DE102007023561B4 (de) Integriertes Farbarray mit integrierten Bauelementen mit photonischen Kristallen
DE112016004854B4 (de) Verfahren zur Herstellung eines Lichtwellenleitersubstrats
DE102016200953A1 (de) Substrat mit Strukturelementen und Halbleiterbauelement
DE102020215937A1 (de) Verfahren zur herstellung eines substrats mit einer strukturierten oberfläche und substrat mit einer strukturierten oberfläche
DE102014114109A1 (de) Verfahren zur Herstellung einer Vielzahl von Halbleiterchips und Halbleiterchip

Legal Events

Date Code Title Description
R163 Identified publications notified