DE102017123772A1 - Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect - Google Patents
Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect Download PDFInfo
- Publication number
- DE102017123772A1 DE102017123772A1 DE102017123772.0A DE102017123772A DE102017123772A1 DE 102017123772 A1 DE102017123772 A1 DE 102017123772A1 DE 102017123772 A DE102017123772 A DE 102017123772A DE 102017123772 A1 DE102017123772 A1 DE 102017123772A1
- Authority
- DE
- Germany
- Prior art keywords
- scale
- sensor
- measuring
- magnetic field
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/244—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
- G01D5/245—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
- G01D5/2451—Incremental encoders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/2006—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
- G01D5/2033—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2046—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/22—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
- G01D5/2208—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils
- G01D5/2241—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils by influencing the self-induction of the coils by controlling the saturation of a magnetic circuit by means of a movable element, e.g. a magnet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0094—Sensor arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/063—Magneto-impedance sensors; Nanocristallin sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/04—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Es wird eine Messeinrichtung zur Weg- oder Winkelmessung sowie ein korrespondierendes Messverfahren beschrieben. Gemäß einem Beispiel weist die Messeinrichtung einen Maßstab mit entlang einer Messrichtung variierender Magnetisierung auf, die ein entsprechend variierendes Magnetfeld bewirkt. Die Messeinrichtung weist weiter mindestens einen Abtastkopf auf, der abhängig von der relativen Lage zum Maßstab in Messrichtung von dem variierenden Magnetfeld durchsetzt wird. Der Abtastkopf umfasst folgendes: mindestens eine ferromagnetische Folie, die aufgrund des Magnetoimpedanz-Effektes eine von dem Magnetfeld anhängige und entlang der Messrichtung variierende lokale elektrische Impedanz aufweist, und mindestens eine Sensoreinheit, die dazu ausgebildet ist, mindestens zwei phasenverschobene Sensorsignale zu erzeugen, die von der lokalen elektrischen Impedanz der Folie abhängen.It describes a measuring device for displacement or angle measurement and a corresponding measurement method. According to one example, the measuring device has a scale with magnetization varying along a measuring direction, which causes a correspondingly varying magnetic field. The measuring device further comprises at least one scanning head, which is traversed by the varying magnetic field depending on the relative position to the scale in the measuring direction. The scanning head comprises: at least one ferromagnetic film having a magnetic impedance dependent on the magnetic field and varying along the measuring direction due to the magnetoimpedance effect, and at least one sensor unit which is adapted to generate at least two phase-shifted sensor signals that of depend on the local electrical impedance of the foil.
Description
TECHNISCHES GEBIETTECHNICAL AREA
Die hier beschriebenen Ausführungsbeispiele betreffen eine neuartige elektromagnetische Messeinrichtung zur Positionserfassung, die auf dem physikalischen Effekt der „Giant Magneto Impedance“ - GMI - basieren.The embodiments described herein relate to a novel position sensing electromagnetic measuring device based on the physical effect of "Giant Magneto Impedance" (GMI).
HINTERGRUNDBACKGROUND
Messeinrichtungen für die Länge- und Winkelerfassung sind bekannt und arbeiten nach unterschiedlichen physikalischen Prinzipien. Weiter wird eine vergleichende Gegenüberstellung der Hauptmerkmale dieser Messsysteme gemacht:Measuring devices for length and angle detection are known and work according to different physical principles. Furthermore, a comparison of the main features of these measuring systems is made:
Optoelektronische Messsysteme haben eine sehr kleine Messperiode (Periode der Teilung des Encoders) und sind dadurch sehr genau, weisen jedoch eine sehr hohe Empfindlichkeit gegenüber mechanischer Belastung (Schock, Vibrationen) und Verschmutzung auf.Optoelectronic measuring systems have a very short measuring period (period of division of the encoder) and are therefore very accurate, but have a very high sensitivity to mechanical stress (shock, vibration) and pollution.
Magnetische Messsysteme haben größere Messperiode, sind robust gegenüber Umwelteinflüsse, haben große Abtastabstände (Luftspalt zwischen Abtastkopf und Maßstab), weisen aber - aufgrund vergleichsweise großer Interpolationsfehler verursacht durch die geringe Abtastfläche der Magnetsensoren und Einzelperiodenabtastung gepaart mit der Inhomogenität der Magnetstärken von Periode zu Periode und haben einen signifikanten Umkehrfehler (Hysterese, bei Änderung der Bewegungsrichtung entsteht ein Signalsprung) - eine geringere Genauigkeit auf.Magnetic measuring systems have a longer measuring period, are robust against environmental influences, have large scanning distances (air gap between scanning head and scale), but have - due to comparatively large interpolation errors caused by the small sensing surface of the magnetic sensors and single period scanning paired with the inhomogeneity of the magnet strengths from period to period and have a significant inversion error (hysteresis, when changing the direction of movement produces a signal jump) - a lower accuracy.
Induktive Messsysteme haben ähnlich große Messperiode wie die magnetischen Messsysteme, weisen eine höhere Genauigkeit auf und haben keine Hysterese. Der Abtastabstand ist in Verhältnis zu den magnetischen Messsystemen sehr gering und begrenzt dadurch die jeweilige Anwendung.Inductive measuring systems have similar measuring periods as the magnetic measuring systems, have a higher accuracy and have no hysteresis. The scanning distance is very low in relation to the magnetic measuring systems and thus limits the respective application.
Der physikalische Magnetoimpedanzeffekt ist an sich bekannt und findet Anwendungen bei Sensoren unterschiedlicher Art. Der Magnetoimpedanzeffekt bewirkt, dass eine ferromagnetische oder weichmagnetische Folie (Draht), die (der) von einem hochfrequenten Strom durchflossen wird, ihre (seine) Impedanz in Abhängigkeit von einem externen elektromagnetischen Feld ändert. Dieses Verhalten kann mit dem an sich bekannten Skin-Effekt wie folgt erklärt werden:
- - „δ“ - Skin-Eindringstiefe,
- - „f“ - Arbeitsfrequenz,
- - „µ“ - magnetische Permeabilität,
- - „σ“ - elektrische Leitfähigkeit,
- - "δ" - skin penetration,
- - "f" - working frequency,
- - "μ" - magnetic permeability,
- - "σ" - electrical conductivity,
Die Skin-Eindringstiefe
Ein äußeres Magnetfeld kann die magnetische Permeabilität einer ferromagnetischen Metallfolie mit einem Faktor 10N (wobei N>2) ändern. Das heißt, dass der Magnetoimpedanzeffekt eine sehr hohe Impedanz-/Reluktanzänderung
Vergleicht man die Eindringstiefe
Da die Impedanz
Diese hohe Empfindlichkeit zeichnet den Magnetoimpedanzeffekt aus und führt in ihren Anwendungen zu hohen Signalkontrast und weiterführend zu sehr guten Wirkungsgraden. This high sensitivity characterizes the Magnetoimpedanceffekt and leads in their applications to high signal contrast and further to very good efficiencies.
Im Folgenden werden einige Beispiele von Messgeräten, die sich den GMI-Effekt zunutze machen diskutiert. Aus der Patentschrift
Aus der Patentschrift
Ein manuell zu handeln Lesekopf basierend auf dem GMI-Effekt für das Ablesen von magnetisch kodierten Bänder ist in der Patentschrift
Das induktive Längen- und Winkelmesssystem beschrieben in der Patentschrift
Die Erfinder haben es sich zur Aufgabe gemacht, eine Messeinrichtung für Längen oder Winkel bereitzustellen, welche sich den Magnetoimpedanzeffekt zu Nutze macht und eine hohe Genauigkeit sowie verhältnismäßig große Abtastabstände ermöglicht, ohne von dem unerwünschten Phänomen der Hysterese betroffen zu sein. Des Weiteren sind geringe Herstellkosten der Sensorik wünschensweist sowie ein flexibler Sensorträger. Weiter wünschenswert ist eine große Abtastfläche über mehrere Perioden des magnetischen Maßstabes hinweg, um dadurch eine gute Signalmittelung und hohe Lagegenauigkeit zu erreichen.The inventors have set themselves the task of providing a measuring device for lengths or angles, which makes use of the magneto-impedance effect and allows high accuracy and relatively large scanning distances, without being affected by the undesirable phenomenon of hysteresis. Furthermore, low manufacturing costs of the sensors are desirable and a flexible sensor carrier. It is further desirable to have a large scanning area over several periods of the magnetic scale, thereby achieving good signal averaging and high registration.
ZUSAMMENFASSUNGSUMMARY
Die erwähnte Aufgabe wird durch eine Messeinrichtung gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 10 gelöst. Verschiedene Ausführungsbeispiele und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.The mentioned object is achieved by a measuring device according to
Figurenlistelist of figures
Verschiedene Ausführungsbeispiele werden nachfolgend anhand von Abbildungen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Erfindung beschränkt sich nicht nur auf die dargestellten Aspekte. Vielmehr wird Wert daraufgelegt, die zugrundeliegenden Prinzipien darzustellen.:
-
1 zeigt ein B/H Diagramm. -
2 illustriert die Hauptkomponenten der hier beschriebenen Ausführungsbeispiele. -
3 illustriert ein erstes Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel. -
4 illustriert ein exemplarisches Beispiel einer elektronischen Schaltung für die Signalauswertung. -
5 illustriert ein zweites Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel. -
6 illustriert ein drittes Ausführungsbeispiel eines Messsystems zur Messung von Weg oder Winkel. -
7 illustriert ein viertes Ausführungsbeispiel eines Messsystems, das für die Winkelmessung geeignet ist. -
8 illustriert ein Beispiel eines magnetischen Maßstabs für ein Messsystem zur Messung der Absolutposition.
-
1 shows a B / H chart. -
2 illustrates the major components of the embodiments described herein. -
3 illustrates a first embodiment of a measuring system for measuring path or angle. -
4 illustrates an exemplary example of an electronic circuit for signal evaluation. -
5 illustrates a second embodiment of a measuring system for measuring path or angle. -
6 illustrates a third embodiment of a measuring system for measuring path or angle. -
7 illustrates a fourth embodiment of a measuring system that is suitable for angle measurement. -
8th illustrates an example of a magnetic scale for a measurement system for measuring the absolute position.
DETAILIERTE BESCHREIBUNGDETAILED DESCRIPTION
Die hier beschriebenen Ausführungsbeispiele (siehe
Diese zwei Hauptkomponenten der Messeinrichtung (Maßstab
Die Teilung des Maßstabes bewirkt durch die von ihm erzeugten Magnetfelder in der im Abtastkopf
Das Messsystem umfasst weiter einen Abtastkopf
Die Funktionsweise der Messeinrichtung gemäß dem Beispiel aus
In dem dargestellten Beispiel weisen die ferromagnetischen Folien
In einer speziellen Ausführung können auch mehrere erste Folienpaare dem Sinus-Kanal und mehrere zweite Folienpaare dem Cosinus-Kanal zugeordnet sein. Zwei dem Sinus-Kanal (oder dem Cosinus-Kanal) zugeordnete Folienpaare sind in einem Abstand von n·λ angeordnet, wohingegen zwei Folienpaare wie erwähnt einen Abstand von etwa n·λ + λ/4 aufweisen, wenn sie unterschiedlichen Kanälen zugeordnet sind.In a specific embodiment, a plurality of first pairs of foils may also be assigned to the sine channel and a plurality of second pairs of foils may be assigned to the cosine channel. Two pairs of foils associated with the sine (or cosine) channel are spaced n · λ apart, whereas two pairs of foils, as noted, are spaced approximately n · λ + λ / 4 when associated with different channels.
Die Foliendicke der Folien
Der Einfachheit halber ist in
Gemäß dem Beispiel in
Die in der Sensoreinheit
Wie bereits erläutert bewirkt der Magnetoimpedanzeffekt (GMI-Effekt), dass - je nach Größe der magnetischen Flussdichte
Um eine hohe Störfestigkeit zu erreichen und um einen unerwünschten Signaloffset und Rauschen zu unterdrücken, kann die Erfassung der Signale (z.B. Spannungen
Die Auslegung eines elektronischen Schaltkreises, der die Sensorsignale verstärkt, wandelt und in den bekannten normierten Schnittstellen am Ausgang des Abtastkopfs
Wie bereits erwähnt können sich die vier ferromagnetischen Folien (Sensorelemente
- - I0 - konstante Stromamplitude,
- - i - Trägerstrom,
- - ω = 2πf, f- konstante Frequenz,
- -
x - relative Lage Maßstab1 zur Sensoreinheit3 , - - λ - Hälfte der magnetischenTeilungsperiode,
- - k - natürliche Zahl,
- - US+, US-, UC+, UC- - Teilspannungen,
- - Uk - konstante Übertragungsspannung,
- - UOS, UOC - konstante Offsetspannungen,
- -
43 ) für jeden der zwei Messkanäle (Sinus- und Cosinuskanal):
- - I 0 - constant current amplitude,
- - i - carrier current,
- - ω = 2πf, f- constant frequency,
- -
x - relative position scale1 to the sensor unit3 . - - λ - half of the magnetic division period,
- - k - natural number,
- - U S + , U S , U C + , U C - partial stresses,
- - U k - constant transmission voltage,
- - U OS , U OC - constant offset voltages,
- -
43 ) for each of the two measurement channels (sine and cosine channels):
Mit Hilfe dieser zweier „Quadratur“-Spannungen kann in bekannter Weise der elektrische Winkel und die Bewegungsrichtung mit Hilfe der Demodulatoren
Es sei hier festgehalten, dass im Unterschied zu induktiven Messsystemen und aufgrund der Tatsache, dass die Impedanzänderungen nur von dem Betrag der Flussdichte
Des Weiteren sei angemerkt, dass der hohe Wirkungsgrad des Magnetoimpedanzeffekts in den hier beschriebenen Ausführungsbeispielen zu höheren Sinus- und Cosinus-Signalamplituden führt und dadurch sich vergleichsweise größere Luftspalte
In diesem Ausführungsbeispiel kann auf die Folienaussparungen
Die Emitterspulen
Wie bereits angegeben, ist es vorteilhaft für die Positionsmesseinrichtung, dass die Sensorfläche mehrere Perioden des Maßstabs erfasst. Durch die hier beschriebenen Ausführungsbeispiele einer solchen Messeinrichtung mit flexiblen folienartigen Sensoreinheiten
Die Oberfläche des Abtastkopfes
Im Allgemeinen können die Länge- und Winkelmesssysteme nach ihrer Arbeitsweise als inkrementelle und absolute Messsysteme klassifiziert werden. Dabei weisen inkrementelle Messeinrichtungen einen lediglich periodisch strukturierten Maßstab
Bei inkrementell arbeitenden Messsystemen kann für die Gewinnung eines oder mehrerer „Referenzpulse“ eine zusätzliche, zu der periodischen Hauptmessspur parallel verlaufende, zweite Spur auf dem Maßstab
Des Weiteren lässt sich für jedes der hier beschriebenen exemplarischen Messsystemausführungen auch eine die absolute (laterale oder Winkel-) Position erfassende Einrichtung realisieren (siehe
Für eine Absolutpositionsmessung weist der Maßstab eine Kodierung auf, die eine Absolutposition eindeutig definiert und nach verschiedenen Prinzipien realisiert werden kann. Als Beispiel wurde in
Für das Erreichen einer höheren Positionsauflösung kann selbstverständlich eine Absolutspur in parallel zu einer hochauflösenden Inkrementalspur auf dem Maßstab aufgebracht werden und in bekannter Weise in Kombination ausgewertet werden.To achieve a higher position resolution, it is of course possible to apply an absolute track in parallel to a high-resolution incremental track on the scale and to evaluate it in combination in a known manner.
Im Folgenden werden einige Aspekte der hier beschriebenen Ausführungsbeispiele zusammengefasst. Die folgende Aufzählung ist nicht abschließend zu verstehen, sondern lediglich exemplarisch.In the following, some aspects of the embodiments described here will be summarized. The following list is not meant to be exhaustive, but merely exemplary.
Beispiel 1: Eine Messanordnung zur Weg- oder Winkelmessung mit einem Maßstab
Beispiel 2: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle
Beispiel 3: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle
Beispiel 4: Die Messeinrichtung gemäß Beispiel 1, die weiter eine Signalquelle
Beispiel 5: Die Messeinrichtung gemäß einem der Beispiele 1 bis 4, wobei das mindestens eine Sensorelement eine planare Spule (vgl.
Beispiel 6: Die Messeinrichtung gemäß einem der Beispiele 1 bis 5, wobei das mindestens eine Sensorelement ein erstes Sensorelement
Beispiel 7: Die Messeinrichtung gemäß Beispiel 1, wobei das mindestens eine Sensorelement mindestens eine planare Spule
Beispiel 8: Die Messeinrichtung gemäß einem der Beispiele 1 bis 7, wobei der Maßstab
Beispiel 9: Die Messeinrichtung gemäß einem der Beispiele 1 bis 8, wobei der Maßstab
Beispiel 10: Die Messeinrichtung gemäß einem der Beispiele 1 bis 9, wobei der Maßstab eine Absolutkodierung aufweist, die eindeutig die Lage des Maßstabes relativ zur Sensoreinheit
Beispiel 11. Die Messeinrichtung gemäß einem der Beipsiel
Beispiel 12: Ein Verfahren zur Messung der relativen Lage zwischen einem Maßstab
Beispiel 13: Das Verfahren gemäß Beispiel 11, das weiter aufweist: das Einspeisen eines hochfrequenten Wechselstromes in die mindestens eine Folie
Beispiel 14: Das Verfahren gemäß Beispiel 13, wobei das Erfassen eines Signals mittels eines Sensorelementes folgendes umfasst: das Abgreifen einer Spannung an der mindestens einer Folie
Beispiel 15. Das Verfahren gemäß Beispiel 13, wobei die lokale elektrischen Impedanz der mindestens einen Folie
Sämtliche Beispiele können sowohl in Systemen zur Wegmessung Messung von Verschiebungen oder Position) als auch zur Winkelmessung (bei rotierendem Encoder) eingesetzt werden. Auch ist mit allen Beispielen, je nach Codierung des Maßstabes eine inkrementelle (relative) Messung von (Winkel-) Positionen als auch die Messung einer absoluten (Winkel-) Position möglich.All examples can be used in systems for displacement measurement of displacement or position) as well as for angle measurement (with rotating encoder). Also, with all the examples, depending on the coding of the scale, an incremental (relative) measurement of (angular) positions as well as the measurement of an absolute (angular) position is possible.
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- US 7791331 B2 [0012]US 7791331 B2 [0012]
- DE 19953190 C2 [0013]DE 19953190 C2 [0013]
- AT 406715 B [0014]AT 406715 B [0014]
- EP 1164358 B1 [0015]EP 1164358 B1 [0015]
Claims (13)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017123772.0A DE102017123772B4 (en) | 2017-10-12 | 2017-10-12 | Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect |
ATA50783/2018A AT520709B1 (en) | 2017-10-12 | 2018-09-13 | Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect |
DE112018004533.1T DE112018004533A5 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect |
US16/755,202 US11512982B2 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect |
CN201880080182.4A CN111492206B (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for distance or angle measurement based on the magnetoresistive effect |
PCT/AT2018/060240 WO2019071284A1 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect |
JP2020521313A JP7311500B2 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measurement system for measuring distance and angle using magneto-impedance effect |
EP18792358.6A EP3695194B1 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017123772.0A DE102017123772B4 (en) | 2017-10-12 | 2017-10-12 | Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102017123772A1 true DE102017123772A1 (en) | 2019-04-18 |
DE102017123772B4 DE102017123772B4 (en) | 2019-06-19 |
Family
ID=65909967
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102017123772.0A Active DE102017123772B4 (en) | 2017-10-12 | 2017-10-12 | Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect |
DE112018004533.1T Pending DE112018004533A5 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112018004533.1T Pending DE112018004533A5 (en) | 2017-10-12 | 2018-10-09 | Electromagnetic measuring system for the detection of length and angle based on the magnetoimpedance effect |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7311500B2 (en) |
CN (1) | CN111492206B (en) |
AT (1) | AT520709B1 (en) |
DE (2) | DE102017123772B4 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112747664B (en) * | 2020-12-30 | 2022-06-17 | 苏州博古特智造有限公司 | Linear magnetic resistance position sensor |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT406715B (en) | 1997-09-15 | 2000-08-25 | Newald Herbert Dipl Ing | Device for registering the data from a magnetically encoded data carrier, with a sensor |
US6239594B1 (en) * | 1998-09-25 | 2001-05-29 | Alps Electric Co., Ltd. | Mageto-impedance effect element |
EP1164358A1 (en) | 2000-06-16 | 2001-12-19 | AMO Automatisierung Messtechnik Optik GmbH | Inductive length measuring system |
DE19953190C2 (en) | 1999-11-05 | 2002-11-07 | Bosch Gmbh Robert | Sensor arrangement for detecting an angle of rotation |
DE102004017191A1 (en) * | 2004-04-07 | 2005-10-27 | Infineon Technologies Ag | Device and method for determining a direction of an object |
US7791331B2 (en) | 2005-02-08 | 2010-09-07 | Continental Automotive France | Use of magneto-impedance on a contactless position sensor and corresponding sensor |
EP2378253A2 (en) * | 2010-04-12 | 2011-10-19 | Murata Machinery, Ltd. | Magnetic pole detection system and magnetic pole detection method |
DE102014201975A1 (en) * | 2013-08-28 | 2015-03-05 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Sensor with a sensor element and method for producing the sensor element |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6323379A (en) * | 1986-03-18 | 1988-01-30 | Victor Co Of Japan Ltd | Magnetic detection circuit |
DE59405481D1 (en) * | 1994-04-05 | 1998-04-23 | Heidenhain Gmbh Dr Johannes | Magnetic position measuring device |
JPH08285509A (en) * | 1995-04-19 | 1996-11-01 | Hitachi Metals Ltd | Linear type magnetic sensor |
EP0743508A2 (en) * | 1995-05-16 | 1996-11-20 | Mitutoyo Corporation | Induced current position transducer |
CH690933A5 (en) * | 1996-01-24 | 2001-02-28 | Hans Ulrich Meyer | An inductive displacement sensor. |
JP3004924B2 (en) * | 1996-11-01 | 2000-01-31 | 株式会社ミツトヨ | Magnetic encoder |
WO2002001144A1 (en) * | 2000-06-27 | 2002-01-03 | Brown & Sharpe Tesa Sa | Magnetoresistive electrode measuring device, and measuring method |
EP1499901A2 (en) * | 2002-04-18 | 2005-01-26 | Continental Teves AG & Co. oHG | Method and device for the detection of local displacements and rotations |
JP4211278B2 (en) * | 2002-04-25 | 2009-01-21 | 神鋼電機株式会社 | Encoder |
DE10308030B4 (en) * | 2003-02-24 | 2011-02-03 | Meas Deutschland Gmbh | Magnetoresistive sensor for determining an angle or position |
JP2006086439A (en) * | 2004-09-17 | 2006-03-30 | Nidec Sankyo Corp | Magnetoresistive element |
CN100375890C (en) * | 2005-09-09 | 2008-03-19 | 清华大学 | Magnetic displacement sensor containing zero-setting GMR chip |
DE102007007764A1 (en) * | 2007-02-16 | 2008-08-21 | Dr. Johannes Heidenhain Gmbh | Encoder and method for its operation |
JP4950713B2 (en) * | 2007-03-20 | 2012-06-13 | オークマ株式会社 | Absolute encoder |
DE102009061032A1 (en) * | 2009-05-15 | 2010-11-18 | Tyco Electronics Belgium Ec Bvba | Magnetoelectronic angle sensor, in particular reluctance resolver |
JP2012083280A (en) * | 2010-10-14 | 2012-04-26 | Minebea Co Ltd | Absolute position detector for mobile body |
JP2012159495A (en) * | 2011-01-10 | 2012-08-23 | Aisan Ind Co Ltd | Position sensor |
DE102011007756A1 (en) * | 2011-04-20 | 2012-10-25 | Dr. Johannes Heidenhain Gmbh | Position measuring device and scale and method for producing a scale |
JP5904811B2 (en) * | 2012-02-08 | 2016-04-20 | 愛三工業株式会社 | Position sensor |
JP6472175B2 (en) * | 2014-06-09 | 2019-02-20 | Dmg森精機株式会社 | Position detection device |
US9562954B2 (en) * | 2014-08-06 | 2017-02-07 | Infineon Technologies Ag | Maximization of target signal and elimination of backbias component for a differential upright position sensor |
CN204203260U (en) * | 2014-11-29 | 2015-03-11 | 浙江师范大学 | A kind of speed probe based on giant magnetoresistance effect |
-
2017
- 2017-10-12 DE DE102017123772.0A patent/DE102017123772B4/en active Active
-
2018
- 2018-09-13 AT ATA50783/2018A patent/AT520709B1/en active
- 2018-10-09 CN CN201880080182.4A patent/CN111492206B/en active Active
- 2018-10-09 DE DE112018004533.1T patent/DE112018004533A5/en active Pending
- 2018-10-09 JP JP2020521313A patent/JP7311500B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT406715B (en) | 1997-09-15 | 2000-08-25 | Newald Herbert Dipl Ing | Device for registering the data from a magnetically encoded data carrier, with a sensor |
US6239594B1 (en) * | 1998-09-25 | 2001-05-29 | Alps Electric Co., Ltd. | Mageto-impedance effect element |
DE19953190C2 (en) | 1999-11-05 | 2002-11-07 | Bosch Gmbh Robert | Sensor arrangement for detecting an angle of rotation |
EP1164358A1 (en) | 2000-06-16 | 2001-12-19 | AMO Automatisierung Messtechnik Optik GmbH | Inductive length measuring system |
DE102004017191A1 (en) * | 2004-04-07 | 2005-10-27 | Infineon Technologies Ag | Device and method for determining a direction of an object |
US7791331B2 (en) | 2005-02-08 | 2010-09-07 | Continental Automotive France | Use of magneto-impedance on a contactless position sensor and corresponding sensor |
EP2378253A2 (en) * | 2010-04-12 | 2011-10-19 | Murata Machinery, Ltd. | Magnetic pole detection system and magnetic pole detection method |
DE102014201975A1 (en) * | 2013-08-28 | 2015-03-05 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Sensor with a sensor element and method for producing the sensor element |
Also Published As
Publication number | Publication date |
---|---|
DE112018004533A5 (en) | 2020-05-28 |
CN111492206B (en) | 2022-10-11 |
DE102017123772B4 (en) | 2019-06-19 |
AT520709A1 (en) | 2019-06-15 |
CN111492206A (en) | 2020-08-04 |
JP7311500B2 (en) | 2023-07-19 |
AT520709B1 (en) | 2020-11-15 |
JP2020537152A (en) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112012006270B4 (en) | Magnetic position detection device | |
EP0740776B1 (en) | Arrangement for the contactless determination of the angle of rotation of a rotatable component | |
DE69938221T2 (en) | position sensor | |
EP0852700B1 (en) | Device for determining an object's position without contact and use of the device | |
DE19850677C2 (en) | magnetic field detector | |
DE102018103341A1 (en) | ANGLE SENSOR WITH DISTURBANCE SUPPRESSION | |
DE102017106322A1 (en) | magnetic field detector | |
DE102004017191A1 (en) | Device and method for determining a direction of an object | |
DE102014103588A1 (en) | MAGNETIC SENSOR SYSTEM | |
EP1527324B1 (en) | Magnetoresistive sensor | |
EP3695194B1 (en) | Electromagnetic measuring system for detecting length and angle on the basis of the magnetoimpedance effect | |
DE102011083948A1 (en) | sensor arrangement | |
DE112012005322B4 (en) | rotation angle detecting device | |
EP3803278B1 (en) | Absolute encoder | |
EP2834601B1 (en) | Method and arrangement for determining the position of a component | |
DE102004063245B4 (en) | Magnetic detector | |
DE19612422C2 (en) | Potentiometer device with a linearly displaceable control element and signal-generating means | |
DE19621886C2 (en) | Magnetic position measuring device | |
DE102017123772B4 (en) | Electromagnetic measuring system for the detection of length and angle based on the magneto-impedance effect | |
DE102013222073A1 (en) | Position measuring device | |
WO2002018868A1 (en) | Device and method for measuring angles | |
DE102018118477A1 (en) | Absolute encoders | |
DE102020126871A1 (en) | A sensor system, system and method for determining a position or an angle of rotation | |
DE19908361A1 (en) | Magnetoresistive sensor device for detecting rotation rate and rotation direction of rotating object uses magnetic field source attached to object and 2 cooperating sensors providing phase-shifted magnetic field components | |
DE102011079633A1 (en) | Magnetic sensor for measuring a magnetic field of a magnetic multipole and associated device for determining motion parameters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R026 | Opposition filed against patent | ||
R006 | Appeal filed | ||
R008 | Case pending at federal patent court |