DE102017103066A1 - Verfahren zum Herstellen eines metallischen Werkstücks - Google Patents

Verfahren zum Herstellen eines metallischen Werkstücks Download PDF

Info

Publication number
DE102017103066A1
DE102017103066A1 DE102017103066.2A DE102017103066A DE102017103066A1 DE 102017103066 A1 DE102017103066 A1 DE 102017103066A1 DE 102017103066 A DE102017103066 A DE 102017103066A DE 102017103066 A1 DE102017103066 A1 DE 102017103066A1
Authority
DE
Germany
Prior art keywords
welding
gas
protective gas
welding device
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102017103066.2A
Other languages
English (en)
Inventor
Matthias Scheidhammer
Manfred Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flottweg SE
Original Assignee
Flottweg SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flottweg SE filed Critical Flottweg SE
Priority to DE102017103066.2A priority Critical patent/DE102017103066A1/de
Priority to PCT/DE2018/100129 priority patent/WO2018149451A2/de
Publication of DE102017103066A1 publication Critical patent/DE102017103066A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • B23K9/048Built-up welding on three-dimensional surfaces on surfaces of revolution on cylindrical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/044Built-up welding on three-dimensional surfaces
    • B23K9/046Built-up welding on three-dimensional surfaces on surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

Ein erfindungsgemäßes Verfahren zum Herstellen eines metallischen Werkstücks, umfasst die folgenden Schritte: Bereitstellen eines metallischen Grundkörpers, Bereitstellen einer Schutzgas-Schweißeinrichtung und Herstellen des metallischen Werkstücks mittels der Schutzgas-Schweißeinrichtung aus einer an dem Grundkörper aufgetragenen, ersten Schweißschicht sowie mehreren darauf übereinander aufgetragenen, zweiten Schweißschichten, wobei die Schutzgas-Schweißeinrichtung mit einem Schweißgas betrieben und dieses Schweißgas aus einer der Untergruppen der Hauptgruppen I, M1, M2 oder N der Norm DIN EN ISO 14175 ausgewählt wird.

Description

  • Hintergrund der Erfindung
  • Die Erfindung betrifft ein Verfahren zum Herstellen eines metallischen Werkstücks mit den Schritten des Bereitstellens eines metallischen Grundkörpers, des Bereitstellens einer Schutzgas-Schweißeinrichtung und des Herstellens des metallischen Werkstücks mittels der Schutzgas-Schweißeinrichtung aus einer an dem Grundkörper aufgetragenen, ersten Schweißschicht sowie mehreren darauf übereinander aufgetragenen, zweiten Schweißschichten.
  • Das erfindungsgemäße Verfahren dient zum Herstellen von dreidimensionalen, metallischen Werkstücken durch ein Auftragen mehrerer Schweißschichten übereinander. Derartige Verfahren werden auch als formgebendes Aufbauschweißen bezeichnet. Für diese Verfahren sind Lichtbogenschweißverfahren oder Laserstrahlschweißverfahren bekannt.
  • Zugrundeliegende Aufgabe
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen eines metallischen Werkstücks zu schaffen, mittels dem Werkstücke freigeformt herzustellen sind, wobei diese Werkstücke zugleich eine hohe Verschleißfestigkeit aufweisen sollen.
  • Erfindungsgemäße Lösung
  • Diese Aufgabe ist erfindungsgemäß mit einem Verfahren zum Herstellen eines metallischen Werkstücks geschaffen, mit den Schritten: Bereitstellen eines metallischen Grundkörpers, Bereitstellen einer Schutzgas-Schweißeinrichtung und Herstellen des metallischen Werkstücks mittels der Schutzgas-Schweißeinrichtung aus einer an dem Grundkörper aufgetragenen, ersten Schweißschicht sowie mehreren darauf übereinander aufgetragenen, zweiten Schweißschichten, wobei die Schutzgas-Schweißeinrichtung mit einem Schweißgas betrieben und dieses Schweißgas aus einer der Untergruppen der Hauptgruppen I, M1, M2 oder N der Norm DIN EN ISO 14175 ausgewählt wird.
  • Erfindungsgemäß wird zum formgebenden Aufbauschweißen nicht ein beliebiges Schweißverfahren gewählt, sonders es wird gezielt ein Schweißen mit aktivem, reaktionsfähigem Schweißgas oder mit inertem Schweißgas durchgeführt. Solche Schweißverfahren werden auch als MAG- bzw. MIG-Schweißen bzw. als Schweißen mit Aktivgas oder Inertgas bezeichnet. Zusammengefasst werden solche Verfahren als Metallschutzgasschweißen (MSG) bezeichnet. Solche Schweißverfahren sind in der Norm EN ISO 4063: Prozess 135 und 131 definiert.
  • Darüber hinaus wird erfindungsgemäß gezielt ein Schweißgas aus bestimmten Untergruppen von Schweißgasen ausgewählt. Schweißgase sind gemäß Norm DIN EN ISO 14175 in die Hauptgruppen I, M1, M2, M3, C, R, N, O und Z eingeteilt. Von den Schweißgasen diesen Hauptgruppen werden gemäß der Erfindung nur solche Schweißgase gewählt, die in die Hauptgruppen I, M1, M2 und N fallen. Andere Schweißgase werden gemäß der Erfindung bewusst ausgenommen, denn diese weiteren Schweißgase, so hat sich gemäß der Erfindung gezeigt, sind für die erfindungsgemäß angestrebte Lösung nicht zielführend.
  • Die Hauptgruppe I umfasst Schweißgase mit 100 Volumen-Prozent nominell Argon (Untergruppe 1), 100 Volumen-Prozent nominell Helium (Untergruppe 2) und 0,5 bis 95 Volumen-Prozent nominell Helium sowie Rest Argon (Untergruppe 3). Diese Schweißgase sind vollständig inert.
  • Die Hauptgruppe M1, Untergruppe 1 umfasst Schweißgase mit 0,5 bis 5,0 Volumen-Prozent nominell Kohlendioxid, 0,5 bis 5,0 Volumen-Prozent nominell Wasserstoff sowie Rest Argon oder Helium. Diese Schweißgase sind gering oxidierend und nur gering reduzierend. Die Hauptgruppe M1, Untergruppe 2 umfasst Schweißgase mit 0,5 bis 5,0 Volumen-Prozent nominell Kohlendioxid sowie Rest Argon oder Helium. Diese Schweißgase sind gering oxidierend. Die Hauptgruppe M1, Untergruppe 3 umfasst Schweißgase mit 0,5 bis 3,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Diese Schweißgase sind ebenfalls gering oxidierend. Die Hauptgruppe M1, Untergruppe 4 umfasst Schweißgase mit 0,5 bis 5,0 Volumen-Prozent nominell Kohlendioxid, 0,5 bis 3,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Diese Schweißgase sind wiederum gering oxidierend.
  • Die Hauptgruppe M2, Untergruppe 0 umfasst Schweißgase mit 5,0 bis 15,0 Volumen-Prozent nominell Kohlendioxid sowie Rest Argon oder Helium. Diese Schweißgase sind wenig oxidierend. Die Hauptgruppe M2, Untergruppe 1 umfasst Schweißgase mit 15,0 bis 25,0 Volumen-Prozent nominell Kohlendioxid sowie Rest Argon oder Helium. Diese Schweißgase sind ebenfalls wenig oxidierend. Die Hauptgruppe M2, Untergruppe 2 umfasst Schweißgase mit 3,0 bis 10,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Diese Schweißgase sind ebenfalls noch wenig oxidierend. Die Hauptgruppe M2, Untergruppe 3 umfasst Schweißgase mit 0,5 bis 5,0 Volumen-Prozent nominell Kohlendioxid, 3,0 bis 10,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Die Hauptgruppe M2, Untergruppe 4 umfasst Schweißgase mit 5,0 bis 15,0 Volumen-Prozent nominell Kohlendioxid, 0,5 bis 3,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Die Hauptgruppe M2, Untergruppe 5 umfasst Schweißgase mit 5,0 bis 15,0 Volumen-Prozent nominell Kohlendioxid, 3,0 bis 10,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Die Hauptgruppe M2, Untergruppe 6 umfasst Schweißgase mit 15,0 bis 25,0 Volumen-Prozent nominell Kohlendioxid, 0,5 bis 3,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Die Hauptgruppe M2, Untergruppe 7 umfasst Schweißgase mit 15,0 bis 25,0 Volumen-Prozent nominell Kohlendioxid, 3,0 bis 10,0 Volumen-Prozent nominell Sauerstoff sowie Rest Argon oder Helium. Auch diese Schweißgase sind noch vergleichsweise wenig oxidierend.
  • Die Hauptgruppe N, Untergruppe 1 umfasst Schweißgase mit 100 Volumen-Prozent nominell Stickstoff. Die Hauptgruppe N, Untergruppe 2 umfasst Schweißgase mit 0,5 bis 5,0 Volumen-Prozent nominell Stickstoff sowie Rest Argon oder Helium. Die Hauptgruppe N, Untergruppe 3 umfasst Schweißgase mit 5,0 bis 50,0 Volumen-Prozent nominell Stickstoff sowie Rest Argon oder Helium. Die Hauptgruppe N, Untergruppe 4 umfasst Schweißgase mit 0,5 bis 1,0 Volumen-Prozent nominell Wasserstoff, 0,5 bis 5,0 Volumen-Prozent nominell Stickstoff sowie Rest Argon oder Helium. Die Hauptgruppe N, Untergruppe 5 umfasst Schweißgase mit 0,5 bis 50,0 Volumen-Prozent nominell Wasserstoff sowie Rest Stickstoff. Diese Schweißgase sind sämtlich reaktionsträge, sie sind mit hohem Argon- oder Helium-Gehalt inert und sie sind selbst mit steigendem Wasserstoff-Gehalt nur wenig reduzierend.
  • Zusammenfassend werden erfindungsgemäß also gezielt Schweißgase gewählt, die inert sind, wenig oxidierend und/oder wenig reduzierend. Wie sich erfindungsgemäß gezeigt hat, kann mit einem solchen Verfahren bei dem formgebenden Aufbauschweißen mit einer oxidationsarmen Schweißraupe und weitgehend ohne Schlacke gearbeitet werden. Dies ist insbesondere für das Übereinanderlegen von Schweißraupen von besonderem Vorteil. Darüber hinaus kann mit einem besonders schnellen Schweißtempo gearbeitet werden. Dies ermöglicht zunächst besonders kurze Herstellungszeiten. Der eigentliche Vorteil von schnellem Schweißtempo liegt aber darin, dass das Werkstück beim Schweißen nur wenig punktuell erhitzt wird und sich damit nur wenig Verzug bzw. Verformung ergibt. Der besondere Vorteil der erfindungsgemäßen Vorgehensweise liegt aber überraschender Weise darin, dass sich bei einem solchen Aufbauschweißen eine besonders hohe Verschleißfestigkeit der dabei hergestellten Oberfläche ergibt. So kann nach dem erfindungsgemäßen Herstellungsverfahren auf eine nachträgliche Vergütung, insbesondere auf ein Aufbringen von Verschleißschichten und insbesondere auf ein so genanntes Auftragsschweißen einer verschleißfesten Beschichtung verzichtet werden. Mittels Auftragsschweißen wäre sonst eine Verschleißschicht auf der Oberfläche des Werkstückes ebenfalls mittels Schweißen aufzubringen. Als Grundmaterial für das erfindungsgemäße Aufbauschweißen werden bevorzugt Chrom-Nickel-Stähle, Duplex-Stähle und Nickel-Basis-Stähle verwendet.
  • Vorteilhafte Weiterbildungen der Erfindung
  • Bei einer vorteilhaften Weiterbildung der Erfindung weist das Schweißgas einen Anteil an Kohlendioxid von weniger als zwanzig Volumen-Prozent nominell auf. Ein derart geringer Kohlendioxidgehalt ermöglicht es insbesondere, dass erfindungsgemäß vorteilhaft Baustähle mittels Impulsschweißen verarbeitet werden können. Zugleich ist ein vergleichsweise hoher Abbrand des Schweißdrahtes möglich. Damit ergeben sich ein hoher Masseaufbau während des Schweißens und eine besonders schnelle Arbeitsweise. Vorzugsweise wird als Schweißgas ferner Schweißgas verwendet, das einen Anteil an Sauerstoff von weniger als drei Volumen-Prozent nominell aufweist. Solche Schweißgase sind besonders wenig oxidierend. Schweißgase, die einen hohen Anteil an Argon aufweisen, sind ferner besonders preiswert.
  • Besonders bevorzugt wird die erfindungsgemäße Schutzgas-Schweißeinrichtung mit einem Impulslichtbogen betrieben. Ein solcher Impulslichtbogen lässt eine präzise Steuerung der Abschmelzung des Schweißdrahts an der Schutzgas-Schweißeinrichtung zu. Darüber hinaus kann der Wärmeeintrag in das Werkstück gezielt besonders gering gehalten und temperaturbedingte Verformung kann gering gehalten werden.
  • Der elektrische Schweißstrom der derartigen Impulslichtbogen-Schweißeinrichtung weist vorzugsweise einen Grundstrom kleiner 200 Ampere und einen Impulsstrom größer 200 Ampere auf. Solche Schweißströme sind vorteilhaft bei besonders präzisem Materialaufbau mit vergleichsweise kleiner Abschmelzleistung. Als Schweißgas wird dabei vorteilhaft ein Schweißgas mit 98 Volumen-Prozent nominell Argon und 2 Volumen-Prozent nominell Kohlendioxid verwendet.
  • Von besonderem Vorteil ist es ferner, die erfindungsgemäße Schutzgas-Schweißeinrichtung mit einem Kurzlichtbogen, insbesondere einem energiereduzierten Kurzlichtbogen zu betreiben. Ein solches Verfahren mit Kurzlichtbogen wird auch als Cold-Arc bezeichnet, ein Verfahren mit besonders kaltem Lichtbogen also. Für die Erzielung eines dennoch schmelzstarken Lichtbogens wird besonders vorteilhaft mit einem verstärkten Aufschmelzstromimpuls gearbeitet.
  • Beim Aufbauschweißen wird ferner bevorzugt die erste Schweißschicht breiter ausgebildet, als die zweite Schweißschicht. Dies geschieht insbesondere indem die Schutzgas-Schweißeinrichtung während des Auftragens der ersten Schweißschicht mit einem höheren Schweißstrom betrieben wird, als während des Aufbringens der mindestens einen zweiten Schweißschicht. Alternativ kann bei der ersten Schweißschicht pendelnd geschweißt werden, mit langsamerer Schweißgeschwindigkeit oder mit höherem Drahtvorschub. Mit der derartigen Vorgehensweise wird die erste Schweißschicht mit besonders starkem bzw. großem Masseauftrag ausgeführt. Die derart volumenstarke erste Schweißschicht wird dann von einer zweiten Schweißschicht überlagert, die weniger Volumen aufweist und demnach schmäler ist. Zusammen ergibt sich ein gerundeter Fuß bzw. Ansatz an dem Grundkörper des Werkstücks, der eine geringe Kerbwirkung und damit eine hohe Steifigkeit aufweist.
  • Die erfindungsgemäße Schutzgas-Schweißeinrichtung wird besonders vorteilhaft mit einem Schweißdraht, oder vorteilhaft auch zwei Schweißdrähten (Twin-Schweißverfahren) mit einem Durchmesser von 0,5 mm bis 3,0 mm, bevorzugt von 1,0 mm bis 1,6 mm betrieben. Überraschenderweise führt gerade ein solcher Schweißdraht-Durchmesser zu einer hohen Schweißgeschwindigkeit und zugleich zu besonders geringer thermisch bedingter Verformung. Besonders bevorzugt sind einzelne Schweißschichten bzw. Schweißlagen mit einer Breite von 6 bis 7 mm. Vorteilhaft ist insbesondere auch ein im Querschnitt rechteckiges Schweißband.
  • Der Grundkörper des erfindungsgemäßen Werkstücks wird bevorzugt während des Herstellens des metallischen Werkstücks bewegt. Mit dem Bewegen wird das Werkstück dabei an seiner Schweißstelle derart ausgerichtet, dass sich für die aufgebrachte Schweißlage eine optimale Position ergibt. Dabei wird die Schweißlage besonders bevorzugt auf einer waagrechten Oberfläche aufgebracht. Vorteilhaft ist es auch, wenn die Schweißlage auf eine in Schweißrichtung leicht ansteigende Oberfläche aufgebracht wird. Der Steigungswinkel beträgt vorzugsweise zwischen 5° und 15°, vorteilhaft zwischen 7° und 10°. Der Grundkörper wird entsprechend vorzugsweise derart bewegt, dass am Schweißort der Schutzgas-Schweißeinrichtung eine horizontale Schweißoberfläche oder eine in Schweißrichtung der Schutzgas-Schweißeinrichtung ansteigende Schweißoberfläche vorliegt.
  • Als Werkstück wird mit dem derartigen erfindungsgemäßen Verfahren besonders vorteilhaft eine Schneckenwendel einer Vollmantelschneckenzentrifuge hergestellt. Bei einer solchen Schneckenwendel kommt der erfindungsgemäß erzielte Vorteil einer besonders verschleißfesten Oberfläche besonders zur Geltung.
  • Alternativ oder zusätzlich wird vorteilhaft als Werkstück eine Schneckennabe einer Vollmantelschneckenzentrifuge hergestellt. Die Schneckennabe kann dabei zeitgleich mit der Schneckenwendel hergestellt werden. Ferner ergeben sich für die Schneckenwendel und die dort vorgesehenen Bauteile wie etwa ein Einlaufrohr besonders zahlreiche Gestaltungsmöglichkeiten hinsichtlich der Formgestaltung.
  • Figurenliste
  • Nachfolgend werden Ausführungsbeispiele der erfindungsgemäßen Lösung anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigt:
    • 1 einen ersten Teil eines Längsschnitts einer erfindungsgemäßen Vollmantelschneckenzentrifugen-Schnecke,
    • 2 einen zweiten Teil des Längsschnitts gemäß 1,
    • 3 eine Seitenansicht des Ausschnitts III gemäß 1,
    • 4 das Detail IV gemäß 1 in vergrößerter Darstellung,
    • 5 die Draufsicht V gemäß 2,
    • 6 Varianten des Details VI gemäß 2,
    • 7 eine erste Variante der Ansicht VII gemäß 5,
    • 8 eine zweite Variante der Ansicht VII gemäß 5,
    • 9 eine dritte Variante der Ansicht VII gemäß 5 und
    • 10 eine vierte Variante der Ansicht VII gemäß 5.
  • Detaillierte Beschreibung des Ausführungsbeispiels
  • In den 1 bis 10 ist eine Schnecke 10 einer Vollmantelschneckenzentrifuge dargestellt, die als hier genanntes Werkstück herzustellen ist. Die Schnecke 10 weist eine Drehachse 12 auf, die eine Axialrichtung 14 und eine Radialrichtung 16 definiert.
  • Die Schnecke 10 ist von einer Trommel 18 umgeben und dient dazu, innerhalb der Trommel 18 aus einem Phasengemisch (nicht dargestellt) eine schwere Phase in Axialrichtung 14 auszutragen. Die Schnecke 10 ist mit einer zentralen Schneckennabe 20 und einer diese wendelförmig umgebenden Schneckenwendel 22 gestaltet.
  • Ferner ist eine Schutzgas-Schweißeinrichtung 24 bereitgestellt, mittels der die Schneckenwendel 22 in einem formgebenden Aufbauschweißen hergestellt ist. Dazu ist mittels der Schutzgas-Schweißeinrichtung 24 auf der Schneckennabe 20 eine erste Schweißschicht 26 und auf diese dann eine zweite Schweißschicht 28 aufgebracht. Ferner sind weitere zweite Schweißschichten in dieser Art übereinander bzw. aufeinander aufgebracht worden. So ist insgesamt ein flächiges, schraubenförmiges Element bzw. eine gewendelte Fläche entstanden, das bzw. die die Schneckenwendel 22 bildet.
  • Die Schneckennabe 20 dient bei diesem Herstellen der Schneckenwendel 22 mittels Aufbauschweißen als ein hier erster Grundkörper und wird während des Herstellens bewegt. Insbesondere wird die Schneckennabe 20 um ihre Drehachse 12 gedreht, während zugleich die Schutzgas-Schweißeinrichtung 24 in Axialrichtung 14 verfahren und dabei in Radialrichtung 16 schrittweise angehoben wird.
  • Die Schutzgas-Schweißeinrichtung 24 umfasst einen Schweißdraht 30 und wird im MSG-Verfahren mit einem Schweißgas 32 betrieben. Vorliegend hat das Schweißgas 32 aus einer der Untergruppen der Hauptgruppen I, M1, M2 oder N der Norm DIN EN ISO 14175 ausgewählt und weist einen Anteil an Kohlendioxid von weniger als 20 Volumen-Prozent nominell sowie einen Anteil an Sauerstoff von weniger als 3 Volumen-Prozent nominell auf. Dabei wird mittels der Schutzgas-Schweißeinrichtung 24 ein Lichtbogen 34 erzeugt, der vorliegend als Impulslichtbogen ausgeführt wird.
  • Die Schneckenwendel 22 kann auf diese Weise besonders einfach und kostengünstig, verzugsarm und zugleich besonders verschleißfest ausgeführt werden. Insbesondere kann auch eine mehrgängige Wendel einfach hergestellt werden. Auch kann die Schneckenwendel 22 mit einer Wendelsteigung 36 gestaltet werden, die in Axialrichtung 14 bzw. in Längsrichtung der Schnecke 10 variiert, also unterschiedlich groß ist.
  • An der Schneckenwendel 22 kann ferner mittels des formgebenden Aufbauschweißens zugleich ein Wuchtgewicht 38 hergestellt werden. Das Wuchtgewicht 38 kann mittels einzelner Schweißpunkte und/oder größeren Schweißmaterialanhäufungen individuell und ortsgenau dimensioniert werden. Der Wuchtaufwand ist damit erheblich verringert.
  • Ferner ist die Schneckenwendel 22 sehr einfach und ohne spanende Verfahren mit diversen Durchgangsöffnungen 40 zu versehen, weil sie mit formgebendem Aufbauschweißen hergestellt ist.
  • Auch ist an der Schneckenwendel 22 zugleich eine aufstauend wirkende Scheibe 42 mittels formgebendem Aufbauschweißen hergestellt. Die Scheibe 42 kann als Stauscheibe, aber auch als Tauchscheibe oder Flotatscheibe wirken.
  • Darüber hinaus ist an der Schneckenwendel 22 auch ein Räumer 44 an deren Endbereich an der Schneckennabe 22 mittels des formgebenden Aufbauschweißens angeformt.
  • Ein Übergang 46 von der Schneckennabe 20 zur Schneckenwendel 22 ist mittels des formgebenden Aufbauschweißens als Rundung, Fase bzw. Schrägung gestaltet. Dazu ist die erste Schweißschicht 26, wie in 4 veranschaulicht ist, breiter hergestellt, als die darüber angeordnete zweite Schweißschicht 28. Die breitere Schweißschicht 26 wird insbesondere mit einem höheren Schweißstrom, einem Pendelschweißvorgang oder einem geringeren Schweißvorschub hergestellt.
  • Eine seitliche Wendelfläche 48 der Schneckenwendel 22 ist nach deren Herstellung mittels Aufbauschweißen mechanisch nachbearbeitet worden. Eine solche Nachbearbeitung ist jedoch nicht zwingend erforderlich. An der Wendelfläche 48 ist ferner wahlweise eine verschleißfeste Beschichtung 50 aus Wolframcarbit hergestellt worden. Diese Beschichtung ist ebenfalls mittels der Schutzgas-Schweißeinrichtung 24 durch Auftragsschweißen als eine einzelne Schicht hergestellt worden.
  • Von der Schneckenwendel 22 ist deren Wendelquerschnittsfläche 52 gemäß der 6 in verschiedenen Varianten vorteilhaft profiliert ausgebildet. Dabei weist die Wendelquerschnittsfläche 52 radial innen einen Wendelfuß 54, radial weiter außen einen Wendelhals 56 und radial ganz außen einen Wendelkopf 58 auf.
  • Die Wendelquerschnittsfläche 52 ist gemäß den beiden Varianten in 6 oben links in Radialrichtung 16 sich nach radial außen verjüngend gestaltet. Gemäß einer Variante in 6 oben Mitte und zwei Varianten in 6 unten rechts weist die profilierte Wendelquerschnittsfläche 52 einen Wendelkopf 58 auf, der in Axialrichtung 14 verdickt gestaltet ist.
  • Bei mehreren Varianten ist an dem Wendelkopf 58 eine axial zur Räumrichtung hin geneigte Räumkante 60 ausgebildet, die die Beschichtung 50 trägt.
  • Gemäß drei Varianten in 6 oben Mitte weist die Wendelquerschnittsfläche 52 einen ersten Stützsteg 62 und einen zweiten Stützsteg 64 auf, wobei die Stützstege 62 und 64 weitgehend radial gerichtet sind. In Axialrichtung 14 zwischen den Stützstegen 62 und 64 befindet sich ein Freiraum 66. Auf diese Weise ist eine leichte und zugleich statisch besonders stabile Konstruktion geschaffen.
  • Eine Durchgangsöffnung 68 durchsetzt zumindest einen der Stützstege 62 und 64 und befindet sich insbesondere in dem von einer Räumseite 70 der Schneckenwendel 22 abgewandten, zweiten Stützsteg 64.
  • Gemäß Varianten in 6 oben rechts und unten links weist die profilierte Wendelquerschnittsfläche 52 einen ersten Abschnitt 72 auf, der sich in Radialrichtung 16 erstreckt und einen zweiten Abschnitt 74, der zur Radialrichtung 16 geneigt gestaltet ist. Ein Anstellwinkel 76 bzw. eine Neigung dieses zweiten Abschnitts 74 beträgt dabei vorzugsweise zwischen 10° und 40°, insbesondere zwischen 15° und 20°.
  • Gemäß mehrerer Varianten in 6 oben und unten weist die profilierte Wendelquerschnittsfläche 52 einen dritten Abschnitt 78 auf, der im Querschnitt betrachtet in der Form einer Schale gewölbt ist.
  • Die Schneckennabe 20 ist ebenfalls zumindest teilweise mittels formgebendem Aufbauschweißens mit der Schutzgas-Schweißeinrichtung 24 hergestellt worden.
  • Dabei weist die Schneckennabe 20 bezogen auf 1 ganz links einen zylindrischen, ersten Längsabschnitt 80 auf, der als hier zweiter Grundkörper für das Aufbauschweißen dient. Der Längsabschnitt 80 ist entsprechend selbst nicht mittels Aufbauschweißen hergestellt worden, sondern herkömmlich als Rohr, welches ferner gedreht und gefräst worden ist.
  • An dem Längsabschnitt 80 ist mittels Drehen bzw. Drehverfahren eine erste Lagerabstützung 82 für die Schnecke 10 ausgebildet worden.
  • Auf den Längsabschnitt 80 folgt an der Schneckennabe 20 in Richtung der Drehachse 10 ein kegelstumpfförmiger, zweiter Längsabschnitt 84, der mittels formgebendem Aufbauschweißen hergestellt ist. Dabei sind an dem Längsabschnitt 84 zunächst eine ringförmige erste Schweißschicht 86 und auf diese dann in Richtung der Drehachse 12 bzw. entgegen der Axialrichtung 14 eine zweite Schweißschicht 88 sowie viele weitere zweite Schweißschichten aufgebracht worden.
  • Beim derartigen Aufbauschweißen ist der erste Längsabschnitt 80 bewegt und insbesondere gedreht worden, wobei die Schutzgas-Schweißeinrichtung 24 dann entgegen der Axialrichtung 14 zu verfahren, ansonsten aber nur geringfügig radial zu bewegen ist, um die Kegelstumpfform auszubilden.
  • Auf den zweiten Längsabschnitt 84 folgt entgegen der Axialrichtung 14 ein zylindrischer, dritter Längsabschnitt 92, der im Wesentlichen rohrförmig und in konventioneller Weise hergestellt ist. Der Längsabschnitt 92 kann auch vorteilhaft mittels Aufbauschweißen hergestellt sein und dabei insbesondere gitterförmig gestaltet sein. An dem Längsabschnitt 92 befindet sich eine Einlaufkammer 94, in die das zu klärende Phasengemisch einzubringen ist. Diese Einlaufkammer 94 ist besonders vorteilhaft mittels formgebendem Aufbauschweißen hergestellt, weil an ihre dann individuell gestaltete Strömungsflächen ausgebildet sein können.
  • Ferner können Austrittsöffnungen 96, welche im Längsabschnitt 92 im Bereich der Einlaufkammer 94 herzustellen sind, vorteilhaft mittels Aufbauschweißen ausgebildet werden.
  • Im Bereich des Längsabschnitts 92 befindet sich radial innen bzw. konzentrisch zur Drehachse 12 ein Einlaufrohr 98. Dieses Einlaufrohr 98 ist ebenfalls vorteilhaft mittels formgebendem Aufbauschweißen hergestellt, so dass auch an ihm gezielt besondere Strömungs- und Leitflächen ausgebildet sein können.
  • In den 7 bis 10 sind verschiedene Ausführungsformen von Durchgangsöffnungen 40 in der jeweils zugehörigen Schneckenwendel 22 mit zugehöriger Schneckennabe 20 dargestellt.
  • Dabei weist die einzelne Durchgangsöffnung 40 gemäß 7 radial mittig einen in Umfangsrichtung besonders breiten Abschnitt auf. Durch diesen Abschnitt kann gezielt eine Mittelschicht des zu klärenden Phasengemisches durch die Schneckenwendel 22 hindurchtreten.
  • Gemäß 8 sind in Radialrichtung 16 mehrere Durchgangsöffnung 40 auf zwei unterschiedlichen Radien angeordnet. Dabei weisen die radial äußeren Durchgangsöffnungen 40 in Umfangsrichtung eine größere Breite auf, als die radial innen liegenden Durchgangsöffnungen. Auch mit dieser Ausführungsform kann gezielt zu klärendes Material einer Umfangsschicht durch die Schneckenwendel 22 hindurchtreten.
  • In 9 ist eine Ausführungsform dargestellt, bei der die Durchgangsöffnungen 40 radial innen breiter sind, als radial außen. Dieser Breitenunterschied in Umfangsrichtung ist gestuft gestaltet. Mit dieser Ausführungsform kann an der Schneckenwendel 22 gezielt mehr Material hindurchtreten, wenn dieses nach innen hin den Radius der Stufe erreicht hat.
  • 10 zeigt schließlich eine Ausführungsform, bei der die Durchgangsöffnungen 40 als zur Radialrichtung 16 schräg geneigte, gerade Schlitze gestaltet sind. die derartigen Schlitze führen beim Durchtritt von Material durch sie hindurch zu einer Durchmischung und damit zu einem Aufbrechen des zu klärenden Materials.
  • Abschließend sei angemerkt, dass sämtlichen Merkmalen, die in den Anmeldungsunterlagen und insbesondere in den abhängigen Ansprüchen genannt sind, trotz des vorgenommenen formalen Rückbezugs auf einen oder mehrere bestimmte Ansprüche, auch einzeln oder in beliebiger Kombination eigenständiger Schutz zukommen soll.
  • Bezugszeichenliste
  • 10
    Schnecke
    12
    Drehachse
    14
    Axialrichtung
    16
    Radialrichtung
    18
    Trommel
    20
    Schneckennabe
    22
    Schneckenwendel
    24
    Schutzgas-Schweißeinrichtung
    26
    erste Schweißschicht der Schneckenwendel
    28
    zweite Scheißschicht der Schneckenwendel
    30
    Schweißdraht
    32
    Schweißgas
    34
    Lichtbogen
    36
    Wendelsteigung
    38
    Wuchtgewicht
    40
    Durchgangsöffnung
    42
    Scheibe
    44
    Räumer
    46
    Übergang
    48
    Wendelfläche
    50
    Beschichtung
    52
    Wendelquerschnittsfläche
    54
    Wendelfuß
    56
    Wendelhals
    58
    Wendelkopf
    60
    Räumkante
    62
    erster Stützsteg
    64
    zweiter Stützsteg
    66
    Freiraum
    68
    Durchgangsöffnung
    70
    Räumseite
    72
    erster Abschnitt der Wendelquerschnittfläche
    74
    zweiter Abschnitt der Wendelquerschnittfläche
    76
    Anstellwinkel
    78
    dritter Abschnitt der Wendelquerschnittfläche
    80
    erster Längsabschnitt der Schneckennabe
    82
    erste Lagerabstützung
    84
    zweiter Längsabschnitt der Schneckennabe
    86
    erste Schweißschicht an der Schneckennabe
    88
    zweite Schweißschicht an der Schneckennabe
    92
    dritter Längsabschnitt der Schneckennabe
    94
    Einlaufkammer
    96
    Austrittsöffnung
    98
    Einlaufrohr
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • Norm DIN EN ISO 14175 [0004, 0006, 0026]
    • Norm EN ISO 4063 [0005]

Claims (10)

  1. Verfahren zum Herstellen eines metallischen Werkstücks (20; 22), mit den Schritten: - Bereitstellen eines metallischen Grundkörpers (20; 80), - Bereitstellen einer Schutzgas-Schweißeinrichtung (24) und - Herstellen des metallischen Werkstücks (20; 22) mittels der Schutzgas-Schweißeinrichtung (24) aus einer an dem Grundkörper (20; 80) aufgetragenen, ersten Schweißschicht (26; 86) sowie mehreren darauf übereinander aufgetragenen, zweiten Schweißschichten (28; 88), dadurch gekennzeichnet, dass die Schutzgas-Schweißeinrichtung (24) mit einem Schweißgas (32) betrieben und dieses Schweißgas (32) aus einer der Untergruppen der Hauptgruppen I, M1, M2 oder N der Norm DIN EN ISO 14175 ausgewählt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Schweißgas (32) einen Anteil an Kohlendioxid von weniger als 20 Volumen-Prozent nominell aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Schweißgas (32) einen Anteil an Sauerstoff von weniger als 3 Volumen-Prozent nominell aufweist.
  4. Verfahren zum Herstellen eines metallischen Werkstücks (20; 22), insbesondere nach einem der Ansprüche 1 bis 3, mit den Schritten: - Bereitstellen eines metallischen Grundkörpers (20; 80), - Bereitstellen einer Schutzgas-Schweißeinrichtung (24) und - Herstellen des metallischen Werkstücks (20; 22) mittels der Schutzgas-Schweißeinrichtung (24) aus einer an dem Grundkörper (20; 80) aufgetragenen, ersten Schweißschicht (26; 86) sowie mehreren darauf übereinander aufgetragenen, zweiten Schweißschichten (28; 88), dadurch gekennzeichnet, dass die Schutzgas-Schweißeinrichtung (24) mit einem Impulslichtbogen betrieben wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass beim Auftragen die erste Schweißschicht (26; 86) breiter ausgebildet wird, als die zweite Schweißschicht (28; 88).
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schutzgas-Schweißeinrichtung (24) mit einem Schweißdraht (30) mit einem Durchmesser von 0,5 mm bis 3,0 mm, bevorzugt von 1,0 mm bis 1,5 mm, besonders bevorzugt von 1,2 mm betrieben ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Grundkörper (20; 80) während des Herstellens des metallischen Werkstücks (20; 22) bewegt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Grundkörper (20; 80) derart bewegt wird, dass am Schweißort der Schutzgas-Schweißeinrichtung (24) eine horizontale Schweißoberfläche oder eine in Schweißrichtung der Schutzgas-Schweißeinrichtung (24) ansteigende Schweißoberfläche vorliegt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Werkstück (20; 22) eine Schneckenwendel (22) einer Vollmantelschneckenzentrifuge hergestellt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Werkstück (20; 22) eine Schneckennabe (20) einer Vollmantelschneckenzentrifuge hergestellt wird.
DE102017103066.2A 2017-02-15 2017-02-15 Verfahren zum Herstellen eines metallischen Werkstücks Ceased DE102017103066A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102017103066.2A DE102017103066A1 (de) 2017-02-15 2017-02-15 Verfahren zum Herstellen eines metallischen Werkstücks
PCT/DE2018/100129 WO2018149451A2 (de) 2017-02-15 2018-02-14 Verfahren zum herstellen eines metallischen werkstücks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017103066.2A DE102017103066A1 (de) 2017-02-15 2017-02-15 Verfahren zum Herstellen eines metallischen Werkstücks

Publications (1)

Publication Number Publication Date
DE102017103066A1 true DE102017103066A1 (de) 2018-08-16

Family

ID=61622280

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017103066.2A Ceased DE102017103066A1 (de) 2017-02-15 2017-02-15 Verfahren zum Herstellen eines metallischen Werkstücks

Country Status (2)

Country Link
DE (1) DE102017103066A1 (de)
WO (1) WO2018149451A2 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615245A1 (de) 1996-04-18 1997-10-23 Inst Energetik Und Umwelt Gmbh Spurkranzgeführtes Metallrad
DE69907215T2 (de) 1998-08-19 2003-10-30 Siemens Westinghouse Power Verfahren zur reparatur und modernisierung von turbinenrotoren.
DE10259141A1 (de) 2002-12-18 2004-07-08 Corodur Verschleiss-Schutz Gmbh Werkstoffsystem zum thermischen Beschichten
DE102012204927B3 (de) 2012-03-27 2013-07-04 Thomas Ammersbach Auftraggeschweißtes Werkstück und Verfahren zur Herstellung eines auftraggeschweißten Werkstückes
DE102015001138A1 (de) 2015-01-29 2016-08-04 Linde Aktiengesellschaft Verfahren zum schichtweisen Herstellen und/oder Beschichten eines Werkstücks
DE102015117238A1 (de) 2015-10-09 2017-04-13 GEFERTEC GmbH Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH669212A5 (en) * 1987-01-23 1989-02-28 Castolin Sa Mfg. extruder screw esp. for plastics extrusion - using multilayer weld deposition to form screw profile
US4940390A (en) * 1988-05-05 1990-07-10 Westinghouse Electric Corp. Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up
CN100436021C (zh) * 2003-12-10 2008-11-26 上海工程技术大学 一种自动堆焊方法及其设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615245A1 (de) 1996-04-18 1997-10-23 Inst Energetik Und Umwelt Gmbh Spurkranzgeführtes Metallrad
DE69907215T2 (de) 1998-08-19 2003-10-30 Siemens Westinghouse Power Verfahren zur reparatur und modernisierung von turbinenrotoren.
DE10259141A1 (de) 2002-12-18 2004-07-08 Corodur Verschleiss-Schutz Gmbh Werkstoffsystem zum thermischen Beschichten
DE102012204927B3 (de) 2012-03-27 2013-07-04 Thomas Ammersbach Auftraggeschweißtes Werkstück und Verfahren zur Herstellung eines auftraggeschweißten Werkstückes
DE102015001138A1 (de) 2015-01-29 2016-08-04 Linde Aktiengesellschaft Verfahren zum schichtweisen Herstellen und/oder Beschichten eines Werkstücks
DE102015117238A1 (de) 2015-10-09 2017-04-13 GEFERTEC GmbH Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung

Also Published As

Publication number Publication date
WO2018149451A2 (de) 2018-08-23
WO2018149451A3 (de) 2018-10-11

Similar Documents

Publication Publication Date Title
EP0665079B1 (de) Verfahren zum Verbinden von Metallteilen mittels Lichtbogen-Schmelzschweissen
EP2215329B1 (de) Herstellungsprozess für einen rotor
EP2226146B1 (de) Verfahren zum Verbinden zweier, insbesondere rotationssymmetrischer, Metallteile, mittels eines Wolfram-Inert-Gas (WIG)-Schweissverfahrens sowie Vorrichtung zur Durchführung des Verfahrens
EP3299117B1 (de) Verfahren zur herstellung oder zur reparatur eines bauteils einer rotationsmaschine sowie bauteil hergestellt oder repariert nach einem solchen verfahren
EP2216122A1 (de) Schutzgasrohr und Kontaktrohr einer Vorrichtung zum verbesserten Engspaltschweißen
EP2216123A1 (de) Schutzgasrohr und Kontaktrohr einer Vorrichtung zum verbesserten Engspaltschweißen
DE102017103068B4 (de) Herstellungsverfahren einer Vollmantelschneckenzentrifugen-Schnecke mit einer Schneckennabe
EP2216121A1 (de) Schutzgasrohr und Kontaktrohr einer Vorrichtung zum verbesserten Engspaltschweißen
EP2216120B1 (de) Schutzgasrohr und Kontaktrohr einer Vorrichtung zum verbesserten Engspaltschweißen
DE102017103066A1 (de) Verfahren zum Herstellen eines metallischen Werkstücks
DE102016205262A1 (de) Verfahren zur Herstellung eines Drahts aus einem spröden Werkstoff und Verwendung desselben zur generativen Herstellung eines Bauteils
EP2146059B1 (de) Verwendung eines Siebes, sowie Dampfturbinenanlage
DE102017103069B4 (de) Vollmantelschneckenzentrifugen-Schnecke
DE102017103067A1 (de) Vollmantelschneckenzentrifugen-Schnecke mit einer Schneckenwendel
EP4341001A1 (de) Schneckennabe, zentrifugenschnecke und vollmantelschneckenzentrifuge
EP3983154A1 (de) Eiga-spule mit ringförmigen windungen
DE2231037C3 (de) Einrichtung zum Lichtbogenschweißen mit abschmelzender Elektrode unter Schutzgas
WO2019105660A1 (de) Verstärkter käfigläufer
DE102013110528A1 (de) Verfahren zum Herstellen eines Verbindungselements sowie Verbindungselement
DE3433595A1 (de) Nockenwelle und verfahren zu ihrer herstellung
EP1301647A2 (de) Verfahren zum herstellen von schneidkörpern mit einer schneidschicht
DE1777144C3 (de) Vorrichtung zum Herstellen von Gittern fur Elektronenrohren
DE202017006831U1 (de) Ein- und Auslasseinrichtung eines Separators
DE102020105122A1 (de) Verfahren zum Herstellen eines Bauteils und/oder eines Bauteilabschnitts einer Vollmantel-Schneckenzentrifuge und Vollmantel-Schneckenzentrifuge
DE2151180C2 (de) Justiervorrichtung für eine Schutzgas-Schweißbrennerdüse zum Schweißen dünnwandiger Blechgitterroste

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R082 Change of representative

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R082 Change of representative

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

R002 Refusal decision in examination/registration proceedings
R006 Appeal filed
R008 Case pending at federal patent court
R003 Refusal decision now final
R011 All appeals rejected, refused or otherwise settled