DE102016224181A1 - A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system - Google Patents

A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system Download PDF

Info

Publication number
DE102016224181A1
DE102016224181A1 DE102016224181.8A DE102016224181A DE102016224181A1 DE 102016224181 A1 DE102016224181 A1 DE 102016224181A1 DE 102016224181 A DE102016224181 A DE 102016224181A DE 102016224181 A1 DE102016224181 A1 DE 102016224181A1
Authority
DE
Germany
Prior art keywords
electrochemical energy
energy store
charging
temperature
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016224181.8A
Other languages
German (de)
Inventor
Jan Salziger
Miguel Casares
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016224181.8A priority Critical patent/DE102016224181A1/en
Priority to CN201780075819.6A priority patent/CN110062713A/en
Priority to EP17791025.4A priority patent/EP3551495A1/en
Priority to PCT/EP2017/076698 priority patent/WO2018103936A1/en
Publication of DE102016224181A1 publication Critical patent/DE102016224181A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/14Driver interactions by input of vehicle departure time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

Verfahren (200) zum Laden eines elektrochemischen Energiespeichers, insbesondere einer Batterie, mit den Schritten:
Erfassen (210) eines ersten Eingabesignals,
Erfassen (220) eines zweiten Eingabesignals,
Bestimmen (240) eines Istladezustands des elektrochemischen Energiespeichers,
Erfassen (250) einer Anfangstemperatur des elektrochemischen Energiespeichers,
Bestimmen (280) eines Temperaturhubs in Abhängigkeit einer vorgegebenen Betriebsdauer und mindestens eines weiteren Parameters,
Bestimmen (290) einer Endtemperatur des elektrochemischen Energiespeichers, wobei die Endtemperatur eine Differenz einer maximal zulässigen Temperatur des elektrochemischen Energiespeichers und des Temperaturhubs ist,
Erzeugen (300) eines Ladessignals in Abhängigkeit der Anfangstemperatur des elektrochemischen Energiespeichers, der Endtemperatur des elektrochemischen Energiespeichers, des ersten Eingabesignals, des zweiten Eingabesignals und des Istladezustands des elektrochemischen Energiespeichers, wobei das Ladesignal einen Ladestrom umfasst, und
Ansteuern (310) einer Ladevorrichtung mittels Ladesignal zum Laden des elektrochemischen Energiespeichers.

Figure DE102016224181A1_0000
Method (200) for charging an electrochemical energy store, in particular a battery, with the steps:
Detecting (210) a first input signal,
Detecting (220) a second input signal,
Determining (240) an actual state of charge of the electrochemical energy store,
Detecting (250) an initial temperature of the electrochemical energy store,
Determining (280) a temperature deviation as a function of a predetermined operating time and at least one further parameter,
Determining (290) a final temperature of the electrochemical energy store, the final temperature being a difference between a maximum allowable temperature of the electrochemical energy store and the temperature swing,
Generating (300) a charge signal as a function of the initial temperature of the electrochemical energy store, the final temperature of the electrochemical energy store, the first input signal, the second input signal and the actual state of charge of the electrochemical energy store, wherein the charge signal comprises a charging current, and
Driving (310) a charging device by means of charging signal for charging the electrochemical energy storage.
Figure DE102016224181A1_0000

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zum Laden eines elektrochemischen Energiespeichers, ein Batteriemanagementsystem, ein Batteriesystem und eine Verwendung des Batteriesystems.The invention relates to a method for charging an electrochemical energy store, a battery management system, a battery system and a use of the battery system.

Das Dokument DE 102008053141 A1 beschreibt ein Verfahren und eine Steuerung zum Aufladen einer Batterie eines Fahrzeugs. Dabei wird das Fahrzeug durch einen Elektromotor angetrieben, welcher von einer Batterie gespeist wird. Ein Zeitpunkt, zu welchem das Fahrzeug benutzt werden wird, und eine Fahrstrecke, die von dem Fahrzeug ab diesem Zeitpunkt zu fahren ist, können vorgegeben werden. Abhängig von dem Zeitpunkt und der Fahrstrecke wird die Batterie derart aufgeladen, dass die Batterie zu dem vorgegebenen Zeitpunkt mit einer für die Fahrstrecke ausreichenden Ladung aufgeladen ist.The document DE 102008053141 A1 describes a method and a controller for charging a battery of a vehicle. The vehicle is driven by an electric motor, which is powered by a battery. A time at which the vehicle will be used and a travel distance to be traveled by the vehicle from that time point may be specified. Depending on the time and the route, the battery is charged so that the battery is charged at the given time with a sufficient charge for the route.

Nachteilig ist hierbei, dass die Batterie zwar zum vorgegebenen Zeitpunkt die gewünschte Ladung aufweist, das Fahrzeug jedoch nicht betrieben werden kann, da die Temperatur der Batterie den Betrieb des Fahrzeugs nicht zulässt.The disadvantage here is that although the battery at the predetermined time has the desired charge, but the vehicle can not be operated because the temperature of the battery does not allow the operation of the vehicle.

Die Aufgabe der Erfindung ist es, diesen Nachteil zu überwinden.The object of the invention is to overcome this disadvantage.

Offenbarung der ErfindungDisclosure of the invention

Das erfindungsgemäße Verfahren zum Laden eines elektrochemischen Energiespeichers, insbesondere einer Batterie, umfasst das Erfassen eines ersten Eingabesignals, das Erfassen eines zweiten Eingabesignals, das Bestimmen eines Istladezustands des elektrochemischen Energiespeichers und das Erfassen einer Anfangstemperatur des elektrochemischen Energiespeichers. Das Verfahren umfasst außerdem das Bestimmen eines Temperaturhubs in Abhängigkeit einer vorgegebenen Betriebsdauer und mindestens eines weiteren Parameters, sowie das Bestimmen einer Endtemperatur des elektrochemischen Energiespeichers, wobei die Endtemperatur eine Differenz einer maximal zulässigen Temperatur des elektrochemischen Energiespeichers und des Temperaturhubs ist. Das Verfahren umfasst weiterhin das Erzeugen eines Ladesignals in Abhängigkeit der Anfangstemperatur des elektrochemischen Energiespeichers, der Endtemperatur des elektrochemischen Energiespeichers, des ersten Eingabesignals, des zweiten Eingabesignals und des Istladezustands des elektrochemischen Energiespeichers, wobei das Ladesignal einen Ladestrom umfasst, und das Ansteuern einer Ladevorrichtung mittels Ladesignal zum Laden des elektrochemischen Energiespeichers.The method according to the invention for charging an electrochemical energy store, in particular a battery, comprises detecting a first input signal, detecting a second input signal, determining an actual charge state of the electrochemical energy store and detecting an initial temperature of the electrochemical energy store. The method also includes determining a temperature swing as a function of a predetermined operating time and at least one further parameter, and determining a final temperature of the electrochemical energy store, wherein the end temperature is a difference between a maximum allowable temperature of the electrochemical energy store and the temperature. The method further comprises generating a charge signal as a function of the initial temperature of the electrochemical energy store, the final temperature of the electrochemical energy store, the first input signal, the second input signal and the actual state of charge of the electrochemical energy store, wherein the charge signal comprises a charging current, and the driving of a charging device by means of a charging signal for charging the electrochemical energy store.

Der Vorteil ist hierbei, dass der elektrochemische Energiespeicher unmittelbar nach dem Beenden des Ladevorgangs einsetzbar ist.The advantage here is that the electrochemical energy store can be used immediately after the end of the charging process.

In einer Weiterbildung repräsentiert das erste Eingabesignal einen Nutzungszeitpunkt des elektrochemischen Energiespeichers. Mit anderen Worten es handelt sich hierbei um den Zeitpunkt an dem der elektrochemische Energiespeicher verwendet werden bzw. gestartet werden soll.In a further development, the first input signal represents a time of use of the electrochemical energy store. In other words, this is the point in time at which the electrochemical energy store is used or should be started.

In einer weiteren Ausgestaltung repräsentiert das zweite Eingabesignal einen Sollladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt. Mit anderen Worten es handelt sich hierbei um einen vom Nutzer gewünschten Ladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt.In a further refinement, the second input signal represents a nominal charging state of the electrochemical energy store at the time of use. In other words, this is a charge state of the electrochemical energy store desired by the user at the time of use.

In einer Weiterbildung ist der mindestens eine weitere Parameter ein konstant entnehmbarer maximaler Entladestrom des elektrochemischen Energiespeichers oder ein entnehmbarer Entladestrom, der aus einer bisherigen Verwendungsweise des elektrochemischen Energiespeichers bestimmt wird.In a development, the at least one further parameter is a constantly removable maximum discharge current of the electrochemical energy store or a removable discharge current, which is determined from a previous mode of use of the electrochemical energy store.

Der Vorteil ist hierbei, dass der Ladevorgang des elektrochemischen Ladevorgangs an die anschließende Verwendungsweise des Nutzers angepasst werden kann.The advantage here is that the charging of the electrochemical charging can be adapted to the subsequent use of the user.

In einer Weiterbildung wird ein Alterungszustand des elektrochemischen Energiespeichers bestimmt und das Ladesignal in Abhängigkeit des Alterungszustands des elektrochemischen Energiespeichers eingestellt.In a development, an aging state of the electrochemical energy store is determined and the charging signal is set as a function of the aging state of the electrochemical energy store.

Vorteilhaft ist hierbei, dass durch den angepassten Ladestrom die Alterung beeinflusst werden kann. Somit kann beispielsweise eine fortschreitende Alterung durch langsames Laden verringert werden. Es ist jedoch auch möglich bei definierter verbleibender Lebensdauer der Batterie, z.B. bis zum terminierten Tausch der Batterie, einen höheren Ladestrom zu verwenden und damit die Ladezeit zu reduzieren.It is advantageous here that the aging can be influenced by the adapted charging current. Thus, for example, progressive aging can be reduced by slow charging. However, it is also possible with a defined remaining life of the battery, e.g. until the battery is replaced at the scheduled time, to use a higher charge current and thus to reduce the charging time.

In einer weiteren Ausgestaltung wird der Ladestrom auf einen maximal zulässigen Ladestrom des elektrochemischen Energiespeichers begrenzt.In a further embodiment, the charging current is limited to a maximum permissible charging current of the electrochemical energy store.

Der Vorteil ist hierbei, dass der elektrochemische Energiespeicher durch den Ladevorgang nicht zerstört werden kann.The advantage here is that the electrochemical energy storage can not be destroyed by the charging process.

In einer Weiterbildung wird ein Informationssignal insbesondere zum Zeitpunkt eines Ladebeginns erzeugt. Das Informationssignal gibt an, dass ein tatsächlicher Ladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt kleiner sein wird als der Sollladezustand, d. h. der vom Nutzer gewünschte Ladezustand.In one development, an information signal is generated in particular at the time of starting charging. The information signal indicates that an actual state of charge of the electrochemical energy storage at the time of use will be smaller than the nominal state of charge, ie the desired state of charge by the user.

Vorteilhaft ist hierbei, dass ein Nutzer über den tatsächlichen Ladezustand zum Nutzungszeitpunkt bei Ladebeginn informiert werden kann. Dadurch erhält der Nutzer die Möglichkeit seine Eingaben bezüglich des Nutzungszeitpunkts und des gewünschten Ladezustands gegebenenfalls anzupassen.It is advantageous here that a user can be informed about the actual state of charge at the time of use at the start of charging. This gives the user the opportunity to adjust his inputs regarding the time of use and the desired state of charge, if necessary.

In einer weiteren Ausgestaltung wird das Informationssignal auf einem HMI des elektrochemischen Energiespeichers, einem HMI eines Fahrzeugs oder einem mobilen Endgerät angezeigt bzw. ausgegeben.In a further refinement, the information signal is displayed or output on an HMI of the electrochemical energy store, an HMI of a vehicle or a mobile terminal.

Das erfindungsgemäße Batteriemanagementsystem umfasst eine Steuereinheit und einen Speicher, wobei das Batteriemanagementsystem eingerichtet ist, das erfindungsgemäße Verfahren auszuführen.The battery management system according to the invention comprises a control unit and a memory, wherein the battery management system is set up to carry out the method according to the invention.

Das erfindungsgemäße Batteriesystem umfasst mindestens einen elektrochemischen Energiespeicher und ein erfindungsgemäßes Batteriemanangementsystem.The battery system according to the invention comprises at least one electrochemical energy store and a battery management system according to the invention.

In einer Weiterbildung umfasst der elektrochemische Energiespeicher Li-Ionen-Zellen, LiS-Zellen, LiO-Zellen oder Feststoffzellen.In a development, the electrochemical energy store comprises Li-ion cells, LiS cells, LiO cells or solid cells.

Erfindungsgemäß wird das Batteriesystem in einem Fahrzeug verwendet.According to the invention, the battery system is used in a vehicle.

In einer Weiterbildung ist das Fahrzeug ein elektrisch betriebenes Zweirad, insbesondere ein Roller.In a further development, the vehicle is an electrically operated two-wheeler, in particular a scooter.

Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.Further advantages will become apparent from the following description of exemplary embodiments or from the dependent claims.

Figurenlistelist of figures

Die vorliegende Erfindung wird nachfolgend anhand bevorzugter Ausführungsformen und beigefügter Zeichnungen erläutert. Es zeigen:

  • 1 ein Batteriesystem und
  • 2 ein Verfahren zum Laden eines elektrochemischen Energiespeichers.
The present invention will be explained below with reference to preferred embodiments and accompanying drawings. Show it:
  • 1 a battery system and
  • 2 a method for charging an electrochemical energy store.

1 zeigt ein Batteriesystem 100 mit einem Batteriemanagementsystem 115, einer Ladevorrichtung 114, einem Batterietemperatursensor 106 und einer Batteriespannungsmesseinheit 104. Das Batteriesystem 100 umfasst mindestens einen elektrochemischen Energiespeicher, der in 1 nicht gezeigt ist. Der elektrochemische Energiespeicher umfasst dabei beispielsweise Li-Ionen-Zellen, LiS-Zellen, LiO-Zellen oder Feststoffzellen. Das Batteriemanagementsystem 115 umfasst eine Steuereinheit 111 und einen Speicher 112. Optional umfasst das Batteriemanagementsystem 115 einen Umgebungstemperatursensor 108. Das Batteriemanagementsystem 115 ist dazu eingerichtet ein erstes Eingabesignal 102 und ein zweites Eingabesignal 103 zu erfassen. Das erste Eingabesignal 102 repräsentiert einen von einem Nutzer gewünschten Zeitpunkt zu dem der elektrochemische Energiespeicher betrieben werden soll. Das zweite Eingangssignal 103 repräsentiert einen vom Nutzer gewünschten Ladezustand zum Nutzungszeitpunkt des elektrochemischen Energiespeichers. Das Batteriemanagementsystem 115 erfasst mit Hilfe des Umgebungstemperatursensors 108 ein Umgebungstemperatursignal 109. Das Batteriemanagementsystem 115 erfasst mit Hilfe des Batterietemperatursensors 106 ein aktuelles Batterietemperatursignal 107, das eine Anfangstemperatur des elektrochemischen Energiespeichers repräsentiert, insbesondere zum Ladebeginn. Des Weiteren erfasst das Batteriemanagementsystem 115 mit Hilfe der Batteriespannungsmesseinheit 104 die Spannung 105 des elektrochemischen Energiespeichers zum Zeitpunkt eines Verbindens des elektrochemischen Energiespeichers mit der Ladevorrichtung 114. Die Steuereinheit 111 bestimmt mit Hilfe der Spannung 105 einen SoC-Wert, den sogenannten Istladezustand des elektrochemischen Energiespeichers. Die Steuereinheit 111 erzeugt ein Informationssignal 110, das angibt, dass der tatsächliche Ladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt kleiner sein wird als der vom Nutzer gewünschte Ladezustand. Zusätzlich kann das Informationssignal 108 Informationen zum aktuellen Ladezustand und zur verbleibenden Ladedauer umfassen. Die Steuereinheit 111 umfasst einen Mikrocontroller. Das Batteriemanagementsystem 115 erzeugt ein Ladesignal 113, das einen Ladestrom umfasst. Das erste Eingabesignal 102 und das zweite Eingabesignal 103 können mittels einer Ein-/Ausgabeeinheit 101 eingegeben werden. Das Informationssignal 108 wird mittels der Ein-/ Ausgabeeinheit 101 ausgegeben bzw. angezeigt. Die Ein-/Ausgabeeinheit 101 ist beispielsweise ein HMI bzw. ein Display des elektrochemischen Energiespeichers oder eines mobilen Endgeräts. Das mobile Endgerät ist beispielsweise ein Smartphone oder ein Tablett. Alternativ können das erste Eingangssignal 102 und das zweite Eingangssignal 103 in dem Speicher 112 hinterlegt werden. Wird kein erstes Eingangssignal 102 und kein zweites Eingangssignal 103 über die Ein-/Ausgabeeinheit 101 eingegeben, so werden die hinterlegten Werte des ersten Eingangssignals 102 und des zweiten Eingangssignals 103 aus dem Speicher 112 erfasst. In einem weiteren Ausführungsbeispiel ist die Ein-/Ausgabeeinheit 101 ein HMI bzw. Display eines Fahrzeugs. 1 shows a battery system 100 with a battery management system 115 , a loader 114 , a battery temperature sensor 106 and a battery voltage measuring unit 104 , The battery system 100 comprises at least one electrochemical energy store, which in 1 not shown. The electrochemical energy store comprises, for example, Li-ion cells, LiS cells, LiO cells or solid cells. The battery management system 115 includes a control unit 111 and a memory 112 , Optionally, the battery management system includes 115 an ambient temperature sensor 108 , The battery management system 115 is configured to a first input signal 102 and a second input signal 103 capture. The first input signal 102 represents a time desired by a user to which the electrochemical energy store is to be operated. The second input signal 103 represents a state of charge desired by the user at the time of use of the electrochemical energy store. The battery management system 115 detected with the help of the ambient temperature sensor 108 an ambient temperature signal 109 , The battery management system 115 detects a current battery temperature signal using the battery temperature sensor 106 107 , which represents an initial temperature of the electrochemical energy store, in particular for charge start. Furthermore, the battery management system detects 115 with the help of the battery voltage measuring unit 104 the voltage 105 the electrochemical energy storage at the time of connecting the electrochemical energy storage with the charging device 114 , The control unit 111 determined with the help of tension 105 a SoC value, the so-called actual state of charge of the electrochemical energy store. The control unit 111 generates an information signal 110 indicating that the actual state of charge of the electrochemical energy storage device at the time of use will be less than the state of charge desired by the user. In addition, the information signal 108 Include information about the current state of charge and the remaining charging time. The control unit 111 includes a microcontroller. The battery management system 115 generates a charging signal 113 which includes a charging current. The first input signal 102 and the second input signal 103 can be detected by means of an input / output unit 101 be entered. The information signal 108 is by means of the input / output unit 101 output or displayed. The input / output unit 101 is for example an HMI or a display of the electrochemical energy storage or a mobile terminal. The mobile terminal is for example a smartphone or a tablet. Alternatively, the first input signal 102 and the second input signal 103 in the memory 112 be deposited. Will not be a first input signal 102 and no second input signal 103 via the input / output unit 101 entered, the stored values of the first input signal 102 and the second input signal 103 from the store 112 detected. In a further embodiment, the input / output unit 101 an HMI or display of a vehicle.

2 zeigt das Verfahren 200 zum Laden eines elektrochemischen Energiespeichers. Das Verfahren 200 startet mit dem Schritt 210, in dem ein erstes Eingabesignal erfasst wird. Das erste Eingabesignal repräsentiert dabei einen Nutzungszeitpunkt des elektrochemischen Energiespeichers. In einem folgenden Schritt 220 wird ein zweites Eingabesignal erfasst. Das zweite Eingabesignal repräsentiert einen Sollladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt, d. h. einen vom Nutzer gewünschten Ladezustand zum Nutzungszeitpunkt. Die Schritte 210 und 220 können auch in umgekehrter Reihenfolge durchgeführt werden, sodass zuerst das zweite Eingabesignal erfasst wird und danach das erste Eingabesignal. Das erste Eingabesignal und das zweite Eingabesignal können auch als bevorzugte Werte des Nutzers im Speicher hinterlegt werden, beispielsweise wenn der Nutzer jeden Tag zur gleichen Uhrzeit einen bestimmten Ladezustand der Batterie benötigt. Werden entweder das erste Eingangssignal oder das zweite Eingangssignal oder beide nicht über das Mittel eingegeben, so werden die hinterlegten Werte des ersten Eingangssignals und/oder des zweiten Eingangssignals aus dem Speicher erfasst. In einem folgenden Schritt 240 wird ein Istladezustand des elektrochemischen Energiespeichers bestimmt. Dazu erfasst das Batteriemanagementsystem mit Hilfe der Batteriespannungsmesseinheit die Spannung der Batterie, woraus der SoC-Wert der Batterie bestimmt wird. In einem folgenden Schritt 250 wird eine Anfangstemperatur des elektrochemischen Energiespeichers mit Hilfe eines Batterietemperatursensors erfasst. Bei der Anfangstemperatur handelt es sich insbesondere um die Batterietemperatur zum Zeitpunkt des elektromechanischen Verbindens des elektrochemischen Energiespeichers mit der Ladevorrichtung. In einem folgenden Schritt 280 wird ein Temperaturhub in Abhängigkeit einer vorgegebenen Betriebsdauer und mindestens eines weiteren Parameters bestimmt. Der Begriff vorgegebene Betriebsdauer umfasst dabei auch eine vorgegebene Ladekapazität oder eine vorgegebene Reichweite. Unter dem Begriff Temperaturhub ist der Temperaturhub zu verstehen, der durch einen Entladevorgang des elektrochemischen Energiespeichers zu erwarten ist, wobei der Entladevorgang mit dem Nutzungszeitpunkt beginnt. In einem folgenden Schritt 290 wird eine Endtemperatur des elektrochemischen Energiespeichers bestimmt. Die Endtemperatur ist dabei als Differenz einer maximal zulässigen Temperatur bzw. Betriebstemperatur des elektrochemischen Energiespeichers und des Temperaturhubs definiert, wobei die maximal zulässige Betriebstemperatur im Speicher hinterlegt ist. Mit anderen Worten die Endtemperatur ist dabei die Temperatur, die der elektrochemische Energiespeicher maximal zum Nutzungszeitpunkt aufweisen darf, damit die anschließende Verwendung des elektrochemischen Energiespeichers gewährleistet ist. In einem folgenden Schritt 300 wird ein Ladesignal in Abhängigkeit der Anfangstemperatur des elektrochemischen Energiespeichers, der Endtemperatur des elektrochemischen Energiespeichers, des ersten Eingabesignals, des zweiten Eingabesignals und des Istladezustands des elektrochemischen Energiespeichers erzeugt. Das Ladesignal umfasst dabei einen Ladestrom. In einem folgenden Schritt 310 wird eine Ladevorrichtung mit Hilfe des Ladesignals angesteuert, sodass der elektrochemische Energiespeicher geladen wird. 2 shows the procedure 200 for charging an electrochemical energy store. The procedure 200 starts with the step 210 in which a first input signal is detected. The first input signal represents a time of use of the electrochemical energy store. In a following step 220 a second input signal is detected. The second input signal represents a nominal state of charge of the electrochemical energy store at the time of use, ie a state of charge desired by the user at the time of use. The steps 210 and 220 can also be performed in reverse order so that first the second input signal is detected and then the first input signal. The first input signal and the second input signal can also be stored as preferred values of the user in the memory, for example, if the user requires a certain state of charge of the battery every day at the same time. If either the first input signal or the second input signal or both are not input via the means, the stored values of the first input signal and / or the second input signal are detected from the memory. In a following step 240 an actual charge state of the electrochemical energy store is determined. For this purpose, the battery management system uses the battery voltage measuring unit to record the voltage of the battery, from which the SoC value of the battery is determined. In a following step 250 an initial temperature of the electrochemical energy storage is detected by means of a battery temperature sensor. In particular, the initial temperature is the battery temperature at the time of electromechanical connection of the electrochemical energy store to the charging device. In a following step 280 a temperature deviation is determined as a function of a predetermined operating time and at least one further parameter. The term predetermined operating time also includes a predetermined charging capacity or a predetermined range. The term "temperature stroke" is to be understood as meaning the temperature stroke which is to be expected by a discharging process of the electrochemical energy store, the discharging process beginning at the time of use. In a following step 290 a final temperature of the electrochemical energy storage is determined. The final temperature is defined as the difference between a maximum permissible temperature or operating temperature of the electrochemical energy store and the temperature stroke, wherein the maximum permissible operating temperature is stored in the memory. In other words, the final temperature is the temperature that the electrochemical energy store may have at most at the time of use, so that the subsequent use of the electrochemical energy store is ensured. In a following step 300 a charging signal is generated as a function of the starting temperature of the electrochemical energy store, the end temperature of the electrochemical energy store, the first input signal, the second input signal and the actual state of charge of the electrochemical energy store. The charging signal comprises a charging current. In a following step 310 a charging device is controlled by means of the charging signal, so that the electrochemical energy storage is charged.

Der zu erwartende Temperaturhub wird durch eine Recheneinheit ermittelt. Vorteilhafterweise wird die aktuelle Außentemperatur des Fahrzeuges an die Recheneinheit übermittelt. Die Recheneinheit wird über Sensoren zu jeder Zeit über den tatsächlichen Stromfluss in und aus dem Energiespeicher informiert. In der Recheneinheit liegen mindestens ein Parameter, der den Wärmeübergangswiderstand aus dem Energiespeicher zur Umgebung festlegt. The expected temperature increase is determined by a computing unit. Advantageously, the current outside temperature of the vehicle is transmitted to the computing unit. The arithmetic unit is informed via sensors at any time about the actual flow of power into and out of the energy storage. In the arithmetic unit are at least one parameter that determines the heat transfer resistance from the energy storage to the environment.

Die Recheneinheit verfügt über mindestens ein Modell, das basierend auf den Eingangsgrößen und den Parametern vorhersagt, welcher Temperaturhub sich bei den aktuellen Messwerten und Parametern einstellt.The arithmetic unit has at least one model which, based on the input variables and the parameters, predicts which temperature deviation occurs with the current measured values and parameters.

Optional verfügt die Recheneinheit über ein Verfahren, das aus den Messwerten und Parametern und den sich tatsächlich einstellenden Temperaturen Fehler der letzen Schätzung ableitet.Optionally, the arithmetic unit has a method that derives errors of the last estimate from the measured values and parameters and the actually occurring temperatures.

Optional verfügt die Recheneinheit über ein Verfahren dass aus den Fehlern der letzten Messungen Korrekturparameter ableitet. Diese Parameter werden zur Bestimmung eines genaueren Temperaturhubes verwendet. Mit diesem Verfahren ist es möglich, dass sich das System an einen unterschiedlichen Verbauort mit anderen thermischen Bedingungen anpassen kann.Optionally, the arithmetic unit has a method that derives correction parameters from the errors of the last measurements. These parameters are used to determine a more accurate temperature swing. With this method, it is possible that the system can adapt to a different installation site with different thermal conditions.

In einem Ausführungsbeispiel ist der mindestens eine weitere Parameter in Schritt 280 ein konstant entnehmbarer maximaler Entladestrom des elektrochemischen Energiespeichers. Alternativ kann der mindestens eine weitere Parameter aus einer bisherigen Verwendungsweise des elektrochemischen Energiespeichers bestimmt werden, sozusagen als Integral über bisher durchgeführte Entladezyklen. Dabei kann auf Verwendungsdaten aus dem Speicher zurückgegriffen werden. Die Verwendungsdaten umfassen beispielsweise ein Nutzungsprofil des elektrochemischen Energiespeichers, einen eingestellten Fahrmodus, der zum Beispiel sportlich, gemäßigt oder energiesparend sein könnte. Darüberhinaus kann der einzustellende Fahrmodus direkt aus den Vorhersage des Systems abgeleitet werdenIn one embodiment, the at least one further parameter is in step 280 a constantly removable maximum discharge current of the electrochemical energy store. Alternatively, the at least one further parameter can be determined from a previous mode of use of the electrochemical energy store, so to speak as integral over previously performed discharge cycles. It can be used on usage data from the memory. The usage data include, for example, a usage profile of the electrochemical energy store, a set drive mode that could be, for example, athletic, moderate, or energy efficient. Moreover, the drive mode to be set can be derived directly from the prediction of the system

Zwischen den Schritten 250 und 280 kann optional ein Schritt 260 durchgeführt werden, in dem ein Alterungszustand des elektrochemischen Energiespeichers erfasst wird und das Ladesignal in Schritt 300 zusätzlich in Abhängigkeit des Alterungszustands des elektrochemischen Energiespeichers erzeugt wird. Des Weiteren kann zwischen den Schritten 250 und 280 optional ein weiterer Schritt 270 durchgeführt werden in dem der Ladestrom durch einen maximal zulässigen Ladestrom des elektrochemischen Energiespeichers begrenzt wird. Dieser Wert wird beispielsweise aus dem Speicher ausgelesen.Between the steps 250 and 280 can optionally be a step 260 be carried out in the one Aging condition of the electrochemical energy storage is detected and the charging signal in step 300 additionally generated as a function of the aging state of the electrochemical energy store. Furthermore, between the steps 250 and 280 optionally, a further step 270 can be carried out in which the charging current is limited by a maximum permissible charging current of the electrochemical energy store. This value is read from the memory, for example.

In einem weiteren Ausführungsbeispiel wird in einem Schritt 295 überprüft, ob die Anfangstemperatur der Batterie kleiner ist als die Endtemperatur der Batterie. Ist dies der Fall so wird das Verfahren fortgesetzt und in Schritt 300 das Ladesignal erzeugt. Ist die Anfangstemperatur größer als die Endtemperatur, so wird das Verfahren beendet und erst nach einer bestimmten Zeitdauer unter Berücksichtigung der Umgebungstemperatur erneut gestartet. Alternativ wird der Ladestrom in Abhängigkeit von der zu erwartenden Temperatur eingestellt. Somit wird sichergestellt, dass der Energiespeicher zu jeder Zeit mit einem Strom geladen werden kann.In a further embodiment, in one step 295 checks if the start temperature of the battery is lower than the end temperature of the battery. If so, the process continues and in step 300 generates the charging signal. If the initial temperature is greater than the final temperature, the process is terminated and restarted only after a certain period of time, taking into account the ambient temperature. Alternatively, the charging current is set as a function of the expected temperature. This ensures that the energy store can be charged with a current at any time.

In einem weiteren Ausführungsbeispiel wird ein Informationssignal erzeugt, wenn der Ladestrom durch den maximal zulässigen Ladestrom begrenzt wird. Das Informationssignal repräsentiert die Information, dass der tatsächliche Ladezustand der Batterie zum Nutzungszeitpunkt kleiner ist als der vom Nutzer gewünschte Ladezustand. Dieses Informationssignal kann zum Zeitpunkt des Ladestarts beispielsweise auf einem Display des elektrochemischen Energiespeichers, einem Display eines Fahrzeugs oder dem mobilen Endgerät angezeigt werden.In a further embodiment, an information signal is generated when the charging current is limited by the maximum allowable charging current. The information signal represents the information that the actual state of charge of the battery at the time of use is less than the state of charge desired by the user. This information signal can be displayed at the time of the charging start, for example, on a display of the electrochemical energy storage, a display of a vehicle or the mobile terminal.

Alternativ kann eine verbleibende Ladezeit bis zum Erreichen des ersten Ladezustand und ein aktueller Ladezustand angezeigt werden.Alternatively, a remaining charging time until reaching the first state of charge and a current state of charge can be displayed.

Der elektrochemische Energiespeicher findet beispielsweise in einem elektrisch betriebenen Fahrzeug Anwendung. Das elektrisch betriebene Fahrzeug kann ein Zweirad sein, insbesondere ein Roller.The electrochemical energy storage is used for example in an electrically powered vehicle application. The electrically powered vehicle may be a two-wheeler, in particular a scooter.

Das Verfahren kann auch für andere elektrisch betriebene Systeme und Geräte verwendet werden, wenn diese direkt nach dem Laden verwendet werden sollen. Die vorliegende Erfindung optimiert das Laden also auf die im unmittelbaren Anschluss an den Ladevorgang oder in absehbarer Zeit geplante Nutzung des Systems, Gerätes oder Fahrzeug.The method can also be used for other electrically operated systems and devices if they are to be used directly after charging. The present invention thus optimizes the loading on the use of the system, device or vehicle planned immediately after the charging process or in the foreseeable future.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • DE 102008053141 A1 [0002]DE 102008053141 A1 [0002]

Claims (13)

Verfahren (200) zum Laden eines elektrochemischen Energiespeichers, insbesondere einer Batterie, mit den Schritten: • Erfassen (210) eines ersten Eingabesignals, • Erfassen (220) eines zweiten Eingabesignals, • Bestimmen (240) eines Istladezustands des elektrochemischen Energiespeichers, • Erfassen (250) einer Anfangstemperatur des elektrochemischen Energiespeichers, • Bestimmen (280) eines Temperaturhubs in Abhängigkeit einer vorgegebenen Betriebsdauer und mindestens eines weiteren Parameters, • Bestimmen (290) einer Endtemperatur des elektrochemischen Energiespeichers, wobei die Endtemperatur eine Differenz einer maximal zulässigen Temperatur des elektrochemischen Energiespeichers und des Temperaturhubs ist, • Erzeugen (300) eines Ladessignals in Abhängigkeit der Anfangstemperatur des elektrochemischen Energiespeichers, der Endtemperatur des elektrochemischen Energiespeichers, des ersten Eingabesignals, des zweiten Eingabesignals und des Istladezustands des elektrochemischen Energiespeichers, wobei das Ladesignal einen Ladestrom umfasst, und • Ansteuern (310) einer Ladevorrichtung mittels Ladesignal zum Laden des elektrochemischen Energiespeichers.Method (200) for charging an electrochemical energy store, in particular a battery, with the steps: Detecting (210) a first input signal, Detecting (220) a second input signal, Determining (240) an actual charge state of the electrochemical energy store, Detecting (250) an initial temperature of the electrochemical energy store, Determining (280) a temperature deviation as a function of a predetermined operating time and at least one further parameter, Determining (290) a final temperature of the electrochemical energy store, the final temperature being a difference between a maximum allowable temperature of the electrochemical energy store and the temperature swing, Generating (300) a charge signal as a function of the initial temperature of the electrochemical energy store, the end temperature of the electrochemical energy store, the first input signal, the second input signal and the actual charge state of the electrochemical energy store, wherein the charge signal comprises a charging current, and • driving (310) a charging device by means of charging signal for charging the electrochemical energy storage. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das erste Eingabesignal einen Nutzungszeitpunkt des elektrochemischen Energiespeichers repräsentiert.Method according to Claim 1 , characterized in that the first input signal represents a time of use of the electrochemical energy store. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das zweite Eingabesignal einen Sollladezustand des elektrochemischen Energiespeichers zum Nutzungszeitpunkt repräsentiert.Method according to one of Claims 1 or 2 , characterized in that the second input signal represents a nominal state of charge of the electrochemical energy store at the time of use. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine weitere Parameter ein konstant entnehmbarer maximaler Entladestrom des elektrochemischen Energiespeichers ist oder ein entnehmbarer Entladestrom, der aus einer bisherigen Verwendungsweise des elektrochemischen Energiespeichers bestimmt wird.Method according to one of the preceding claims, characterized in that the at least one further parameter is a constantly removable maximum discharge current of the electrochemical energy store or a removable discharge current, which is determined from a previous use of the electrochemical energy store. Verfahren (200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Alterungszustand des elektrochemischen Energiespeichers bestimmt wird und das Ladesignal in Abhängigkeit des Alterungszustands des elektrochemischen Energiespeichers eingestellt wird.Method (200) according to one of the preceding claims, characterized in that an aging state of the electrochemical energy store is determined and the charging signal is set as a function of the aging state of the electrochemical energy store. Verfahren (200) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ladestrom auf einen maximal zulässigen Ladestrom des elektrochemischen Energiespeichers begrenzt wird.Method (200) according to one of the preceding claims, characterized in that the charging current is limited to a maximum permissible charging current of the electrochemical energy store. Verfahren (200) nach Anspruch 6, dadurch gekennzeichnet, dass ein Informationssignal, insbesondere zum Zeitpunkt eines Ladebeginns, erzeugt wird, wobei das Informationssignal angibt, dass ein tatsächlicher Ladezustand des elektrochemischen Speichers zum Nutzungszeitpunkt kleiner sein wird als der Sollladezustand.Method (200) according to Claim 6 , characterized in that an information signal, in particular at the time of charging start, is generated, wherein the information signal indicates that an actual state of charge of the electrochemical storage at the time of use will be smaller than the nominal state of charge. Verfahren (200) nach Anspruch 7, dadurch gekennzeichnet, dass das Informationssignal auf einem HMI des elektrochemischen Energiespeichers, einem HMI eines Fahrzeugs oder einem mobilen Endgerät ausgegeben wird.Method (200) according to Claim 7 , characterized in that the information signal is output on an HMI of the electrochemical energy store, an HMI of a vehicle or a mobile terminal. Batteriemanagementsystem (115) mit einer Steuereinheit (111) und einem Speicher (112), wobei das Batteriemanagementsystem (115) dazu eingerichtet ist, ein Verfahren nach einem der Ansprüche 1 bis 8 auszuführen.A battery management system (115) having a control unit (111) and a memory (112), wherein the battery management system (115) is adapted to perform a method according to any one of Claims 1 to 8th perform. Batteriesystem mit mindestens einem elektrochemischen Energiespeicher und einem Batteriemanagementsystem (115) nach Anspruch 9.Battery system with at least one electrochemical energy storage and a battery management system (115) according to Claim 9 , Batteriesystem nach Anspruch 10, dadurch gekennzeichnet, dass der elektrochemische Energiespeicher Li-Ionen-Zellen, LiS-Zellen, LiO-Zellen oder Feststoffzellen umfasst.Battery system after Claim 10 , characterized in that the electrochemical energy store comprises Li-ion cells, LiS cells, LiO cells or solid cells. Verwendung eines Batteriesystems nach einem der Ansprüche 10 oder 11 in einem Fahrzeug.Use of a battery system according to one of Claims 10 or 11 in a vehicle. Verwendung einer Batteriesystems nach Anspruch 12, wobei das Fahrzeug ein elektrisch betriebenes Zweirad, insbesondere ein Roller, ist.Use of a battery system after Claim 12 , wherein the vehicle is an electrically operated two-wheeler, in particular a scooter.
DE102016224181.8A 2016-12-06 2016-12-06 A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system Withdrawn DE102016224181A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102016224181.8A DE102016224181A1 (en) 2016-12-06 2016-12-06 A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system
CN201780075819.6A CN110062713A (en) 2016-12-06 2017-10-19 The application of method, battery management system, battery system and battery system for charging to electrochemical energy accumulator
EP17791025.4A EP3551495A1 (en) 2016-12-06 2017-10-19 Method for charging an electrochemical energy storage device, a battery management system, a battery system and use of the battery system
PCT/EP2017/076698 WO2018103936A1 (en) 2016-12-06 2017-10-19 Method for charging an electrochemical energy storage device, a battery management system, a battery system and use of the battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016224181.8A DE102016224181A1 (en) 2016-12-06 2016-12-06 A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system

Publications (1)

Publication Number Publication Date
DE102016224181A1 true DE102016224181A1 (en) 2018-06-07

Family

ID=60186260

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016224181.8A Withdrawn DE102016224181A1 (en) 2016-12-06 2016-12-06 A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system

Country Status (4)

Country Link
EP (1) EP3551495A1 (en)
CN (1) CN110062713A (en)
DE (1) DE102016224181A1 (en)
WO (1) WO2018103936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201008A1 (en) * 2019-04-02 2020-10-08 Bayerische Motoren Werke Aktiengesellschaft System and method for determining charging profiles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053141A1 (en) 2008-10-24 2010-04-29 Volkswagen Ag Vehicle i.e. plug-in-hybrid vehicle, battery charging method, involves charging battery dependent on time point and driving route such that battery is charged at pre-set time point with charge sufficient to drive vehicle in driving route

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101254743B (en) * 2006-11-28 2011-07-06 通用汽车环球科技运作公司 Highly configurable hybrid powertrain and control system therefor
CN101277024A (en) * 2008-01-31 2008-10-01 田家玉 Intelligent charger
US8531154B2 (en) * 2009-06-18 2013-09-10 Toyota Jidosha Kabushiki Kaisha Battery system and battery system-equipped vehicle
JP2012016078A (en) * 2010-06-29 2012-01-19 Hitachi Ltd Charging control system
DE102013011593A1 (en) * 2013-07-11 2015-01-15 Jungheinrich Ag Method for charging a battery
JP6249399B2 (en) * 2013-12-19 2017-12-20 株式会社村田製作所 Lithium ion secondary battery electrode, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053141A1 (en) 2008-10-24 2010-04-29 Volkswagen Ag Vehicle i.e. plug-in-hybrid vehicle, battery charging method, involves charging battery dependent on time point and driving route such that battery is charged at pre-set time point with charge sufficient to drive vehicle in driving route

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020201008A1 (en) * 2019-04-02 2020-10-08 Bayerische Motoren Werke Aktiengesellschaft System and method for determining charging profiles

Also Published As

Publication number Publication date
WO2018103936A1 (en) 2018-06-14
EP3551495A1 (en) 2019-10-16
CN110062713A (en) 2019-07-26

Similar Documents

Publication Publication Date Title
DE102019108607B3 (en) System and method for determining charging profiles
WO2015197483A1 (en) Device and method for controlling a state of charge of an electric energy accumulator
DE102014221547A1 (en) Method for monitoring the state of charge of a battery
DE102006026404A1 (en) Energy coordinator for an electrical network
EP3095153B1 (en) Method for equalising state of charge in a battery
DE102005026077A1 (en) Method and device for determining the state of charge and / or aging of an energy store
DE102018212545A1 (en) Method for monitoring a state of a battery, monitoring device and motor vehicle
DE102018203824A1 (en) Method for operating an electrical energy store, control for an electrical energy store and device and / or vehicle
DE102014215536A1 (en) On-board network arrangement and method for operating a vehicle electrical system of an electrically driven means of transport with a fuel cell
DE102014203417A1 (en) Method for monitoring a state of charge
DE102009001300A1 (en) Method and device for determining a characteristic quantity for detecting the stability of the vehicle electrical system
DE102012015522A1 (en) Method for storing and providing battery units of system, involves providing demand information which indicates number of required battery units and their desired charge states for one or more provision time points
DE102007023901A1 (en) Vehicle battery device, particularly for battery of hybrid motor vehicle, has unit, which is provided in addition that limits or adjusts characteristics as function of prognosis
DE102012007988A1 (en) Method for visualizing dynamic power of battery of electrically driven vehicle, involves determining power values of battery, where latter power value is higher than former power value
DE102014220914A1 (en) Method and device for determining an operating point-dependent resistance change factor and vehicle
DE102016224181A1 (en) A method for charging an electrochemical energy storage, a battery management system, a battery system and a use of the battery system
DE102016001123A1 (en) A method of charging a battery of a motor vehicle by means of a motor vehicle side solar device and motor vehicle
DE102014221549B4 (en) Method for monitoring the state of charge of a battery
EP3038852A2 (en) Energy management control device and method for determining a characteristic variable of an electrochemical energy storage means
DE102020212234A1 (en) Method and device for determining an aging state of an electrical energy store of unknown type using machine learning methods
DE102015205740A1 (en) Method for energy management of a motor vehicle
DE102018221501A1 (en) Method for operating an electrical energy store
EP3770621B1 (en) Method and device for determining the remaining capacity of a battery
DE102018214984A1 (en) Method for determining an ambient temperature of a first electrical energy storage unit in conjunction with second electrical energy storage units, and corresponding device, computer program and machine-readable storage medium
EP3891011B1 (en) Method for operating an electrical energy store

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee