DE102016222657A1 - Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions - Google Patents
Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions Download PDFInfo
- Publication number
- DE102016222657A1 DE102016222657A1 DE102016222657.6A DE102016222657A DE102016222657A1 DE 102016222657 A1 DE102016222657 A1 DE 102016222657A1 DE 102016222657 A DE102016222657 A DE 102016222657A DE 102016222657 A1 DE102016222657 A1 DE 102016222657A1
- Authority
- DE
- Germany
- Prior art keywords
- ome
- distillation column
- formaldehyde
- reactive distillation
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C41/00—Preparation of ethers; Preparation of compounds having groups, groups or groups
- C07C41/48—Preparation of compounds having groups
- C07C41/50—Preparation of compounds having groups by reactions producing groups
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Verfahren zur Herstellung von Polyoxymethylendimethylethern mit ≥3 Oxymethylen-Einheiten (OME) mit den Schritten:(i) Einspeisung von Formaldehyd, Methanol und Wasser in einen Reaktor R und Umsetzung zu einem Reaktionsgemisch enthaltend Formaldehyd, Wasser, Methylenglykol, Polyoxymethylenglykole, Methanol, Hemiformale, Methylal (OME) und Polyoxymethylendimethylether (OME);(ii) Einspeisung des Reaktionsgemischs in eine Reaktivdestillationskolonne K1 und Auftrennung in eine Leichtsiederfraktion F1 enthaltend Formaldehyd, Wasser, Methylenglykol, Polyoxymethylenglykole, Methanol, Hemiformale, Methylal (OME) und Polyoxymethylendimethylether mit 2 bis 3 Oxymethylen-Einheiten (OME) und eine Schwersiederfraktion F2 enthaltend Polyoxymethylendimethylether mit mehr als zwei Oxymethylen-Einheiten (OME).Process for the preparation of polyoxymethylene dimethyl ethers containing ≥3 oxymethylene units (OMEs) comprising the steps of: (i) feeding formaldehyde, methanol and water into a reactor R and converting to a reaction mixture comprising formaldehyde, water, methylene glycol, polyoxymethylene glycols, methanol, hemiformals, Methylal (OME) and polyoxymethylene dimethyl ether (OME), (ii) feeding the reaction mixture into a reactive distillation column K1 and separating it into a low boiler fraction F1 comprising formaldehyde, water, methylene glycol, polyoxymethylene glycols, methanol, hemiformals, methylal (OME) and polyoxymethylene dimethyl ether with 2 to 3 oxymethylene Units (OME) and a high boiler fraction F2 containing polyoxymethylene dimethyl ether with more than two oxymethylene units (OME).
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Polyoxymethylendimethylethern (OME) mit ≥ 3 Oxymethylen-Einheiten aus Formaldehyd und Methanol in wässriger Lösung.The invention relates to a process for the preparation of polyoxymethylene dimethyl ethers (OME) with ≥ 3 oxymethylene units of formaldehyde and methanol in aqueous solution.
OME stellen eine homologe Reihe der allgemeinen Formel CH3O(CH2O)nCH3 dar, worin n eine Zahl ≥ 2 bedeutet. Wie das Stamm-Molekül der homologen Reihe, das Methylal CH3O(CH2O)nCH3 (n = 1), sind die OME Acetale. Sie werden durch Reaktion von Methanol mit wässrigem Formaldehyd in Gegenwart eines sauren Katalysators hergestellt. Wie andere Acetale sind sie unter neutralen oder alkalischen Bedingungen stabil, werden aber von Säuren angegriffen. Durch Hydrolyse werden sie bei Anwesenheit von Wasser in einem ersten Schritt zu Halbacetalen und Methanol umgesetzt. In einem zweiten Schritt werden die Halbacetale zu Formaldehyd und Methanol umgesetzt. Nachfolgend werden Polyoxymethylendimethylether mit n Oxymethylen-Einheiten als OMEn abgekürzt.OMEs represent a homologous series of the general formula CH 3 O (CH 2 O) n CH 3 , where n is a number ≥ 2. Like the homologous series parent molecule, the methylal CH 3 O (CH 2 O) n CH 3 (n = 1), are the OME acetals. They are prepared by the reaction of methanol with aqueous formaldehyde in the presence of an acidic catalyst. Like other acetals, they are stable under neutral or alkaline conditions but are attacked by acids. By hydrolysis they are reacted in the presence of water in a first step to hemiacetals and methanol. In a second step, the hemiacetals are converted to formaldehyde and methanol. Hereinafter, polyoxymethylene dimethyl ethers having n oxymethylene units are abbreviated to OMN n .
Im Labormaßstab werden OME durch Erhitzen von Polyoxymethylenglykol oder Paraformaldehyd mit Methanol in Gegenwart von Spuren von Schwefelsäure oder Salzsäure bei Temperaturen von 150 bis 180°C und Reaktionszeiten von 12 bis 15 Stunden hergestellt, wie beschrieben in
OME sind unter anderem von Interesse als Dieselkraftstoff, als Absorptionsmittel zur Abtrennung von Kohlendioxid aus Gasmischungen (
Es besteht also ein erheblicher Bedarf, OME ökonomisch und ökologisch günstig in großen Mengen und in hoher Reinheit herzustellen.There is therefore a considerable need to produce OME economically and ecologically favorably in large quantities and in high purity.
Das Wasser wird in den Prozess auf zwei Wegen eingeführt. Der Einsatzstoff Formaldehyd wird in den technisch realisierten und ökonomisch bevorzugten Verfahren zur Formaldehyd-Herstellung durch oxidative Dehydrierung von Methanol (Reaktion 1) hergestellt. Dabei entsteht Wasser als Koppelprodukt.
Ferner wird auch bei der OME-Synthese aus Formaldehyd und Methanol Wasser gebildet. In solchen Mischungen liegt der Formaldehyd nahezu vollständig chemisch gebunden vor. Formaldehyd reagiert in Anwesenheit von Wasser zu Methylenglykol HO-(CH2O)-H (Reaktion 2) und Polyoxymethylenglykolen HO-(CH2O)n-H (Reaktion 3).
Formaldehyd reagiert nach analogem Schema mit Methanol zu den Halbacetalen Hemiformal OH-(CH2O)-CH3 (Reaktion 4) und Polyoxymethylenhemiformalen HO-(CH2O)n CH3 (Reaktion 5).
Die instabilen Halbacetale werden auch bei der Hydrolyse von OME gebildet. Diese Halbacetale setzen den Flammpunkt des Dieselkraftstoffgemischs herab und beeinträchtigen somit dessen Qualität. Ein zu niedriger Flammpunkt des Dieselkraftstoffgemischs führt aber dazu, dass die z.B. durch einschlägige DIN-Normen vorgegebenen Spezifikationen nicht mehr erfüllt werden. Halbacetale sind aber wegen vergleichbarer Siedepunkte schwer von den OME abzutrennen. Da die Reaktionen 2 bis 4 reversibel sind und ohne Zugabe eines Katalysators ablaufen, können die Halbacetale potenziell wieder Formaldehyd freisetzen, welcher im Kraftstoff unerwünscht ist.The unstable hemiacetals are also formed during the hydrolysis of OME. These hemiacetals reduce the flash point of the diesel fuel mixture and thus affect its quality. However, too low a flashpoint of the diesel fuel mixture causes the e.g. Specifications specified by relevant DIN standards are no longer met. However, hemiacetals are difficult to separate from the OME because of comparable boiling points. Since
In dem in
Dabei werden Formaldehydgehalte von > 60 Gew.-% erreicht, da Dimethylether formal durch Dehydratisierung zweier Methanol-Moleküle erhalten wird (Reaktion 7) und ein Teil des Wassers bereits bei der Herstellung von Dimethylether abgetrennt werden kann.
Alternativ kann eine hochkonzentrierte wässrige Formaldehydlösung auch hergestellt werden, indem die wässrige Lösung, wie in
Das Verfahren nach
Die vorstehend beschriebenen Probleme werden vermieden, indem wie in
Insbesondere wird in Schmitz
Nach dem zitierten neuen Stand der Technik wird auch gezeigt, dass die Abtrennung von OME über die organische Phase des Phasenabscheiders nicht quantitativ ist. Ein signifikanter Anteil der OME verlässt den Phasenabscheider über die wässrige Phase. Diese OME müssen weiter aufgearbeitet werden, welches die Komplexität des Gesamtverfahrens erhöht und die Wirtschaftlichkeit senkt.According to the cited new state of the art, it is also shown that the separation of OME via the organic phase of the phase separator is not quantitative. A significant proportion of OME leaves the phase separator over the aqueous phase. This OME needs to be further worked up, which increases the complexity of the overall process and lowers the profitability.
Dennoch hat die Herstellung von OME aus Methanol und Formaldehyd in wässriger Lösung erhebliche Vorteile gegenüber dem Einsatz anderer Ausgangsstoffe.Nevertheless, the production of OME from methanol and formaldehyde in aqueous solution has considerable advantages over the use of other starting materials.
Methanol entwickelt sich zu einer auf dem Markt gehandelten und in großen Mengen verfügbaren Plattformchemikalie. Olah (Olah G. A., Goeppert A., Surya Prakash G. K. Beyond oil and gas: the methanol economy, Wiley-VCH, Weinheim 2011) hat ein Szenario entwickelt, wie die Weltenergiewirtschaft auf der Basis von Synthesegas und Methanol neu aufgestellt werden kann. Synthesegas kann sowohl konventionell auf der Basis fossiler Rohstoffe hergestellt werden als auch auf der Grundlage erneuerbarer Energien. Im letzteren Fall wird z. B. Wasser unter Einsatz von solar oder geothermisch erzeugter Elektrizität elektrolytisch gespalten (Reaktion 8).
Ein Teil des Wasserstoffs wird unter Nutzung von Kohlendioxid in den Synthesebaustein Kohlenmonoxid umgewandelt (Reaktion 9).
Anschließend werden dann Wasserstoff und Kohlenmonoxid zu den Plattformchemikalien Methanol (Reaktion 10) bzw. Dimethylether (Reaktion 7) umgesetzt.
Methanol liegt bei Normalbedingungen in flüssiger Form vor und kann damit einfach gehandhabt und verschifft werden. Methanol kann als Plattformchemikalie in der chemischen Industrie breit eingesetzt werden.Methanol is in liquid form under normal conditions and can therefore be easily handled and shipped. Methanol can be widely used as a platform chemical in the chemical industry.
Methanol ist außerdem der bevorzugte Einsatzstoff für die konventionellen Synthesen von Formaldehyd, die in der Fachliteratur (
In der wissenschaftlichen Literatur gibt es neuere Publikationen zum Thema OME, von denen sich die meisten mit der Optimierung des Reaktionssystems beschäftigen. Schmitz et al. (
Der OME-Reaktor wird dabei so dimensioniert, dass das chemische Gleichgewicht weitgehend erreicht wird. Weitgehend bedeutet hier, dass die Abweichung der Konzentration jedes einzelnen OME-Oligomers von seiner jeweiligen Gleichgewichtskonzentration < 30%, bevorzugt < 10%, ganz besonders bevorzugt < 5% beträgt. Es ist aber ebenfalls möglich, den Reaktor so zu dimensionieren, dass das chemische Gleichgewicht weitgehend nicht erreicht wird und die Oligomerenverteilung der OME kinetisch kontrolliert ist (
Damit ist OME ein „product by process“, da der Reaktor die Spezifikation hinsichtlich der Oligomerenverteilung vorbestimmt. Durch die folgenden Trenn- und Aufarbeitungsschritte wird die Spezifikation endgültig festgelegt, da zu hohe und zu niedere Oligomere von OME abgeschnitten und im Prozess recycliert werden.This makes OME a "product by process" because the reactor predetermines the specification for oligomer distribution. The following separation and work-up steps finally set the specification, since excessively high and too low oligomers are cut off from OME and recycled in the process.
Analog haben Burger et al. (
Es besteht also nach wie vor ein Bedarf an Verfahren zur Herstellung von OME, welche von den handelsüblichen, preiswerten und in großen Mengen leicht verfügbaren Standardprodukten Formaldehyd und Methanol in wässriger Lösung ausgehen. Vor dem Hintergrund ihrer Bedeutung als Dieselkraftstoffkomponenten besteht insbesondere ein Bedarf an der selektiven und wirtschaftlichen Herstellung von OME mit 3 bis 6 Oxymethylen-Einheiten (OMEn=3-6).Thus, there is still a need for processes for the production of OME, starting from the commercially available, inexpensive and readily available in large quantities standard products formaldehyde and methanol in aqueous solution. In particular, in view of their importance as diesel fuel components, there is a need for the selective and economical production of OME with 3 to 6 oxymethylene units (OME n = 3-6 ).
Aufgabe der Erfindung ist es daher, ein verbessertes Verfahren zur Herstellung von OMEn=3-6 bereitzustellen, welches von den günstig verfügbaren Edukten Formaldehyd und Methanol ausgeht.The object of the invention is therefore to provide an improved process for the preparation of OME n = 3-6 , which starts from the readily available starting materials formaldehyde and methanol.
Gelöst wird die Aufgabe durch ein Verfahren zur Herstellung von Polyoxymethylendimethylethern mit ≥ 3 Oxymethylen-Einheiten (OMEn≥3) mit den Schritten (i) und (ii):
- (i) Einspeisung von Formaldehyd, Methanol und Wasser in einen Reaktor R und Umsetzung zu einem Reaktionsgemisch enthaltend Formaldehyd, Wasser, Methylenglykol (MG), Polyoxymethylenglykole (MGn), Methanol, Hemiformale (HF), Methylal (OMEn=1) und Polyoxymethylendimethylether (OMEn>1);
- (ii) Einspeisung des Reaktionsgemisches in eine Reaktivdestillationskolonne K1 und Auftrennung in eine Leichtsiederfraktion F1 enthaltend Formaldehyd, Wasser, Methylenglykol (MG), Polyoxymethylenglykole (MGn), Methanol, Hemiformale (HF), Methylal (OMEn=1)
und Polyoxymethylendimethylether mit 2bis 3 Oxymethylen-Einheiten (OMEn=2-3) und eine Schwersiederfraktion F2, enthaltend im Wesentlichen Polyoxymethylendimethylether mit mehr als zwei Oxymethylen-Einheiten (OMEn≥3).
- (i) feeding formaldehyde, methanol and water into a reactor R and converting to a reaction mixture containing formaldehyde, water, methylene glycol (MW), polyoxymethylene glycols (MW n ), methanol, hemiformal (HF), methylal (OME n = 1 ) and Polyoxymethylene dimethyl ether (OME n> 1 );
- (ii) feeding the reaction mixture into a reactive distillation column K1 and separating it into a low boiler fraction F1 comprising formaldehyde, water, methylene glycol (MW), polyoxymethylene glycols (MW n ), methanol, hemiformal (HF), methylal (OME n = 1 ) and polyoxymethylene dimethyl ether with 2 to 3 oxymethylene units (OME n = 2-3 ) and a high boiler fraction F2 containing essentially polyoxymethylene dimethyl ether with more than two oxymethylene units (OME n≥3 ).
Bevorzugt ist ein Verfahren zur Herstellung von Polyoxymethylendimethylethern mit 3 bis 6 Oxymethylen-Einheiten (OMEn=3-6) mit den zusätzlichen Schritten (iii) und (iv):
- (iii) Einspeisung der Schwersiederfraktion F2 in eine Destillationskolonne K2 und Auftrennung in eine Produktfraktion F3
enthaltend Polyoxymethylendimethylether mit 3bis 6 Oxymethylen-Einheiten (OMEn=3-6) und eine Schwersiederfraktion F4 enthaltend Polyoxymethylendimethylethermit mehr als 6 Oxymethylen-Einheiten (OMEn>6); - (iv) gegebenenfalls Rückführung der Schwersiederfraktion F4 in den Reaktor R.
- (iii) feeding the high boiler fraction F2 into a distillation column K2 and separating it into a product fraction F3 comprising polyoxymethylene dimethyl ether having 3 to 6 oxymethylene units (OME n = 3-6 ) and a high boiler fraction F4 containing polyoxymethylene dimethyl ether with more than 6 oxymethylene units (OME n > 6 );
- (iv) optionally recycling the high boiler fraction F4 to the reactor R.
Vorzugsweise umfassen die vorstehend definierten Verfahren auch noch den Schritt (v), insbesondere die Schritte (v) und (vi):
- (v) Einspeisung der Leichtsiederfraktion F1 in einen Apparat zur Wasserabtrennung und Abtrennung von Wasser oder einer wasserreichen Fraktion F6, wobei ein wasserarmer Strom F5 erhalten wird;
- (vi) gegebenenfalls Rückführung des wasserarmen Stroms F5 in den Reaktor.
- (v) feeding the low boiler fraction F1 into an apparatus for separating water and separating water or a water-rich fraction F6 to obtain a low-water stream F5;
- (vi) optionally, recycling the low-water stream F5 to the reactor.
Das erfindungsgemäße Verfahren, das nach intensiver Forschung gefunden wurde, löst überraschenderweise die oben aufgezeigten, bei einem OME-Herstellverfahren ausgehend von den Edukten Methanol und Formaldehyd in wässriger Lösung auftretenden grundlegenden Probleme. Nach dem Reaktor werden sowohl neue als auch konventionelle Trennschritte eingeführt und auf geschickte Art und Weise so miteinander kombiniert, dass ein ökonomisch und ökologisch vorteilhafter Prozess resultiert.The process according to the invention, which was found after intensive research, surprisingly solves the abovementioned fundamental problems arising in an OME preparation process starting from the educts methanol and formaldehyde in aqueous solution. After the reactor, both new and conventional separation steps are introduced and cleverly combined so that an economically and environmentally beneficial process results.
Vorteilhafte Ausgestaltungen des Verfahrens sind dadurch gekennzeichnet, dass
- • Katalysatoren nur in fester Phase vorliegen und damit einfach von dem fluiden Reaktionsmedium getrennt werden können;
- • alle anderen Stoffe außer den Katalysatoren stets nur in fluiden Phasen als Gas bzw. Flüssigkeit vorliegen;
- • auf die Einführung von zusätzlichen Hilfsstoffen zur Katalyse, Extraktion oder Stofftrennung verzichtet wird;
- • nach dem OME-Reaktor eine spezielle Reaktivdestillationskolonne K1 eingeführt ist, in der die OME der Kettenlänge n ≥ 3 vom Reaktoraustrag abgetrennt werden, wobei eine Leichtsiederfraktion verbleibt;
- • die Reaktivdestillationskolonne K1 üblicher Bauart ist. Als trennwirksame Einbauten werden verwendet entweder Böden, Packungen oder Füllkörper;
- • der Druck in der
Reaktivdestillationskolonne K1 zwischen 0,2 bar und 5 bar,bevorzugt zwischen 0,5 bar und 4 bar, besonders bevorzugt zwischen 1 bar und 3 bar, beträgt; - • die Kopftemperatur in der Reaktivdestillationskolonne K1 zwischen 25°C und 125°C beträgt, bevorzugt zwischen 45°C und 115°C beträgt, besonders bevorzugt zwischen 65°C und 105°C beträgt;
- • die Sumpftemperatur in der Reaktivdestillationskolonne K1 zwischen 110°C und 255°C beträgt, bevorzugt zwischen 140°C und 240°C beträgt, besonders bevorzugt zwischen 170°C und 225°C beträgt;
- • der Durchmesser der Reaktivdestillationskolonne K1 durch den Durchsatz der Kolonne bestimmt wird. Die Berechnung erfolgt nach den dem Fachmann bekannten Methoden. Der Durchsatz der Kolonne skaliert mit der Kapazität der OME Anlage;
- • die Höhe der Kolonne zwischen 10 und 40 theoretischen Trennstufen, bevorzugt zwischen 15 und 30 theoretischen Trennstufen, besonders bevorzugt zwischen 20 und 25 theoretischen Trennstufen ist. Die Umrechnung auf die Kolonnenhöhe in Metern erfolgt für jede der beschriebenen trennwirksamen Einbauten (Böden, Packungen, Füllkörper) nach den dem Fachmann bekannten Methoden.
- • unterhalb des Zulaufs die Höhe der Reaktivdestillationskolonne K1 zwischen 3 und 20 theoretischen Trennstufen, bevorzugt zwischen 4 und 15 theoretischen Trennstufen, besonders bevorzugt zwischen 5 und 10 theoretischen Trennstufen beträgt. Die Umrechnung auf die Höhe des Zulaufs in Metern erfolgt für jede der beschriebenen trennwirksamen Einbauten (Böden, Packungen, Füllkörper) nach den dem Fachmann bekannten Methoden;
- • das Rücklaufverhältnis in der Reaktivdestillationskolonne K1 mindestens 0,20 g/g, beispielsweise mindestens 0,30 g/g oder mindestens 0,40 g/g beträgt;
- • das Verhältnis aus Volumen der Flüssigkeit im Bereich zwischen Zulauf und Sumpfabzug inklusive möglicher Seitenreaktoren und des Sumpfes zum Volumenstrom des Sumpfabzugs in der Reaktivdestillationskolonne K1 mindestens 10 min beträgt; dieses Verhältnis kann auch mehr als 15 min oder mehr als 30 min betragen;
- • die Reaktivdestillationskolonne und deren Einbauten aus üblichen Materialien bestehen, bevorzugt ist Stahl;
- • der pH-Wert in der Reaktivdestillationskolonne K1 im Bereich zwischen Zulauf und Sumpfabzug, inklusive möglicher Seitenreaktoren und des Sumpfes, zwischen 4 und 14, bevorzugt zwischen 5 und 14, besonders bevorzugt zwischen 7 und 14 ist;
- • der pH-Wert in der Reaktivdestillationskolonne K1 im Bereich zwischen Zulauf und Kopfabzug keine wesentliche Rolle spielt;
- • die Regelung des pH-Wertes in der Reaktivdestillationskolonne K1, falls der pH-Wert zu niedrig ist, im Bereich zwischen Zulauf und Sumpfabzug durch eine Laugedosierung erfolgt, bevorzugt durch eine Dosierung von Natriummethanolat in methanolischer Lösung;
- • der Zulauf zu den Kolonnen sowohl flüssig als auch gasförmig oder beides sein kann. Nassdampf ist daher ebenfalls möglich;
- • nach der Reaktivdestillationskolonne K1 eine nachgeschaltete Destillationskolonne K2 üblicher Bauart installiert ist, die OME der Kettenlänge n ≥ 3 in das Produkt OMEn=3-6 und eine schwersiedende Fraktion OMEn>6 trennt;
- • die schwersiedende Fraktion der Kolonne K2 in den OME-Reaktor zurückgeführt wird;
- • die Wasserabtrennung aus der Leichtsiederfraktion in Kopplung mit einer nachgeschalteten Trenneinheit geschieht;
- • die Trenneinheit zur Abtrennung des Wassers eine dem Fachmann bekannte Einrichtung, bevorzugt eine Pervaporations-, Dampfpermeations- oder Adsorptionsanlage, ist;
- • der wasserarme Strom aus der Wasserabtrennung in den Reaktor zurückgeführt wird;
- • optional der wasserreiche Strom aus der Wasserabtrennung enthaltend neben Wasser auch Formaldehyd, Methanol, Methylal, und wenig OMEn=2-3 weiter aufgearbeitet wird;
- • die optionale Aufarbeitung des wasserreichen Stroms aus der Wasserabtrennung derart gestaltet ist, dass Methanol und Methylal als Kopfprodukt einer Destillationskolonne K3 gewonnen werden und in den OME Reaktor zurückgeführt werden und das Sumpfprodukt enthaltend Wasser, Formaldehyd und wenig OMEn=2-3 vorzugsweise in eine Formaldehyd-Anlage zurückgeführt wird;
- • die wässrige Lösung aus Formaldehyd und Methanol als Zulaufstrom dem Reaktor zugeführt wird,
- • Abgasströme aus den verschiedenen Verfahrensschritten in eine Formaldehyd-Anlage zurückgeführt werden können,
- • das Verfahren „auf der grünen Wiese“ außerhalb eines konventionellen Standortes errichtet und betrieben werden kann, aber vorzugsweise im direkten Verbund mit einer Formaldehyd-Anlage betrieben wird. Dabei ist es nicht notwendig, dass die Formaldehyd-Anlage die gesamte benötigte Menge an Formaldehyd zur OME-Synthese zur Verfügung stellt, sie sollte aber in der Lage sein, die verdünnten Rückführströme aus der OME-Anlage zur stofflichen Verwertung aufzunehmen;
- • das Verfahren im Verbund mit anderen Verfahren an einem Verbundstandort errichtet und betrieben werden kann, bevorzugt im Verbund mit einer Methanol- und Formaldehyd-Anlage und/oder einer Raffinerie, bevorzugt im Verbund mit einer Formaldehyd-Anlage, ganz besonders bevorzugt im Verbund mit einer Formaldehyd-Anlage, die nach dem Silberkontaktverfahren arbeitet. Alternativ können die Edukte ganz oder anteilig über eine Pipeline, Schiffe oder andere Logistikwege bereitgestellt werden und die Produkte entsprechend verschifft werden;
- • das hergestellte Produkt in z.B. den oben erwähnten Anwendungen eingesetzt werden kann, wobei es insbesondere alleine oder anteilig als Dieselkraftstoff Verwendung finden kann und wobei die anteilige Einbringung in andere Dieselkraftstoffe oder deren Mischungen durch statisches oder dynamisches Mischen in dem Fachmann bekannten Einrichtungen erfolgt.
- • Catalysts are only in solid phase and thus can be easily separated from the fluid reaction medium;
- • all substances except the catalysts are always present only in fluid phases as gas or liquid;
- • the introduction of additional auxiliaries for catalysis, extraction or separation is dispensed with;
- • after the OME reactor, a special reactive distillation column K1 is introduced, in which the OME of chain length n ≥ 3 are separated from the reactor effluent, leaving a low boiler fraction;
- • The reactive distillation column K1 conventional design. As separating internals are used either soils, packs or packing;
- The pressure in the reactive distillation column K1 is between 0.2 bar and 5 bar, preferably between 0.5 bar and 4 bar, more preferably between 1 bar and 3 bar;
- The head temperature in the reactive distillation column K1 is between 25 ° C and 125 ° C, preferably between 45 ° C and 115 ° C, more preferably between 65 ° C and 105 ° C;
- • the bottom temperature in the reactive distillation column K1 is between 110 ° C and 255 ° C, preferably between 140 ° C and 240 ° C, more preferably between 170 ° C and 225 ° C;
- • The diameter of the reactive distillation column K1 is determined by the throughput of the column. The calculation takes place according to the methods known to the person skilled in the art. The throughput of the column scales with the capacity of the OME plant;
- The height of the column is between 10 and 40 theoretical plates, preferably between 15 and 30 theoretical plates, more preferably between 20 and 25 theoretical plates. The conversion to the column height in meters is carried out for each of the described separation-effective internals (trays, packings, packing) according to the methods known in the art.
- • Below the inlet, the height of the reactive distillation column K1 is between 3 and 20 theoretical plates, preferably between 4 and 15 theoretical plates, more preferably between 5 and 10 theoretical plates. The conversion to the height of the feed in meters is carried out for each of the described separating internals (trays, packings, packing) according to the methods known in the art;
- The reflux ratio in the reactive distillation column K1 is at least 0.20 g / g, for example at least 0.30 g / g or at least 0.40 g / g;
- • the ratio of the volume of the liquid in the area between inlet and bottom draw including possible side reactors and the sump to the volume flow of the bottom draw in the Reactive distillation column K1 is at least 10 minutes; this ratio may also be more than 15 minutes or more than 30 minutes;
- • the reactive distillation column and its internals consist of conventional materials, preferably steel;
- The pH in the reactive distillation column K1 is in the range between inlet and bottom draw, including possible side reactors and the bottom, between 4 and 14, preferably between 5 and 14, particularly preferred between 7 and 14;
- The pH value in the reactive distillation column K1 does not play a significant role in the region between feed and top take-off;
- • the regulation of the pH in the reactive distillation column K1, if the pH is too low, in the range between inlet and bottom draw by a Laugedosierung, preferably by a dosage of sodium methoxide in methanolic solution;
- • the feed to the columns can be both liquid and gaseous or both. Wet steam is therefore also possible;
- • after the reactive distillation column K1 a downstream distillation column K2 conventional design is installed, the OME of chain length n ≥ 3 in the product OME n = 3-6 and a high-boiling fraction OME n> 6 separates;
- • the high-boiling fraction of the column K2 is returned to the OME reactor;
- The removal of water from the low-boiling fraction takes place in combination with a downstream separation unit;
- The separation unit for separating off the water is a device known to the person skilled in the art, preferably a pervaporation, vapor permeation or adsorption plant;
- • the low-water stream from the water separation is returned to the reactor;
- • optionally the water-rich stream from the water separation containing besides water also formaldehyde, methanol, methylal, and little OME n = 2-3 is further worked up;
- • the optional work-up of the water-rich stream from the water separation is designed such that methanol and methylal are recovered as the top product of a distillation column K3 and returned to the OME reactor and the bottom product containing water, formaldehyde and little OME n = 2-3 preferably in one Formaldehyde plant is recycled;
- The aqueous solution of formaldehyde and methanol is fed as feed stream to the reactor,
- Exhaust gas streams from the various process steps can be returned to a formaldehyde plant,
- • the greenfield process can be built and operated outside a conventional site, but is preferably operated in direct association with a formaldehyde plant. It is not necessary for the formaldehyde plant to provide the total amount of formaldehyde needed for OME synthesis, but it should be able to absorb the diluted recycle streams from the OME plant for recycling;
- The process can be set up and operated in conjunction with other processes at a Verbund site, preferably in combination with a methanol and formaldehyde plant and / or a refinery, preferably in combination with a formaldehyde plant, most preferably in combination with a Formaldehyde plant operating on the silver contact method. Alternatively, the reactants may be provided in whole or in part via a pipeline, ships or other logistics routes and the products shipped accordingly;
- The product produced can be used in, for example, the abovementioned applications, where it can be used, in particular, as sole or as a diesel fuel and the proportionate incorporation into other diesel fuels or their mixtures is effected by static or dynamic mixing in devices known to the person skilled in the art.
In einer bevorzugten Ausführungsform weist die Kolonne K1 im Betrieb folgende Merkmale auf
- • der Druck in der Reaktivdestillationskolonne K1 beträgt
von 0,2bar bis 5 bar; - • die Kopftemperatur in der Reaktivdestillationskolonne K1 beträgt von 25°C bis 125°C;
- • die Sumpftemperatur in der Reaktivdestillationskolonne K1 beträgt von 110°C bis 255 C;
- • die Reaktivdestillationskolonne K1 weist 10 bis 40 theoretische Trennstufen, bevorzugt 15 bis 30 theoretische Trennstufen, besonders bevorzugt 20 bis 25 theoretische Trennstufen auf;
- • unterhalb des Zulaufs weist die
Reaktivdestillationskolonne K1 3 bis 20 theoretische Trennstufen auf; - • das Rücklaufverhältnis in der Reaktivdestillationskolonne K1 beträgt mindestens 0,20 g/g;
- • das Verhältnis aus Volumen der Flüssigkeit im Bereich zwischen Zulauf und Sumpfabzug einschließlich der gegebenenfalls vorhandenen Seitenreaktoren und des Sumpfes zum Volumenstrom des Sumpfabzugs in der Reaktivdestillationskolonne K1 beträgt mindestens 10 min;
- • der pH-Wert in der Reaktivdestillationskolonne K1 im Bereich zwischen Zulauf und Sumpfabzug einschließlich der gegebenenfalls vorhandenen Seitenreaktoren und des Sumpfes ist zwischen 4 und 14.
- • the pressure in the reactive distillation column K1 is from 0.2 bar to 5 bar;
- • the top temperature in the reactive distillation column K1 is from 25 ° C to 125 ° C;
- • the bottom temperature in the reactive distillation column K1 is from 110 ° C to 255 C;
- The reactive distillation column K1 has from 10 to 40 theoretical plates, preferably from 15 to 30 theoretical plates, more preferably from 20 to 25 theoretical plates;
- • below the feed, the reactive distillation column K1 has 3 to 20 theoretical plates;
- The reflux ratio in the reactive distillation column K1 is at least 0.20 g / g;
- The ratio of the volume of the liquid in the region between inlet and bottom draw, including the optional side reactors and the sump to the volume flow of the bottom draw in the reactive distillation column K1 is at least 10 minutes;
- • The pH in the reactive distillation column K1 in the range between inlet and bottom draw, including the optional side reactors and the sump is between 4 and 14.
In einer besonders bevorzugten Ausführungsform weist die Kolonne K1 im Betrieb folgende Merkmale auf:
- • der Druck in der Reaktivdestillationskolonne K1 beträgt
von 0,5bis 4 bar; - • die Kopftemperatur in der Reaktivdestillationskolonne K1 beträgt von 45 bis 115°C;
- • die Sumpftemperatur in der Reaktivdestillationskolonne K1 beträgt von 140 bis 240°C;
- • die
Reaktionsdestillationskolonne K1 weist 5 bis 30 theoretische Trennstufen auf; - • unterhalb des Zulaufs weist die
Reaktivdestillationskolonne K1 4 bis 15 theoretische Trennstufen auf; - • der pH-Wert in der Reaktivdestillationskolonne K1 im Bereich zwischen Zulauf und Sumpfabzug ist zwischen 5 und 14.
- • the pressure in the reactive distillation column K1 is from 0.5 to 4 bar;
- • the head temperature in the reactive distillation column K1 is from 45 to 115 ° C;
- • the bottom temperature in the reactive distillation column K1 is from 140 to 240 ° C;
- The reaction distillation column K1 has from 5 to 30 theoretical plates;
- • below the feed, the reactive distillation column K1 has 4 to 15 theoretical plates;
- • The pH in the reactive distillation column K1 in the range between inlet and bottom draw is between 5 and 14.
In einer insbesondere bevorzugten Ausführungsform weist die Kolonne K1 im Betrieb folgende Merkmale auf:
- • der Druck in der Reaktivdestillationskolonne K1 beträgt
von 1bis 3 bar; - • die Kopftemperatur in der Reaktivdestillationskolonne K1 beträgt von 65 bis 105°C;
- • die Sumpftemperatur in der Reaktivdestillationskolonne K1 beträgt von 170 bis 225°C;
- • die Reaktionsdestillationskolonne K1 weist 20 bis 25 theoretische Trennstufen auf;
- • unterhalb des Zulaufs weist die
Reaktivdestillationskolonne K1 5 bis 10 theoretische Trennstufen auf; - • der pH-Wert in der Reaktivdestillationskolonne K1 im Bereich zwischen Zulauf und Sumpfabzug ist zwischen 7 und 14.
- • the pressure in the reactive distillation column K1 is from 1 to 3 bar;
- • the head temperature in the reactive distillation column K1 is from 65 to 105 ° C;
- • the bottom temperature in the reactive distillation column K1 is from 170 to 225 ° C;
- The reaction distillation column K1 has from 20 to 25 theoretical plates;
- • below the feed, the reactive distillation column K1 has 5 to 10 theoretical plates;
- • The pH in the reactive distillation column K1 in the range between inlet and bottom draw is between 7 and 14.
Katalysatoren in fester Phase in Kombination mit flüssigen oder gasförmigen Einsatzstoffen haben den Vorteil der leichten Abtrennbarkeit des Katalysators von der flüssigen oder gasförmigen Phase. Katalysatoren in fluider Phase können oft nicht vollständig von der fluiden Phase der Reaktionsmischung abgetrennt werden. Damit verbleiben sie zum Teil in den Reaktionsprodukten und können zu einer Minderung der Produktqualität führen. Ferner können sie in Apparaten zu Niederschlägen, Ablagerungen und Fouling führen. Fouling mindert die Verfügbarkeit und damit die Kapazität der Anlage. Durch die prinzipiell unvollständige Trennung des Katalysators von der Reaktionsmischung, muss dieser stets nachführend ergänzt werden. Die Recyclierungsrate eines Katalysators in fluider Phase ist innerhalb eines Verfahrens immer < 100%. Dies senkt aufgrund der Verluste des teuren Katalysators nachhaltig die Wirtschaftlichkeit des Gesamtverfahrens. Dies gilt für Verfahren, die zum Beispiel flüssige ionische Flüssigkeiten als Katalysator nutzen oder ein separates Lösungsmittel einführen, in dem ein spezieller homogener Katalysator gelöst ist.Catalysts in solid phase in combination with liquid or gaseous starting materials have the advantage of easy separability of the catalyst from the liquid or gaseous phase. Often, fluid phase catalysts can not be completely separated from the fluid phase of the reaction mixture. Thus, they remain partly in the reaction products and can lead to a reduction in product quality. Furthermore, they can lead to precipitation, deposits and fouling in apparatuses. Fouling reduces the availability and thus the capacity of the system. Due to the principle incomplete separation of the catalyst from the reaction mixture, this must always be supplemented. The rate of recycling of a fluid phase catalyst is always <100% within one process. Due to the losses of the expensive catalytic converter, this effectively reduces the economic efficiency of the overall process. This applies to processes which, for example, use liquid ionic liquids as catalyst or introduce a separate solvent in which a specific homogeneous catalyst is dissolved.
Generell gilt, dass zur Optimierung der Wirtschaftlichkeit und zur Optimierung und Sicherstellung der hohen Produktqualität auf Hilfsstoffe jeder Form so weit wie möglich verzichtet werden sollte.In general, in order to optimize the economic efficiency and to optimize and ensure the high product quality, auxiliary substances of every shape should be avoided as far as possible.
Dem Fachmann ist bekannt, dass die Handhabung von flüssigen und gasförmigen Stoffen in verfahrenstechnischen Apparaten bevorzugt ist. Sie lassen sich einfach fördern. Die entsprechenden Apparate sind in verschiedensten Ausführungen in großer Zahl erhältlich. Die Apparate sind keine Sonderkonstruktionen und sind weitgehend risikolos skalierbar. Entsprechend können Planung und Errichtung einer Großanlage wirtschaftlich günstig durchgeführt werden. Die Skalierung des Gesamtverfahrens ist damit durchgängig möglich. Dies hebt wirtschaftliche Vorteile entsprechend der dem Fachmann geläufigen Regeln der „economy of scale“. Destillationskolonnen sind in der Auslegung technischer Verfahren als Apparate generell bevorzugt, da Destillationskolonnen die häufigste Art der Stofftrennung in der chemischen Technik sind. Die Methoden zur Auslegung sind im Allgemeinen. weitgehend ausgereift.The person skilled in the art is aware that the handling of liquid and gaseous substances in process engineering apparatus is preferred. They are easy to promote. The corresponding apparatus are available in a variety of designs in large numbers. The apparatuses are not special constructions and are largely scalable without risk. Accordingly, planning and construction of a large-scale plant can be carried out economically. The scaling of the overall procedure is thus possible throughout. This raises economic benefits in accordance with the rules of the "economy of scale" familiar to the person skilled in the art. Distillation columns are generally preferred in the design of technical processes as apparatus since distillation columns are the most common type of material separation in chemical engineering. The methods of interpretation are generally. largely mature.
Dem Fachmann ist bekannt, dass bei der Destillation von formaldehydhaltigen Mehrkomponentengemischen enthaltend Wasser und Methanol Reaktionen zwischen Wasser, Methanol und Formaldehyd zu Polyoxymethylenglykolen und Polyoxymethylenhemiformalen führen (siehe Reaktionen 2-5). Die entsprechenden Reaktionen sind in der Literatur beschrieben (
Es wurde nun überraschenderweise gefunden, dass sich OME mit 3 und mehr Oxymethylen-Einheiten (OMEn≥3) in einem einzigen destillativen Trennschritt von den übrigen Komponenten des Reaktoraustrags quantitativ abtrennen lassen. Quantitativ bedeutet hier, dass mindestens 80%, bevorzugt mindestens 85%, besonders bevorzugt mindestens 90% der OMEn≥3 vom Reaktoraustrag getrennt werden. Dies ist aufgrund der ähnlichen Siedepunkte der OMEn≥3 und der im Reaktoraustrag zwangsläufig enthaltenden Polyoxymethylenglykole (n ≥ 3) und Polyoxymethylenhemiformale (n≥ 3) zunächst nicht zu erwarten. Durch das komplexe Zusammenspiel von Reaktionen und Destillation reagieren Polyoxymethylenglykole (n ≥ 3) und Polyoxymethylenhemiformale (n≥ 3) in der Kolonne offensichtlich zu den analogen Spezies kürzerer Kettenlänge, die sich nun sehr wohl von den OMEn≥3 destillativ trennen lassen.It has now surprisingly been found that OME with 3 or more oxymethylene units (OME n≥3 ) can be quantitatively separated from the other components of the reactor effluent in a single distillative separation step. Quantitative here means that at least 80%, preferably at least 85%, more preferably at least 90% of the OME n≥3 are separated from the reactor effluent. This is initially not to be expected due to the similar boiling points of the OMN n≥3 and the polyoxymethylene glycols (n ≥ 3) and Polyoxymethylenhemiformale (n≥ 3) inevitably contained in the reactor discharge. Due to the complex interaction of reactions and distillation, polyoxymethylene glycols (n ≥ 3) and polyoxymethylene hemiformals (n≥ 3) in the column obviously react to the analogous species of shorter chain length, which can now be separated from the OMN n≥3 by distillation.
Bei der Kolonne K2 handelt es sich im Allgemeinen um eine konventionelle Destillationskolonne zur physikalischen Trennung von Stoffgemischen, da der Zulaufstrom zur Kolonne K2 im Wesentlichen kein Formaldehyd, Methanol und Wasser mehr enthält.The column K2 is generally a conventional distillation column for the physical separation of mixtures, since the feed stream to the column K2 substantially contains no formaldehyde, methanol and water.
Die Folgeschritte zur Wasserabtrennung durch insbesondere Pervaporation, Dampfpermeation und/oder Adsorption sind verfahrenstechnisch etablierte Grundoperationen und werden z.B. zur Entwässerung der Kraftstoffkomponente Bioethanol genutzt, wie beschrieben in Frolkova
Insbesondere beschreibt
Die Skalierbarkeit von Adsorptions- und Membranverfahren in den großtechnischen Maßstab ist gegeben. So sind Adsorptionsanlagen mit etwa 200 t Adsorptionsmittel technisch realisiert, wie beschrieben in
Die Skalierung von Membranverfahren erfolgt im Allgemeinen durch Erhöhung der installierten Membranfläche, wie beschrieben in Melin T., Rautenbach R., Membranverfahren, Grundlagen der Modul- und Anlagenauslegung, Springer-Verlag, Berlin, Heidelberg 2007.The scaling of membrane processes is generally carried out by increasing the installed membrane area, as described in Melin T., Rautenbach R., membrane processes, fundamentals of module and system design, Springer-Verlag, Berlin, Heidelberg 2007.
Die Besonderheit des beanspruchten Verfahrens liegt damit in der Kombination der oben geschilderten Reaktivdestillation K1 mit einem Reaktor und der weiteren geschickten Kombination von Reaktor und Reaktivdestillation mit konventionellen Schritten zur Destillation und Wasserabtrennung, wobei alle Schritte skalierbar sind, sowie in der geschickten Verwertung von Rückführströmen im OME-Verfahren selbst oder in externen Verfahren wie der Formaldehydherstellung.The peculiarity of the claimed method lies in the combination of the above-described reactive distillation K1 with a reactor and the other clever combination of reactor and reactive distillation with conventional steps for distillation and water separation, where all steps are scalable, and in the skillful recovery of recycle streams in the OME Process itself or in external processes such as formaldehyde production.
Eine detaillierte Skizze einer bevorzugten Ausführungsform des beanspruchten Verfahrens ist in
-
1 : Skizze des beanspruchten Verfahrens. Die Abbildung zeigt eine bevorzugte Variante des erfindungsgemäßen Verfahrens.
-
1 : Sketch of the claimed method. The figure shows a preferred variant of the method according to the invention.
Das Verfahren umfasst im Einzelnen die Schritte:
- (i) Einspeisung von Formaldehyd und von Methanol im Allgemeinen in Form einer oder mehrerer wässriger Lösungen (Strom
1 ) sowie der Rückführströme7 und9 in einen Reaktor und Umsetzung zu einem Gemisch (Strom3 ) enthaltend Formaldehyd, Wasser, Methylenglykol (MG), Polyoxymethylenglykole (MGn), Methanol, Hemiformale (HF), Methylal (OMEn=1) und Polyoxymethylendimethylether (OMEn>1); dabeiist Strom 2 eineMischung der Ströme 1 ,7 und 9 .Der Zulaufstrom 1 kann geringe Mengen weiterer Komponenten (z.B. Ameisensäure, Methylformiat und weitere dem Fachmann bekannte Verunreinigungen) enthalten; Im Allgemeinen wird Formaldehyd als wässrige Formaldehyd-Lösung mit einem Formaldehyd-Gehalt von 20 bis 95 Gew.-% in den Reaktor R eingespeist. Formaldehyd kann auch hochkonzentriert, flüssig oder gasförmig oder als Paraformaldehyd in Form einer Schmelze oder als wässrige Suspension in den OME-Synthesereaktor eingespeist werden; - (ii) Einspeisung des Reaktionsgemisches (Strom
3 ) in die spezielle Reaktivdestillationskolonne K1 und Auftrennung in eine Leichtsiederfraktion enthaltend im Wesentlichen Formaldehyd, Wasser, Methylenglykol (MG), Polyoxymethylenglykole (MGn), Methanol, Hemiformale (HF), Methylal (OMEn=1) und Polyoxymethylendimethylether (OMEn=2) (Strom4 ) und eine Schwersiederfraktion, enthaltend im Wesentlichen Polyoxymethylendimethylether (OMEn≥3) (Strom5 ); - (iii) Einspeisung der Schwersiederfraktion (Strom
5 ) in die Destillationskolonne K2 und Auftrennung in eine Leichtsiederfraktion (Produktfraktion), enthaltend die gewünschten Produkt-Polyoxymethylendimethylether OMEn=3-6 (Strom6 ) und eine Schwersiederfraktion, enthaltend Polyoxymethylendimethylether (OMEn>6) (Strom7 ); - (iv) Rückführung der Schwersiederfraktion (Strom
7 ) in den Reaktor; - (v) Einspeisung der Leichtsiederfraktion (Strom
5 ) in einen Apparat zur Wasserabtrennung (bevorzugt Pervaporation, Dampfpermeation und Adsorption) und Auftrennung in einen wasserarmenStrom 9 und einen wasserreichenStrom 8 ; - (vi) Rückführung des wasserarmen
Stroms 9 in den Reaktor.
- (i) feeding formaldehyde and methanol generally in the form of one or more aqueous solutions (stream
1 ) as well as the return streams7 and9 in a reactor and converted to a mixture (stream 3 containing formaldehyde, water, methylene glycol (MW), polyoxymethylene glycols (MW n ), methanol, hemiformal (HF), methylal (OME n = 1 ) and polyoxymethylene dimethyl ether (OME n> 1 ); this is electricity2 a mixture of thestreams 1 .7 and9 , Thefeed stream 1 may contain minor amounts of other components (eg, formic acid, methyl formate, and other impurities known to those skilled in the art); In general, formaldehyde is fed as an aqueous formaldehyde solution having a formaldehyde content of 20 to 95 wt .-% in the reactor R. Formaldehyde can also be highly concentrated, liquid or gaseous or fed as paraformaldehyde in the form of a melt or as an aqueous suspension in the OME synthesis reactor; - (ii) feeding the reaction mixture (stream
3 ) into the special reactive distillation column K1 and separating into a low-boiling fraction containing essentially formaldehyde, water, methylene glycol (MG), polyoxymethylene glycols (MW n ), methanol, hemiformal (HF), methylal (OME n = 1 ) and polyoxymethylene dimethyl ether (OME n = 2 ) (Electricity4 ) and a high boiler fraction containing essentially polyoxymethylene dimethyl ether (OME n≥3 ) (stream5 ); - (iii) feeding the high boiler fraction (stream
5 ) into the distillation column K2 and separation into a low boiler fraction (product fraction) containing the desired product polyoxymethylene dimethyl ether OME n = 3-6 (stream6 ) and a high boiler fraction containing polyoxymethylene dimethyl ether (OME n> 6 ) (stream7 ); - (iv) recycling the high boiler fraction (stream
7 ) in the reactor; - (v) feeding the low boiler fraction (stream
5 ) in an apparatus for water separation (preferably pervaporation, vapor permeation and adsorption) and separation into a low-water stream 9 and a stream rich in water8th ; - (vi) recycling the low-
water stream 9 in the reactor.
Der wasserreiche Strom
Der Begriff „Leichtsiederfraktion“ wird für das im oberen Teil, der Begriff „Schwersiederfraktion“ für das im unteren Teil der Kolonne entnommene Gemisch verwendet. Im Allgemeinen wird die Leichtsiederfraktion am Kolonnenkopf, die Schwersiederfraktion am Kolonnensumpf entnommen. Dies ist jedoch nicht zwingend. Möglich ist auch die Entnahme über Seitenabzüge im Abtriebs- bzw. Verstärkungsteil der Kolonne.The term "low boiler fraction" is used for that in the upper part, the term "high boiler fraction" for the mixture taken in the lower part of the column. In general, the low boiler fraction at the top of the column, the high boiler fraction at the bottom of the column. However, this is not mandatory. Also possible is the removal via side vents in the stripping or enrichment section of the column.
„Im Wesentlichen bestehend aus“ hat hier und nachfolgend die Bedeutung, dass die betreffende Fraktion zu mindestens 90 Gew.-%, vorzugsweise zu mindestens 95 Gew.- % aus den genannten Komponenten besteht."Substantially consisting of" here and below means that the relevant fraction consists of at least 90 wt .-%, preferably at least 95% by weight of the said components.
Die Reaktion von Formaldehyd mit Methanol zu OME erfolgt nach der Bruttoreaktionsgleichung (11).
Als feste Katalysatoren werden z.B. eingesetzt lonentauscherharze, Zeolithe, Aluminosilikate, Aluminiumdioxid, Titandioxid. Bevorzugt sind lonentauscherharze, besonders bevorzugt sind lonentauscherharze, deren Grundgerüst aus sulfonierten Polystryrol besteht (z.B. Amberlyst® 15, Amberlyst® 46). Im Allgemeinen kommen jedoch alle festen Katalysatoren in Frage, die ein acides Zentrum besitzen. Die Pseudoverweilzeit der Reaktionsmischung am Katalysator beträgt zwischen 1 s und 7200 s, bevorzugt zwischen 5 s und 3600 s, besonders bevorzugt zwischen 8 s und 1800 s. Die Pseudoverweilzeit ist hier definiert als Masse des Katalysators geteilt durch den Massenstrom des Fluides, das durch den Reaktor fließt. Die Umsetzung kann in jedem Apparat erfolgen, der zur Durchführung von Reaktionen fluider Medien an einem Festbettkontakt geeignet ist: Sie kann z.B. in Suspensionsfahrweise in einem Rührkesselreaktor (CSTR), einem Rohrreaktor oder einem Loop-Reaktor durchgeführt werden. Im weniger vorteilhaften Fall kann auch eine Reaktivdestillation eingesetzt werden. Bevorzugt ist ein Festbettreaktor, z.B. eine einfache durchströmte Katalysatorschüttung wie für die OME Synthese aus Trioxan und Methylal, beschrieben in Burger
Das Produktgemisch kann anschließend mit einem Anionenaustauscherharz in Kontakt gebracht werden, um ein im Wesentlichen säurefreies Produktgemisch zu erhalten.The product mixture may then be contacted with an anion exchange resin to obtain a substantially acid-free product mixture.
Die Umsetzung erfolgt im Allgemeinen bei einer Temperatur von 0 bis 200°C, bevorzugt 30 bis 150°C, besonders bevorzugt 40 bis 120°C und einem Druck von 0,3 bis 30 bar, bevorzugt 1 bis 20 bar, ganz besonders bevorzugt 1,2 bis 10 bar. Es ist auch möglich, die Edukte einem Festbettreaktor gasförmig zuzuführen. In diesem Falle müssen flüssige Edukte vor Eintritt in den Reaktor verdampft werden. Alternativ können gasförmige Eduktströme aus einer vorgeschalteten Produktionseinheit ohne Zwischenkondensation und nach einer eventuellen Zwischentemperierung direkt dem Reaktor zugeführt werden. Solche gasförmigen Ströme können z.B. ein gasförmiger, Formaldehyd und Wasser enthaltender Reaktoraustragstrom aus einer Formaldehyd-Anlage sein. Werden die Edukte dem Festbettreaktor gasförmig zugeführt, so erfolgt vor oder in der destillativen Aufarbeitung eine Kondensation oder Teilkondensation des Reaktoraustrags. Diese Kondensation oder Teilkondensation kann auch schon im Reaktor selbst erfolgen, wenn durch die Temperaturführung im Reaktor der Taupunkt von gebildeten Oligomeren unterschritten wird.The reaction is generally carried out at a temperature of 0 to 200 ° C, preferably 30 to 150 ° C, more preferably 40 to 120 ° C and a pressure of 0.3 to 30 bar, preferably 1 to 20 bar, most preferably 1 , 2 to 10 bar. It is also possible to supply the educts to a fixed bed reactor in gaseous form. In this case, liquid reactants must be evaporated before entering the reactor. Alternatively, gaseous educt streams from an upstream production unit without intermediate condensation and after a possible intermediate temperature can be fed directly to the reactor. Such gaseous streams may e.g. a gaseous formaldehyde-containing reactor effluent stream from a formaldehyde plant. If the educts are fed to the fixed bed reactor in gaseous form, condensation or partial condensation of the reactor discharge takes place before or in the workup by distillation. This condensation or partial condensation can also take place in the reactor itself if the temperature control in the reactor drops below the dew point of oligomers formed.
Die flüssige Reaktionsmischung bildet auch ohne Zugabe eines Katalysators Polyoxymethylenglykole und Polyoxymethylenhemiformale als Koppelprodukte. Die bei der Bildung der Polyoxymethylenglykole, Polyoxymethylenhemiformale und OME involvierten Kondensations- bzw. Kettenaufbaureaktionen sind Gleichgewichtsreaktionen und laufen daher (je nach Lage des chemischen Gleichgewichts) als Spaltungs- bzw. Kettenabbaureaktionen auch in umgekehrter Richtung ab. Daraus ergeben sich die besonderen Anforderungen an die Reaktivdestillationskolonne K1.Even without the addition of a catalyst, the liquid reaction mixture forms polyoxymethylene glycols and polyoxymethylene hemiformals as coupling products. The condensation or chain formation reactions involved in the formation of the polyoxymethylene glycols, polyoxymethylene hemiformals and OME are equilibrium reactions and therefore (depending on the position of the chemical equilibrium) also proceed in the reverse direction as cleavage or chain degradation reactions. This results in the special requirements for the reactive distillation column K1.
Da die chemischen Reaktionen in der Kolonne K1 mit endlicher Reaktionsgeschwindigkeit ablaufen, ist die Wahl geeigneter Kolonneneinbauten von wichtiger Bedeutung. Aufgrund der endlichen Reaktionsgeschwindigkeit der chemischen Reaktionen werden bevorzugt solche Einbauten verwendet, die eine hohe Verweilzeit und einen hohen Flüssigkeitsinhalt des Gemisches in der Kolonne ermöglichen. Werden strukturierte Packungen verwendet, kommen insbesondere spezielle Anstaupackungen in Betracht, wie sie in
Je höher die Konzentration von Formaldehyd im Zulauf der Kolonne ist, desto höher wird vorzugsweise der Druck der Kolonne gewählt, um einen Feststoffausfall zu vermeiden. Bis ca. 5 Gew.-% Formaldehyd wird die Kolonne bevorzugt bei 1 bar betrieben. Ab ca. 5 Gew.-% Formaldehyd wird die Kolonne bevorzugt als Druckkolonne betrieben.The higher the concentration of formaldehyde in the feed of the column, the higher the pressure of the column is preferably chosen, in order to avoid a solid precipitation. Up to about 5% by weight of formaldehyde, the column is preferably operated at 1 bar. From about 5 wt .-% formaldehyde, the column is preferably operated as a pressure column.
Außer der Kolonne K1 sind die weiteren Destillationskolonnen im Allgemeinen Kolonnen üblicher Bauart. In Frage kommen Füllkörperkolonnen, Bodenkolonnen und Packungskolonnen und Kombinationen, bevorzugt sind Bodenkolonnen und Packungskolonnen.Apart from the column K1, the further distillation columns are generally columns of conventional design. In question are packed columns, tray columns and packed columns and combinations, preferably tray columns and packed columns are.
Die Destillationskolonne K2 wird bei einem Druck von 0,01 bis 1 bar, bevorzugt bei einem Druck von 0,05 bis 0,9 bar und besonders bevorzugt bei einem Druck von 0,1 bis 0.5 bar betrieben. Die Betriebstemperaturen liegen im Allgemeinen bei 60 bis 300°C. Die Kolonne weist eine theoretische Stufenzahl von 5 bis 40, bevorzugt von 8 bis 20, besonders bevorzugt von 10 bis 18 auf. Die Auslegung der Kolonne K2 erfolgt standardmäßig nach den dem Fachmann bekannten Regeln. Die Trennung in der Kolonne K2 ist in der Literatur beschrieben (
Da die gewünschten OME der Kettenlänge n = 3-6 eine mittelsiedende Fraktion des Reaktoraustrags darstellen, ist es zur Erhöhung der Effizienz des Gesamtprozesses ebenfalls denkbar, die beiden Kolonnen K1 und K2 in einer einzigen reaktiven Trennwandkolonne zu integrieren. Dadurch sinken sowohl die Investitions- als auch die Betriebskosten der Anlage. Solche Trennwandkolonnen sind z.B. in
In diesem Fall wird in die Kolonne eine Trennwand eingebaut, die sich über den Abtriebsteil, den Bereich des Zulaufstroms und zumindest einen Teil des Verstärkerteils der Kolonne durchgängig erstreckt. Sie kann sich jedoch auch über den gesamten Verstärkerteil mit erstrecken. In dieser reaktiven Trennwandkolonne fällt als Kopfprodukt eine Mischung aus Formaldehyd, Methanol, Wasser, Methylal und OMEn=2 an. Das Seitenprodukt, welches in Höhe des Zulaufs oder zwischen Zulauf und Sumpf auf der dem Zulauf gegenüberliegenden Seite der Trennwand der Kolonne entnommen wird, ist der gewünschte Produktstrom enthaltend OME der Kettenlänge n = 3-6. Im Sumpf der Kolonne fallen die OME der Kettenlängen n ≥ 6 an. Diese reaktive Trennwandkolonne wird bei einem Druck von 0,01 bis 5 bar, bevorzugt bei einem Druck von 0,05 bis 4 bar und besonders bevorzugt bei einem Druck von 0,01 bis 3 bar betrieben. Die Betriebstemperaturen sind im Wesentlichen analog zu den Temperaturen, wenn die Kolonnen K1 und K2 einzeln betrieben werden. Die Kolonne weist eine theoretische Stufenzahl von 15 bis 80, bevorzugt 30 bis 50, besonders bevorzugt 35 bis 40 auf. Dabei entfallen 10 bis 30, vorzugsweise 15 bis 25 Stufen auf den Bereich mit eingebauter Trennwand. In this case, a dividing wall is installed in the column, which extends continuously through the stripping section, the inlet flow section and at least part of the column reinforcement section. However, it can also extend over the entire amplifier part. In this reactive dividing wall column, the top product is a mixture of formaldehyde, methanol, water, methylal and OME n = 2 . The side product which is withdrawn at the level of the feed or between feed and bottom on the side of the dividing wall of the column opposite the feed is the desired product stream containing OME of chain length n = 3-6. In the bottom of the column, the OMEs of chain lengths n ≥ 6 occur. This reactive dividing wall column is operated at a pressure of 0.01 to 5 bar, preferably at a pressure of 0.05 to 4 bar and particularly preferably at a pressure of 0.01 to 3 bar. The operating temperatures are essentially analogous to the temperatures when the columns K1 and K2 are operated individually. The column has a theoretical number of stages of 15 to 80, preferably 30 to 50, particularly preferably 35 to 40. This accounts for 10 to 30, preferably 15 to 25 stages on the area with built-in partition.
Zur Erhöhung der Energieeffizienz des Prozesses ist es möglich, die Destillationskolonnen thermisch zu koppeln. Dabei wird durch geeignete Temperatur- und Druckführung der Kolonnen z.B. der Brüden einer Kolonne zum Heizen einer anderen Kolonne verwendet. Es ist ebenfalls denkbar, die Brüden der Kolonnen zu komprimieren und als Heizmedium für verschiedene Verdampfer des Prozesses zu nutzen. Es ist ebenfalls denkbar, die Anlage energetisch mit anderen Anlagen im Verbund zu koppeln, bevorzugt mit einer Formaldehyd-Anlage. Die abgeführte Reaktionswärme aus dem Formaldehyd-Reaktor kann beispielsweise zur Erzeugung von Heizdampf für die OME-Anlage verwendet werden.To increase the energy efficiency of the process, it is possible to thermally couple the distillation columns. In this case, by suitable temperature and pressure control of the columns, e.g. the vapors used a column for heating another column. It is also conceivable to compress the vapors of the columns and to use as a heating medium for various evaporators of the process. It is also conceivable to couple the plant energetically with other systems in the composite, preferably with a formaldehyde plant. The dissipated heat of reaction from the formaldehyde reactor can be used, for example, to generate heating steam for the OME plant.
Strom
Für den Fall der Ausgestaltung der Wasserabtrennung als Pervaporations- oder Dampfpermeationsanlage können anorganische und polymere Membranen eingesetzt werden. Als polymere Membranen kommen z.B. in Betracht: Polyamid, Polyamidimid, Polyacrylnitril, Polybenzimidazol, Polyester, Polycarbonat, Polyetherimid, Polyethylenimin, Polyimid, Polymethylmethacrylat, Polypropylen, Polysulfon, Polyethersulfon, Polyphenylsulfon, Polytetrafluorethylen, Polyvinylidenfluorid, Polyvinylpyrrolidon, Polyvinylalkohol, Polydimethylsiloxan. Der Grad der Quervernetzung der polymeren Membran ist dabei frei einstellbar. Die mechanische Stabilität der Membranen kann durch eine Stützschicht erhöht werden. Als anorganische Membran kommen z.B. in Betracht: Zeolithe, Metalloxide wie z.B. Aluminiumdioxid, Zirkondioxid, Siliziumdioxid, Titanoxid und Glas. Die Porenstruktur der Membranen kann sowohl symmetrisch als auch asymmetrisch sein. Bevorzugt werden anorganische Membranen eingesetzt, besonders bevorzugt werden anorganische Zeolithe als Membran verwendet. Die Anordnung der Membranmodule erfolgt bevorzugt als, ist aber nicht beschränkt auf, eine „Tannenbaumstruktur“. Dadurch werden alle eingesetzten Membranmodule fluiddynamisch gleich belastet. Als Membranmodule kommen alle dem Fachmann bekannten Modulformen wie z.B. Rohrmodule, Plattenmodule, Kapillarmodule und Hohlfasermodule in Betracht. Falls polymere Membranen eingesetzt werden, sind Plattenmodule bevorzugt. Falls anorganische Membranen verwendet werden, sind Rohrmodule bevorzugt.In the case of the design of the water separation as pervaporation or Dampfpermeationsanlage inorganic and polymeric membranes can be used. As polymeric membranes, e.g. Considered: polyamide, polyamideimide, polyacrylonitrile, polybenzimidazole, polyester, polycarbonate, polyetherimide, polyethylenimine, polyimide, polymethylmethacrylate, polypropylene, polysulfone, polyethersulfone, polyphenylsulfone, polytetrafluoroethylene, polyvinylidene fluoride, polyvinylpyrrolidone, polyvinylalcohol, polydimethylsiloxane. The degree of cross-linking of the polymeric membrane is freely adjustable. The mechanical stability of the membranes can be increased by a supporting layer. As the inorganic membrane, e.g. Consider: zeolites, metal oxides such as e.g. Alumina, zirconia, silica, titania and glass. The pore structure of the membranes can be both symmetric and asymmetric. Preference is given to using inorganic membranes, particular preference being given to using inorganic zeolites as membrane. The arrangement of the membrane modules is preferably as, but not limited to, a "fir-tree" structure. As a result, all the membrane modules used are loaded equally fluid dynamically. As membrane modules are all known in the art module forms such. Tube modules, plate modules, capillary modules and hollow fiber modules into consideration. If polymeric membranes are used, plate modules are preferred. If inorganic membranes are used, tube modules are preferred.
Der Betriebsdruck auf der Zulaufseite der Membran beträgt zwischen 0,1 und 200 bar, bevorzugt zwischen 1 und 150 bar. Der Druck auf der Permeatseite beträgt zwischen 0,001 und 10 bar, bevorzugt zwischen 0,01 und 5 bar. Die Temperatur beträgt zwischen 30 und 200°C. Dem Fachmann ist bekannt, dass insbesondere für den Fall der Pervaporation zwischen den Membranmodulen im Allgemeinen eine Erwärmung der Retentatströme durch zwischengeschaltete Wärmeüberträger erfolgt. Insbesondere ist es möglich, den Retentatstrom aus dem letzten Membranmodul zur Vorheizung des Zulaufs des ersten Membranmoduls zu verwenden.The operating pressure on the inlet side of the membrane is between 0.1 and 200 bar, preferably between 1 and 150 bar. The pressure on the permeate side is between 0.001 and 10 bar, preferably between 0.01 and 5 bar. The temperature is between 30 and 200 ° C. It is known to the person skilled in the art that, in particular in the case of pervaporation between the membrane modules, the retentate streams are generally heated by interposed heat exchangers. In particular, it is possible to use the retentate stream from the last membrane module for preheating the inlet of the first membrane module.
Je nach gewähltem Druckniveau auf der Permeatseite der Membran erfolgt eine Kondensation des Permeatstroms durch Kühlwasser oder Kühlsole. Andere Prozessströme aus der OME-Anlage oder einer Formaldehyd-Anlage können ebenfalls eingesetzt werden. Kühlsole wird bevorzugt bei sehr niedrigen Drücken auf der Permeatseite eingesetzt. Wird auf der Permeatseite ein Vakuum angelegt, kann sowohl eine mechanische als auch eine thermisch arbeitende Vakuumpumpe verwendet werden. Im letzteren Fall wird bevorzugt ein Strahlverdichter verwendet.Depending on the selected pressure level on the permeate side of the membrane, a condensation of the permeate stream is carried out by cooling water or cooling brine. Other process streams from the OME plant or a formaldehyde plant can also be used. Cooling brine is preferably used at very low pressures on the permeate side. If a vacuum is applied to the permeate side, both a mechanical and a thermally operating vacuum pump can be used. In the latter case, a jet compressor is preferably used.
Wird eine Dampfpermeationsanlage verwendet, so ist es möglich, die Kolonne K1 nur mit einem Partialkondensator zu betreiben, so dass der nicht kondensierte Brüden der Kolonne K1 direkt in die Dampfpermeationsanlage geleitet wird. Es ist jedoch weiterhin auch möglich, die Kolonne K1 mit einem Totalkondensator zu betreiben und den Zulaufstrom der Dampfpermeationsanlage vorher mit Hilfe eines zusätzlichen Wärmeübertragers zu verdampfen.If a vapor permeation unit is used, it is possible to operate the column K1 only with a partial condenser, so that the uncondensed vapor of the column K1 is passed directly into the vapor permeation unit. However, it is also also possible to operate the column K1 with a total condenser and to evaporate the feed stream of the vapor permeation system beforehand with the aid of an additional heat exchanger.
Für den Fall der Ausgestaltung der Wasserabtrennung als Adsorptionsanlage sind alle gängigen Adsorbermaterialen einsetzbar. Beispiele sind Zeolithe, Aktivkohle, Adsorberharze, Metalloxide wie z.B. Aluminiumdioxid, Zirkondioxid, Siliziumdioxid (Kieselgele, Silikagele) und Titanoxid, Salze wie z.B. Magnesiumsulfat, Natriumsulfat, Calciumhydrid, Calciumoxid, Calciumsulfat, Kaliumcarbonat, Kaliumhydroxid, Kupfersulfat, Lithiumaluminiumhydrid, Natriumhydroxid, und elementare Alkali- und Erdalkalimetalle. Bevorzugt werden Zeolithe und Metalloxide verwendet, ganz besonders bevorzugt werden Zeolithe verwendet. Die bevorzugten Adsorbermaterialien können dabei besonders einfach durch geeignete Temperatur- und Druckführung regeneriert werden. Werden Zeolithe als Adsorptionsmittel eingesetzt, so werden bevorzugt Zeolithe von Typ NaA eingesetzt, besonders bevorzugt Zeolithe von Typ NaA, deren Porenweite zwischen 2 und 10 Angström beträgt. Der wasserreiche Strom F6 fällt im diskontinuierlichen Betrieb bei der Regeneration des Adsorbers an. Dabei desorbieren Wasser und die zusätzlich adsorbierten Komponenten. In the case of the embodiment of the water separation as adsorption all common adsorbent materials can be used. Examples are zeolites, activated carbon, adsorbent resins, metal oxides such as alumina, zirconia, silica (silica gels, silica gels) and titania, salts such as magnesium sulfate, sodium sulfate, calcium hydride, calcium oxide, calcium sulfate, potassium carbonate, potassium hydroxide, copper sulfate, lithium aluminum hydride, sodium hydroxide, and elemental alkalis and alkaline earth metals. Preference is given to using zeolites and metal oxides, very particular preference to using zeolites. The preferred adsorbent materials can be regenerated particularly easily by suitable temperature and pressure control. If zeolites are used as adsorbents, it is preferred to use zeolites of the NaA type, more preferably zeolites of the NaA type, whose pore size is between 2 and 10 angstroms. The water-rich stream F6 accumulates in the discontinuous operation in the regeneration of the adsorber. Desorb water and the additionally adsorbed components.
Die Adsorptionsanlage wird bevorzugt als einfache Festbettanlage ausgeführt. Möglich sind jedoch auch alle weiteren, dem Fachmann bekannten Bauarten von Adsorbern. Die Regeneration des Adsorbermaterials erfolgt in diesem Fall bevorzugt durch Druck- und/oder Temperaturwechsel im diskontinuierlichen Betrieb. Daher werden im Regelfall mindestens zwei Adsorber-Festbetten benötigt, so dass während des Betriebs eines Festbetts das andere Festbett regeneriert werden kann. Üblich ist eine Anordnung mit mehr ≥ 3 Adsorberbetten im Parallelbetrieb. Der Zulaufstrom zum Adsorber kann sowohl gasförmig als auch flüssig sein.The adsorption system is preferably designed as a simple fixed bed system. However, all other types of adsorbers known to the person skilled in the art are also possible. The regeneration of the adsorber material is in this case preferably by pressure and / or temperature changes in discontinuous operation. Therefore, as a rule, at least two adsorber fixed beds are required, so that the other fixed bed can be regenerated during the operation of a fixed bed. An arrangement with more than 3 adsorber beds in parallel operation is usual. The feed stream to the adsorber can be both gaseous and liquid.
Es ist auch denkbar, den Strom
Neben dem bevorzugten Einsatzstoff Methanol können in der OME-Synthese als Reaktionspartner des Formaldehyds Derivate des Methanols eingesetzt werden wie z.B. Methylal, Dimethylether, OME2 und/oder Mischungen derselben untereinander und/oder mit Methanol.In addition to the preferred starting material methanol can be used in the OME synthesis as a reactant of formaldehyde derivatives of methanol such as methylal, dimethyl ether, OME 2 and / or mixtures thereof with each other and / or with methanol.
Neben dem Methanol als einfachstem Alkohol und seinen Derivaten können als Reaktionspartner des Formaldehyds im Prinzip auch andere Alkohole eingesetzt werden, wie z.B. Ethanol, Propanol und Butanol und/oder Mischungen derselben und/oder mit Methanol. Was oben über die Derivate des Methanols gesagt wurde gilt analog für die Derivate anderer Alkohole, wobei auch Mischderivate wie z.B. C2H5O - CH2 - OCH3 oder C2H5-O-CH3 möglich sind. Im Falle von Mischungslücken werden Emulsionen eingesetzt.In addition to the methanol as the simplest alcohol and its derivatives can be used as reactants of formaldehyde in principle, other alcohols, such as ethanol, propanol and butanol and / or mixtures thereof and / or with methanol. What has been said above about the derivatives of methanol applies analogously to the derivatives of other alcohols, and also mixed derivatives such as C 2 H 5 O - CH 2 - OCH 3 or C 2 H 5 -O-CH 3 are possible. In the case of miscibility gaps, emulsions are used.
Das erfindungsgemäße Verfahren kann ganz oder teilweise kontinuierlich oder absatzweise betrieben werden. Dies gilt auch für den Reaktor und die Kolonnen. Bevorzugt ist der kontinuierliche Betrieb des Verfahrens. Einheiten, wie z.B. die Wasserabtrennung durch Adsorption, die technisch generell bevorzugt absatzweise betrieben werden, werden dabei in mehrere Apparaten in Parallelbauweise so gestaltet, dass praktisch ein kontinuierlicher Fluss aller Ströme durch diese Einheit möglich ist.The process according to the invention can be operated wholly or partly continuously or batchwise. This also applies to the reactor and the columns. Preferred is the continuous operation of the process. Units, e.g. The water removal by adsorption, which are generally operated technically preferably batchwise, are designed in several apparatuses in parallel design so that practically a continuous flow of all streams through this unit is possible.
Gegenstand der Erfindung sind weiterhin die nach dem erfindungsgemäßen Verfahren erhältlichen Produkte sowie die Abmischungen dieser Produkte mit Kraftstoff- und Ölfraktionen aus einer Raffinerie oder einem Raffinerieverbund. Diese Abmischungen können ferner Kraftstoffhilfsstoffe und Additive enthalten, wie sie dem Kraftstofffachmann bekannt sind.The invention furthermore relates to the products obtainable by the process according to the invention and the mixtures of these products with fuel and oil fractions from a refinery or a refinery complex. These blends may also include fuel adjuncts and additives known to those skilled in the art.
Die Zusammensetzung eines Gemischs von OME-Oligomeren ist, wenn der Reaktor des Verfahrens nahe am Punkt des Gleichgewichtsumsatzes betrieben wird: 0,35 g/g ≤ xOME3 ≤ 0,79 g/g, 0,17 g/g ≤ xOME4 ≤ 0,36 g/g, 0,04 g/g ≤ xOME5 ≤ 0,31 g/g, xOME6 ≤ 0,06 g/g, bevorzugt 0,37 g/g ≤ xOME3 ≤ 0,70 g/g; 0,23 g/g ≤ xOME4 ≤ 0,35 g/g, 0,07 g/g ≤ xOME5 ≤0,26 g/g, xOME6 ≤ 0,08 g/g, ganz besonders bevorzugt 0,40 g/g ≤ xOME3 ≤ 0,62 g/g; 0,26 g/g ≤ xOME4 ≤ 0,35 g/g, 0,11 g/g ≤ xOME5 ≤ 0,26 g/g, xOME6 ≤ 0,12 g/g. Dabei handelt es sich bei xOMEn um den Massenanteil des OME-Oligomeren mit n Oxymethylen-Einheiten, bezogen auf die Masse des Gemischs.The composition of a mixture of OME oligomers, when the reactor of the process is operated close to the point of equilibrium conversion , is 0.35 g / g ≤ x OME3 ≤ 0.79 g / g, 0.17 g / g ≤ x OME4 ≤ 0.36 g / g, 0.04 g / g ≤ x OME5 ≤ 0.31 g / g, x OME6 ≤ 0.06 g / g, preferably 0.37 g / g ≤ x OME3 ≤ 0.70 g / G; 0.23 g / g ≤ x OME4 ≤ 0.35 g / g, 0.07 g / g ≤ x OME5 ≤ 0.26 g / g, x OME6 ≤ 0.08 g / g, most preferably 0.40 g / g ≦ x OME3 ≦ 0.62 g / g; 0.26 g / g ≤ x OME4 ≤ 0.35 g / g, 0.11 g / g ≤ x OME5 ≤ 0.26 g / g, x OME6 ≤ 0.12 g / g. Here, x OMEn is the mass fraction of the OME oligomer with n oxymethylene units, based on the mass of the mixture.
„Nahe am Gleichgewicht“ bedeutet hier, dass keine Konzentration der oben genannten einzelnen OME-Spezies sich mehr als 40% entfernt von dem Wert befindet, der der Zusammensetzung eines Reaktionsgemisches entspricht, welches sich im thermodynamischen Gleichgewicht befindet. As used herein, "near equilibrium" means that no concentration of the above individual OME species is more than 40% away from the value corresponding to the composition of a reaction mixture that is in thermodynamic equilibrium.
Die Zusammensetzung dieser Mischung von OME-Oligomeren ist eine Folge der oben beschriebenen Verfahrensführung.The composition of this mixture of OME oligomers is a consequence of the procedure described above.
Je nach Kundennachfrage können jedoch auch andere Mischungen von OME-Oligomeren hergestellt werden. Diese Herstellung erfolgt durch Variation der Verfahrensführung im Reaktor und besonders der Lage der Trennschnitte in den Kolonnen. Die Rückführströme müssen dann entsprechend angepasst werden und das Verfahren arbeitet nicht mehr am ökonomischen und ökologischen Optimum.However, depending on customer demand, other mixtures of OME oligomers may be made. This preparation is carried out by varying the process control in the reactor and especially the position of the separating cuts in the columns. The recycle streams must then be adjusted accordingly and the process no longer works at the economic and ecological optimum.
Eine weitere Auftrennung des Produktes OMEn=3-6 nach der Kettenlänge ist durch verfahrenstechnische Operationen, wie zum Beispiel eine Destillation, möglich. Die Auslegung einer Destillationssequenz zur Auftrennung von OMEn=3-6 nach der Kettenlänge ist in diesem Fall standardmäßig auszuführen. Bevorzugt (jedoch nicht ausschließlich) wird zunächst OME3 als Kopfprodukt einer ersten Destillationskolonne, OME4 als Kopfprodukt einer zweiten Destillationskolonne, OME5 als Kopfprodukt einer dritten Destillationskolonne und OME6 als Sumpfprodukt der dritten Destillationskolonne gewonnen. Die optionale Auftrennung des Produktes OMEn=3-6 ändert jedoch nichts an der oben beschriebenen Verteilung der OME-Oligomeren untereinander, da die Verhältnisse der OME-Kettenlängen durch die Auftrennung nur unwesentlich durch die in der Realität nicht perfekt scharfen Trennschnitte beeinflusst werden.Further separation of the product OME n = 3-6 according to the chain length is possible by means of process engineering operations such as, for example, distillation. The design of a distillation sequence for the separation of OME n = 3-6 according to the chain length is to be carried out by default in this case. Preferably (but not exclusively) first OME 3 is obtained as the top product of a first distillation column, OME 4 as the top product of a second distillation column, OME 5 as the top product of a third distillation column and OME 6 as the bottom product of the third distillation column. However, the optional separation of the product OME n = 3-6 does not change the above-described distribution of the OME oligomers among one another, since the ratios of the OME chain lengths are only insignificantly influenced by the separation which is not perfectly sharp in reality.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert.The invention is explained in more detail by the following examples.
BeispieleExamples
Beispiel 1: GesamtverfahrenExample 1: Overall method
In Tabelle 1 bis Tabelle 4 sind vier typische Stromleisten einer bevorzugten Variante des beanspruchten Verfahrens innerhalb der Messgenauigkeiten dargestellt. Die Zahlen sind entsprechend gerundet. Dabei bedeutet der Massenanteil 0,00 g/g einen Massenanteil < 0,005 g/g. In Tabelle 1 bis Tabelle 3 beträgt das Massenverhältnis Formaldehyd zu Methanol in Strom
Die Wasserabtrennung wurde dabei in allen Fällen so dimensioniert, dass der Wasseranteil in Strom
Aufgrund der Durchführung der Versuche im Mikromaßstab ist jedoch in diesem Beispiel die Erhöhung der Membranfläche vernachlässigbar klein.Due to the performance of the experiments on a microscale, however, the increase in the membrane area is negligibly small in this example.
Der Massenstrom und die Zusammensetzung von Strom
Für die Stromleiste aus Tabelle 1 (Fall
Für die Stromleiste aus Tabelle 2 (Fall
Für die Stromleiste aus Tabelle 3 (Fall
Für die Stromleiste aus Tabelle 4 (Fall
Beispiel 2: Betrieb der speziellen Reaktivdestillationskolonne K1 Example 2: Operation of the Special Reactive Distillation Column K1
Die Betriebsparameter einer Ausführung der speziellen Reaktivdestillationskolonne K1 sind in Tabelle 5 zusammengefasst. Dabei bedeutet der Massenanteil 0.00 g/g einen Massenanteil < 0,005 g/g. Die Kolonne wurde hierbei mit einem Zulauf mit der Zusammensetzung des Stroms
In der gleichen Kolonne wurde zusätzlich ein Destillationsversuch mit einem Zulauf mit der Zusammensetzung des Stroms
In beiden Ausführungen der speziellen Reaktivdestillationskolonne kann OMEn≥3 mit sehr hoher Ausbeute im Sumpf der Kolonne gewonnen werden.
Tabelle 6: Betriebsparamater einer Ausführung speziellen Reaktivdestillationskolonne K1 bei p = 1,6 bar
Beispiel 3: Wasserabtrennung mittels AdsorptionExample 3: Water separation by means of adsorption
In einem Batch-Schüttelkolbenversuch wurden vier verschiedene flüssige Mischungen bestehend aus Formaldehyd, Wasser, Methanol, Methylal OME2 und OME3 mit dem Adsorber Zeolith
Beispiel 4: Wasserabtrennung mittels MembranverfahrenExample 4: Water separation by membrane process
In einer Labor-Pervaporationsanlage wurde eine Membran aus NaA Zeolith der Porenweite 4,2 Å mit einem Zulaufstrom entsprechend der Zusammensetzung des Stroms
ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.
Zitierte PatentliteraturCited patent literature
- US 2449469 [0006]US 2449469 [0006]
- US 5746785 [0007, 0029]US 5746785 [0007, 0029]
- US 6534685 [0008, 0032]US 6534685 [0008, 0032]
- US 6392102 [0009, 0014, 0017]US 6392102 [0009, 0014, 0017]
- US 7342139 [0016, 0082]US 7342139 [0016, 0082]
- US 7999140 [0018]US 7999140 [0018]
- WO 2006/045506 [0018]WO 2006/045506 [0018]
- US 7671240 [0019]US 7671240 [0019]
- US 2011/0313202 [0028]US 2011/0313202 [0028]
- EP 2987781 [0029]EP 2987781 [0029]
- US 2014/0114093 [0030]US 2014/0114093 [0030]
- US 2015/0094497 [0031]US 2015/0094497 [0031]
- US 2015/0053616 [0054]US 2015/0053616 [0054]
- EP 1074296 [0068]EP 1074296 [0068]
- US 5914012 [0072]US 5914012 [0072]
- US 7345207 [0082]US 7345207 [0082]
- US 7273955 [0082]US 7273955 [0082]
- US 7193115 [0082]US 7193115 [0082]
- US 6610888 [0082]US 6610888 [0082]
- US 7414159 [0082]US 7414159 [0082]
- US 7390932 [0082]US 7390932 [0082]
Zitierte Nicht-PatentliteraturCited non-patent literature
- Reuss G., Disteldorf W., Grundler O., Hilt A., Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1988 [0003, 0027]Reuss G., Disteldorf W., Grundler O., Hilt A., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1988 [0003, 0027]
- Burger J., Ströfer E., Hasse H. Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91(12), 2648-2662 [0004, 0071]Burger J., Ströfer E., Hasse H. Production process for diesel fuel components poly (oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91 (12), 2648-2662 [0004, 0071]
- N., Friebel A., von Harbou E., Burger J., Hasse H., Liquid-liquid equilibrium in binary and ternary mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers, Fluid Phase Equilibria. 2016 (425). 127 bis 135 [0020]N., Friebel A., by Harbou E., Burger J., Hasse H., Liquid-liquid equilibrium in binary and tertiary mixtures containing formaldehyde, water, methanol, methylal, and poly (oxymethylene) dimethyl ether, Fluid Phase Equilibria. 2016 (425). 127 to 135 [0020]
- Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (25). 6409-6417 [0033]Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly (oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (25). 6409-6417 [0033]
- Schmitz N., Burger J., Ströfer, E. , Hasse, H. From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: An assessemnt of the production costs. Fuel. 2016 (185), 67 - 72 [0033]Schmitz N., Burger J., Ströfer, E., Hasse, H. From methanol to the oxygenated diesel fuel poly (oxymethylene) dimethyl ether: An assessemnt of the production costs. Fuel. 2016 (185), 67 - 72 [0033]
- Schmitz et al. (Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (25). 6409-6417 [0033]Schmitz et al. (Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly (oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 ( 25) 6409-6417 [0033]
- Schmitz N.,, Burger J., Hasse H. Reaction kinetics of the formation of of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (50). 12553-12560 [0034]Schmitz N., Burger J., Hasse H. Reaction kinetics of the formation of poly (oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (50). 12553-12560 [0034]
- Burger J., Ströfer E., Hasse H., Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design, 2013, 91(12), 2648-2662 [0036]Burger J., Ströfer E., Hasse H., Production process for diesel fuel components poly (oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design, 2013, 91 (12), 2648-2662 [0036]
- Hahnenstein I., Albert M., Hasse H., Kreiter C. G., Maurer G., NMR Spectroscopic and Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water, Deuterium Oxide, and Methanol, Industrial and Engineering Chemistry Research 1995, 34(2), 440-450 [0050]Hahnenstein I., Albert M., Hasse H., Kreiter CG, Maurer G., NMR Spectroscopic and Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water, Deuterium Oxide, and Methanol, Industrial and Engineering Chemistry Research 1995, 34 (2 ), 440-450 [0050]
- A. K., Raeva V. M. Bioethanol dehydration: state of the art, Theoretical Foundations of Chemical Engineering, 2010 44 (4), 545-556 [0053]A.K., Raeva V.M. Bioethanol dehydration: state of the art, Theoretical Foundations of Chemical Engineering, 2010 44 (4), 545-556 [0053]
- Baerns M., Behr, A., Brehm A., Gmehling J., Hoffmann H., Onken U., Renken A., Technische Chemie, Wiley-VCH, Weinheim 2006 [0055]Baerns M., Behr, A., Brehm A., Gmehling J., Hoffmann H., Onken U., Renken A., Technical Chemistry, Wiley-VCH, Weinheim 2006 [0055]
- J., Ströfer E., Hasse H.: Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91(12), 2648-2662 [0064]J., Ströfer E., Hasse H .: Production process for diesel fuel components poly (oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91 (12), 2648-2662 [0064]
- Masamoto J., Matsuzaki K., Development of methylal synthesis by reactive destillation; Journal of Chemical Engineering of Japan, 1994, 27(1), 1-5 [0082]Masamoto J., Matsuzaki K., Development of methylal synthesis by reactive distillation; Journal of Chemical Engineering of Japan, 1994, 27 (1), 1-5 [0082]
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016222657.6A DE102016222657A1 (en) | 2016-11-17 | 2016-11-17 | Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions |
US15/807,092 US10377689B2 (en) | 2016-11-17 | 2017-11-08 | Process for preparing polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions |
EP17201580.2A EP3323800B1 (en) | 2016-11-17 | 2017-11-14 | Method for producing polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016222657.6A DE102016222657A1 (en) | 2016-11-17 | 2016-11-17 | Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102016222657A1 true DE102016222657A1 (en) | 2018-05-17 |
Family
ID=62026353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102016222657.6A Withdrawn DE102016222657A1 (en) | 2016-11-17 | 2016-11-17 | Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102016222657A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018101216A1 (en) * | 2018-01-19 | 2019-07-25 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Process for the separation of oxymethylene ethers |
CN110642687A (en) * | 2019-11-11 | 2020-01-03 | 无锡赫利邦化工科技有限公司 | Synthesis device and synthesis process for polymethoxy dimethyl ether |
WO2020234220A1 (en) * | 2019-05-23 | 2020-11-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Method for producing polyoxymethylene dimethyl ethers |
CN112239396A (en) * | 2019-07-17 | 2021-01-19 | 南京凯旋化学科技有限公司 | Preparation method and application of polyformaldehyde dimethyl ether |
CN113087602A (en) * | 2020-01-09 | 2021-07-09 | 中国石油化工股份有限公司 | Production and refining method of polymethoxy dimethyl ether |
DE102020118386A1 (en) | 2020-07-13 | 2022-01-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Process for preparing polyoxymethylene dimethyl ethers |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2449469A (en) | 1944-11-02 | 1948-09-14 | Du Pont | Preparation of polyformals |
US5746785A (en) | 1997-07-07 | 1998-05-05 | Southwest Research Institute | Diesel fuel having improved qualities and method of forming |
US5914012A (en) | 1996-04-30 | 1999-06-22 | Basf Aktiengesellschaft | Dividing wall column for continuous fractionation of multicomponent mixtures by distillation |
EP1074296A1 (en) | 1999-08-03 | 2001-02-07 | Basf Aktiengesellschaft | Ordered packing for heat and mass exchange |
US6392102B1 (en) | 1998-11-12 | 2002-05-21 | Bp Corporation North America Inc. | Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether |
US6534685B1 (en) | 1999-07-22 | 2003-03-18 | Snamprogetti S.P.A. | Liquid mixture consisting of diesel gas oils and oxygenated compounds |
US6610888B1 (en) | 1999-06-07 | 2003-08-26 | Basf Aktiengesellschaft | Reaction of a solution comprising a mixture |
WO2006045506A1 (en) | 2004-10-25 | 2006-05-04 | Basf Aktiengesellschaft | Method for producing polyoxymethylene dimethyl ethers |
DE102005027702A1 (en) * | 2005-06-15 | 2006-12-21 | Basf Ag | Preparing tri-/tetra oxymethylene glycol dimethylether comprises distilling an aqueous formaldehyde solution and methanol, distilling the required fractions successively to form organic phase, and distilling the organic phase |
US7193115B2 (en) | 2001-11-05 | 2007-03-20 | Basf Aktiengesellschaft | Highly concentrated formaldehyde solution, production and reaction thereof |
US7273955B2 (en) | 2003-03-04 | 2007-09-25 | Basf Aktiengesellschaft | Method for thermal stabilization of highly concentrated formaldehyde solutions |
US7342139B2 (en) | 2004-02-11 | 2008-03-11 | Basf Aktiengesellschaft | Method for producing highly concentrated formaldehyde solution |
US7345207B2 (en) | 2003-03-04 | 2008-03-18 | Basf Aktiengesellschaft | Production of high-concentration formaldehyde solutions |
US7390932B2 (en) | 2003-03-04 | 2008-06-24 | Basf Aktiengesellschaft | Method for preparing highly concentrated, gaseous formaldehydes |
US7414159B2 (en) | 2003-03-04 | 2008-08-19 | Basf Se | Separation of liquid mixtures in a film evaporator |
US7671240B2 (en) | 2005-06-15 | 2010-03-02 | Basf Aktiengesellschaft | Method for producing polyoxymethylene dimethyl ethers from methanol and formaldehyde |
US7999140B2 (en) | 2005-06-15 | 2011-08-16 | Basf Aktiengesellschaft | Method for the production of polyoxymethylene dialkyl ethers from trioxan and dialkylethers |
US20110313202A1 (en) | 2010-05-18 | 2011-12-22 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | Method for preparing polyoxymethylene dimethyl ethers by acetalation reaction of formaldehyde with methanol |
US20140114093A1 (en) | 2012-10-18 | 2014-04-24 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | System and method for continuously producing polyoxymethylene dialkyl ethers |
US20150053616A1 (en) | 2012-02-17 | 2015-02-26 | Lucite International Uk Limited | Dehydration of Water Containing Source of Formaldehyde, and a Method for Producing an Ethylenically Unsaturated Carboxylic Ester |
US20150094497A1 (en) | 2013-09-29 | 2015-04-02 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | Reaction system and process for preparing polymethoxy dimethyl ether |
EP2987781A1 (en) | 2014-08-22 | 2016-02-24 | Karlsruher Institut für Technologie | Method for the preparation of oxymethylene dialkyl ethers and their use |
-
2016
- 2016-11-17 DE DE102016222657.6A patent/DE102016222657A1/en not_active Withdrawn
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2449469A (en) | 1944-11-02 | 1948-09-14 | Du Pont | Preparation of polyformals |
US5914012A (en) | 1996-04-30 | 1999-06-22 | Basf Aktiengesellschaft | Dividing wall column for continuous fractionation of multicomponent mixtures by distillation |
US5746785A (en) | 1997-07-07 | 1998-05-05 | Southwest Research Institute | Diesel fuel having improved qualities and method of forming |
US6392102B1 (en) | 1998-11-12 | 2002-05-21 | Bp Corporation North America Inc. | Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether |
US6610888B1 (en) | 1999-06-07 | 2003-08-26 | Basf Aktiengesellschaft | Reaction of a solution comprising a mixture |
US6534685B1 (en) | 1999-07-22 | 2003-03-18 | Snamprogetti S.P.A. | Liquid mixture consisting of diesel gas oils and oxygenated compounds |
EP1074296A1 (en) | 1999-08-03 | 2001-02-07 | Basf Aktiengesellschaft | Ordered packing for heat and mass exchange |
US7193115B2 (en) | 2001-11-05 | 2007-03-20 | Basf Aktiengesellschaft | Highly concentrated formaldehyde solution, production and reaction thereof |
US7273955B2 (en) | 2003-03-04 | 2007-09-25 | Basf Aktiengesellschaft | Method for thermal stabilization of highly concentrated formaldehyde solutions |
US7414159B2 (en) | 2003-03-04 | 2008-08-19 | Basf Se | Separation of liquid mixtures in a film evaporator |
US7345207B2 (en) | 2003-03-04 | 2008-03-18 | Basf Aktiengesellschaft | Production of high-concentration formaldehyde solutions |
US7390932B2 (en) | 2003-03-04 | 2008-06-24 | Basf Aktiengesellschaft | Method for preparing highly concentrated, gaseous formaldehydes |
US7342139B2 (en) | 2004-02-11 | 2008-03-11 | Basf Aktiengesellschaft | Method for producing highly concentrated formaldehyde solution |
WO2006045506A1 (en) | 2004-10-25 | 2006-05-04 | Basf Aktiengesellschaft | Method for producing polyoxymethylene dimethyl ethers |
US7671240B2 (en) | 2005-06-15 | 2010-03-02 | Basf Aktiengesellschaft | Method for producing polyoxymethylene dimethyl ethers from methanol and formaldehyde |
DE102005027702A1 (en) * | 2005-06-15 | 2006-12-21 | Basf Ag | Preparing tri-/tetra oxymethylene glycol dimethylether comprises distilling an aqueous formaldehyde solution and methanol, distilling the required fractions successively to form organic phase, and distilling the organic phase |
US7999140B2 (en) | 2005-06-15 | 2011-08-16 | Basf Aktiengesellschaft | Method for the production of polyoxymethylene dialkyl ethers from trioxan and dialkylethers |
US20110313202A1 (en) | 2010-05-18 | 2011-12-22 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | Method for preparing polyoxymethylene dimethyl ethers by acetalation reaction of formaldehyde with methanol |
US20150053616A1 (en) | 2012-02-17 | 2015-02-26 | Lucite International Uk Limited | Dehydration of Water Containing Source of Formaldehyde, and a Method for Producing an Ethylenically Unsaturated Carboxylic Ester |
US20140114093A1 (en) | 2012-10-18 | 2014-04-24 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | System and method for continuously producing polyoxymethylene dialkyl ethers |
US20150094497A1 (en) | 2013-09-29 | 2015-04-02 | Lanzhou Institute Of Chemical Physics, Chinese Academy Of Sciences | Reaction system and process for preparing polymethoxy dimethyl ether |
EP2987781A1 (en) | 2014-08-22 | 2016-02-24 | Karlsruher Institut für Technologie | Method for the preparation of oxymethylene dialkyl ethers and their use |
Non-Patent Citations (13)
Title |
---|
A. K., Raeva V. M. Bioethanol dehydration: state of the art, Theoretical Foundations of Chemical Engineering, 2010 44 (4), 545-556 |
Baerns M., Behr, A., Brehm A., Gmehling J., Hoffmann H., Onken U., Renken A., Technische Chemie, Wiley-VCH, Weinheim 2006 |
Burger J., Ströfer E., Hasse H. Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91(12), 2648-2662 |
Burger J., Ströfer E., Hasse H., Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design, 2013, 91(12), 2648-2662 |
Hahnenstein I., Albert M., Hasse H., Kreiter C. G., Maurer G., NMR Spectroscopic and Densimetric Study of Reaction Kinetics of Formaldehyde Polymer Formation in Water, Deuterium Oxide, and Methanol, Industrial and Engineering Chemistry Research 1995, 34(2), 440-450 |
J., Ströfer E., Hasse H.: Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research and Design. 2013, 91(12), 2648-2662 |
Masamoto J., Matsuzaki K., Development of methylal synthesis by reactive destillation; Journal of Chemical Engineering of Japan, 1994, 27(1), 1-5 |
N., Friebel A., von Harbou E., Burger J., Hasse H., Liquid-liquid equilibrium in binary and ternary mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers, Fluid Phase Equilibria. 2016 (425). 127 bis 135 |
Reuss G., Disteldorf W., Grundler O., Hilt A., Ullmanns Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1988 |
Schmitz et al. (Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (25). 6409-6417 |
Schmitz N., Burger J., Ströfer, E. , Hasse, H. From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: An assessemnt of the production costs. Fuel. 2016 (185), 67 - 72 |
Schmitz N., Homberg F., Berje J., Burger J., Hasse H. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (25). 6409-6417 |
Schmitz N.,, Burger J., Hasse H. Reaction kinetics of the formation of of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions. Industrial and Engineering Chemistry Research. 2015, 54 (50). 12553-12560 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018101216A1 (en) * | 2018-01-19 | 2019-07-25 | Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen | Process for the separation of oxymethylene ethers |
WO2020234220A1 (en) * | 2019-05-23 | 2020-11-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Method for producing polyoxymethylene dimethyl ethers |
CN112239396A (en) * | 2019-07-17 | 2021-01-19 | 南京凯旋化学科技有限公司 | Preparation method and application of polyformaldehyde dimethyl ether |
CN110642687A (en) * | 2019-11-11 | 2020-01-03 | 无锡赫利邦化工科技有限公司 | Synthesis device and synthesis process for polymethoxy dimethyl ether |
CN113087602A (en) * | 2020-01-09 | 2021-07-09 | 中国石油化工股份有限公司 | Production and refining method of polymethoxy dimethyl ether |
DE102020118386A1 (en) | 2020-07-13 | 2022-01-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Process for preparing polyoxymethylene dimethyl ethers |
WO2022013132A1 (en) | 2020-07-13 | 2022-01-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Method for producing polyoxymethylene dimethyl ethers |
CN116134009A (en) * | 2020-07-13 | 2023-05-16 | 弗劳恩霍夫应用研究促进协会 | Method for producing polymethoxy dimethyl ether |
DE102020118386B4 (en) | 2020-07-13 | 2024-09-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Process for the preparation of polyoxymethylene dimethyl ethers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3323800B1 (en) | Method for producing polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions | |
DE102016222657A1 (en) | Process for the preparation of polyoxymethylene dimethyl ethers from formaldehyde and methanol in aqueous solutions | |
DE69401419T2 (en) | Process for the separation of oxygen compounds from hydrocarbons, distillation and permeation and their use in etherification | |
EP1826193A1 (en) | Process for dewatering of ethanol | |
DE112011100027T5 (en) | Process for the synthesis of polyoxymethylene dimethyl ethers catalyzed by an ionic solution | |
DE112011100003T5 (en) | Process for the preparation of polyoxymethylene dimethyl ethers by acetal formation of formaldehyde with methanol | |
EP1781634A1 (en) | Method for the separation by distillation of pure trioxane | |
EP2197870B1 (en) | Method for separating trioxane from a trioxane/formaldehyde/water mixture by means of pressure change rectification | |
EP0634386A1 (en) | Process for the preparation of dimethyle carbonate | |
EP2114544B1 (en) | Method for separating trioxane from a trioxane/formaldehyde/water mixture by means of pressure change rectification | |
EP1699776A1 (en) | Method for separating trioxane from a trioxane/formaldehyde/water mixture by means of pressure change rectification | |
DE10361518A1 (en) | Process for the separation of trioxane from a trioxane / formaldehyde / water mixture | |
WO2019077140A1 (en) | Method for producing polyoxymethylene dimethyl ethers | |
EP4178938B1 (en) | Method for producing polyoxymethylene dimethyl ethers | |
WO2006040065A1 (en) | Method for producing and dehydrating cyclic formals | |
DE102019207540B4 (en) | Process for preparing polyoxymethylene dimethyl ether | |
EP1915359A1 (en) | Integrated method for producing trioxane from formaldehyde | |
WO2008119743A1 (en) | Method for producing cyclic formaldehyde derivatives from polyoxy dialkyl ethers | |
EP2032553B1 (en) | Integrated method for the preparation of trioxane from formaldehyde | |
DE102005037294A1 (en) | Integrated process for the preparation of trioxane from formaldehyde | |
DE102005036544A1 (en) | Integrated process for the preparation of trioxane from formaldehyde | |
WO2024208826A1 (en) | Process for preparation of ome2 | |
DE102010042936A1 (en) | Process for the continuous production of dialkyl carbonate | |
EP2142525A1 (en) | Method for producing trioxane from trioxymethylene glycol dimethyl ether |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R163 | Identified publications notified | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |