DE102016218353A1 - Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte - Google Patents

Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte Download PDF

Info

Publication number
DE102016218353A1
DE102016218353A1 DE102016218353.2A DE102016218353A DE102016218353A1 DE 102016218353 A1 DE102016218353 A1 DE 102016218353A1 DE 102016218353 A DE102016218353 A DE 102016218353A DE 102016218353 A1 DE102016218353 A1 DE 102016218353A1
Authority
DE
Germany
Prior art keywords
electrolyte
capacitor
group
supercapacitor
och
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016218353.2A
Other languages
German (de)
Inventor
Pallavi Verma
Andreas Gonser
Mathias Widmaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016218353.2A priority Critical patent/DE102016218353A1/en
Priority to PCT/EP2017/069600 priority patent/WO2018054591A1/en
Publication of DE102016218353A1 publication Critical patent/DE102016218353A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Die Erfindung betrifft einen wässrigen Elektrolyt (61) für einen Kondensator. Dieser enthält mindestens ein Leitsalz der Formel XA. Dabei ist X ein Kation ist, das ausgewählt ist aus der Gruppe, bestehend aus H+, Li+, Na+ und K+. A ist ein organisches Anion oder N(SO2F)2 –. Weiterhin betrifft die Erfindung einen Kondensator, der den Elektrolyten (61) enthält. Der Elektrolyt (61) kann insbesondere in einem Superkondensator (11), in einem Pseudokondensator oder in einem Hybridsuperkondensator verwendet werden.The invention relates to an aqueous electrolyte (61) for a capacitor. This contains at least one conductive salt of the formula XA. Where X is a cation selected from the group consisting of H +, Li +, Na + and K +. A is an organic anion or N (SO2F) 2 -. Furthermore, the invention relates to a capacitor containing the electrolyte (61). The electrolyte (61) can be used in particular in a supercapacitor (11), in a pseudo-capacitor or in a hybrid supercapacitor.

Description

Die vorliegende Erfindung betrifft einen wässrigen Elektrolyten für einen Kondensator. Weiterhin betrifft sie eine Verwendung des Elektrolyten. Schließlich betrifft die vorliegende Erfindung einen Kondensator, welcher den Elektrolyten enthält.The present invention relates to an aqueous electrolyte for a capacitor. Furthermore, it relates to a use of the electrolyte. Finally, the present invention relates to a capacitor containing the electrolyte.

Stand der TechnikState of the art

Elektrochemische Energiespeicher spielen in der heutigen Gesellschaft bereits eine wichtige Rolle und werden in Zukunft durch die steigende Verwendung alternativer Energiequellen und durch zunehmende Elektrifizierung der Automobilindustrie noch weiter an Bedeutung gewinnen. Neben Batterien werden vor allem Kondensatoren als elektrische Energiespeicher eingesetzt. Neben klassischen Kondensatordesigns werden heute unter anderem Superkondensatoren, Pseudokondensatoren und Hybridsuperkondensatoren eingesetzt. Unter Superkondensatoren werden Doppelschichtkondensatoren verstanden, in denen der Elektrolyt die ionenleitfähige Verbindung zwischen zwei Elektroden ist. Die Elektroden bestehen aus Kohlenstoff oder dessen Derivaten mit einer sehr hohen statischen Doppelschichtkapazität. Der Anteil der faradayschen Pseudokapazität in der Gesamtkapazität ist nur gering. Pseudokondensatoren speichern elektrische Energie mithilfe von reversiblen Redoxreaktionen an dafür geeignete Elektroden. Hybridsuperkondensatoren (Hybrid Super Capacitors – HSC), wie beispielsweise Lithiumionenkondensatoren, können als Elektrodenmaterial-Gemische mehrerer chemischer Substanzen mit sowohl faradayschen als auch kapazitiv aktiven Materialien verwenden. Die so erhaltenen Elektroden werden als hybridisierte Elektroden bezeichnet. Electrochemical energy storage systems already play an important role in today's society and will become even more important in future due to the increasing use of alternative energy sources and the increasing electrification of the automotive industry. In addition to batteries, especially capacitors are used as electrical energy storage. In addition to classic capacitor designs, supercapacitors, pseudocondensers and hybrid supercapacitors are used today. Supercapacitors are understood as meaning double-layer capacitors in which the electrolyte is the ion-conductive connection between two electrodes. The electrodes are made of carbon or its derivatives with a very high static double-layer capacity. The proportion of Faraday pseudocapacity in the total capacity is low. Pseudo-capacitors store electrical energy by means of reversible redox reactions to suitable electrodes. Hybrid supercapacitors (HSCs), such as lithium-ion capacitors, may be used as electrode material mixtures of multiple chemical species with both Faraday and capacitively active materials. The electrodes thus obtained are referred to as hybridized electrodes.

Eine der wichtigsten Komponenten aller Kondensatoren ist der Elektrolyt, welcher Auswirkungen auf die Lebensdauer, Leistungsdichte, Kapazität und ESR (Equivalent Series Resistance) eines Kondensators hat. Elektrolyte können flüssig, fest oder gelartig sein. Dabei sind flüssige Elektrolyte am verbreitetsten. Die flüssigen Elektrolyte unterteilen sich wiederum in wässrige, organische und ionische Flüssigkeiten. Wässrige Elektrolyte haben dabei den Vorteil, dass sie mit niedrigen Kosten verbunden sind und ungiftig sind. Als saurer Elektrolyt kann beispielsweise wässrige Schwefelsäure verwendet werden. Natronlauge, Kalilauge und wässrige Lösungen von Lithiumhydroxid sind als alkalische Elektrolyte geeignet. Diese sauren und alkalischen Elektrolyte weisen ein Spannungsfenster von typischerweise ca. 1 V auf. Ein höheres Spannungsfenster von ca. 2 V kann mit neutralen Elektrolyten erreicht werden. Als solche können beispielsweise wässrige Lösungen von Lithiumsulfat, Natriumsulfat, Kaliumsulfat, Natriumnitrit oder Kaliumchlorid verwendet werden.One of the most important components of all capacitors is the electrolyte, which affects the life, power density, capacitance, and ESR (equivalent series resistance) of a capacitor. Electrolytes can be liquid, solid or gel. In this case, liquid electrolytes are the most common. The liquid electrolytes are subdivided into aqueous, organic and ionic liquids. Aqueous electrolytes have the advantage that they are associated with low costs and are non-toxic. As the acidic electrolyte, for example, aqueous sulfuric acid can be used. Sodium hydroxide solution, potassium hydroxide solution and aqueous solutions of lithium hydroxide are suitable as alkaline electrolytes. These acidic and alkaline electrolytes have a voltage window of typically about 1 volt. A higher voltage window of approx. 2 V can be achieved with neutral electrolytes. As such, for example, aqueous solutions of lithium sulfate, sodium sulfate, potassium sulfate, sodium nitrite or potassium chloride can be used.

Offenbarung der ErfindungDisclosure of the invention

Der Elektrolyt für einen Kondensator enthält mindestens ein Leitsalz der Formel XA. Hierbei ist X ein Kation, das ausgewählt ist aus der Gruppe bestehend aus H+, Li+, Na+ und K+. Wenn das Kation H ist, handelt es sich um einen sauren Elektrolyten. Falls das Kation hingegen eines der Alkalimetallkationen Li+, Na+ oder K+ ist, so handelt es sich bei dem Elektrolyten um einen neutralen Elektrolyten. A ist ein organisches Anion oder N(SO2F)2 . Hierbei wird unter einem organischen Anion jedes Anion mit mindestens einem Kohlenwasserstoffrest einschließlich teilweise oder vollständig halogenierter Reste verstanden. Der Elektrolyt enthält als Lösungsmittel Wasser, kann jedoch optional weitere mit Wasser mischbare Lösungsmittel enthalten. Um die Vorteile der Ungiftigkeit eines vollständig wässrigen Elektrolyten zu erreichen, ist es allerdings bevorzugt, dass er Wasser als einziges Lösungsmittel enthält. The electrolyte for a capacitor contains at least one conductive salt of the formula XA. Here, X is a cation selected from the group consisting of H + , Li + , Na + and K + . If the cation is H, it is an acidic electrolyte. If, however, the cation is one of the alkali metal cations Li + , Na + or K + , then the electrolyte is a neutral electrolyte. A is an organic anion or N (SO 2 F) 2 - . Here, an organic anion is understood to mean any anion having at least one hydrocarbon radical, including partially or completely halogenated radicals. The electrolyte contains water as the solvent but may optionally contain other water-miscible solvents. However, to obtain the benefits of the nontoxicity of a fully aqueous electrolyte, it is preferred that it contains water as the sole solvent.

In einer Ausführungsform des Elektrolyten, in welcher es sich um einen sauren Elektrolyten handelt, stellt dieser eine Alternative zu bisher bekannten wässrigen sauren Elektrolyten dar, der eine verhältnismäßig geringe Acidität aufweist. Damit verfügt er über eine geringe Korrosionsrate gegenüber metallischen Komponenten des Kondensators, wie beispielsweise einem Stromleiter aus Aluminium. In one embodiment of the electrolyte, which is an acidic electrolyte, it is an alternative to previously known aqueous acidic electrolytes which have a relatively low acidity. Thus, it has a low corrosion rate compared to metallic components of the capacitor, such as an aluminum conductor.

In einer anderen Ausführungsform des Elektrolyten, in welcher er ein neutraler Elektrolyt ist, ermöglicht dieser ein großes Spannungsfenster der elektrochemischen Zellen des Kondensators, was zu einer hohen Leistungs- und Energiedichte führt. In another embodiment of the electrolyte in which it is a neutral electrolyte, it allows a large voltage window of the electrochemical cells of the capacitor, resulting in a high power and energy density.

Organische Anionen für den Elektrolyten, die eine besonders vorteilhafte Kombination aus Leitfähigkeit und Molekulargewicht aufweisen, sind ausgewählt aus der Gruppe bestehend aus CO2CF3 , SO3CH3 , SO3CF3 , SO3C4F9 , SO3(C6H5), SO3(C6F5), SO3C8F17 , N(COCF3)2 , N(SO2CF3)2 , N(SO2C2F5)2 , N(SO2C4F9)(SO2CF3), N(SO2CF3)(C6F4SO2F), N(SO2CF3)(SO2C8F17), N(SO2OCH2CF3)2 , N(SO2OCH2CF2CF3)2 , N(SO2OCH2CF2CF2H)2 , N(SO2OCH(CF3)2)2 , C(SO2CF3)3 , C(SO2OCH2CF3)3 , B(C6H3-3,5-(CF3)2)4 und PO2(C2F5)2 .Organic anions for the electrolyte, which have a particularly advantageous combination of conductivity and molecular weight, are selected from the group consisting of CO 2 CF 3 - , SO 3 CH 3 - , SO 3 CF 3 - , SO 3 C 4 F 9 - , SO 3 (C 6 H 5 ) - , SO 3 (C 6 F 5 ) - , SO 3 C 8 F 17 - , N (COCF 3 ) 2 - , N (SO 2 CF 3 ) 2 - , N (SO 2 C 2 F 5 ) 2 - , N (SO 2 C 4 F 9 ) (SO 2 CF 3 ) - , N (SO 2 CF 3 ) (C 6 F 4 SO 2 F) - , N (SO 2 CF 3 ) (SO 2 C 8 F 17 ) - , N (SO 2 OCH 2 CF 3 ) 2 - , N (SO 2 OCH 2 CF 2 CF 3 ) 2 - , N (SO 2 OCH 2 CF 2 CF 2 H) 2 - , N (SO 2 OCH (CF 3 ) 2 ) 2 - , C (SO 2 CF 3 ) 3 - , C (SO 2 OCH 2 CF 3 ) 3 - , B (C 6 H 3 -3,5- (CF 3 ) 2 ) 4 - and PO 2 (C 2 F 5 ) 2 - .

Neben dem Leitsalz enthält der Elektrolyt vorzugsweise mindestens einen Übergangsmetallkomplex, insbesondere einen Übergangsmetallkomplex mindestens eines Übergangsmetalls, das ausgewählt ist aus der Gruppe, bestehend aus Cobalt, Chrom, Eisen, Kupfer und Titan. Durch Redoxreaktionen der Übergangsmetalle in den Komplexen kann der Elektrolyt als Redoxelektrolyt fungierten, der zur Kapazität des Kondensators beiträgt.In addition to the conductive salt, the electrolyte preferably contains at least one transition metal complex, in particular a transition metal complex of at least one transition metal selected from the group consisting of cobalt, chromium, iron, copper and titanium. By redox reactions of the transition metals in the complexes, the electrolyte can act as a redox electrolyte, which contributes to the capacitance of the capacitor.

Der Übergangsmetallkomplex enthält bevorzugt mindestens einen Liganden, der ausgewählt ist aus der Gruppe, bestehend aus Ammoniak (NH3), Cyanid (CN), Perchlorat (ClO4 ), Thiocyanat (SCN) und Ethylendiamintetraacetat (EDTA4–). Besonders bevorzugt weist der Übergangsmetallkomplex die Formel MLx aufweist, wobei M das Übergangsmetall und L einen aus der Gruppe ausgewählten Liganden bezeichnet und x einen Wert von 2, 4 oder 6 hat. Für L = ClO4 kann x insbesondere auch einen Wert von 1 oder 3 haben. Für L = EDTA4– kann x insbesondere auch einen Wert von 1 haben. Neben den x aus der Gruppe ausgewählten Liganden können Wassermoleküle als weitere Liganden vorhanden sein, so dass der Komplex die Formel MLx(H2O)y aufweisen kann, wobei beispielsweise x + y = 6 ist. Derartige Komplexe stabilisieren die Übergangsmetallionen der Komplexe in wässriger Lösung und ermöglichen einen einfachen Ladungstransfer. The transition metal complex preferably contains at least one ligand selected from the group consisting of ammonia (NH 3 ), cyanide (CN - ), perchlorate (ClO 4 - ), thiocyanate (SCN - ) and ethylenediamine tetraacetate (EDTA 4- ). Particularly preferably, the transition metal complex has the formula ML x , where M denotes the transition metal and L denotes a ligand selected from the group and x has a value of 2, 4 or 6. For L = ClO 4 - x may in particular also have a value of 1 or 3. In particular, for L = EDTA 4 , x can also have a value of 1. In addition to the x ligands selected from the group, water molecules can be present as further ligands, so that the complex can have the formula ML x (H 2 O) y , where, for example, x + y = 6. Such complexes stabilize the transition metal ions of the complexes in aqueous solution and allow easy charge transfer.

Die Konzentration des Übergangsmetallkomplexes in dem Elektrolyten liegt vorzugsweise im Bereich von 0,01 mol/l bis 0,5 mol/l. Auf diese Weise kann der Kapazitätsbeitrag des Elektrolyten bedarfsgerecht eingestellt werden.The concentration of the transition metal complex in the electrolyte is preferably in the range of 0.01 mol / L to 0.5 mol / L. In this way, the capacity contribution of the electrolyte can be adjusted as needed.

Der Elektrolyt ist insbesondere für die Verwendung in einem Superkondensator, in einem Pseudokondensator oder in einem Hybridsuperkondensator geeignet. Durch Einbringen des Elektrolyten in einen herkömmlichen Kondensator kann ein erfindungsgemäßer Kondensator erhalten werden. The electrolyte is particularly suitable for use in a supercapacitor, in a pseudocondenser or in a hybrid supercapacitor. By introducing the electrolyte into a conventional capacitor, a capacitor according to the invention can be obtained.

Dieser Kondensator ist in einer Ausführungsform der Erfindung ein Superkondensator. Dabei ist es für den Aufbau einer Helmholtzdoppelschicht bevorzugt, dass die Anode und die Kathode des Kondensators jeweils mindestens einen porösen Kohlenstoff enthalten. Der Elektrolyt kann wahlweise sauer oder neutral sein.This capacitor is a supercapacitor in one embodiment of the invention. It is preferred for the construction of a Helmholtz double layer that the anode and the cathode of the capacitor each contain at least one porous carbon. The electrolyte may optionally be acidic or neutral.

In einer weiteren Ausführungsform des Kondensators ist dieser als Pseudokondensator ausgeführt. Das Kation des Elektrolyten ist in dieser Ausführungsform H+, das heißt es handelt sich bei dem Elektrolyten um einen sauren Elektrolyten. Dies ermöglicht eine Protonierung des Anodenmaterials. Hierzu ist es bevorzugt, dass die Anode und die Kathode des Pseudokondensators jeweils mindestens eine Substanz enthalten, die ausgewählt ist aus der Gruppe bestehend aus MnO2, RuO2, Fe3O4, Co3O4, NiCO2O4, Co(OH)2, Ni(OH)2, NiO, Polyanilin (PANI), Polypyrrol (PPy), Poly(3,4-ethylendioxythiophen) (PEDOT), Poly(p-phenylen) und Polyacetylen. Diese Substanzen stellen ein gut protonierbares Elektrodenmaterial dar. Gegebenenfalls können die Elektroden zusätzlich noch einen porösen Kohlenstoff enthalten. In a further embodiment of the capacitor, this is designed as a pseudo-capacitor. The cation of the electrolyte in this embodiment is H + , that is, the electrolyte is an acidic electrolyte. This allows protonation of the anode material. For this purpose, it is preferred that the anode and the cathode of the pseudocapacitor each contain at least one substance selected from the group consisting of MnO 2 , RuO 2 , Fe 3 O 4 , Co 3 O 4 , NiCO 2 O 4 , Co ( OH) 2 , Ni (OH) 2 , NiO, polyaniline (PANI), polypyrrole (PPy), poly (3,4-ethylenedioxythiophene) (PEDOT), poly (p-phenylene) and polyacetylene. These substances represent a good protonatable electrode material. Optionally, the electrodes may additionally contain a porous carbon.

In noch einer anderen Ausführungsform der Erfindung ist der Kondensator ein Hybridsuperkondensator. Dabei ist das Kation des Elektrolyten ausgewählt aus der Gruppe, bestehend aus Li+, Na+ und K+, d. h. der Elektrolyt ist ein neutraler Elektrolyt. Damit weist er ein großes Spannungsfenster auf. Bevorzugt enthält die Anode und/oder die Kathode des Hybridsuperkondensators mindestens einen porösen Kohlenstoff und seine Kathode enthält beispielsweise LiMn2O4. Während LiMn2O4 als ionenspeicherndes Material fungieren kann, und somit faradaysche Aktivität aufweist, fungiert der poröse Kohlenstoff der Anode als kapazitives Material.In yet another embodiment of the invention, the capacitor is a hybrid supercapacitor. The cation of the electrolyte is selected from the group consisting of Li + , Na + and K + , ie the electrolyte is a neutral electrolyte. He has a big window of tension. Preferably, the anode and / or the cathode of the hybrid supercapacitor contains at least one porous carbon and its cathode contains, for example, LiMn 2 O 4 . While LiMn 2 O 4 can function as an ion-storing material and thus has Faraday activity, the porous carbon of the anode acts as a capacitive material.

Der poröse Kohlenstoff ist insbesondere ausgewählt aus der Gruppe, bestehend aus Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen, funktionalisiertem Graphen, Aktivkohle, und Gemischen daraus. Diese Kohlenstoffmodifikationen ermöglichen als Elektrodenbestandteil eine schnelle Energiebereitstellung der Elektrode, so dass sie deren elektrische Leitfähigkeit verbessert. Aufgrund der hohen Porosität dieser Kohlenstoffmodifikationen können sie durch oberflächige Ionenabsorption außerdem als Schockabsorber für hohe Ströme fungieren, wenn mindestens eine Elektrode des Kondensators sowohl faradaysche als auch kapazitive Materialien enthält. In particular, the porous carbon is selected from the group consisting of carbon nanotubes, carbon nanofibers, graphene, functionalized graphene, activated carbon, and mixtures thereof. As a constituent of the electrodes, these carbon modifications enable a fast supply of energy to the electrode, so that it improves its electrical conductivity. Due to the high porosity of these carbon modifications, they can also act as a shock absorber for high currents by surface ion absorption when at least one electrode of the capacitor contains both Faraday and capacitive materials.

Geeignete Kollektoren bzw. Stromableiter für den Kondensator können insbesondere aus einer Metallfolie oder einem Metallschaum bestehen, wobei das Metall ausgewählt ist aus der Gruppe, bestehend aus Nickel, Titan, Aluminium, Kupfer, Edelstahl und Legierungen daraus.Suitable collectors or current collectors for the capacitor may in particular consist of a metal foil or a metal foam, wherein the metal is selected from the group consisting of nickel, titanium, aluminum, copper, stainless steel and alloys thereof.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.

1a zeigt schematisch einen ungeladenen Superkondensator gemäß einem Ausführungsbeispiel der Erfindung. 1a schematically shows an uncharged supercapacitor according to an embodiment of the invention.

1b zeigt schematisch einen geladenen Superkondensator gemäß einem Ausführungsbeispiel der Erfindung. 1b schematically shows a charged supercapacitor according to an embodiment of the invention.

2a zeigt schematisch einen ungeladenen Pseudokondensator gemäß einem Ausführungsbeispiel der Erfindung. 2a schematically shows an uncharged pseudo-capacitor according to an embodiment of the invention.

2b zeigt schematisch einen geladenen Pseudokondensator gemäß einem Ausführungsbeispiel der Erfindung. 2 B schematically shows a charged pseudo-capacitor according to an embodiment of the invention.

3a zeigt schematisch einen ungeladenen Hybridsuperkondensator gemäß einem Ausführungsbeispiel der Erfindung. 3a schematically shows an uncharged hybrid supercapacitor according to an embodiment of the invention.

3b zeigt schematisch einen geladenen Hybridsuperkondensator gemäß einem Ausführungsbeispiel der Erfindung. 3b schematically shows a charged hybrid supercapacitor according to an embodiment of the invention.

Ausführungsbeispiele der ErfindungEmbodiments of the invention

In einem ersten Ausführungsbeispiel der Erfindung weist ein Superkondensator 11 eine Anode 21 auf, die aus Aktivkohle besteht. Diese ist auf einem ersten Kollektor 3 aufgebracht, der aus einer Nickelfolie besteht. Eine Kathode 41 des Superkondensators 11 besteht ebenfalls aus Aktivkohle und ist auf einem zweiten Kollektor 5 aufgebracht, welcher ebenfalls aus einer Nickelfolie besteht. Die Anode 21 und die Kathode 41 sind von einem nicht dargestellten Separator aus Zellulose getrennt. Zwischen der Anode 21 und der Kathode 41 ist ein Elektrolyt 61 angeordnet. Hierbei handelt es sich um eine Lösung von 1 mol/l HN(SO2CF3)2 in Wasser. Beim Laden des Superkondensators sammeln sich Protonen des Leitsalzes an der Oberfläche der Anode 21 und bilden dort eine elektrische Doppelschicht. Eine zweite elektrische Doppelschicht wird dadurch ausgebildet, dass sich die Anionen des Leitsalzes an der Oberfläche der Kathode 41 anlagern. In a first embodiment of the invention has a supercapacitor 11 an anode 21 on, which consists of activated carbon. This is on a first collector 3 applied, which consists of a nickel foil. A cathode 41 of the supercapacitor 11 also consists of activated carbon and is on a second collector 5 applied, which also consists of a nickel foil. The anode 21 and the cathode 41 are separated by a separator made of cellulose, not shown. Between the anode 21 and the cathode 41 is an electrolyte 61 arranged. This is a solution of 1 mol / l HN (SO 2 CF 3 ) 2 in water. When charging the supercapacitor, protons of the conducting salt accumulate on the surface of the anode 21 and form there an electric double layer. A second electrical double layer is formed by forming the anions of the conductive salt on the surface of the cathode 41 attach.

In einem zweiten Ausführungsbeispiel der Erfindung ist ein Kondensator als Pseudokondensator 12 ausgeführt. Dieser unterscheidet sich von dem Superkondensator 11 darin, dass seine Anode 22 aus Rutheniumoxid besteht. Seine Kathode 42 besteht ebenfalls aus Rutheniumoxid. Der Elektrolyt 62 des Pseudokondensators 12 hat dieselbe Zusammensetzung wie der Elektrolyt 61 des Superkondensators 11. Beim Laden des Pseudokondensators 12 erfolgt eine Protonierung des Anodenmaterials gemäß Formel 1: RuO2 + xe–xxH+ → RuO2-x(OH)x (Formel 1) In a second embodiment of the invention, a capacitor is a pseudocapacitor 12 executed. This differs from the supercapacitor 11 in that his anode 22 made of ruthenium oxide. His cathode 42 also consists of ruthenium oxide. The electrolyte 62 of the pseudocapacitor 12 has the same composition as the electrolyte 61 of the supercapacitor 11 , When charging the pseudocondenser 12 a protonation of the anode material according to formula 1 takes place: RuO 2 + xe -x x H + → RuO 2 -x (OH) x (formula 1)

An der Kathode 42 bildet sich eine elektrische Doppelschicht in derselben Weise wie im Superkondensator 11 aus. At the cathode 42 An electric double layer is formed in the same way as in the supercapacitor 11 out.

In einem dritten Ausführungsbeispiel der Erfindung, das in den 3a und 3b dargestellt ist, ist ein Kondensator als Hybridsuperkondensator 13 ausgeführt. Dieser unterscheidet sich vom Superkondensator 11 und vom Pseudokondensator 12 darin, dass seine Anode 23 aus Aktivkohle besteht und seine Kathode 43 aus LiMn2O4 besteht. Der Elektrolyt 63 des Hybridsuperkondensators 13 ist eine Lösung von 1 mol/l LiN(SO2CF3)2 in Wasser. Beim Laden des Hybridsuperkondensators 13 lösen sich gemäß Formel 2 Lithiumionen aus der Kathode 43 im Elektrolyten 63: LiMn2O4 → Li1-xMn2O4 + xLi+ + xe (Formel 2) In a third embodiment of the invention, which in the 3a and 3b is a capacitor as a hybrid supercapacitor 13 executed. This differs from the supercapacitor 11 and the pseudocondenser 12 in that his anode 23 consists of activated carbon and its cathode 43 consists of LiMn 2 O 4 . The electrolyte 63 of the hybrid supercapacitor 13 is a solution of 1 mol / l LiN (SO 2 CF 3 ) 2 in water. When charging the hybrid supercapacitor 13 According to formula 2, lithium ions dissolve out of the cathode 43 in the electrolyte 63 : LiMn 2 O 4 → Li 1-x Mn 2 O 4 + x Li + + xe - (Formula 2)

Lithiumionen des Elektrolyten 63, die entweder aus der Dissoziation des Leitsalzes LiN(SO2CF3)2 stammen oder die aus der Kathode 43 in Lösung gegangen sind, bilden an der Oberfläche der Anode 23 eine elektrische Doppelschicht. Lithium ions of the electrolyte 63 which originate either from the dissociation of the conductive salt LiN (SO 2 CF 3 ) 2 or from the cathode 43 have gone into solution form on the surface of the anode 23 an electric double layer.

Die Anodenmaterialien und Kathodenmaterialen des Superkondensators 11, des Pseudokondensators 12 und des Hybridsuperkondensators 13 enthalten Polytetrafluorethylen (PTFE) als Bindemittel, um das jeweilige Elektrodenmaterial zu einer festen Masse zu verbinden, die auf den Kollektoren 3, 5 haftet. The anode materials and cathode materials of the supercapacitor 11 , the pseudocondenser 12 and the hybrid supercapacitor 13 contain polytetrafluoroethylene (PTFE) as a binder to connect the respective electrode material to a solid mass, which on the collectors 3 . 5 liable.

In einer Variante dieser drei Ausführungsbeispiele enthält der Elektrolyt 61, 62, 63 jeweils zusätzlich 0,1 M Hexaminocobalt(III). Bei Lade- und Entladevorgängen des Hybridsuperkondensators 1 laufen im Elektrolyten Redoxreaktionen gemäß der folgenden Formel ab: [Co(NH3)6]3+ ⇌ [Co(NH3)6]4+ + e ⇌ [Co(NH3)6]6+ + 3e In a variant of these three embodiments, the electrolyte contains 61 . 62 . 63 in each case additionally 0.1 M hexaminocobalt (III). During charging and discharging of the hybrid supercapacitor 1 occur in the electrolyte redox reactions according to the following formula: [Co (NH 3) 6] 3+ ⇌ [Co (NH 3) 6] 4+ + e - ⇌ [Co (NH 3) 6] 6+ + 3e -

Diese Redoxreaktion trägt zur Erhöhung der Energie im Superkondensator 11, im Pseudokondensator 12 und im Hybridsuperkondensator 13 bei.This redox reaction contributes to increasing the energy in the supercapacitor 11 , in the pseudo-capacitor 12 and in the hybrid supercapacitor 13 at.

Claims (14)

Wässriger Elektrolyt (61, 62, 63) für einen Kondensator, enthaltend mindestens ein Leitsalz der Formel XA, wobei X ein Kation ist, das ausgewählt ist aus der Gruppe, bestehend aus H+, Li+, Na+ und K+, und wobei A ein organisches Anion oder N(SO2F)2 ist.Aqueous electrolyte ( 61 . 62 . 63 ) for a capacitor containing at least one conducting salt of formula XA, wherein X is a cation selected from the group consisting of H + , Li + , Na + and K + , and wherein A is an organic anion or N (SO 2 F) 2 - is. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 1, dadurch gekennzeichnet, dass das organische Anion ausgewählt ist aus der Gruppe, bestehend aus CO2CF3 , SO3CH3 , SO3CF3 , SO3C4F9 , SO3(C6H5), SO3(C6F5), SO3C8F17 , N(COCF3)2 , N(SO2CF3)2 , N(SO2C2F5)2 , N(SO2C4F9)(SO2CF3), N(SO2CF3)(C6F4SO2F), N(SO2CF3)(SO2C8F17), N(SO2OCH2CF3)2 , N(SO2OCH2CF2CF3)2 , N(SO2OCH2CF2CF2H)2 , N(SO2OCH(CF3)2)2 , C(SO2CF3)3 , C(SO2OCH2CF3)3 , B(C6H3-3,5-(CF3)2)4 und PO2(C2F5)2 .Aqueous electrolyte ( 61 . 62 . 63 ) according to claim 1, characterized in that the organic anion is selected from the group consisting of CO 2 CF 3 - , SO 3 CH 3 - , SO 3 CF 3 - , SO 3 C 4 F 9 - , SO 3 (C 6 H 5 ) - , SO 3 (C 6 F 5 ) - , SO 3 C 8 F 17 - , N (COCF 3 ) 2 - , N (SO 2 CF 3 ) 2 - , N (SO 2 C 2 F 5 ) 2 - , N (SO 2 C 4 F 9 ) (SO 2 CF 3 ) - , N (SO 2 CF 3 ) (C 6 F 4 SO 2 F) - , N (SO 2 CF 3 ) (SO 2 C 8 F 17 ) - , N (SO 2 OCH 2 CF 3 ) 2 - , N (SO 2 OCH 2 CF 2 CF 3 ) 2 - , N (SO 2 OCH 2 CF 2 CF 2 H) 2 - , N (SO 2 OCH (CF 3 ) 2 ) 2 - , C (SO 2 CF 3 ) 3 - , C (SO 2 OCH 2 CF 3 ) 3 - , B (C 6 H 3 -3,5- (CF 3 ) 2 ) 4 - and PO 2 (C 2 F 5 ) 2 - . Wässriger Elektrolyt (61, 62, 63) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass er mindestens einen Übergangsmetallkomplex enthält.Aqueous electrolyte ( 61 . 62 . 63 ) according to claim 1 or 2, characterized in that it contains at least one transition metal complex. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 3, dadurch gekennzeichnet, dass der Übergangsmetallkomplex mindestens ein Übergangsmetall enthält, das ausgewählt ist aus der Gruppe, bestehend aus Cobalt, Chrom, Eisen, Kupfer und Titan. Aqueous electrolyte ( 61 . 62 . 63 ) according to claim 3, characterized in that the transition metal complex contains at least one transition metal selected from the group consisting of cobalt, chromium, iron, copper and titanium. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Übergangsmetallkomplex mindestens einen Liganden enthält, der ausgewählt ist aus der Gruppe, bestehend aus Ammoniak, Cyanid, Perchlorat, Thiocyanat und Ethylendiamintetraacetat. Aqueous electrolyte ( 61 . 62 . 63 ) according to claim 3 or 4, characterized in that the transition metal complex contains at least one ligand selected from the group consisting of ammonia, cyanide, perchlorate, thiocyanate and ethylenediaminetetraacetate. Verwendung eines Elektrolyten (61, 62, 63) nach einem der Ansprüche 1 bis 5 in einem Superkondensator (11), in einem Pseudokondensator (12) oder in einem Hybridsuperkondensator (13).Use of an electrolyte ( 61 . 62 . 63 ) according to one of claims 1 to 5 in a supercapacitor ( 11 ), in a pseudo-capacitor ( 12 ) or in a hybrid supercapacitor ( 13 ). Kondensator, dadurch gekennzeichnet, dass er einen Elektrolyten (61, 62, 63) nach einem der Ansprüche 1 bis 5 enthält.Capacitor, characterized in that it comprises an electrolyte ( 61 . 62 . 63 ) according to any one of claims 1 to 5. Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Superkondensator (11) ist.Capacitor according to Claim 7, characterized in that it comprises a supercapacitor ( 11 ). Kondensator nach Anspruch 8, dadurch gekennzeichnet, dass seine Anode (21) und seine Kathode (41) jeweils mindestens einen porösen Kohlenstoff enthalten.Capacitor according to Claim 8, characterized in that its anode ( 21 ) and its cathode ( 41 ) each contain at least one porous carbon. Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Pseudokondensator (12) ist, wobei das Kation des Elektrolyten (62) H+ ist.Capacitor according to Claim 7, characterized in that it comprises a pseudocondenser ( 12 ), wherein the cation of the electrolyte ( 62 ) H + is. Kondensator nach Anspruch 10, dadurch gekennzeichnet, dass seine Anode (22) und seine Kathode (42) jeweils mindestens eine Substanz enthalten, die ausgewählt ist aus der Gruppe, bestehend aus MnO2, RuO2, Fe3O4, Co3O4, NiCO2O4, Co(OH)2, Ni(OH)2, NiO, Polyanilin, Polypyrrol, Poly(3,4-ethylendioxythiophen), Poly(p-phenylen) und Polyacetylen.Capacitor according to Claim 10, characterized in that its anode ( 22 ) and its cathode ( 42 ) each contain at least one substance selected from the group consisting of MnO 2 , RuO 2 , Fe 3 O 4 , Co 3 O 4 , NiCO 2 O 4 , Co (OH) 2 , Ni (OH) 2 , NiO , Polyaniline, polypyrrole, poly (3,4-ethylenedioxythiophene), poly (p-phenylene) and polyacetylene. Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Hybridsuperkondensator (13) ist, wobei das Kation des Elektrolyten (63) ausgewählt ist aus der Gruppe, bestehend aus Li+, Na+ und K+.A capacitor according to claim 7, characterized in that it comprises a hybrid supercapacitor ( 13 ), wherein the cation of the electrolyte ( 63 ) is selected from the group consisting of Li + , Na + and K + . Kondensator nach Anspruch 12, dadurch gekennzeichnet, dass seine Anode (23) und/oder seine Kathode (43) mindestens einen porösen Kohlenstoff enthält.Capacitor according to Claim 12, characterized in that its anode ( 23 ) and / or its cathode ( 43 ) contains at least one porous carbon. Kondensator nach Anspruch 9 oder 13, dadurch gekennzeichnet, dass der poröse Kohlenstoff ausgewählt ist aus der Gruppe, bestehend aus Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen, funktionalisiertem Graphen, Aktivkohle, und Gemischen daraus.A capacitor according to claim 9 or 13, characterized in that the porous carbon is selected from the group consisting of carbon nanotubes, carbon nanofibers, graphene, functionalized graphene, activated carbon, and mixtures thereof.
DE102016218353.2A 2016-09-23 2016-09-23 Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte Withdrawn DE102016218353A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016218353.2A DE102016218353A1 (en) 2016-09-23 2016-09-23 Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte
PCT/EP2017/069600 WO2018054591A1 (en) 2016-09-23 2017-08-03 Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016218353.2A DE102016218353A1 (en) 2016-09-23 2016-09-23 Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte

Publications (1)

Publication Number Publication Date
DE102016218353A1 true DE102016218353A1 (en) 2018-03-29

Family

ID=59699649

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016218353.2A Withdrawn DE102016218353A1 (en) 2016-09-23 2016-09-23 Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte

Country Status (2)

Country Link
DE (1) DE102016218353A1 (en)
WO (1) WO2018054591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828808A (en) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 Preparation method and application of lithium-sulfur battery positive electrode material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244540B (en) * 2020-01-17 2021-11-09 中国科学院兰州化学物理研究所 Aqueous high-voltage window anti-freezing electrolyte and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505997A (en) 1982-06-01 1985-03-19 Agence Nationale De Valorisation De La Recherche (Anvar) Bis perhalogenoacyl -or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators
US20120052377A1 (en) 2010-08-26 2012-03-01 Samsung Electro-Mechanics Co., Ltd. Energy storage device
US20140212770A1 (en) 2011-08-12 2014-07-31 Ulbe industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211389A1 (en) * 2002-05-09 2003-11-13 Schlaikjer Carl R. Guanidine derivatives as cations for ambient temperature molten salts in electrochemical power sources
DE602006012933D1 (en) * 2005-01-12 2010-04-29 Otsuka Chemical Co Ltd QUATERNARY AMMONIUM SALT, ELECTROLYTE, ELECTROLYTE SOLUTION, AND ELECTROCHEMICAL APPARATUS
US9305716B2 (en) * 2010-12-03 2016-04-05 Imra America, Inc. Rechargeable electrochemical energy storage device
US20140211370A1 (en) * 2013-01-25 2014-07-31 Ionova Technologies, Inc. Electrochemical Cell, Related Material, Process for Production, and Use Thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505997A (en) 1982-06-01 1985-03-19 Agence Nationale De Valorisation De La Recherche (Anvar) Bis perhalogenoacyl -or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators
US20120052377A1 (en) 2010-08-26 2012-03-01 Samsung Electro-Mechanics Co., Ltd. Energy storage device
US20140212770A1 (en) 2011-08-12 2014-07-31 Ulbe industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Kai Wang: Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors. In: The Journal of Physical Chemistry C, 114, 2010, 17, 8062-8067.
Zhao et al.: High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of "water-in-salt" electrolyte. In: Electrochemistry Communications, 69, 2016, 6-10.
Zhu et al.: Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries. In: Electrochimica Acta, 48, 2003, 4033-4037.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828808A (en) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 Preparation method and application of lithium-sulfur battery positive electrode material
CN110828808B (en) * 2019-11-19 2022-04-26 肇庆市华师大光电产业研究院 Preparation method and application of lithium-sulfur battery positive electrode material

Also Published As

Publication number Publication date
WO2018054591A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
DE60032417T2 (en) Secondary battery and condenser with indole polymer compound
EP1984973B1 (en) Redox accumulator comprising a separation electrode
DE60215439T2 (en) Electrolyte solution and its use in an electrochemical cell
DE112012004734T5 (en) Electrode for an electrical storage device, electrical storage device and method of manufacturing an electrode for an electrical storage device
DE10051132A1 (en) Electrochemical capacitor comprises a separator arranged between an anode and a cathode with a non-aqueous electrolyte liquid impregnated in the electrodes
AT503315A1 (en) REDOX FLOW BATTERY, AS WELL AS ELECTROLYTE SOLUTION FOR A REDOX FLOW BATTERY
DE112015000186T5 (en) Flexible supercapacitor and method of making such
DE602005000013T2 (en) Double layer capacitor and electrolyte solution for it
WO2006012890A1 (en) Electrolyte solution for double-layered capacitors and double-layered capacitor containing said electrolyte solution
DE102016202979A1 (en) Hybrid supercapacitor
DE102015218433A1 (en) Hybrid supercapacitor
DE102016221172A1 (en) Optimized hybrid supercapacitor
DE102015224094A1 (en) Hybrid supercapacitor
WO2018054591A1 (en) Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte
DE2738215A1 (en) PROCESS FOR MANUFACTURING ACTIVE MATERIAL FOR PRESSED NICKEL ELECTRODES
DE112018003716B4 (en) Redox flow battery
DE102015216964A1 (en) Asymmetrical hybrid supercapacitor
DE60314532T2 (en) ELECTROCHEMICAL CONDENSER AND METHOD FOR THE USE THEREOF
DE102016202977A1 (en) Aqueous electrolyte, use of the electrolyte and hybrid supercapacitor containing the electrolyte
DE102015224040A1 (en) Hybridized electrode for a hybrid supercapacitor
DE112013001750T5 (en) Electrode material and capacitor and secondary battery using the electrode material
DE102012015176A1 (en) Use of metal-free organonitrogen compound as redox-active substance used in redox electrolyte for energy storage accumulator, fuel cell and redox flow battery, contains two five- or six- diatomic annealed rings
DE102015220317A1 (en) CATHODE FOR LITHIUM AIR BATTERY
DE60120884T2 (en) Electric double layer capacitor and electrolyte for it
DE102015222654A1 (en) Cathode for an all-solid-state lithium-sulfur battery

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee