DE102016118390A1 - Magnetische Winkelsensorvorrichtung und Betriebsverfahren - Google Patents

Magnetische Winkelsensorvorrichtung und Betriebsverfahren Download PDF

Info

Publication number
DE102016118390A1
DE102016118390A1 DE102016118390.3A DE102016118390A DE102016118390A1 DE 102016118390 A1 DE102016118390 A1 DE 102016118390A1 DE 102016118390 A DE102016118390 A DE 102016118390A DE 102016118390 A1 DE102016118390 A1 DE 102016118390A1
Authority
DE
Germany
Prior art keywords
magnetic
group
type
angle
angle sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102016118390.3A
Other languages
English (en)
Other versions
DE102016118390B4 (de
Inventor
Udo Ausserlechner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Priority to DE102016118390.3A priority Critical patent/DE102016118390B4/de
Priority to US15/705,355 priority patent/US10502543B2/en
Priority to CN201710884506.7A priority patent/CN107869952B/zh
Publication of DE102016118390A1 publication Critical patent/DE102016118390A1/de
Application granted granted Critical
Publication of DE102016118390B4 publication Critical patent/DE102016118390B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

Eine Ausführungsform betrifft eine magnetische Winkelsensorvorrichtung, die Folgendes umfasst: eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden, wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, wobei der erste Typ von Winkelsensor hinsichtlich des Detektierens einer ersten Magnetfeldkomponente in einer ersten Richtung empfindlich ist und der zweite Typ von Winkelsensor hinsichtlich des Detektierens einer zweiten Magnetfeldkomponente in einer zweiten Richtung empfindlich ist, und wobei ein kombinierter Drehwinkel basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten bestimmt wird.

Description

  • HINTERGRUND DER ERFINDUNG
  • Ausführungsformen der vorliegenden Erfindung betreffen eine magnetische Winkelsensoranordnung, die es ermöglicht, eine Drehposition oder eine Bewegung einer Welle zu bestimmen.
  • ZUSAMMENFASSUNG
  • Eine erste Ausführungsform betrifft eine magnetische Winkelsensorvorrichtung, die Folgendes umfasst:
    • – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren,
    • – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei der erste Typ von Winkelsensor hinsichtlich des Detektierens einer ersten Magnetfeldkomponente in einer ersten Richtung empfindlich ist und der zweite Typ von Winkelsensor hinsichtlich des Detektierens einer zweiten Magnetfeldkomponente in einer zweiten Richtung empfindlich ist,
    • – wobei ein kombinierter Drehwinkel basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten bestimmt wird.
  • Eine zweite Ausführungsform betrifft eine magnetische Sensorvorrichtung, die Folgendes umfasst:
    • – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei der wenigstens eine erste Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein erstes Signal basierend auf einem Magnetfeld Bx bei einer ersten Stelle bestimmt,
    • – wobei der wenigstens eine erste Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein zweites Signal basierend auf dem Magnetfeld Bx bei einer zweiten Stelle bestimmt,
    • – wobei der wenigstens eine zweite Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein drittes Signal basierend auf einem Magnetfeld By bei einer dritten Stelle bestimmt,
    • – wobei der wenigstens eine zweite Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein viertes Signal basierend auf dem Magnetfeld By bei einer vierten Stelle bestimmt.
  • Eine dritte Ausführungsform betrifft ein Verfahren zum Bestimmen eines kombinierten Drehwinkels durch eine magnetische Winkelsensorvorrichtung,
    • – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei das Verfahren Folgendes umfasst: – Detektieren einer ersten Magnetfeldkomponente in einer ersten Richtung durch den ersten Typ von Winkelsensor, – Detektieren einer zweiten Magnetfeldkomponente in einer zweiten Richtung durch den zweiten Typ von Winkelsensor, – Bestimmen des kombinierten Drehwinkels basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten.
  • Eine vierte Ausführungsform ist an ein Verfahren zum Bestimmen eines kombinierten Drehwinkels durch eine magnetische Winkelsensorvorrichtung gerichtet,
    • – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei das Verfahren Folgendes umfasst: – Bestimmen eines ersten Signals basierend auf einem Magnetfeld Bx bei einer ersten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines zweiten Signals basierend auf dem Magnetfeld Bx bei einer zweiten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines dritten Signals basierend auf einem Magnetfeld By bei einer dritten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines vierten Signals basierend auf dem Magnetfeld By bei einer vierten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen einer ersten Differenz zwischen dem ersten Signal und dem zweiten Signal, – Bestimmen einer zweiten Differenz zwischen dem dritten Signal und dem vierten Signal, – Bestimmen des kombinierten Drehwinkels einer Welle basierend auf der ersten Differenz und der zweiten Differenz.
  • Eine fünfte Ausführungsform betrifft ein Computerprogrammprodukt, das direkt in einen Speicher einer digitalen Verarbeitungsvorrichtung ladbar ist, das Softwarecodeteile zum Durchführen der Schritte des hier beschriebenen Verfahrens umfasst.
  • Eine sechste Ausführungsform richtet sich an ein computerlesbares Medium, das computerausführbare Anweisungen aufweist, die dazu ausgelegt sind, zu bewirken, dass ein Computersystem die Schritte des hier beschriebenen Verfahrens durchführt.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Ausführungsformen werden unter Bezugnahme auf die Zeichnungen dargestellt und veranschaulicht. Die Zeichnungen dienen dazu, das Grundprinzip zu veranschaulichen, so dass nur für das Verständnis des Grundprinzips notwendige Aspekte veranschaulicht werden. Die Zeichnungen sind nicht maßstabsgetreu. In den Zeichnungen bezeichnen die gleichen Bezugszeichen ähnliche Merkmale.
  • 1 zeigt eine beispielhafte Lösung, die eine Welle umfasst, die dazu ausgelegt ist, sich um eine Drehachse zu drehen, wobei ein Permanentmagnet an der Welle angebracht (befestigt) ist und sich oberhalb einer magnetischen Winkelsensorvorrichtung dreht;
  • 2 zeigt eine alternative Ausführungsform, die auf 1 basiert, mit einer unterschiedlichen Winkelsensorvorrichtung;
  • 3 zeigt eine noch andere Ausführungsform, die auf 2 basiert und die nun zwei getrennte Winkelsensorvorrichtungen umfasst.
  • AUSFÜHRLICHE BESCHREIBUNG DER BEVORZUGTEN AUSFÜHRUNGSFORMEN
  • Hier beschriebene Beispiele verweisen insbesondere auf magnetische Winkelsensoren, wobei ein Permanentmagnet an einer drehbaren Welle angebracht ist und ein Magnetfeldsensor auf der Drehachse und angrenzend an den Magneten platziert ist. Der magnetische Winkelsensor detektiert das drehbare Magnetfeld, das in eine diametrische Richtung zeigt, und daher folgert er die Drehposition der Welle.
  • Es können verschiedene Sensoren verwendet werden, z. B. ein anisotroper Magnetowiderstand (AMR: Anisotropic Magneto-Resistor), ein Riesenmagnetowiderstand (GMR: Giant Magneto-Resistor), ein Tunnelmagnetowiderstand (TMR: Tunneling Magneto-Resistor), Hall-Vorrichtungen (z. B. Hall-Platten, vertikale Hall-Vorrichtungen) oder MAG-FETs (z. B. MAG-FETs mit geteiltem Drain).
  • Eine beispielhafte kontaktlose Winkelmessungsvorrichtung, die vier Hall-Vorrichtungen auf einem einzigen Chip verwendet, ist in [M. Metz, et al.: Contactless Angle Measurement Using Four Hall Devices on Single Chip, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, 16.–19. Juni, 1997, IEEE] beschrieben.
  • Eine z-Komponente wird als eine Komponente parallel zu der Drehachse der Welle (oder entlang der Welle selbst) bezeichnet, eine x-y-Ebene ist senkrecht zu der Drehachse der Welle. Die x-y-z-Komponenten spannen ein kartesisches Koordinatensystem auf.
  • Beispiele, auf die hier verwiesen wird, nehmen insbesondere Bezug auf Magnetfeldsensoren, die die x-Komponente des Magnetfeldes detektieren. Daher kann der Magnetfeldsensor eine Hall-Platte (auch als HHall bezeichnet) und/oder einen MAG-FET mit einer y-z-Ebene, die hinsichtlich des zu bestimmenden Magnetfeldes empfindlich ist, umfassen.
  • Die z-Komponenten eines Magnetfeldes eines (im Wesentlichen) homogen magnetisierten Permanentmagneten in einer diametrischen Richtung (d. h. in y-Richtung), die dann auf einer Hauptoberfläche eines Die des Magnetfeldsensors (die der x-y-Ebene entspricht) bestimmt wird und im Wesentlichen einer geneigten Ebene ähnelt. Jedoch ist seine Oberfläche keine genaue Ebene; sie ist nur eine Ebene innerhalb eines geringen Abstands zu der Drehachse. Bei einem größeren Abstand, z. B. 1 mm bis 3 mm von der Drehachse entfernt, weicht sie geringfügig von einer Ebene ab und die Oberfläche zeigt weist eine gewisse Krümmung auf, was zu Winkelfehlern in praktischen Winkelerfassungssystemen führt.
  • Falls das Magnetfeld Bz entlang der z-Komponente näherungsweise eine Ebene ist, gilt das Folgende: BZ(x, y) = C·y + O(x3, y3) wobei O(x3, y3) auf die kleinen Krümmungsteile mit dominierenden Termen dritter Ordnung in x-y-Abständen verweist. C gibt eine Proportionalitätskonstante an, die die Stärke des Magnetmaterials angibt und auch geometrische Einzelheiten des Magneten enthält.
  • Der Permanentmagnet dreht sich um die Welle mit einem Winkel φ. Dies führt zu y → x·sinφ + y·cosφ und mit x = R·cosψ,y = R·sinψ gilt das Folgende: BZ = C·R·sin(φ + ψ) + O(R3).
  • Dies entspricht einer reinen Sinuswelle und falls das Magnetfeld Bz von der Ebene abweicht, führt dies zu höheren Harmonischen, die zu Winkelfehlern führen.
  • Bekannte Lösungen bewältigen diese höheren Harmonischen durch Einführen einer größeren Anzahl an Winkelsensoren, d. h. von wenigstens acht Erfassungselementen, wobei alle Erfassungselemente mit Signalleitungen versehen und verbunden sein müssen, die gemäß einem Spinning-Current-Schema (Drehender-Strom-Schema) periodisch gewechselt werden, um Versatzfehler aufzuheben, was ferner eine erhebliche Menge an MOS-Schaltern erfordert. Dies führt zu einer Schaltungsanordnung, die einen großen Platz auf dem Chip verwendet, was weiter zu parasitären Kapazitäten, Induktivitäten und Widerständen führt und eine erhebliche Menge an elektrischer Leistung erfordert.
  • Hier präsentierte Beispiele stellen jedoch eine effizientere Lösung bereit, die eine geringere Anzahl an Winkelsensoren verwendet und es ermöglicht, magnetische Störungsfelder zu reduzieren oder aufzuheben.
  • Eine Orientierung einer Bz-Ebene ist durch Gradienten dBz/dx und dBz/dy gegeben, d. h. der Arcustangens zwischen diesen Gradienten liefert den Winkel der Bz-Ebene, d. h.
    Figure DE102016118390A1_0002
  • Diese Gradienten wären vorteilhaft bei der Stelle der Drehachse bekannt. Aufgrund der Platzierung der Winkelsensoren gibt es jedoch einen endlichen Abstand (Abweichung in x- und y-Richtung, angegeben durch ∂x und ∂y) zwischen dem Sensor und der Drehachse, was zu Folgendem führt:
    Figure DE102016118390A1_0003
    und
    Figure DE102016118390A1_0004
  • Daher können Hall-Platten in einem kleinen Leseradius R platziert werden, was auf einen Bereich von z. B. 0,5 mm bis 2,5 mm um die Drehachse hinausläuft. Dies ermöglicht es, die Gradienten dBz/dx und dBz/dy durch endliche Differenzen anzunähern.
  • Als eine Alternative die Maxwell-Gleichung: ∇·B = 0 was bedeutet, dass es keine magnetischen Monopole gibt und dass der gesamte magnetische Fluss durch eine geschlossene Oberfläche null ist. Daher gilt:
    Figure DE102016118390A1_0005
    und
    Figure DE102016118390A1_0006
  • Daher können zwei Gradienten auf der Drehachse verwendet werden. Dies ist für das Layout geeigneter, weil weniger Sensorelemente benötigt werden, die den Lesekreis, d. h. um die Drehachse herum, bestücken. Lediglich zwei Bx-Winkelsensoren und zwei By-Winkelsensoren genügen, die beide auf der Drehachse beabstandet sind. Der Drehwinkel φ des Magneten kann dann gemäß Folgendem bestimmt werden:
    Figure DE102016118390A1_0007
  • 1 zeigt eine beispielhafte Lösung, die eine Welle 101 umfasst, die dazu ausgelegt ist, sich um eine Drehachse 102 zu drehen, wobei ein Permanentmagnet 103 an der Welle 101 angebracht (befestigt) ist. Ein Pfeil 104 gibt eine diametrische Magnetisierung in y-Richtung des Permanentmagneten 103 an.
  • Eine Winkelsensorvorrichtung 105 ist unterhalb des Permanentmagneten 103 (z. B. in einem Abstand im Bereich von 1 mm bis 2 mm), aber in der Nähe des Permanentmagneten 103 angeordnet. Die Winkelsensorvorrichtung 105 befindet sich wenigstens teilweise auf der Drehachse 102. Gemäß einem Ausführungsbeispiel liegt die Drehachse 102 in einer Oberfläche eines Chips, der die Sensorelemente umfasst.
  • Die Drehachse 102 entspricht einer z-Achse, eine y-Achse ist eine horizontale Achse und eine x-Achse tritt in die Projektionsebene ein. Die x-, y- und z-Achse definieren ein kartesisches Koordinatensystem. Bei diesem Beispiel zeigt die x-Richtung in die Zeichenebene.
  • Die Winkelsensorvorrichtung 105 umfasst eine Hall-Platte 106, eine vertikale Hall-Vorrichtung 107, eine Hall-Platte 108 und eine vertikale Hall-Vorrichtung 109. Das Zentrum der Hall-Platte 106 und das Zentrum der vertikalen Hall-Vorrichtung 107 befinden sich in einem Abstand z1 von dem Permanentmagneten 103 und das Zentrum der Hallplatte 108 und das Zentrum der vertikalen Hall-Vorrichtung 109 befinden sich in einem Abstand z2 von dem Permanentmagneten 103. Eine Differenz zwischen den Abständen z1 und z2 ist als dz bezeichnet.
  • Es wird angemerkt, dass andere Magneten als der Permanentmagnet verwendet werden können: der an der Welle 101 angebrachte Magnet 103 kann ein ringförmiger Magnet, ein blockförmiger Magnet, ein konischer Magnet, ein sich verjüngender Magnet, ein sphärischer Magnet, ein elliptischer Magnet oder dergleichen sein. Auch könnten Kombinationen des Obigen gelten. Die Magnetisierung des Magneten kann homogen oder inhomogen sein. Zum Beispiel kann eine Hälfte des Magneten in positiver z-Richtung magnetisiert sein, kann die andere Hälfte des Magneten in negativer z-Richtung magnetisiert sein. Es ist auch eine Möglichkeit, dass zusätzlich eine homogene diametrische Magnetisierung überlagert ist.
  • Anstelle des Permanentmagneten kann eine komplexere Anordnung verwendet werden, die Leiter und/oder Spulen mit durch sie hindurchfließendem Strom und/oder eisenhaltige Teile umfasst, die als Magnetflussleiter wirken können.
  • Eine Hall-Platte liefert ein Signal, das proportional zu einer Magnetfeldkomponente ist, die orthogonal auf die Hall-Platte oder den Chip, der die Hall-Platte umfasst, auftrifft. Eine vertikale Hall-Vorrichtung liefert ein Signal, das proportional zu einer Magnetfeldkomponente ist, die parallel zu diesem Chip ist. Die Hall-Platte und die vertikale Hall-Vorrichtung sind z. B. in [Popovic, Radivoje S.: Hall Effect Devices, CRC Press, 2003, z. B. Kapitel 5.3 und 5.4] beschrieben.
  • Die Hall-Platte 106, die vertikale Hall-Vorrichtung 107, die Hall-Platte 108 und die vertikale Hall-Vorrichtung 109 können jeweils als Winkelsensor mit wenigstens einem Sensor-Die bezeichnet werden. Insbesondere kann eine Gruppe aus wenigstens einer Hall-Platte und wenigstens einer vertikalen Hall-Vorrichtung zum Bestimmen eines Winkels des Magneten 103 verwendet werden. Bei dem Beispiel aus 1 umfasst eine erste Gruppe von magnetischen Winkelsensoren die Hall-Platte 106 und die vertikale Hall-Vorrichtung 107 und umfasst eine zweite Gruppe von magnetischen Winkelsensoren die Hall-Platte 108 und die vertikale Hall-Vorrichtung 109.
  • Die Hall-Platte 106 und die Hall-Platte 108 detektieren jeweils ein Magnetfeld Bx in x-Richtung, wobei ihr jeweiliger Sensor-Die in der y-z-Ebene angeordnet ist.
  • Die vertikale Hall-Vorrichtung 107 und die vertikale Hall-Vorrichtung 109 detektieren jeweils ein Magnetfeld By in y-Richtung.
  • Es wird angemerkt, dass der Sensor-Die, der in der y-z-Ebene angeordnet ist, verwendet wird, um das Magnetfeld Bx in x-Richtung (mittels der Hall-Platte) und das Magnetfeld By in y-Richtung (mittels der Hall-Vorrichtung) zu detektieren.
  • Daher wird jede der Hall-Platten 106, 108 als Bx-Sensor bezeichnet und wird jede der Hall-Vorrichtungen 107, 109 als By-Sensor bezeichnet.
  • Es wird angemerkt, dass jeder Bx-Sensor und/oder jeder By-Sensor wenigstens ein Sensorelement umfassen kann.
  • Es wird angemerkt, dass der Bx-Sensor eine Hall-Platte oder einen MAG-FET umfassen kann und dass der By-Sensor einen Magnetowiderstand, z. B. einen AMR, einen GMR, einen TMR oder eine vertikale Hall-Vorrichtung (auch als VHall oder vertikale Hall-Effekt-Vorrichtung bezeichnet) umfassen kann.
  • Der Bx-Sensor und der By-Sensor können bevorzugt direkt auf der Drehachse 102 platziert sein.
  • Bei dem in 1 gezeigten Beispiel ist die Hall-Platte 106 (Bx-Sensor) geringfügig von der Drehachse 102 entfernt in dem Abstand z1 platziert ist und ist die Hall-Platte 108 (Bx-Sensor) auch geringfügig von der Drehachse 102 entfernt in einem Abstand z2 von dem Permanentmagneten 103 platziert, wobei z2 = z1 + dz gilt.
  • Es wird angemerkt, dass die Hall-Platten 106, 108 und die vertikalen Hall-Vorrichtungen 107, 109 in 1 im Vergleich zu der Größe der Winkelsensorvorrichtung 105 als von eher großer Größe veranschaulicht sind; in einem realen Verwendungsfall können die Winkelsensoren erheblich kleiner sein. Die Winkelsensorvorrichtung 105 kann ein Chip sein. Insbesondere ist es eine Möglichkeit, die Hall-Platten 106, 108 und die vertikalen Hall-Vorrichtungen 107, 109 so nahe zu der Drehachse 102 wie möglich zu platzieren.
  • Eine in 1 nicht gezeigte Schaltungsanordnung (z. B. eine Verarbeitungseinheit) empfängt die Signale von den Hall-Platten 106 und 108 und berechnet eine Differenz des Bx-Feldes an beiden Bx-Sensorpositionen, was einem Gradiometer entspricht.
  • Entsprechend ist die vertikale Hall-Vorrichtung 107 (By-Sensor) geringfügig von der Drehachse 102 entfernt in dem Abstand z1 platziert und ist die vertikale Hall-Vorrichtung 109 (By-Sensor) geringfügig von der Drehachse 102 entfernt in einem Abstand z2 von dem Permanentmagneten 103 platziert.
  • Die Schaltungsanordnung empfängt die Signale von den vertikalen Hall-Vorrichtungen 107 und 109 und berechnet eine Differenz der By-Felder an beiden By-Sensor-Positionen.
  • Bei dem in 1 gezeigten Ausführungsbeispiel sind die Hall-Platte 106 und die vertikale Hall-Vorrichtung 107 in identischen Z-Positionen platziert. Das Gleiche gilt für die Hall-Platte 108 und die vertikale Hall-Vorrichtung 109. Als eine Möglichkeit können sich die vertikale Hall-Platte 106 und die vertikale Hall-Vorrichtung 107 in (geringfügig) unterschiedlichen z-Positionen befinden und/oder können sich die Hall-Platte 108 und die vertikale Hall-Vorrichtung 109 in (geringfügig) unterschiedlichen z-Positionen befinden. Außerdem können sich der Abstand zwischen den Hall-Platten 106, 108 und der Abstand zwischen den vertikalen Hall-Vorrichtungen 107, 109 voneinander unterscheiden (was zu zwei Abständen dzx und dzy führen würde). Mit dieser Anordnung ist es möglich, alle Hall-Platten (H) und alle vertikalen Hall-Vorrichtungen (V) genau auf der Drehachse in einer Abfolge H-V-H-V, H-V-V-H, V-H-H-V oder V-H-V-H zu platzieren.
  • Falls sich der Bx-Sensor und der By-Sensor nicht an derselben Stelle befinden können, kann es eine Möglichkeit sein, dass sie so angeordnet sind, dass sie gemeinsame geometrische Schwerpunkte aufweisen, d. h. sie können so an Stellen auf einem Chip angeordnet sein, dass der Massenschwerpunkt aller Bx-Sensoren, die näher an dem Magneten (d. h. in der z-Position z1) sind, mit dem Massenschwerpunkt aller By-Sensoren in der z-Position z1 zusammenfällt. Zudem ist es möglich, die Sensoren so anzuordnen, dass ihre Massenschwerpunkte auf der Drehachse liegen.
  • Es wird angemerkt, dass der Massenschwerpunkt wiedergeben kann, dass die Massendichte aller Teile der Sensorelemente homogen und konstant ist, so dass der Massenschwerpunkt identisch mit dem geometrischen Massenschwerpunkt ist.
  • 2 zeigt eine alternative Ausführungsform, die auf 1 basiert, wobei die Winkelsensorvorrichtung 105 durch eine Winkelsensorvorrichtung 201 ersetzt ist.
  • Ein Bx-Sensor 202 ist auf der Drehachse 102 platziert und ein By-Sensor 203 ist auf der linken Seite des Bx-Sensors 202 platziert und ein By-Sensor 204 ist auf der rechten Seite des Bx-Sensors 202 platziert. Eine (in 2 nicht gezeigte) Schaltungsanordnung erhält die Signale von den Sensoren 202 bis 204 und bestimmt ein gewichtetes mittleres By-Feld für beide By-Sensoren 203, 204.
  • Entsprechend ist ein Bx-Sensor 205 auf der Drehachse 102 platziert und ist ein By-Sensor 206 auf der linken Seite des Bx-Sensors 205 platziert und ist ein By-Sensor 207 auf der rechten Seite des Bx-Sensors 205 platziert. Die Schaltungsanordnung erhält die Signale von den Sensoren 205 bis 207 und bestimmt ein mittleres By-Feld für beide By-Sensoren 206, 207. Schließlich berechnet das System eine erste Differenz zwischen dem Mittel der By-Sensoren 203, 204 und dem Mittel der By-Sensoren 206, 207 und berechnet es eine zweite Differenz der Bx-Sensoren 202 und 205 und kann es die erste Differenz und die zweite Differenz als Eingaben für einen CORDIC-Algorithmus verwenden, um den kombinierten Drehwinkel des Magneten 103 zu berechnen. Einzelheiten des CORDIC-Algorithmus können z. B. bei https://en.wikipedia.org/wiki/CORDIC gefunden werden.
  • Die Sensoren 202 bis 205 befinden sich in einem Abstand z1 von dem Permanentmagneten 103 und die Sensoren 205 bis 207 befinden sich in einem Abstand z2 von dem Permanentmagneten 103, wobei z2 = z1 + dz gilt.
  • Vorteilhaft liegt die Drehachse in einer Ebene, die die Chipoberfläche jeweils mit den Sensoren 202 bis 204 oder den Sensoren 205 bis 207 enthält. Die Drehachse muss sich nicht in der Mitte der jeweiligen Sensoren befinden.
  • 3 zeigt eine noch andere Ausführungsform, die auf 2 basiert und die nun zwei getrennte Winkelsensorvorrichtungen 301 und 302 umfasst. Die Winkelsensorvorrichtung 301 umfasst die Sensoren 202 bis 204 und die Winkelsensorvorrichtung 302 umfasst die Sensoren 205 bis 207. Die Sensoren 202 bis 207 sind mit Bezug auf 2 beschrieben.
  • Es wird angemerkt, dass jede Winkelsensorvorrichtung wenigstens einen Chip (Die) umfassen kann, wobei dieser wenigstens eine Chip in einem Gehäuse eingebettet sein kann, das elektrische Kontakte bereitstellt, die mit der Schaltungsanordnung zum Verarbeiten der Signale der Winkelsensorvorrichtung zu verbinden sind. In diesem Bezug kann jede Winkelsensorvorrichtung mehrere Winkelsensoren umfassen, die wenigstens ein Winkelsensorelement umfassen können.
  • Die in 1 bis 3 gezeigten Sensoren weisen einen Die auf, der parallel zu der z-Achse angeordnet ist. Die Bx-Sensoren und die By-Sensoren sind in der y-z-Ebene angeordnet. Daher kann der Sensor-Die in einem Package mit Anschlussbeinen, wie den PG-SSO-3- oder PG-SSO-4-Packages von Infineon Technologies AG, montiert und/oder zusammengebaut sein.
  • Es ist auch ein Vorteil der hier bereitgestellten Winkelsensorvorrichtung, dass sie gegenüber Störungen robuster ist, weil sie so platziert werden kann, dass sie nicht auf Streufelder, insbesondere auf axiale Feldkomponenten, reagiert.
  • Die hier vorgeschlagenen Beispiele können insbesondere auf wenigstens einer der folgenden Lösungen basieren. Insbesondere könnten Kombinationen der folgenden Merkmale benutzt werden, um ein gewünschtes Ergebnis zu erreichen. Die Merkmale des Verfahrens könnten mit einem oder mehreren beliebigen Merkmalen der Vorrichtung, der Einrichtung oder des Systems kombiniert werden oder umgekehrt.
  • Eine magnetische Winkelsensorvorrichtung ist bereitgestellt, die Folgendes umfasst:
    • – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren,
    • – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei der erste Typ von Winkelsensor hinsichtlich des Detektierens einer ersten Magnetfeldkomponente in einer ersten Richtung empfindlich ist und der zweite Typ von Winkelsensor hinsichtlich des Detektierens einer zweiten Magnetfeldkomponente in einer zweiten Richtung empfindlich ist,
    • – wobei ein kombinierter Drehwinkel basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten bestimmt wird.
  • Jeder der magnetischen Winkelsensoren kann ein Magnetfeldwinkelsensor sein.
  • Es wird insbesondere angemerkt, dass jeder „Winkelsensor“ des ersten oder des zweiten Typs ein magnetischer Winkelsensor sein kann.
  • Das Magnetfeld ist ein Vektor an jedem Punkt. Dieser Vektor kann in einen Vektor parallel zu der Drehachse und einen Vektor orthogonal zu der Drehachse zerlegt werden. Der Letztere ist das diametrische Magnetfeld.
  • Die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren können um wenigstens 0,5 mm entlang der geraden Linie beabstandet sein.
  • Die erste Richtung und die zweite Richtung können jeweils orthogonal zu der geraden Linie sein. Die magnetischen Winkelsensoren der ersten und der zweiten Gruppe können sich auf einem Substrat befinden, wobei entweder die erste Richtung oder die zweite Richtung (im Wesentlichen) parallel zu dem Substrat sein kann und die andere Richtung (im Wesentlichen) orthogonal zu dem Substrat sein kann.
  • Gemäß einer Ausführungsform ist die gerade Linie parallel zu oder liegt auf einer Drehachse, wobei eine Welle um die Drehachse drehbar ist und wobei eine Magnetfeldquelle mit der Welle verbunden ist, wobei die Magnetfeldquelle wenigstens einen Teil der ersten und zweiten Magnetfeldkomponenten bereitstellt.
  • Die Magnetfeldquelle ist insbesondere starr an der Welle angebracht.
  • Gemäß einer Ausführungsform umfasst die Magnetfeldquelle wenigstens einen Permanentmagneten.
  • Bei einer Ausführungsform befinden sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen z-Positionen von der Magnetfeldquelle, wobei jede z-Position als eine Senkrechte definiert ist, die von der Position des magnetischen Winkelsensors auf die Drehachse gefällt ist.
  • Gemäß einer Ausführungsform ist die gerade Linie parallel zu der Drehachse oder liegt auf der Drehachse oder beträgt ein Winkel zwischen der geraden Linie und der Drehachse zwischen –10° und +10°.
  • Gemäß einer Ausführungsform ist die erste Richtung im Wesentlichen orthogonal zu der zweiten Richtung.
  • Gemäß einer Ausführungsform spannen die erste Richtung und die zweite Richtung eine Ebene auf, die im Wesentlichen orthogonal zu der geraden Linie ist.
  • Gemäß einer Ausführungsform umfasst der erste Typ von Winkelsensor wenigstens eines von Folgendem:
    • – eine Hall-Platte,
    • – einen MAG-FET.
  • Gemäß einer Ausführungsform umfasst der zweite Typ von Winkelsensor wenigstens eines von Folgendem:
    • – einen anisotropen Magnetowiderstand (AMR: Anisotropic Magneto-Resistor),
    • – einen Riesenmagnetowiderstand (GMR: Giant Magneto-Resistor),
    • – einen Tunnelmagnetowiderstand (TMR: Tunneling Magneto-Resistor),
    • – eine vertikale Hall-Effekt-Vorrichtung.
  • Gemäß einer Ausführungsform umfassen der erste Typ von Winkelsensor und der zweite Typ von Winkelsensor wenigstens eines von Folgendem:
    • – einen anisotropen Magnetowiderstand (AMR: Anisotropic Magneto-Resistor),
    • – einen Riesenmagnetowiderstand (GMR: Giant Magneto-Resistor),
    • – einen Tunnelmagnetowiderstand (TMR: Tunneling Magneto-Resistor),
    • – eine vertikale Hall-Effekt-Vorrichtung,
    • – eine Hall-Platte,
    • – einen MAG-FET.
  • Gemäß einer Ausführungsform wird der kombinierte Drehwinkel basierend auf einer ersten Differenz zwischen dem ersten Typ von Winkelsensor der ersten und der zweiten Gruppe von Winkelsensoren und basierend auf einer zweiten Differenz zwischen dem zweiten Typ von Winkelsensoren der ersten und der zweiten Gruppe von Winkelsensoren bestimmt.
  • Gemäß einer Ausführungsform ist die erste Gruppe von magnetischen Winkelsensoren auf einem ersten Chip angeordnet und ist die zweite Gruppe von magnetischen Winkelsensoren auf einem zweiten Chip angeordnet.
  • Gemäß einer Ausführungsform sind die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren auf einem einzigen Chip angeordnet.
  • Gemäß einer Ausführungsform umfasst die Vorrichtung Folgendes:
    • – ein erstes Halbleitersubstrat mit einer Hauptoberfläche,
    • – wobei der erste Typ von Winkelsensor so angeordnet ist, dass die erste Richtung senkrecht zu der Hauptoberfläche ist,
    • – wobei der zweite Typ von Winkelsensor so angeordnet ist, dass die zweite Richtung parallel zu der Hauptoberfläche ist.
  • Gemäß einer Ausführungsform sind der wenigstens eine erste Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und der wenigstens eine erste Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren so auf dem Substrat angeordnet, dass Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf einer Linie parallel zu der Hauptoberfläche liegen, wobei die Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren nicht zusammenfallen.
  • Gemäß einer Ausführungsform liegen die Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf der geraden Linie und sind um wenigstens 0,5 mm beabstandet.
  • Gemäß einer Ausführungsform sind der wenigstens eine zweite Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und der wenigstens eine zweite Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren so auf dem Substrat angeordnet, dass die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf einer Linie liegen, wobei die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren nicht zusammenfallen.
  • Gemäß einer Ausführungsform liegen die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf der geraden Linie und sind um wenigstens 0,5 mm beabstandet.
  • Gemäß einer Ausführungsform ist das Halbleitersubstrat so angeordnet, dass seine Hauptoberfläche parallel zu der geraden Linie ist.
  • Daher kann das Magnetfeld der Magnetfeldquelle von wenigstens einem der Magnetfeldsensoren auf dem Halbleitersubstrat detektiert werden.
  • Gemäß einer Ausführungsform ist das Halbleitersubstrat in einem Package mit Anschlussbeinen montiert.
  • Bei einer Ausführungsform umfasst die Vorrichtung ferner einen Kombinationsschaltkreis, der den kombinierten Drehwinkel durch Folgendes bestimmt:
    • – Bestimmen einer ersten Differenz zwischen der ersten Magnetfeldkomponente des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und dem wenigstens einen ersten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren,
    • – Bestimmen einer zweiten Differenz zwischen dem wenigstens einen zweiten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und dem wenigstens einen zweiten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren,
    • – Bestimmen des kombinierten Drehwinkels basierend auf der ersten Differenz und der zweiten Differenz.
  • Der kombinierte Drehwinkel wird insbesondere durch die Funktion arctan2(erste Differenz, zweite Differenz) oder arctan2(zweite Differenz, erste Differenz) bestimmt.
  • Es wird angemerkt, dass die arctan-Funktion nicht ohne Mehrdeutigkeit über 360° ist. Die arctan-Funktion reicht nur von –90° bis +90°. Bei den verwendeten Beispielen kann ein Bereich von –180° bis +180° bevorzugt sein. Dies kann mittels der Funktion arctan2(x, y) erzielt werden, die identisch zu arctan(y/x) ist, falls x ≥ 0 gilt. Falls jedoch x < 0 gilt, dann gilt Folgendes: arctan2(x, y) = arctan y / x – π, was in Radiant (rad) angegeben ist.
  • Außerdem ist eine magnetische Sensorvorrichtung bereitgestellt, die Folgendes umfasst:
    • – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind,
    • – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei wenigstens der eine erste Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein erstes Signal basierend auf einem Magnetfeld Bx bei einer ersten Stelle bestimmt,
    • – wobei der wenigstens eine erste Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein zweites Signal basierend auf dem Magnetfeld Bx bei einer zweiten Stelle bestimmt,
    • – wobei der wenigstens eine zweite Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein drittes Signal basierend auf einem Magnetfeld By bei einer dritten Stelle bestimmt,
    • – wobei der wenigstens eine zweite Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein viertes Signal basierend auf dem Magnetfeld By bei einer vierten Stelle bestimmt.
  • Es wird angemerkt, dass das Magnetfeld Bx senkrecht zu dem Magnetfeld By ist. Die magnetische Sensorvorrichtung kann insbesondere magnetische Winkelsensoren umfassen, die in einer Ebene angeordnet sind, die (im Wesentlichen) parallel zu einer y-z-Ebene ist, wobei die x-, y- und z-Komponenten ein kartesisches Koordinatensystem definieren.
  • Es wird ferner angemerkt, dass das Magnetfeld Bx als eine beliebige erste Komponente des Magnetfeldes betrachtet werden kann und das Magnetfeld By als eine zweite Komponente des Magnetfeldes betrachtet werden kann, die orthogonal zu der ersten Komponente ist.
  • Bei einer Ausführungsform werden das erste Signal, das zweite Signal, das dritte Signal und das vierte Signal zur weiteren Verarbeitung bereitgestellt.
  • Bei einer Ausführungsform umfasst die Vorrichtung eine Verarbeitungseinheit für Folgendes:
    • – Bestimmen einer ersten Differenz zwischen dem ersten Signal und dem zweiten Signal,
    • – Bestimmen einer zweiten Differenz zwischen dem dritten Signal und dem vierten Signal,
    • – Bestimmen eines kombinierten Drehwinkels einer Welle basierend auf der ersten Differenz und der zweiten Differenz.
  • Die Welle ist um eine Drehachse drehbar angeordnet. Ferner ist eine Magnetfeldquelle mit der Welle verbunden (z. B. befestigt), wobei die Magnetfeldquelle wenigstens einen Teil des Magnetfeldes Bx und wenigstens einen Teil des Magnetfeldes By wenigstens an bestimmten Drehpositionen bereitstellt.
  • Die präsentierte Lösung ist insbesondere robust gegenüber magnetischen Störungsfeldern, weil die Differenz es ermöglicht, einen Effekt, der auf einem magnetischen Streufeld basiert, zu reduzieren oder zu beseitigen.
  • Bei einer Ausführungsform wird der Drehwinkel basierend auf Folgendem bestimmt: C0 + C1·arctan(Rt), wobei
  • C0
    eine reale Zahl ist,
    C1
    eine reale Zahl ist,
    Rt
    ein Verhältnis der ersten Differenz und der zweiten Differenz ist.
  • Bei einer Ausführungsform gilt:
    • – die erste Stelle und die zweite Stelle sind um wenigstens 0,5 mm in z-Richtung beabstandet,
    • – die dritte Stelle und die vierte Stelle sind um wenigstens 0,5 mm in z-Richtung beabstandet.
  • Bei einer Ausführungsform definieren die x-Richtung, die y-Richtung und die z-Richtung ein kartesisches Koordinatensystem.
  • Ferner ist ein Verfahren zum Bestimmen eines kombinierten Drehwinkels durch einen magnetischen Winkelsensor bereitgestellt,
    • – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei das Verfahren Folgendes umfasst: – Detektieren einer ersten Magnetfeldkomponente in einer ersten Richtung durch den ersten Typ von Winkelsensor, – Detektieren einer zweiten Magnetfeldkomponente in einer zweiten Richtung durch den zweiten Typ von Winkelsensor, – Bestimmen des kombinierten Drehwinkels basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten.
  • Außerdem ist ein Verfahren zum Bestimmen eines kombinierten Drehwinkels durch eine magnetische Winkelsensorvorrichtung bereitgestellt,
    • – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst,
    • – wobei das Verfahren Folgendes umfasst: – Bestimmen eines ersten Signals basierend auf einem Magnetfeld Bx bei einer ersten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines zweiten Signals basierend auf dem Magnetfeld Bx bei einer zweiten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines dritten Signals basierend auf einem Magnetfeld By bei einer dritten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines vierten Signals basierend auf dem Magnetfeld By bei einer vierten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen einer ersten Differenz zwischen dem ersten Signal und dem zweiten Signal, – Bestimmen einer zweiten Differenz zwischen dem dritten Signal und dem vierten Signal, – Bestimmen des kombinierten Drehwinkels einer Welle basierend auf der ersten Differenz und der zweiten Differenz.
  • Außerdem ist ein Computerprogrammprodukt vorgeschlagen, das direkt in einen Speicher einer digitalen Verarbeitungsvorrichtung ladbar ist und das Softwarecodeteile zum Durchführen der Schritte des Verfahrens, wie hier beschrieben, umfasst.
  • Ferner ist ein computerlesbares Medium mit computerausführbaren Anweisungen vorgeschlagen, das dazu eingerichtet ist, zu bewirken, dass ein Computersystem die Schritte des Verfahrens, wie hier beschrieben, durchführt.
  • Bei einem oder mehreren Beispielen können die hier beschriebenen Funktionen wenigstens teilweise in Hardware implementiert sein, wie etwa als spezielle Hardwarekomponenten oder als ein Prozessor. Allgemeiner können die Techniken in Hardware, Prozessoren, Software, Firmware oder einer beliebigen Kombination dieser implementiert sein. Falls sie in Software implementiert sind, können die Funktionen als eine oder mehrere Anweisungen oder Code auf einem computerlesbaren Medium gespeichert oder über ein solches übertragen werden und können von einer hardwarebasierten Verarbeitungseinheit ausgeführt werden. Computerlesbare Medien können computerlesbare Speichermedien beinhalten, die einem greifbaren Medium, wie etwa Datenspeichermedien, oder Kommunikationsmedien einschließlich eines beliebigen Mediums entsprechen, das ein Übertragen eines Computerprogramms von einer Stelle zu einer anderen, z. B. gemäß einem Kommunikationsprotokoll, ermöglicht. Auf diese Weise können computerlesbare Medien allgemein (1) greifbaren, computerlesbaren Speichermedien, die nicht flüchtig sind, oder (2) einem Kommunikationsmedium, wie etwa einem Signal oder einer Trägerwelle, entsprechen. Datenspeichermedien können beliebige verfügbare Medien sein, auf die von einem oder mehreren Computern oder von einem oder mehreren Prozessoren zugegriffen werden kann, um Anweisungen, Code und/oder Datenstrukturen zur Implementierung der in dieser Offenbarung beschriebenen Techniken abzurufen. Ein Computerprogrammprodukt kann ein computerlesbares Medium beinhalten.
  • Als Beispiel und nicht als Beschränkung können derartige computerlesbare Speichermedien RAM, ROM, EEPROM, CD-ROM oder andere optische Plattenspeicher, magnetische Plattenspeicher oder andere magnetische Speichervorrichtungen, Flash-Speicher oder ein beliebiges anderes Medium, das zum Speichern von gewünschtem Programmcode in der Form von Anweisungen oder Datenstrukturen verwendet werden kann und auf das von einem Computer zugegriffen werden kann, umfassen. Ebenfalls wird eine beliebige Verbindung ordnungsgemäß als ein computerlesbares Medium, d. h. als ein computerlesbares Übertragungsmedium, bezeichnet. Falls zum Beispiel Anweisungen von einer Website, einem Server oder einer anderen entfernten Quelle unter Verwendung eines Koaxialkabels, Glasfaserkabels, einer verdrillten Doppelleitung, digitalen Teilnehmerleitung (DSL: Digital Subscriber Line) oder drahtloser Technologien, wie etwa Infrarot, Funk und Mikrowellen, übertragen werden, dann sind das Koaxialkabel, Glasfaserkabel, die verdrillte Doppelleitung, DSL oder die drahtlosen Technologien, wie etwa Infrarot, Funk und Mikrowellen, in der Definition von Medium eingeschlossen. Es versteht sich allerdings, dass computerlesbare Speichermedien und Datenspeichermedien keine Verbindungen, Trägerwellen, Signale oder andere transiente Medien beinhalten, sondern stattdessen auf nicht transiente, greifbare Speichermedien abzielen. Disk und Disc beinhalten, so wie sie hier verwendet werden, eine Compact Disc (CD), eine Laser Disc, eine optische Disc, eine Digital Versatile Disc (DVD), eine Floppy-Disk und eine Blu-ray Disc, wobei Disks Daten üblicherweise magnetisch reproduzieren, wohingegen Discs Daten optisch mit Lasern reproduzieren. Kombinationen des Obigen sollten ebenfalls innerhalb des Umfangs von computerlesbaren Medien enthalten sein.
  • Anweisungen können durch einen oder mehrere Prozessoren ausgeführt werden, wie etwa durch eine oder mehrere Zentralverarbeitungseinheiten (CPU), Digitale Signalprozessoren (DSPs), Mehrzweckmikroprozessoren, anwendungsspezifische integrierte Schaltkreise (ASICs), feldprogrammierbare Logik-Arrays (FPGAs), oder eine andere äquivalente integrierte oder diskrete Logikschaltungsanordnung. Dementsprechend kann sich der Ausdruck „Prozessor“, so wie er vorliegend verwendet wird, auf eine beliebige der vorausgehenden Strukturen oder eine beliebige andere für eine Implementation der hier beschriebenen Techniken geeignete Struktur beziehen. Zusätzlich dazu kann die hier beschriebene Funktionalität bei manchen Aspekten innerhalb dedizierter Hardware- und/oder Software-Module bereitgestellt sein, die zum Codieren und Decodieren konfiguriert sind oder in einem kombinierten Codec realisiert sind. Auch könnten die Techniken vollständig in einem oder mehreren Schaltkreisen oder Logikelementen implementiert sein.
  • Die Techniken dieser Offenbarung können in einer breiten Vielfalt von Vorrichtungen oder Einrichtungen implementiert werden, einschließlich eines drahtlosen Handapparats, einer integrierten Schaltung (IC) oder eines Satzes von ICs (z. B. eines Chip-Sets). Verschiedene Komponenten, Module oder Einheiten werden in dieser Offenbarung beschrieben, um funktionale Aspekte von Einrichtungen zu betonen, die dazu konfiguriert sind, die offenbarten Techniken durchzuführen, aber nicht notwendigerweise eine Realisierung durch verschiedene Hardwareeinheiten erfordern. Eher können, wie oben beschrieben, verschiedene Einheiten in einer einzigen Hardwareeinheit kombiniert oder durch eine Ansammlung von interoperativen Hardwareeinheiten bereitgestellt werden, einschließlich, wie oben beschrieben, eines oder mehrerer Prozessoren zusammen mit geeigneter Software und/oder Firmware.
  • Obwohl verschiedene Ausführungsbeispiele der Erfindung offenbart worden sind, wird es für einen Fachmann ersichtlich, dass verschiedene Änderungen und Modifikationen vorgenommen werden können, die manche der Vorteile der Erfindung erreichen werden, ohne vom Wesen und Schutzumfang der Erfindung abzuweichen. Es wird für einen Durchschnittsfachmann offensichtlich, dass andere Komponenten, die dieselben Funktionen durchführen, geeignet substituiert werden können. Es sollte erwähnt werden, dass Merkmale, die mit Bezugnahme auf eine spezielle Figur erklärt wurden, mit Merkmalen anderer Figuren kombiniert werden können, selbst in jenen Fällen, in denen dies nicht ausdrücklich erwähnt worden ist. Ferner können die Verfahren der Erfindung entweder in reinen Softwareimplementierungen unter Verwendung der geeigneten Prozessoranweisungen oder in Hybridimplementierungen, die eine Kombination von Hardwarelogik und Softwarelogik benutzen, um dieselben Ergebnisse zu erzielen, erzielt werden. Derartige Modifikationen des erfinderischen Konzepts sollen durch die angehängten Ansprüche abgedeckt werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • M. Metz, et al.: Contactless Angle Measurement Using Four Hall Devices on Single Chip, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, 16.–19. Juni, 1997, IEEE [0014]
    • Popovic, Radivoje S.: Hall Effect Devices, CRC Press, 2003, z. B. Kapitel 5.3 und 5.4 [0034]
    • https://en.wikipedia.org/wiki/CORDIC [0053]

Claims (31)

  1. Magnetische Winkelsensorvorrichtung, die Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei der erste Typ von Winkelsensor hinsichtlich des Detektierens einer ersten Magnetfeldkomponente in einer ersten Richtung empfindlich ist und der zweite Typ von Winkelsensor hinsichtlich des Detektierens einer zweiten Magnetfeldkomponente in einer zweiten Richtung empfindlich ist, – wobei ein kombinierter Drehwinkel basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten bestimmt wird.
  2. Vorrichtung nach Anspruch 1, bei der die gerade Linie parallel zu einer Drehachse ist oder auf dieser liegt, wobei eine Welle um die Drehachse drehbar ist und wobei eine Magnetfeldquelle mit der Welle verbunden ist, wobei die Magnetfeldquelle wenigstens einen Teil der ersten und zweiten Magnetfeldkomponenten bereitstellt.
  3. Vorrichtung nach Anspruch 2, bei der die Magnetfeldquelle wenigstens einen Permanentmagneten umfasst.
  4. Vorrichtung nach Anspruch 2, bei der sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen z-Positionen von der Magnetfeldquelle befinden, wobei jede z-Position als eine Senkrechte definiert ist, die von der Position des magnetischen Winkelsensors auf die Drehachse gefällt ist.
  5. Vorrichtung nach Anspruch 2, bei der die gerade Linie parallel zu der Drehachse ist oder auf der Drehachse liegt oder ein Winkel zwischen der geraden Linie und der Drehachse zwischen –10° und +10° beträgt.
  6. Vorrichtung nach Anspruch 1, bei der die erste Richtung im Wesentlichen orthogonal zu der zweiten Richtung ist.
  7. Vorrichtung nach Anspruch 1, bei der die erste Richtung und die zweite Richtung eine Ebene aufspannen, die im Wesentlichen orthogonal zu der geraden Linie ist.
  8. Vorrichtung nach Anspruch 1, bei der der erste Typ von Winkelsensor wenigstens eines von Folgendem umfasst: – eine Hall-Platte, – einen MAG-FET.
  9. Vorrichtung nach Anspruch 1, bei der der zweite Typ von Winkelsensor wenigstens eines von Folgendem umfasst: – einen anisotropen Magnetowiderstand (AMR: Anisotropic Magneto-Resistor), – einen Riesenmagnetowiderstand (GMR: Giant Magneto-Resistor), – einen Tunnelmagnetowiderstand (TMR: Tunneling Magneto-Resistor), – eine vertikale Hall-Effekt-Vorrichtung.
  10. Vorrichtung nach Anspruch 1, bei der der erste Typ von Winkelsensor und der zweite Typ von Winkelsensor wenigstens eines von Folgendem umfassen: – einen anisotropen Magnetowiderstand (AMR: Anisotropic Magneto-Resistor), – einen Riesenmagnetowiderstand (GMR: Giant Magneto-Resistor), – einen Tunnelmagnetowiderstand (TMR: Tunneling Magneto-Resistor), – eine vertikale Hall-Effekt-Vorrichtung, – eine Hall-Platte, – einen MAG-FET.
  11. Vorrichtung nach Anspruch 1, bei der der kombinierte Drehwinkel basierend auf einer ersten Differenz zwischen dem ersten Typ von Winkelsensoren der ersten und der zweiten Gruppe von Winkelsensoren und basierend auf einer zweiten Differenz zwischen dem zweiten Typ von Winkelsensoren der ersten und der zweiten Gruppe von Winkelsensoren bestimmt wird.
  12. Vorrichtung nach Anspruch 1, bei der die erste Gruppe von magnetischen Winkelsensoren auf einem ersten Chip angeordnet ist und die zweite Gruppe von magnetischen Winkelsensoren auf einem zweiten Chip angeordnet ist.
  13. Vorrichtung nach Anspruch 1, bei der die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren auf einem einzigen Chip angeordnet sind.
  14. Vorrichtung nach Anspruch 1 umfassend: – ein erstes Halbleitersubstrat mit einer Hauptoberfläche, – wobei der erste Typ von Winkelsensor so angeordnet ist, dass die erste Richtung senkrecht zu der Hauptoberfläche ist, – wobei der zweite Typ von Winkelsensor so angeordnet ist, dass die zweite Richtung parallel zu der Hauptoberfläche ist.
  15. Vorrichtung nach Anspruch 14, bei der der wenigstens eine erste Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und der wenigstens eine erste Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren so auf dem Substrat angeordnet sind, dass Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf einer Linie parallel zu der Hauptoberfläche liegen, wobei die Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren nicht zusammenfallen.
  16. Vorrichtung nach Anspruch 15, bei der die Massenschwerpunkte des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen ersten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf der geraden Linie liegen und um wenigstens 0,5 mm beabstandet sind.
  17. Vorrichtung nach Anspruch 14, bei der der wenigstens eine zweite Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und der wenigstens eine zweite Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren so auf dem Substrat angeordnet sind, dass die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf einer Linie liegen, wobei die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren nicht zusammenfallen.
  18. Vorrichtung nach Anspruch 17, bei der die Massenschwerpunkte des wenigstens einen zweiten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und des wenigstens einen zweiten Typs von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren auf der geraden Linie liegen und um wenigstens 0,5 mm beabstandet sind.
  19. Vorrichtung nach Anspruch 14, bei der das Halbleitersubstrat so angeordnet ist, dass seine Hauptoberfläche parallel zu der geraden Linie ist.
  20. Vorrichtung nach Anspruch 14, bei der das Halbleitersubstrat in einem Package mit Anschlussbeinen angeordnet ist.
  21. Vorrichtung nach Anspruch 1, die ferner einen Kombinationsschaltkreis umfasst, der den kombinierten Drehwinkel durch Folgendes bestimmt: – Bestimmen einer ersten Differenz zwischen der ersten Magnetfeldkomponente des wenigstens einen ersten Typs von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und dem wenigstens einen ersten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen einer zweiten Differenz zwischen dem wenigstens einen zweiten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren und dem wenigstens einen zweiten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen des kombinierten Drehwinkels basierend auf der ersten Differenz und der zweiten Differenz.
  22. Magnetische Sensorvorrichtung, die Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei der wenigstens eine erste Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein erstes Signal basierend auf einem Magnetfeld Bx bei einer ersten Stelle bestimmt, – wobei der wenigstens eine erste Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein zweites Signal basierend auf dem Magnetfeld Bx bei einer zweiten Stelle bestimmt, – wobei der wenigstens eine zweite Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren ein drittes Signal basierend auf einem Magnetfeld By bei einer dritten Stelle bestimmt, – wobei der wenigstens eine zweite Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren ein viertes Signal basierend auf dem Magnetfeld By bei einer vierten Stelle bestimmt.
  23. Vorrichtung nach Anspruch 22, bei der das erste Signal, das zweite Signal, das dritte Signal und das vierte Signal zur weiteren Verarbeitung bereitgestellt werden.
  24. Vorrichtung nach einem der Ansprüche 22 oder 23, die eine Verarbeitungseinheit umfasst zum – Bestimmen einer ersten Differenz zwischen dem ersten Signal und dem zweiten Signal, – Bestimmen einer zweiten Differenz zwischen dem dritten Signal und dem vierten Signal, – Bestimmen eines kombinierten Drehwinkels einer Welle basierend auf der ersten Differenz und der zweiten Differenz.
  25. Vorrichtung nach Anspruch 24, wobei der Drehwinkel basierend auf Folgendem bestimmt wird: C0 + C1·arctan(Rt), wobei C0 eine reale Zahl ist, C1 eine reale Zahl ist, Rt ein Verhältnis der ersten Differenz und der zweiten Differenz ist.
  26. Vorrichtung nach einem der Ansprüche 22 bis 25, – wobei die erste Stelle und die zweite Stelle um wenigstens 0,5 mm in z-Richtung beabstandet sind, – wobei die dritte Stelle und die vierte Stelle um wenigstens 0,5 mm in z-Richtung beabstandet sind.
  27. Vorrichtung nach einem der Ansprüche 22 bis 26, bei der die x-Richtung, die y-Richtung und die z-Richtung ein kartesisches Koordinatensystem definieren.
  28. Verfahren zum Bestimmen eines kombinierten Drehwinkels durch eine magnetische Winkelsensorvorrichtung, – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei sich die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren in unterschiedlichen Positionen entlang einer geraden Linie befinden, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei das Verfahren Folgendes umfasst: – Detektieren einer ersten Magnetfeldkomponente in einer ersten Richtung durch den ersten Typ von Winkelsensor, – Detektieren einer zweiten Magnetfeldkomponente in einer zweiten Richtung durch den zweiten Typ von Winkelsensor, – Bestimmen des kombinierten Drehwinkels basierend auf den detektierten ersten Magnetfeldkomponenten und den detektierten zweiten Magnetfeldkomponenten.
  29. Verfahren zum Bestimmen eines kombinierten Drehwinkels durch eine magnetische Winkelsensorvorrichtung, – wobei die magnetische Winkelsensorvorrichtung Folgendes umfasst: – eine erste Gruppe von magnetischen Winkelsensoren und eine zweite Gruppe von magnetischen Winkelsensoren, – wobei die erste Gruppe von magnetischen Winkelsensoren und die zweite Gruppe von magnetischen Winkelsensoren getrennt voneinander angeordnet sind, – wobei die erste Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei die zweite Gruppe von magnetischen Winkelsensoren wenigstens einen ersten Typ von Winkelsensor und wenigstens einen zweiten Typ von Winkelsensor umfasst, – wobei das Verfahren Folgendes umfasst: – Bestimmen eines ersten Signals basierend auf einem Magnetfeld Bx bei einer ersten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines zweiten Signals basierend auf dem Magnetfeld Bx bei einer zweiten Stelle durch den wenigstens einen ersten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines dritten Signals basierend auf einem Magnetfeld By bei einer dritten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der ersten Gruppe von magnetischen Winkelsensoren, – Bestimmen eines vierten Signals basierend auf dem Magnetfeld By bei einer vierten Stelle durch den wenigstens einen zweiten Typ von Winkelsensor der zweiten Gruppe von magnetischen Winkelsensoren, – Bestimmen einer ersten Differenz zwischen dem ersten Signal und dem zweiten Signal, – Bestimmen einer zweiten Differenz zwischen dem dritten Signal und dem vierten Signal, – Bestimmen des kombinierten Drehwinkels einer Welle basierend auf der ersten Differenz und der zweiten Differenz.
  30. Computerprogrammprodukt, das direkt in einen Speicher einer digitalen Verarbeitungseinrichtung ladbar ist und das Softwarecodeteile zum Durchführen der Schritte des Verfahrens nach einem der Ansprüche 28 oder 29 umfasst.
  31. Computerlesbares Medium, das computerausführbare Anweisungen aufweist, die dazu eingerichtet sind, zu bewirken, dass ein Computersystem die Schritte des Verfahrens nach einem der Ansprüche 28 oder 29 durchführt.
DE102016118390.3A 2016-09-28 2016-09-28 Magnetische Winkelsensorvorrichtung und Betriebsverfahren Active DE102016118390B4 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102016118390.3A DE102016118390B4 (de) 2016-09-28 2016-09-28 Magnetische Winkelsensorvorrichtung und Betriebsverfahren
US15/705,355 US10502543B2 (en) 2016-09-28 2017-09-15 Magnetic angle sensor device and method of operation
CN201710884506.7A CN107869952B (zh) 2016-09-28 2017-09-26 磁性角度传感器设备及操作的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016118390.3A DE102016118390B4 (de) 2016-09-28 2016-09-28 Magnetische Winkelsensorvorrichtung und Betriebsverfahren

Publications (2)

Publication Number Publication Date
DE102016118390A1 true DE102016118390A1 (de) 2018-03-29
DE102016118390B4 DE102016118390B4 (de) 2024-01-18

Family

ID=61563891

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016118390.3A Active DE102016118390B4 (de) 2016-09-28 2016-09-28 Magnetische Winkelsensorvorrichtung und Betriebsverfahren

Country Status (3)

Country Link
US (1) US10502543B2 (de)
CN (1) CN107869952B (de)
DE (1) DE102016118390B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645882A (zh) * 2018-06-26 2020-01-03 迈来芯电子科技有限公司 稳健对抗干扰场的位置传感器系统和方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219336B3 (de) * 2014-09-24 2016-01-21 Schaeffler Technologies AG & Co. KG Verfahren und Anordnung zur Messung einer Kraft oder eines Momentes mit mehreren Magnetfeldsensoren
US10871381B2 (en) * 2016-12-09 2020-12-22 Tdk Corporation Angle sensor and angle sensor system
JP6550098B2 (ja) * 2017-06-26 2019-07-24 メレキシス テクノロジーズ エス エー 回転角検出装置、姿勢制御装置、自動操舵装置及びスロットル装置
US10866117B2 (en) * 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
CN111130274B (zh) * 2018-11-01 2021-09-17 台达电子工业股份有限公司 旋转检测装置及其适用的编码器与马达
TWI724341B (zh) * 2018-11-01 2021-04-11 台達電子工業股份有限公司 旋轉檢測裝置及其適用之編碼器與馬達
EP4184122A1 (de) * 2018-11-13 2023-05-24 Ratier-Figeac SAS Magnetischer drehwinkelsensor
CN111219754B (zh) * 2018-11-23 2021-07-23 宁波方太厨具有限公司 一种智能升降吸油烟机
US11573072B2 (en) 2018-12-13 2023-02-07 Analog Devices International Unlimited Company Magnetic position determination systems and methods
DE102019124371B9 (de) * 2019-09-11 2021-04-29 Infineon Technologies Ag Vorrichtung und verfahren zum ermitteln eines drehwinkels
US11371824B2 (en) * 2019-11-21 2022-06-28 Infineon Technologies Ag Stray field robust out of shaft angle sensor and measurement system
DE102020126871A1 (de) * 2020-10-13 2022-04-14 Infineon Technologies Ag Ein Sensorsystem, ein System und ein Verfahren zum Bestimmen einer Position oder eines Drehwinkels
CN112576636B (zh) * 2020-11-18 2021-11-19 潍柴动力股份有限公司 弹性联轴器及具有其的发动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354769A1 (de) 2010-02-03 2011-08-10 Micronas GmbH Winkelgeber und Verfahren zur Bestimmung eines Winkels zwischen einer Sensoranordnung und einem Magnetfeld
DE102015101635A1 (de) 2014-02-06 2015-08-06 Infineon Technologies Ag Axialer und senkrechter Winkelsensor in einem Gehäuse
DE102014004625A1 (de) 2014-03-31 2015-10-01 Micronas Gmbh Sensorvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117175B2 (ja) * 2002-10-03 2008-07-16 アルプス電気株式会社 回転角検出装置
US8698490B2 (en) 2010-12-15 2014-04-15 Infineon Technologies Ag Magnetoresistive angle sensors having conductors arranged in multiple planes
US8797024B2 (en) * 2011-02-01 2014-08-05 Infineon Technologies Ag Sensor
KR101737765B1 (ko) * 2012-02-29 2017-05-22 아이디티 유럽 게엠베하 가동체의 이중적인 절대 위치 결정을 위한 장치 및 방법
US9474631B2 (en) * 2013-07-22 2016-10-25 Invisible Hand Enterprises, Llc Gripping device with switchable prehension modes
JP5721804B2 (ja) * 2013-10-29 2015-05-20 三菱電機株式会社 磁気検出装置、およびこれを搭載した車両用回転検出装置
US9267781B2 (en) 2013-11-19 2016-02-23 Infineon Technologies Ag On-axis magnetic field angle sensors, systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354769A1 (de) 2010-02-03 2011-08-10 Micronas GmbH Winkelgeber und Verfahren zur Bestimmung eines Winkels zwischen einer Sensoranordnung und einem Magnetfeld
DE102015101635A1 (de) 2014-02-06 2015-08-06 Infineon Technologies Ag Axialer und senkrechter Winkelsensor in einem Gehäuse
DE102014004625A1 (de) 2014-03-31 2015-10-01 Micronas Gmbh Sensorvorrichtung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CORDIC. In: Wikipedia, the free encyclopedia. Bearbeitungsstand: 20. September 2016, 08:34 UTC. URL: https://en.wikipedia.org/w/index.php?title=CORDIC&oldid=740312402 [abgerufen am 21.12.2016]
https://en.wikipedia.org/wiki/CORDIC
M. Metz, et al.: Contactless Angle Measurement Using Four Hall Devices on Single Chip, 1997 International Conference on Solid-State Sensors and Actuators, Chicago, 16.–19. Juni, 1997, IEEE
METZ, M. [et al.]: Contactless angle measurement using four hall devices on single chip. In: 1997 IEEE International Conference on Solid-State Sensors and Actuators, Chicago, 16-19 Juni 1997, S. 385-388. – ISBN 0-7803-3829-4
POPOVIĆ, R. S. (Hrsg.): Hall effect devices. 2. ed. Bristol : Inst. of Physics Publ., 2004. S. 252-266. - ISBN 0-7503-0855-9. - ISBN 978-0-7503-0855-7
Popovic, Radivoje S.: Hall Effect Devices, CRC Press, 2003, z. B. Kapitel 5.3 und 5.4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645882A (zh) * 2018-06-26 2020-01-03 迈来芯电子科技有限公司 稳健对抗干扰场的位置传感器系统和方法

Also Published As

Publication number Publication date
CN107869952B (zh) 2020-03-10
US20180087888A1 (en) 2018-03-29
US10502543B2 (en) 2019-12-10
CN107869952A (zh) 2018-04-03
DE102016118390B4 (de) 2024-01-18

Similar Documents

Publication Publication Date Title
DE102016118390B4 (de) Magnetische Winkelsensorvorrichtung und Betriebsverfahren
DE102016124948B4 (de) Magnetische Winkelsensorvorrichtung und Betriebsverfahren
DE102016118384A1 (de) Magnetische Winkelsensorvorrichtung und Betriebsverfahren
DE102017110197A1 (de) Außeraxiale Magnetfeld-Winkelsensoren
DE102018113821B4 (de) Winkelsensorbrücken einschließlich sternförmig verbundener magnetoresistiver Elemente
DE102014116844A1 (de) Außeraxiale Magnetfeld-Winkelsensoren
DE102018103341A1 (de) Winkelsensor mit störfeldunterdrückung
DE102016118376B4 (de) Magnetische Winkelsensorvorrichtung und Betriebsverfahren
DE102014110019A1 (de) Diskrete magnetische winkelsensorvorrichtung, magnetische winkelsensoranordnung, verfahren zum generieren eines winkel-signals und verfahren zum vorsehen eines sensorsignals
DE102015105902A1 (de) Magnetfeldstromsensoren, Sensorsysteme und Verfahren
DE102016124952B4 (de) Magnetisches Winkelerfassungssystem und Betriebsverfahren
DE102014116826A1 (de) Rechtwinklige gradiometrische Winkelsensoren, Systeme und Verfahren
DE102015101635A1 (de) Axialer und senkrechter Winkelsensor in einem Gehäuse
DE102016103325A1 (de) Magnetischer Winkelpositionssensor
DE102020105933A1 (de) Gegenüber einem externen feld robuste winkelerfassung mit differentiellem magnetfeld
DE102019104895A1 (de) Magnetischer Geschwindigkeitssensor mit einer verteilten Wheatstone-Brücke
DE102016108846B4 (de) Winkelsensoranordnung und Verfahren für die Winkelsensoranordnung
DE102015101363B4 (de) Erfassung einer Drehposition einer Welle
DE102016212829A1 (de) Winkelabtastung in einer ausseraxialen konfiguration
DE102008030334A1 (de) Verfahren zur störarmen berührungslosen Messung hoher Ströme und zugehöriger Hochstromsensor
DE102009054864A1 (de) Winkelsensor
DE102016102929A1 (de) Sensorfehlererfassung
DE102017106655A1 (de) Störfeldkompensierte Winkelsensorvorrichtung und Verfahren zur störfeldkompensierten Winkelbestimmung
DE102014214677A1 (de) Magnet-Detektionsvorrichtung und Fahrzeug-Rotations-Detektionsvorrichtung, die damit ausgerüstet ist
DE102018214296A1 (de) Frequenzerhöhendes Sensorprotokoll bei magnetischer Erfassung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R084 Declaration of willingness to licence
R016 Response to examination communication
R018 Grant decision by examination section/examining division