DE102016103954A1 - Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks - Google Patents

Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks Download PDF

Info

Publication number
DE102016103954A1
DE102016103954A1 DE102016103954.3A DE102016103954A DE102016103954A1 DE 102016103954 A1 DE102016103954 A1 DE 102016103954A1 DE 102016103954 A DE102016103954 A DE 102016103954A DE 102016103954 A1 DE102016103954 A1 DE 102016103954A1
Authority
DE
Germany
Prior art keywords
measuring
workpiece
actual
measuring method
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016103954.3A
Other languages
English (en)
Inventor
Ulrich Munzert
Michael Denk
Martin Zeitler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blackbird Robotersysteme GmbH
Original Assignee
Blackbird Robotersysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blackbird Robotersysteme GmbH filed Critical Blackbird Robotersysteme GmbH
Priority to DE102016103954.3A priority Critical patent/DE102016103954A1/de
Priority to CN201780012408.2A priority patent/CN108700400B/zh
Priority to US16/081,158 priority patent/US10955237B2/en
Priority to PCT/EP2017/054681 priority patent/WO2017148966A1/de
Publication of DE102016103954A1 publication Critical patent/DE102016103954A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02064Active error reduction, i.e. varying with time by particular adjustment of coherence gate, i.e. adjusting position of zero path difference in low coherence interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Die Erfindung betrifft ein Messverfahren zum Erfassen einer Oberflächentopologie (2) eines Werkstücks (3) mittels eines Kohärenztomographen (28), bei welchem ein Messbereich (14) eines Referenzarms (12) des Kohärenztomographen (28) mittels eines Manipulators (4) und/oder einer Ablenkeinheit (7; 11) entlang einer Ist-Bahn (19) geführt wird, die aufgrund von Störeinflüssen, insbesondere Schleppfehler des Manipulators (4), von einer Soll-Bahn (18) zumindest teilweise abweicht, und an zumindest einem Messpunkt (17) der Ist-Bahn (19) zwischen einem Nullpunkt (15) des Messbereiches (14) und einer Werkstückoberfläche (10) ein Ist-Abstand (dm) gemessen wird. Erfindungsgemäß wird vorgeschlagen, dass zur Kompensation der Störeinflüsse für den zumindest einen Messpunkt (17) zuvor eine Planungs-Weglänge (lp) des Referenzarms (12) festgelegt wird und dass der gemessene Ist-Abstand (dm) mittels der Planungs-Weglänge (lp) auf einen Normabstand (dn) normiert wird. Ferner betrifft die Erfindung eine Messvorrichtung (1) zum Erfassen einer Oberflächentopologie (2) einer Werkstücks (3).

Description

  • Die vorliegende Erfindung betrifft ein Messverfahren zum Erfassen einer Oberflächentopologie eines Werkstücks mittels eines Kohärenztomographen, bei welchem ein Messbereich eines Referenzarms des Kohärenztomographen mittels eines Manipulators und/oder einer Ablenkeinheit entlang einer Ist-Bahn geführt wird, die aufgrund von Störeinflüssen, insbesondere von Schleppfehlern des Manipulators, von einer Soll-Bahn zumindest teilweise abweicht, und an zumindest einem Messpunkt der Ist-Bahn zwischen einem Nullpunkt des Messbereichs und einer Werkstückoberfläche ein Ist-Abstand gemessen wird.
  • Ferner betrifft die Erfindung eine Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks mit einem Kohärenztomographen zum Messen eines Ist-Abstandes zwischen einem Nullpunkt eines Messbereiches des Kohärenztomographen und einer Werkstückoberfläche, einem Manipulator und/oder einer Ablenkeinheit zum Führen des Messbereiches entlang einer Ist-Bahn, und einer Recheneinheit zur Kompensation von Messfehlern, insbesondere von Schleppfehlern.
  • Derartige Messverfahren sind aus dem Stand der Technik hinlänglich bekannt und dienen insbesondere der Bestimmung der Qualität von Schweißnähten und dergleichen, welche mittels eines Bearbeitungslasers hergestellt wurden. Hierbei wird in der Regel durch einen Roboter und/oder eine Ablenkeinheit eine Relativbewegung zwischen dem zu erfassenden Werkstück und einem Scankopf ermöglicht. Die Oberfläche des Werkstücks kann hierdurch abgetastet und analysiert werden. Die Regler der Achsen des Roboters versuchen dabei eine Soll-Bahn anzufahren, um ein möglichst genaues Ergebnis zu erzielen. Aufgrund der verzögerten Reaktion der Achsen auf Befehle ergibt sich jedoch häufig ein Schleppverzug, welcher sich negativ auf die gesamte Analyse auswirkt.
  • Aufgabe der vorliegenden Erfindung ist es somit, ein Messverfahren sowie eine Messvorrichtung zum Erfassen einer Oberflächentopologie zu schaffen, welches die qualitätssichernden Messergebnisse zuverlässig ermittelt.
  • Die Aufgabe wird gelöst durch ein Messverfahren sowie eine Messvorrichtung mit den Merkmalen der unabhängigen Patentansprüche 1 und 15.
  • Vorgeschlagen wird ein Messverfahren zum Erfassen einer Oberflächentopologie eines Werkstücks eines Kohärenztomographen. Hierbei wird ein Messbereich eines Referenzarms des Kohärenztomographen mittels eines Manipulators und/oder einer Ablenkeinheit entlang einer Ist-Bahn geführt. Der Manipulator ist vorzugsweise ein Industrieroboter, welcher neben Fertigungsverfahren ebenso Positionier- sowie Messaufgaben ausführen kann. Weiterhin kann der Referenzarm des Kohärenztomographen mittels der Ablenkeinheit, insbesondere mehrerer beweglicher Spiegel, gezielt entlang der zu analysierenden Oberflächentopologie oder quer zu dieser geführt werden. Die zu analysierende Oberflächentopologie kann dabei beispielsweise im Nachlauf eine Schweißnaht oder ein Schnitt und/oder im Vorlauf eine Kante oder ein Absatz sein. Auf Basis dieser Oberflächentopologie wird vorzugsweise ein Bewegungsprogramm erzeugt, so dass der Messbereich entlang dieser, insbesondere aber entlang einer Soll-Bahn, geführt wird.
  • An zumindest einem Messpunkt der Ist-Bahn wird zwischen einem Nullpunkt des Messbereiches und einer Werkstückoberfläche ein Ist-Abstand gemessen. Der Messbereich erstreckt sich dabei vorzugsweise koaxial zum Referenzarm und/oder ist etwa 10 bis 20 mm groß, wobei insbesondere lediglich der halbe Messbereich nutzbar ist. Durch den Nullpunkt wird der Messbereich vorzugsweise im Wesentlichen halbiert, so dass dieser etwa in der Mitte des Messbereichs liegt. Die Werkstückoberfläche wird bei der Festlegung der Soll-Bahn innerhalb des Messbereichs etwas über oder unter dem Nullpunkt platziert. Mittels des Kohärenztomographen wird der Ist-Abstand zwischen dem Nullpunkt und der Werkstückoberfläche gemessen. Um die Oberflächentopologie zumindest für einen Scan zu messen, werden punktweise mehrere Messungen durchgeführt, so dass für jeden Messpunkt ein Ist-Abstand gemessen wird. Diese Ist-Abstände können sodann, eventuell mit weiteren Werten wie Intensität und/oder Qualität, als Höhenpixel gespeichert werden.
  • Aufgrund von Störeinflüssen weicht die Ist-Bahn zumindest teilweise von der Soll-Bahn ab. So führt beispielsweise die mechanische Trägheit des Manipulators zu Schleppfehlern, welche im Wesentlichen ein Vorauseilen der geplanten Messpunkte der Soll-Bahn zu denen der Ist-Bahn darstellen. Ebenso kann eine Pendelbewegung durch die Ablenkeinheit zu einer verfälschten Messung führen.
  • Erfindungsgemäß ist vorgesehen, dass zur Kompensation der Störeinflüsse für den zumindest einen Messpunkt, insbesondere zuvor (d.h. vor der Messung), eine Planungs-Weglänge des Referenzarms festgelegt wird. Diese Planungs-Weglänge entspricht einer geplanten Länge des Referenzarms zum jeweiligen Messzeitpunkt, welcher als frei angenommen bzw. bestimmt wird und nicht gemessen wird. Die Planungs-Weglänge kann von einem Benutzer anhand von Erfahrungswerten festgelegt werden, um den Rechenaufwand zu reduzieren. Der tatsächlich gemessene Ist-Abstand, zwischen dem Nullpunkt und der Werkstoffoberfläche, wird sodann mittels der Planungs-Weglänge auf einen Normabstand normiert. Hierdurch wird dieser und auch die folgenden Messpunkte auf denselben Ausgangspunkt referenziert, so dass die Höhenpixel vergleichbar gemacht werden. Erst hierdurch wird es letztlich möglich, aus den Höhenpixeln fehlerfrei Rückschlüsse auf die Oberflächentopologie zu ziehen. Die das Ergebnis verfälschenden Störeinflüsse können somit rechnerisch auf einfache Art und Weise kompensiert werden, ohne die Messvorrichtung grundlegend ändern zu müssen.
  • Vorteilhaft ist es, wenn für den zumindest einen Messpunkt als Ausgangsinformation zur Berechnung des Normabstandes ein Messdatensatz hinterlegt wird. Der Messdatensatz wird dabei durch eine optische Ist-Weglänge des Referenzarms, den gemessenen Ist-Abstand und die Planungs-Weglänge bestimmt. Die optische Ist-Weglänge des Referenzarms wird durch den Abstand zwischen einer systeminternen Lichtquelle und dem Nullpunkt des Messbereichs bestimmt. Die optische Ist-Weglänge ist somit eine bekannte Länge, welche mit dem Manipulator und/oder der Ablenkeinheit individuell eingestellt werden kann. Ausgehend von dem Nullpunkt, welcher im Wesentlichen am werkstückseitigen Ende des Referenzarms angeordnet ist, wird der Ist-Abstand gemessen. Die Planungs-Weglänge kann als Abstandswert berechnet aber auch nahezu beliebig festgelegt werden. Die Hinterlegung des Messdatensatzes erfolgt in einer Speichereinheit. Auf Basis des Messdatensatzes können zur Qualitätssicherung ausreichende Daten gesammelt werden, um die Messungen auch nach der Normierung auf den Normabstand im Detail nachvollziehen zu können.
  • Zudem stellt es einen Vorteil dar, wenn der Normabstand aus der Differenz zwischen einem aus dem Messdatensatz gebildeten Rechenwert und der Planungs-Weglänge berechnet wird. Der Rechenwert wird dabei aus der Summe oder der Differenz der optischen Ist-Weglänge sowie dem gemessenen Ist-Abstand gebildet. Ob sich der Rechenwert aus der Summe oder der Differenz bildet, ist letztlich von der Lage des Nullpunktes abhängig. Die Lage des Normierpunktes ist zunächst nicht von Bedeutung, kann in gesonderten Fällen jedoch auch zu berücksichtigen sein. In einer vorteilhaften Ausbildung der Erfindung werden der Nullpunkt des Messbereichs sowie auch der Normierpunkt über dem Werkstück angeordnet. In einer weiteren alternativen Ausbildung der Erfindung wird der Nullpunkt des Messbereichs über dem Werkstück und der Normierpunkt unter dem Werkstück angeordnet. In diesen beiden Fällen, bei welchen der Nullpunkt jeweils über dem Werkstück liegt, wird der Rechenwert aus der Summe der optischen Ist-Weglänge und dem Ist-Abstand berechnet. Liegt der Nullpunkt hingegen unterhalb des Werkstücks, so wird der Rechenwert aus der Differenz zwischen der Ist-Weglänge und dem Ist-Abstand berechnet. Dabei können der Nullpunkt des Messbereichs und auch der Normierpunkt unter dem Werkstück angeordnet werden. Ebenso ist es jedoch auch denkbar, dass der Nullpunkt des Messbereichs unter dem Werkstück und der Normierpunkt über dem Werkstück angeordnet wird. Durch die simple Berechnung des Normabstands sowie die unterschiedlichen Möglichkeiten der Platzierung der Berechnungskomponenten im Verlauf des Messverfahrens, kann dieses ohne weiteres an unterschiedlichste Gegebenheiten angepasst werden.
  • Vorteilhafterweise wird zum Normieren mehrerer gemessener Ist-Abstände eine Normierlinie festgelegt, wobei dies insbesondere von einem Benutzer anhand von Erfahrungswerten erfolgt. Entsprechend der punktweisen Messung, aus welcher letztlich die Ist-Bahn generiert wird, wird je Messung ein Normierpunkt festgelegt. Die einzelnen Normierpunkte werden sodann zu der Normierlinie verbunden. Jedoch muss nicht zwangsläufig für jeden Messpunkt ein zugehöriger Normierpunkt ausgebildet werden. Prinzipiell ist auch ein einzelner Normierpunkt zum Referenzieren des Ist-Abstandes ausreichend. Der Normierpunkt bzw. die Normierlinie können dabei über oder unter dem Werkstück angeordnet werden. Anhand der Normierlinie kann der Normabstand einfach gebildet werden, so dass die Störeinflüsse mit geringem Aufwand ausgeglichen werden können.
  • Von Vorteil ist es weiterhin, wenn die Normierlinie unabhängig oder in Abhängigkeit zur Soll-Bahn definiert wird. In der Regel wird die Erfassung der Oberflächentopologie von geschultem Personal durchgeführt, welches die Normierlinie anhand von Erfahrungswerten nahe der Soll-Bahn platziert. Zur Vermeidung von Fehlern aufgrund einer fehlerhaften Festlegung der Normierlinie kann diese jedoch auch vollkommen losgelöst von der Soll-Bahn bestimmt werden. Alternativ kann es ebenso von Vorteil sein, wenn die Normierlinie gemäß der zu erwarten bzw. vorgegebenen Soll-Bahn definiert wird.
  • Hierbei kann die Normierlinie zumindest teilweise identisch zur Soll-Bahn festgelegt werden. Ebenso ist es denkbar, dass die Normierlinie der Soll-Bahn ähnelt. Weiterhin können auch nur einzelne Werte, insbesondere ein Start- und/oder Endwert, zu dieser identisch sein. Die Normierlinie kann unabhängig von den Kenntnissen des Benutzers festgelegt werden, so dass die Richtigkeit der Normierung in jedem Fall gewährleistet ist.
  • Die Normierlinie ist vorteilhafterweise zumindest bereichsweise als Gerade und/oder Kurve festgelegt. Alternativ oder Ergänzend ist es von Vorteil, wenn die Normierlinie zumindest bereichsweise oberhalb und/oder unterhalb der Werkstückoberfläche angeordnet wird. Die Ausbildung der Normierlinie wird je nach Wissensstand des Anwenders und der Komplexität der Oberfläche gewählt. Bei der Festlegung der Soll-Bahn sollte jedoch darauf geachtet werden, dass sich das Bauteil während der gesamten Messung über oder unter dem Werkstück befindet. Der gewählte Bereich sollte nach Möglichkeit während der Messung unverändert bleiben, da anhand des Messdatensatzes im Nachhinein nicht mehr nachvollzierbar ist, auf welcher Seite die Messung letztlich durchgeführt wurde.
  • Anhand der Normierlinie wird vorteilhafterweise, insbesondere mittels einer Recheneinheit, für jeden einzelnen Messpunkt die dazu gehörige Planungs-Weglänge des Referenzarms bestimmt und/oder abgespeichert. Hierdurch kann für jeden gemessenen Ist-Abstand des jeweiligen Messpunktes ein Normabstand gemessen werden.
  • Einen weiteren Vorteil stellt es dar, wenn die Planungs-Weglängen in Abhängigkeit des jeweiligen Messpunktes als Abstand zwischen der Normierlinie und einem systeminternen Referenzpunkt bestimmt wird. Die Planungs-Weglängen sind reine Plandaten mittels derer die Gegenrechnung von Schleppfehlern und dergleichen ermöglicht wird. Prinzipiell wäre es auch denkbar, die Planungs-Weglängen über einen beliebigen systemunabhängigen Wert zu definieren.
  • Zudem ist es von Vorteil, wenn in Abhängigkeit der Soll-Bahn und/oder der Normierlinie das Bewegungsprogramm für die Ablenkeinheit und/oder den Manipulator erzeugt wird. Dabei wird über eine Achssteuerung für jeden Messpunkt eine Sollposition an den Manipulator bzw. die Ablenkeinheit übermittelt. Der Manipulator bzw. die Ablenkeinheit werden mittels der Achssteuerung entsprechend des vorgegebenen Sollwerts eingestellt. Da die Einstellung des Manipulators bzw. der Ablenkeinheit jedoch nicht unendlich schnell erfolgen kann, ergibt sich der die Messung verfälschende Schleppverzug, welcher durch den Normabstand kompensiert wird.
  • Die Soll-Bahn wird vorteilhafterweise vor der Messung derart festgelegt, dass sich die zu vermessende Werkstückoberfläche innerhalb des Messbereiches befindet, wenn dieser an der Soll-Bahn entlangbewegt wird. Hierdurch wird sichergestellt, dass die Messungen zuverlässig durchgeführt werden können.
  • Damit sich das Werkstück während der gesamten Messung im Messbereich befindet, ist es von Vorteil wenn die optische Ist-Weglänge des Referenzarms in Annäherung an die Soll-Bahn entsprechend verstellt wird. Der Anwender gibt hierfür in Abhängigkeit des zu erfassenden Werkstücks die Soll-Bahn vor, so dass das Werkstück über den gesamten Zeitraum der ideal angenommenen Messung im Messbereich angeordnet ist. Durch die Achssteuerung wird dem Manipulator bzw. der Ablenkeinheit seine Bewegung so vorgegeben, dass jeweils die geplanten Messpunkte nacheinander angefahren werden, so dass letztlich die Ist-Bahn ausgebildet wird. Zwar kann durch die Vorgabe der Soll-Bahn und die Ansteuerung des Manipulators bzw. der Ablenkeinheit gemäß dieser Soll-Bahn aufgrund von Schleppfehlern bzw. dem Einpendeln nicht vollständig sichergestellt werden, dass im Verlauf der Ist-Bahn das Werkstück immer im Messbereich liegt. Die Wahrscheinlichkeit ist jedoch sehr gering, da zumindest im Verlauf der Soll-Bahn die grobe Geometrie des Werkstücks berücksichtigt wurde, so dass die Fehler letztlich nur durch die Bauteilträgheit bedingt sind. Durch die Annahme der Normierlinie können auch diese Mängel ausgeglichen werden.
  • Vorteilhafterweise wird in einem, insbesondere Weg und/oder Zeit abhängigen, Diagramm mittels der berechneten Normabstände eine normierter Scan des Werkstück erzeugt. Der normierte Scan stellt im Wesentlichen eine Abtastrate über den zu vermessenden Bereich des Werkstücks dar. Der gesamte Scan wird in Wegabschnitte unterteilt, wobei jeder Wegabschnitt einen Messpunkt darstellt. Diese werden im Diagramm an der x-Koordinatenachse angetragen. Für jeden Wegabschnitt wird sodann der Normabstand an der y-Koordinatenachse angetragen. Ebenso ist denkbar, statt der einzelnen Wegabschnitte die Dauer des Scans in seine Messpunkte zu zerlegen. Der Scan ist zweidimensional. Der Anwender kann hierdurch auf einfache Weise die Oberflächentopologie des Werkstücks auswerten.
  • Zudem ist es von Vorteil, wenn der normierte Scan des Werkstücks mittels Auswertealgorithmen analysiert wird. Anhand des vorzugsweise mathematischen Auswertealgorithmus können weitere Maßnahmen definiert werden, mittels derer beispielsweise eine fehlerhafte Schweißnaht nachbearbeitet wird.
  • Weiterhin ist es von Vorteil, wenn mehrere Scans zur Ausbildung einer Höhenkarte zusammengesetzt werden. Die in dem Diagramm eingetragenen Werte verleihen der Messung eine lediglich zweidimensionale Art, so dass der Anwender nur bezüglich des einen Scans Rückschlüsse auf die Oberflächentopologie schließen können. Häufig ist es jedoch notwendig, die gesamte Oberflächentopologie zu analysieren. Dies wird möglich, in dem die einzelnen Scans entsprechend ihrer Reihenfolge aneinandergesetzt werden. Dadurch entsteht ein dreidimensionales Bild des Werkstücks in Form der Höhenkarte. Die Nahtqualität kann hierdurch beispielsweise einfach bewertet werden.
  • Ferner wird eine Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks vorgeschlagen. Die Messvorrichtung umfasst wenigstens einen Kohärenztomographen, einen Manipulator und/oder eine Ablenkeinheit sowie eine Recheneinheit. Der Kohärenztomograph ist zum Messen eines Ist-Abstandes zwischen einem Nullpunkt eines Messbereichs des Kohärenztomographen und einer Werkstückoberfläche ausgebildet. Mittels des Manipulators bzw. der Ablenkeinheit kann der Messbereich entlang einer Ist-Bahn geführt werden. Die Recheneinheit ist zur Kompensation von Messfehlern, insbesondere von Schleppfehlern, ausgebildet.
  • Erfindungsgemäß ist vorgesehen, dass die Recheneinheit derart ausgebildet ist, dass der gemessene Ist-Abstand mit einem Messverfahren gemäß der vorangegangenen Beschreibung normierbar ist, wobei die genannten Merkmale einzeln oder in beliebiger Kombination vorhanden sein können. Hierdurch ist es ohne konstruktive Änderungen möglich, eine Messvorrichtung mit deutlich reduzierter Fehlerquote auszubilden.
  • Weitere Vorteile der Erfindung sind in den nachfolgenden Ausführungsbeispielen beschrieben. Es zeigt:
  • 1 eine schematische Darstellung eines Bearbeitungsscanners mit Messvorrichtung,
  • 2a einen schematischen Ablauf der Erfassung einer Oberflächentopologie,
  • 2b einen schematischen Ablauf der Erfassung einer Oberflächentopologie gemäß eines weiteren Ausführungsbeispiels,
  • 3 eine schematisches Ablaufdiagramm zur Kompensation von Störeinflüssen,
  • 4 eine schematische Darstellung zur Normierung eines Messpunktes,
  • 5 eine schematische Darstellung eines zweiten Ausführungsbeispiels zur Normierung eines Messpunktes,
  • 6 eine schematische Darstellung der Erfassung eines Werkstücks über mehrere Messpunkte und
  • 7 ein Weg abhängiges Diagramm zur Darstellung ermittelter Normabstände.
  • Die 1 zeigt eine schematische Darstellung einer Messvorrichtung 1 zum Erfassen einer Oberflächentopologie 2 eines Werkstücks 3. Die Messvorrichtung 1 wird hierbei mittels eines Manipulators 4 vom Werkstück 3 beabstandet über dieses hinwegbewegt. Gemäß dem vorliegenden Ausführungsbeispiel ist der Manipulator 4 ein mehrachsiger Industrieroboter, an dessen freien Ende die Messvorrichtung 1 angeordnet ist. Die Messvorrichtung 1 weist einen Punktabstandssensor auf, der vorliegend als Kohärenztomograph 28 ausgebildet ist. Von diesem wird ein Messstrahl 31, insbesondere ein Laserstrahl, auf die Werkstückoberfläche 10 geleitet. Des Weiteren umfasst die Messvorrichtung 1 einen Messscanner 6, mittels dem der Messstrahl 31 über zumindest einen drehbar gelagerten Spiegel 13 ablenkbar ist.
  • Auch kann die Messvorrichtung 1 einen Bearbeitungsscanner 5 umfassen, der dem Messscanner 6 nachgelagert ist. Der Bearbeitungsscanner 5 umfasst eine erste Ablenkeinheit 7. Mittels der ersten Ablenkeinheit 7 kann ein Bearbeitungsstrahl 8 des Bearbeitungsscanners 5, insbesondere ein Laserstrahl, über wenigstens einen beweglichen Spiegel 9 abgelenkt werden. Das Werkstück 3 wird mit dem Bearbeitungsstrahl 8 des Bearbeitungsscanners 5 bearbeitet, d.h. insbesondere markiert, geschnitten oder geschweißt. Hierbei wird die von der Messvorrichtung 1, insbesondere dem Messscanner 6, zu untersuchende Oberflächentopologie 2 verändert.
  • Gemäß dem vorliegenden Ausführungsbeispiel ist der Messscanner 6 fest mit dem Bearbeitungsscanner 5 gekoppelt. Der Messscanner 6 und der Bearbeitungsscanner 5 werden demnach gemeinsam durch den Manipulator 4 bewegt. Alternativ können diese aber auch separate Manipulatoren 4 aufweisen. Der Messscanner 6 kann jedoch auch losgelöst von dem Manipulator 4 angeordnet sein. Der Messstrahl 31 des Messscanner 6 kann mittels einer zweiten Ablenkeinheit 11 zur Abstandsmessung zusätzlich relativ zur Manipulatorbewegung bewegt werden. Hierfür weist die zweite Ablenkeinheit 11 zumindest einen zweiten Spiegel 13 auf.
  • Gemäß 1 wird demnach die Position des Messpunkts 17 des Messstrahls 31 durch die Manipulatorbewegung, die Ablenkbewegung der ersten Ablenkeinheit 7 und der Ablenkbewegung der zweiten Ablenkeinheit 11 beeinflusst. Hierbei handelt es sich somit um zueinander überlagerte Bewegungen.
  • Der Kohärenztomograph 28 weist einen Referenzarm 12 auf, der durch einen Teil des Strahlenverlaufs des Messstrahls 31 gebildet ist. Im Bereich seines Endes weist der Referenzarm 12 einen Messbereich 14 auf. Hierbei bildet das Ende des Referenzarms 12 einen Nullpunkt 15 des Messbereiches 14. Der Kohärenztomograph 28 misst einen Abstand zwischen der in dem Messbereich 14 befindlichen Werkstückoberfläche 10 und dem Nullpunkt 15.
  • Die Länge des Referenzarms 12 bzw. die Position des Messbereiches 14 in z-Richtung kann über eine vorliegend nicht dargestellte Verstelleinrichtung verändert werden. Vorzugsweise ist diese in dem Kohärenztomograph 28 integriert. Die Länge des Referenzarms 12 wird vorzugsweise derart gesteuert, dass sich die Werkstückoberfläche 10 während der gesamten Messung in dem Messbereich 14 befindet. Die Länge des Referenzarms 12 wird ferner derart gewählt, dass sich der Nullpunkt 15 während der gesamten Messung über oder unterhalb der Werkstückoberfläche 10 befindet. Der Messbereich 14 erstreckt sich gemäß 1 von einem Bereich über dem Werkstück 3, insbesondere von einer der Messvorrichtung 1 zugewandten Seite, bis unter das Werkstück 3. In jedem Fall bezieht sich die Messung auf den Nullpunkt 15 des Messbereichs 14, welcher diesen Messbereich 14 im Wesentlichen halbiert. Im dargestellten Ausführungsbeispiel ist der Nullpunkt 15 des Messbereichs 14 knapp über dem Werkstück 3 angeordnet. Ebenso ist jedoch auch denkbar, den Nullpunkt 15 unter dem Werkstück 3 zu platzieren.
  • Der Referenzarm 12 wird mittels einer Achssteuerung 16 über der zu erfassenden Oberflächentopologie 2 verstellt, so dass an wenigstens einem Messpunkt 17 ein Ist-Abstand dm zwischen dem Nullpunkt 25 und der Werkstückoberfläche 10 gemessen werden kann. Die Achssteuerung 16 kann hierbei auf die Verstelleinrichtung, den Manipulator, die erste Ablenkeinheit und/oder die zweite Ablenkeinheit Einfluss nehmen. Die Lage des Nullpunktes 15 bzw. des gesamten Messbereiches 14 kann über eine Achssteuerung 16 geändert werden, indem hierdurch insbesondere der Referenzarm 12 verstellt wird. Der Messpunkt 17 ist im dargestellten Ausführungsbeispiel auf gleicher Höhe wie der Nullpunkt 15 des Messbereichs 14. Es ist jedoch auch denkbar, dass der Messpunkt 17 über oder unter dem Nullpunkt 15 angeordnet ist.
  • Die 2a und 2b zeigen einen schematischen Ablauf der Erfassung der Oberflächentopologie 2. In beiden 2a, 2b wird in Abhängigkeit der zu erfassenden Oberflächentopologie 2 jeweils zunächst eine Soll-Bahn 18 vorgegeben, gemäß derer der Referenzarm 12 mit der nicht dargestellten Achssteuerung 16, der Manipulator 4 und/oder der zweiten Ablenkeinheit 11 der Messvorrichtung 1 zur Abstandsmessung verstellt werden soll. Ziel ist es demnach den Nullpunkt 15 des Messbereichs 14 auf der Soll-Bahn 18 entlang zu bewegen.
  • In 2a wird der Referenzarm 12 des Messscanners 6 von dem Manipulator 4 (vgl. 1) entlang der Soll-Bahn 18 bewegt, um an mehreren Messpunkten 17 jeweils eine Abstandsmessung durchzuführen. Da sich der Manipulator 4 jedoch nicht unendlich schnell bewegen kann, wird der Referenzarm 12 nicht genau entlang der Soll-Bahn 18 geführt, sondern entlang einer Ist-Bahn 19. In diesem Fall spricht man von einem Schleppfehler. Von den die Ist-Bahn 19 ausbildenden Messpunkten 17, insbesondere von dem Nullpunkt 15 (vgl. 1), ausgehend, wird mittels des nicht dargestellten Messscanners 6 je Messpunkt 17 der Ist-Abstand dm gemessen. Der Ist-Abstand dm ist demnach der durch den Schleppfehler verfälschte tatsächlich gemessene Abstand zwischen Nullpunkt 15 und Werkstückoberfläche 10.
  • Der Referenzarm 12 des in 2b dargestellten Ablaufs soll lediglich von der zweiten Ablenkeinheit 11 (vgl. 1) entlang der Soll-Bahn 18 geführt werden. Jedoch weicht auch hier, insbesondere aufgrund des Einpendelns der zweiten Spiegel 13 der zweiten Ablenkeinheit 11, die Ist-Bahn 19 von der geplanten Soll-Bahn 18 ab.
  • Die folgenden 3 und 4 zeigen nun, wie die zuvor beschriebenen Störeinflüsse ausgeglichen werden können. 3 zeigt ein schematisches Ablaufdiagramm zur Kompensation der Störeinflüsse. Zur Veranschaulichung wird in 4 schematisch die Normierung der Messung dargestellt. Zunächst wird von einem nicht dargestellten Anwender die Soll-Bahn 18 vorgegeben. Die Soll-Bahn 18 wird in Abhängigkeit der zu erfassenden Werkstückoberfläche 10 derart festgelegt, dass die Werkstückoberfläche 10 während der gesamten Messung in dem Messbereich 14 (vgl. 1, 4) angeordnet ist. Die Festlegung der Soll-Bahn 18 erfolgt anhand von Erfahrungswerten.
  • Hierfür wird von einem nicht dargestellten Anwender in einer Programmierumgebung 20 bzw. allgemein in einer Steuereinheit 21 die gewünschte Soll-Bahn 18 vorgegeben. In Abhängigkeit der Soll-Bahn 18 wird von der Programmierumgebung 20 ein Bewegungsprogramm 22 für die Achssteuerung 16 erzeugt, so dass der Messstrahl 31 bzw. der Referenzarm 12 so entlang der Werkstückoberfläche 10 geführt wird, dass sich die Werkstückoberfläche 10 während der gesamten Messung innerhalb des Messbereichs 14 (vgl. 4) befindet. Auf Basis des Bewegungsprogramms 22 wird vorzugsweise auch die Bewegung des nicht dargestellten Manipulators 4 bzw. der zweiten Ablenkeinheit 11 beeinflusst.
  • Weiterhin wird in der Programmierumgebung 20, insbesondere vom Benutzer, eine Normierlinie 23 vorgegeben, die in 4 gezeigt ist. Die Normierlinie 23 ist im dargestellten Ausführungsbeispiel (vgl. 4) ebenso wie die Soll-Bahn 18 über der Werkstückoberfläche 10 angeordnet. Die Normierlinie 23 ist als Datensatz in der Steuereinheit 21 festgelegt. Anhand der Normierlinie 23 wird in einer Recheneinheit 24 (vgl. 3) eine Planungs-Weglänge lp des Referenzarms 12 festgelegt. Die Planungs-Weglänge lp könnte man gemäß 4 als Abstand zwischen einem in der Messvorrichtung 1, insbesondere in dem Messscanner 6, befindlichen, systeminternen Referenzpunkt 25 und einem auf der Normierlinie 23 liegenden Normierpunkt 26 ansehen. Letztlich ist die Planungs-Weglänge lp jedoch ein fiktiver Wert, der nicht zwingend in Relation zum tatsächlichen Messverfahren stehen muss. Die Planungs-Weglänge lp wird in einer Speichereinheit 27 gespeichert.
  • Die Messung selbst wird gemäß 3 durch den Kohärenztomographen 28 durchgeführt. Mittels des Kohärenztomographen 28 kann der Ist-Abstand dm vom Nullpunkt 15 des Messbereichs 14 bis zur Werkstückoberfläche 10 (vgl. 4) bestimmt werden. Zudem wird eine optische Ist-Weglänge li bestimmt, welche sich von einem nicht dargestellten Scankopf bis zum Nullpunkt 15 des Messbereichs 14 erstreckt. Neben der optischen Ist-Weglänge li wird der Ist-Abstand dm und auch die Planungs-Weglänge lp in der Speichereinheit 27 als Messdatensatz 29 hinterlegt.
  • Um nun die Störeinflüsse kompensieren zu können, wird der Messdatensatz 29 gemäß 3 von der Recheneinheit 24 weiterverarbeitet. Hierzu wird für jede einzelne Messung ein Normabstand dn (vgl. 4) bestimmt. Um für das dargestellte Ausführungsbeispiel den Normabstand dn bestimmen zu können, muss zunächst die Summe der optischen Ist-Weglänge li und dem gemessenen Ist-Abstand dm berechnet werden. Hieraus ergibt sich ein Rechenwert zur weiteren Verarbeitung. Anschließend wird die Differenz aus dem Rechenwert und der Planungs-Weglänge lp gebildet. Der hierdurch berechnete Wert ist der Normabstand dn. Hierbei handelt es sich um einen auf die Normierlinie 23 referenzierten Abstand, der hierdurch normiert ist.
  • Auf gleiche Art und Weise kann für mehrere Messpunkte 17 verfahren werden, wobei für jeden Messpunkt 17 eine individuelle Planungs-Weglänge lp, der gemessene Ist-Abstand dm sowie die optische Ist-Weglänge li bestimmt und in der Speichereinheit 27 hinterlegt werden. Durch die Aneinanderreihung mehrerer tatsächlicher Messpunkte 17 wird dabei die Ist-Bahn 19 ausgebildet.
  • Bei der nachfolgenden Beschreibung der in den 5 bis 6 dargestellten alternativen Ausführungsbeispiele werden für Merkmale, die im Vergleich zum in 4 dargestellten ersten Ausführungsbeispiel in ihrer Ausgestaltung und/oder Wirkweise identisch und/oder zumindest vergleichbar sind, gleiche Bezugszeichen verwendet. Sofern diese nicht nochmals detailliert erläutert werden, entspricht deren Ausgestaltung und/oder Wirkweise der Ausgestaltung und Wirkweise der vorstehend bereits beschriebenen Merkmale.
  • So zeigt die 5 ein zweites Ausführungsbeispiel zur Normierung der Störeinflüsse. Hierbei sind die Sollbahn 18 und auch die Normierlinie 23 unterhalb des Werkstücks 3 angeordnet. Der Rechenwert zur Berechnung des Normabstandes dn wird aus der Differenz der Ist-Weglänge li und dem Ist-Abstand dm gebildet. Der Normabstand dn wird weiterhin aus der Differenz der Planungs-Weglänge lp zum Rechenwert gebildet.
  • In einem weiteren nicht dargestellten Ausführungsbeispiel ist es ferner denkbar, dass die Normierlinie 23 über dem Werkstück 3 und die Soll-Bahn 18 unterhalb des Werkstücks 3 angeordnet ist. Weiterhin ist es denkbar, dass die Soll-Bahn 18 über dem Werkstück 3 und die Normierlinie 23 unterhalb des Werkstücks 3 angeordnet ist. Vorteilhaft ist es, wenn sich deren Position relativ zur Werkstückoberfläche 10 während der gesamten Messung nicht verändert, d.h. dass sich diese jeweils entweder oberhalb oder unterhalb der Werkstückoberfläche 10 befinden.
  • In 6 ist eine gesamte Erfassung der Werkstoffoberfläche 10 über drei Messpunkte 17 dargestellt. Die Soll-Bahn 18 ist entsprechend der vom Anwender angenommenen Werkstückoberfläche 10 ausgebildet. Die Normierlinie 23 ist als Gerade im kartesischen Raum angeordnet und teilweise identisch zur Soll-Bahn 18. In Abhängigkeit der Soll-Bahn 18 wird von der Programmierumgebung 20 ein Bewegungsprogramm 22 für die Achssteuerung 16 erzeugt (vgl. 3), so dass alle drei Messpunkte 17 von dem Messscanner 6 nacheinander angesteuert werden. Durch die Trägheit der Achssteuerung 16 werden die Messpunkte 17 jedoch nicht gemäß der Soll-Bahn 18 angesteuert, sondern mit einem Störeinfluss. Hierdurch liegen die Nullpunkte 15 je Messpunkt 17 nicht auf der Soll-Bahn 18, sondern darüber oder auch darunter. Durch die Verbindung der einzelnen Nullpunkte 15 wird die Ist-Bahn 18 ausgebildet.
  • Von dem Messscanner 6 ausgehend bis zum jeweiligen Nullpunkt 15 wird sodann für jeden Messpunkt 17 die Ist-Weglänge li bestimmt. Weiterhin wird durch den nicht dargestellten Kohärenztomographen 28 für jeden Messpunkt 17 von dem Nullpunkt 15 ausgehend der Ist-Abstand dm bestimmt. Ebenso wird für jeden Messpunkt 17 eine zugehörige Planungs-Weglänge lp festgelegt. Die Planungs-Weglänge lp erstreckt sich dabei von dem systeminternen Referenzpunkt 25 ausgehend bis zu dem Normierpunkt 26. Die Berechnung des Normabstandes dn erfolgt wie bereits beschrieben durch die Bildung der Differenz aus dem Rechenwert und der Planungs-Weglänge lp. Die berechneten Normabstände dn können sodann mittels mathematischer Auswertealgorithmen analysiert und weiterverarbeitet werden.
  • In 7 ist schematisch dargestellt, wie die Normabstände dn in einem wegabhängigen Diagramm 23 dargestellt werden können. Hierfür weist das Diagramm 23 eine x-Achse auf. An der x-Achse werden die Messpunkte 14 angetragen, welche gleichmäßig über die Messung verteilt sind. Jeder Messpunkt 14 ist in 7 gemäß der Reihenfolge in welcher diese gemessen werden im Diagramm 30 angetragen und bezeichnet. Gemäß dem Diagramm 23 wurden über den Zeitraum des Scans folglich an sieben Messpunkten 17 die Ist-Abstände dm gemessen. Je Messpunkt 17 wurde ein normierter Normabstand dn berechnet. Jeder der berechneten Normabstände dn ist an der y-Achse des Diagramm 23 angetragen.
  • Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine Kombination der Merkmale, auch wenn diese in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind.
  • Bezugszeichenliste
  • 1
    Messvorrichtung
    2
    Oberflächentopologie
    3
    Werkstück
    4
    Manipulator
    5
    Bearbeitungsscanner
    6
    Messscanner
    7
    Erste Ablenkeinheit
    8
    Bearbeitungsstrahl
    9
    Erster Spiegel
    10
    Werkstückoberfläche
    11
    Zweite Ablenkeinheit
    12
    Referenzarm
    13
    Zweiter Spiegel
    14
    Messbereich
    15
    Nullpunkt
    16
    Achssteuerung
    17
    Messpunkt
    18
    Soll-Bahn
    19
    Ist-Bahn
    20
    Programmierumgebung
    21
    Steuereinheit
    22
    Bewegungsprogramm
    23
    Normierlinie
    24
    Recheneinheit
    25
    Referenzpunkt
    26
    Normierpunkt
    27
    Speichereinheit
    28
    Kohärenztomographen
    29
    Messdatensatz
    30
    Diagramm
    31
    Messstrahl
    dm
    Ist-Abstand
    dn
    Normabstand
    li
    Ist-Weglänge
    lp
    Planungs-Weglänge

Claims (15)

  1. Messverfahren zum Erfassen einer Oberflächentopologie (2) eines Werkstücks (3) mittels eines Kohärenztomographen (28), bei welchem ein Messbereich (14) eines Referenzarms (12) des Kohärenztomographen (28) mittels eines Manipulators (4) und/oder einer Ablenkeinheit (7; 11) entlang einer Ist-Bahn (19) geführt wird, die aufgrund von Störeinflüssen, insbesondere Schleppfehler des Manipulators (4), von einer Soll-Bahn (18) zumindest teilweise abweicht, und an zumindest einem Messpunkt (17) der Ist-Bahn (19) zwischen einem Nullpunkt (15) des Messbereiches (14) und einer Werkstückoberfläche (10) ein Ist-Abstand (dm) gemessen wird, dadurch gekennzeichnet, dass zur Kompensation der Störeinflüsse für den zumindest einen Messpunkt (17) eine Planungs-Weglänge (lp) des Referenzarms (12) festgelegt wird und dass der gemessene Ist-Abstand (dm) mittels der Planungs-Weglänge (lp) auf einen Normabstand (dn) normiert wird.
  2. Messverfahren nach dem vorherigen Anspruch, dadurch gekennzeichnet, dass für den zumindest einen Messpunkt (17) als Ausgangsinformationen zur Berechnung des Normabstandes (dn) ein Messdatensatz (29), insbesondere eine optische Ist-Weglänge (li) des Referenzarms (12) und der gemessene Ist-Abstand (dm), und die Planungs-Weglänge (lp), insbesondere in einer Speichereinheit (27), hinterlegt werden.
  3. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Normabstand (dn) aus der Differenz zwischen einem aus dem Messdatensatz (29) gebildeten Rechenwert, insbesondere aus der Summe oder Differenz der optischen Ist-Weglänge (li) und dem gemessenen Ist-Abstand (dm), und der Planungs-Weglänge (lp) berechnet wird.
  4. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass zum Normieren mehrerer gemessener Ist-Abstände (dm) eine Normierlinie (23) festgelegt wird, wobei dies insbesondere von einem Benutzer anhand von Erfahrungswerten erfolgt.
  5. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Normierlinie (23) unabhängig von der Soll-Bahn (18) oder in Abhängigkeit von dieser definiert wird, wobei die Normierlinie (23) vorzugsweise zumindest teilweise identisch zur Soll-Bahn (18) ist, dieser ähnelt und/oder zumindest einzelne Werte, insbesondere der Start- und/oder Endwert, zu dieser identisch sind.
  6. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Normierlinie (23) zumindest bereichsweise als Gerade und/oder Kurve festgelegt und/oder zumindest bereichsweise oberhalb und/oder unterhalb der Werkstückoberfläche (10) angeordnet wird.
  7. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass anhand der Normierlinie (23), insbesondere mittels einer Recheneinheit (24), für jeden einzelnen Messpunkt (17) die dazugehörige Planungs-Weglänge (lp) des Referenzarms (12) bestimmt und/oder abgespeichert wird.
  8. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Planungs-Weglänge (lp) in Abhängigkeit des jeweiligen Messpunktes (17) als Abstand zwischen der Normierlinie (23) und einem systeminternen Referenzpunkt (25) bestimmt wird.
  9. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass in Abhängigkeit der Soll-Bahn (18) und/oder der Normierlinie (23) ein Bewegungsprogramm (22) für die Ablenkeinheit (7; 11) und/oder den Manipulator (4) erzeugt wird.
  10. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Soll-Bahn (18) vor der Messung derart festgelegt wird, dass sich die zu vermessende Werkstückoberfläche (10) innerhalb des Messbereiches (14) befindet, wenn dieser an der Soll-Bahn (18) entlangbewegt wird.
  11. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Soll-Bahn (18) so verstellt wird, dass die optische Ist-Weglänge (li) des Referenzarms (12) in deren Verlauf verstellt wird.
  12. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass in einem, insbesondere Weg und/oder Zeit abhängigen, Diagramm (30) mittels der berechneten Normabstände (dn) ein normierter Scan des Werkstücks (3) erzeugt wird.
  13. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass der normierte Scan des Werkstücks (3) mittels Auswertealgorithmen analysiert wird.
  14. Messverfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch gekennzeichnet, dass mehrere normierte Scans zur Ausbildung einer Höhenkarte zusammengesetzt werden.
  15. Messvorrichtung (1) zum Erfassen einer Oberflächentopologie (2) eines Werkstücks (3) mit einem Kohärenztomographen (28) zum Messen eines Ist-Abstandes (dm) zwischen einem Nullpunkt (15) eines Messbereiches (14) des Kohärenztomographen (28) und einer Werkstückoberfläche (10), einem Manipulator (4) und/oder einer Ablenkeinheit (7; 11) zum Führen des Messbereiches (14) entlang einer Ist-Bahn (19), und einer Recheneinheit (24) zur Kompensation von Messfehlern, insbesondere von Schleppfehlern, dadurch gekennzeichnet, dass die Recheneinheit (24) derart ausgebildet ist, dass der gemessene Ist-Abstand (dm) mit einem Messverfahren nach einem oder mehreren der vorherigen Ansprüche auf einen Normabstand (dn) normierbar ist.
DE102016103954.3A 2016-03-04 2016-03-04 Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks Pending DE102016103954A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102016103954.3A DE102016103954A1 (de) 2016-03-04 2016-03-04 Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks
CN201780012408.2A CN108700400B (zh) 2016-03-04 2017-03-01 用于检测工件表面拓扑结构的测量方法及测量装置
US16/081,158 US10955237B2 (en) 2016-03-04 2017-03-01 Measurement method and measurement apparatus for capturing the surface topology of a workpiece
PCT/EP2017/054681 WO2017148966A1 (de) 2016-03-04 2017-03-01 Messverfahren sowie messvorrichtung zum erfassen einer oberflächentopologie eines werkstücks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016103954.3A DE102016103954A1 (de) 2016-03-04 2016-03-04 Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks

Publications (1)

Publication Number Publication Date
DE102016103954A1 true DE102016103954A1 (de) 2017-09-07

Family

ID=58191466

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016103954.3A Pending DE102016103954A1 (de) 2016-03-04 2016-03-04 Messverfahren sowie Messvorrichtung zum Erfassen einer Oberflächentopologie eines Werkstücks

Country Status (4)

Country Link
US (1) US10955237B2 (de)
CN (1) CN108700400B (de)
DE (1) DE102016103954A1 (de)
WO (1) WO2017148966A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639702A (zh) * 2021-10-13 2021-11-12 江苏莱克智能电器有限公司 一种加工及平面度检测的自动化系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138939A1 (en) * 2013-03-13 2014-09-18 Queen's University At Kingston Methods and systems for characterizing laser machining properties by measuring keyhole dynamics using interferometry
DE102014011569A1 (de) * 2014-08-02 2016-02-04 Precitec Optronik Gmbh Verfahren zum Messen des Abstands zwischen einem Werkstück und einem Bearbeitungskopf einer Laserbearbeitungsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002088684A1 (en) * 2001-04-30 2002-11-07 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
DE102007016444A1 (de) 2007-04-05 2008-10-16 Precitec Optronik Gmbh Bearbeitungseinrichtung
EP2037214A1 (de) * 2007-09-14 2009-03-18 Leica Geosystems AG Verfahren und Messgerät zum vermessen von Oberflächen
US8517537B2 (en) 2011-01-20 2013-08-27 Canon Kabushiki Kaisha Optical coherence tomographic imaging method and optical coherence tomographic imaging apparatus
CN202149732U (zh) * 2011-03-14 2012-02-22 上海小糸车灯有限公司 一种在线尺寸快速检测装置
US9714825B2 (en) * 2011-04-08 2017-07-25 Rudolph Technologies, Inc. Wafer shape thickness and trench measurement
DE102015007142A1 (de) * 2015-06-02 2016-12-08 Lessmüller Lasertechnik GmbH Messvorrichtung für ein Laserbearbeitungssystem und Verfahren zum Durchführen von Positionsmessungen mittels eines Messstrahls auf einem Werkstück

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014138939A1 (en) * 2013-03-13 2014-09-18 Queen's University At Kingston Methods and systems for characterizing laser machining properties by measuring keyhole dynamics using interferometry
DE102014011569A1 (de) * 2014-08-02 2016-02-04 Precitec Optronik Gmbh Verfahren zum Messen des Abstands zwischen einem Werkstück und einem Bearbeitungskopf einer Laserbearbeitungsvorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113639702A (zh) * 2021-10-13 2021-11-12 江苏莱克智能电器有限公司 一种加工及平面度检测的自动化系统及方法

Also Published As

Publication number Publication date
CN108700400B (zh) 2021-08-24
CN108700400A (zh) 2018-10-23
US10955237B2 (en) 2021-03-23
WO2017148966A1 (de) 2017-09-08
US20210033390A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
DE102005048136B4 (de) Verfahren zum Bestimmen eines virtuellen Tool-Center-Points
DE60011458T2 (de) Vorrichtung und verfahren zur bestimmung von koordinaten und orientierung
DE102007023826A1 (de) Verfahren und Vorrichtung zur berührungslosen Schwingungsmessung
DE102013022085A1 (de) Verfahren und Vorrichtung zur Überwachung und Regelung der Bearbeitungsbahn bei einem Laser-Fügeprozess
WO2016055494A1 (de) Erfassung von geometrischen abweichungen einer bewegungsführung bei einem koordinatenmessgerät oder einer werkzeugmaschine
DE102015107436A1 (de) Lernfähige Bahnsteuerung
EP3403051B1 (de) Verfahren und vorrichtung zum vorgeben von vorgabedaten für eine vermessung eines zu vermessenden werkstücks durch ein koordinatenmessgerät und/oder für eine auswertung von messergebnissen einer vermessung eines vermessenen werkstücks durch ein koordinatenmessgerät
DE102006023031A1 (de) Verfahren und Vorrichtung zum Antasten eines Oberflächenpunktes an einem Werkstück
DE102015108480A1 (de) System und Verfahren für einen dynamischen Gating-Prozess bei der zerstörungsfreien Schweißnahtprüfung
DE102007046287A1 (de) Verfahren zur Kalibrierung einer Sensoranordnung und Sensoranordnung
DE102017213444A1 (de) Verfahren und Gerät zum Inspizieren einer Positionierungsmaschine durch ein Lasertracking-Interferometer
DE102007011603B4 (de) Verfahren und Vorrichtung zum Bestimmen von Geometriedaten eines konischen Messobjekts
DE102020204622A1 (de) Verfahren und Bearbeitungsmaschine zur Werkstücklageerfassung mittels OCT
DE102018103474A1 (de) Ein system und verfahren zur objektabstandserkennung und positionierung
DE102015008457A1 (de) Inspektionssystem zum Inspizieren eines Objekts unter Verwendung eines Kraftsensors
WO2017148966A1 (de) Messverfahren sowie messvorrichtung zum erfassen einer oberflächentopologie eines werkstücks
EP3708945B1 (de) Auswertung von messdaten aus einer vermessung einer mehrzahl von werkstücken
DE102017007078A1 (de) Messsystem und Verfahren zur Bestimmung von 3D-Koordinaten von Messpunkten eines Objekts, insbesondere eines Umformwerkzeuges zur Herstellung von Fahrzeugen
EP2525188A1 (de) Justage einer zu prüfenden optischen Fläche in einer Prüfvorrichtung
EP4061585B1 (de) Kalibrierung einer impendanzregelung eines robotermanipulators
EP3901574B1 (de) Verfahren und vorrichtung zur bestimmung von messpunkten einer angepassten messbahn zur vermessung eines messobjekts durch eine koordinatenmesseinrichtung sowie programm
EP0613573B1 (de) Verfahren zur überprüfung der arbeitsgenauigkeit einer nc-maschine
DE102018124208B4 (de) Verfahren und Vorrichtung zur Überwachung eines Laserbearbeitungsprozesses an einem Werkstück sowie dazugehöriges Laserbearbeitungssystem
DE102010011841B4 (de) Verfahren zur Validierung eines Messergebnisses eines Koordinatenmessgeräts
DE102006015981B4 (de) Verfahren zum Ermitteln des Verhaltens von zum Zwecke der Bewegung eines Werkzeugs oder einer Werkzeugaufnahme im Verbund bewegbaren Maschinenachsen einer mehrachsigen Maschine

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed