DE102016010546B3 - Drehmomentsensor mit axialem Anschlagelement - Google Patents

Drehmomentsensor mit axialem Anschlagelement Download PDF

Info

Publication number
DE102016010546B3
DE102016010546B3 DE102016010546.1A DE102016010546A DE102016010546B3 DE 102016010546 B3 DE102016010546 B3 DE 102016010546B3 DE 102016010546 A DE102016010546 A DE 102016010546A DE 102016010546 B3 DE102016010546 B3 DE 102016010546B3
Authority
DE
Germany
Prior art keywords
torque sensor
flange
section
bore
outer flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016010546.1A
Other languages
English (en)
Inventor
Matthias Hähnle
Norbert Sporer
Michael Grandl
Mathias Sattler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sensodrive GmbH
Original Assignee
Sensodrive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sensodrive GmbH filed Critical Sensodrive GmbH
Priority to DE102016010546.1A priority Critical patent/DE102016010546B3/de
Application granted granted Critical
Publication of DE102016010546B3 publication Critical patent/DE102016010546B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/14Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Die Erfindung betrifft einen Drehmomentsensor (700; 800; 900) mit einem Grundkörper (701; 801; 901), der sich in einer radialen Richtung (Y) des Grundkörpers von einem ringförmigen Innenflansch (703; 803; 903) mit ersten Krafteinleitungsstellen (705; 805; 905) über einen mit Ausgangssignale generierenden Messwertaufnehmern (10, 20) ausgestatteten, mechanisch geschwächten Sensorabschnitt (707; 807; 907) zu einem ringförmigen Außenflansch (709; 809; 909) mit zweiten Krafteinleitungsstellen (711; 811; 911) erstreckt, wobei sich an einer den zweiten Krafteinleitungsstellen (711; 811; 911) entgegengesetzten Seite des Außenflansches (709; 809; 909) ein zum Sensorabschnitt (707; 807; 907) paralleler Anschlagflansch (723; 823; 923) erstreckt, der nur mit dem Innenflansch (703; 803; 903) drehfest verbunden ist und mindestens eine zu einer axialen Außenflanschbohrung (711a; 811a; 911a) in einem unbeanspruchten Grundzustand des Drehmomentsensors (700; 800; 900) konzentrische Anschlagflanschbohrung (725; 825; 925) aufweist, und wobei ein Anschlagelement (727; 827; 927) in einer Außenflanschbohrung (711a; 811a; 911a) oder der Anschlagflanschbohrung (725; 825; 925) fixiert ist und von der anderen der Außenflanschbohrung (711a; 811a; 911a) oder der Anschlagflanschbohrung (725; 825; 925) im unbeanspruchten Grundzustand des Drehmomentsensors (700; 800; 900) berührungslos umgeben ist.

Description

  • Die Erfindung betrifft einen Drehmomentsensor gemäß dem Oberbegriff des Patentanspruchs 1.
  • Aus dem Dokument EP 1 353 159 A2 ist ein Drehmomentsensor in Form eines monolithischen Aufnahmeteils bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, einen kompakten, einfach aufgebauten Drehmomentsensor bereitzustellen, der gegenüber mechanischen Störeinflüssen unempfindlicher ist.
  • Diese Aufgabe ist erfindungsgemäß durch einen Drehmomentsensor mit den im Patentanspruch 1 genannten Merkmalen gelöst.
  • Ein solcher Drehmomentsensor hat einen Grundkörper, der sich in einer radialen Richtung des Grundkörpers von einem ringförmigen Innenflansch mit ersten Krafteinleitungsstellen über einen mit Ausgangssignale generierenden Messwertaufnehmern ausgestatteten, mechanisch geschwächten Sensorabschnitt zu einem ringförmigen Außenflansch mit zweiten Krafteinleitungsstellen erstreckt, wobei sich an einer den zweiten Krafteinleitungsstellen entgegengesetzten Seite des Außenflansches ein zum Sensorabschnitt paralleler Anschlagflansch erstreckt, der nur mit dem Innenflansch drehfest verbunden ist und mindestens eine zu einer axialen Außenflanschbohrung in einem unbeanspruchten Grundzustand des Drehmomentsensors konzentrische Anschlagflanschbohrung aufweist, wobei ein Anschlagelement in der Außenflanschbohrung oder der Anschlagflanschbohrung fixiert ist und von der anderen der Außenflanschbohrung oder der Anschlagflanschbohrung im unbeanspruchten Grundzustand des Drehmomentsensors berührungslos umgeben ist.
  • Vorzugsweise ist das Anschlagelement als Anschlagstift ausgebildet. Das Anschlagelement kann als Hohlkörper ausgebildet sein.
  • Vorzugsweise hat die Außenflanschbohrung einen von der Anschlagflanschbohrung verschiedenen Durchmesser. Das hat den Vorteil, dass als Anschlagelement beispielsweise ein Anschlagstift mit konstantem Durchmesser verwendet werden kann, wobei dessen Durchmesser dem kleineren Durchmesser der jeweiligen Bohrung entsprechen muss, um berührungslos von der jeweils anderen Bohrung umgeben werden zu können.
  • Vorzugsweise sind die zweiten Krafteinleitungsstellen Teil eines radial vom Außenflansch vorstehenden Abschnitts, von dem sich ein radialelastischer Materialabschnitt in axialer Richtung des Grundkörpers zum Sensorabschnitt erstreckt. Dadurch ist ein einfacher Montagezugang zu den zweiten Krafteinleitungsstellen möglich.
  • Der Außenflansch kann monolithisch ausgeführt sein, wobei der Drehmomentsensor aus Stahl, Aluminium oder einer Aluminiumlegierung bestehen kann.
  • Alternativ kann der Außenflansch mehrteilig sein, wobei der radialelastische Materialabschnitt und die zweiten Krafteinleitungsstellen vorzugsweise ein gemeinsames Teil bilden, das vorzugsweise aus Stahl ist, während der andere Teil des Außenflansches aus Aluminium oder einer Aluminiumlegierung bestehen kann. Diese Mehrteiligkeit erlaubt eine für jedes Teil geeignete Materialwahl. So ist es vorteilhaft, den radial elastischen Teil des Drehmomentsensors aus Stahl zu fertigen und den restlichen Teil des Drehmomentsensors aus Aluminium oder einer Aluminiumlegierung, weil die beiden letztgenannten Materialien keine Hysterese und eine geringe innere Dämpfung bei hoher Festigkeit haben. Bei einem monolithisch ausgeführten Drehmomentsensor ist es deshalb ebenfalls vorteilhaft, Aluminium oder eine Aluminiumlegierung als Material zu wählen.
  • Vorzugsweise sind die zweiten Krafteinleitungsstellen durch einen radialelastischen Materialabschnitt mit dem Sensorabschnitt verbunden. Auf diese Weise kann eine weitgehende Entkopplung in radialer Richtung erreicht werden, sodass beispielsweise Rundheitsabweichungen an den zweiten Krafteinleitungsstellen kompensiert werden können. Solche Rundheitsabweichungen können beispielsweise auf Fertigungstoleranzen beruhen. Die Folge kann ein Übersprechen der Messwertaufnehmer sein. Um dadurch bedingte Messfehler zu vermeiden, hat der radialelastische Materialabschnitt eine bezüglich radialer Verformungen niedrige Steifigkeit, wohingegen er bezüglich Torsionskräften quasistarr ist, d. h. eine hohe Steifigkeit hat. Der radialelastische Materialabschnitt kann so ausgestaltet sein, dass Verformungen aus Axialkräften und Kippmomenten ausgeglichen werden.
  • Der radialelastische Materialabschnitt kann ein in axialer Richtung des Grundkörpers verlaufender dünnwandiger Materialabschnitt sein. Dabei muss der Materialabschnitt sich nicht ausschließlich in axialer Richtung erstrecken, sondern kann auch nur eine axiale Komponente aufweisen. Beispielsweise kann ein solcher axialer Materialabschnitt konisch oder mäandernd ausgeführt sein. Vorzugsweise ist dieser dünnwandige Materialabschnitt ein nur in axialer Richtung des Grundkörpers verlaufender Abschnitt, d. h. ein ausschließlich in axialer Richtung verlaufender Materialabschnitt.
  • Als Messwertaufnehmer kommen beispielsweise druck- oder zugempfindliche Messwertaufnehmer in Frage, z. B. Dehnungsmessstreifen, es ist jedoch auch möglich, mittels eines Encoders die Winkeldifferenz zwischen dem Innenflansch und dem Außenflansch des Drehmomentsensors zu messen. Ferner ist es auch möglich, ein magnetostriktives Messverfahren einzusetzen.
  • Vorzugsweise ist der Außenflansch monolithisch oder mehrteilig, wobei der radialelastische Materialabschnitt und die zweiten Krafteinleitungsstellen vorzugsweise ein Teil bilden.
  • Vorzugsweise ist dieser dünnwandige Materialabschnitt als dünnwandiger Boden einer sich im Außenflansch in Umfangsrichtung erstreckenden Nut ausgebildet. Vorzugsweise befindet sich die Nut am Außenumfang oder am Innenumfang des Außenflanschs. Insgesamt wird so ein einfach zu fertigender und kompakter Aufbau des Drehmomentsensors ermöglicht.
  • Die Krafteinleitungsstellen können Bohrungen oder Zahnzwischenräume oder eine Kombination aus beidem sein, wobei sich die Bohrungen und/oder die die Zahnzwischenräume ausbildenden Zähne vorzugsweise in einer axialen Richtung des Grundkörpers erstrecken. Mit Bohrungen sind hier und im weiteren Text zumindest einseitig offene Öffnungen gemeint, beispielsweise solche mit kreisförmigem oder polygonalem Querschnitt.
  • Vorzugsweise verbindet der radialelastische Materialabschnitt jeweils als Bohrung ausgebildete zweite Krafteinleitungsstellen mit in einem unbeanspruchten Grundzustand des Drehmomentsensors konzentrischen, am Außenflansch befindlichen und ebenfalls jeweils als Bohrung ausgebildeten dritten Krafteinleitungsstellen. Derartige konzentrische zweite und dritte Krafteinleitungsstellen lassen sich einfach in einem Bohrvorgang fertigen.
  • Vorzugsweise bilden der radialelastische Materialabschnitt und die zweiten Krafteinleitungsstellen ein mit dem Rest des Außenflansches, vorzugsweise mittels Schrauben, lösbar verbundenes Teil. Auf diese Weise kann ein Austausch eines Außenflanschteils schnell und kostengünstig erfolgen.
  • Vorzugsweise sind die zweiten Krafteinleitungsstellen monolithisch mit einem Gehäuse ausgeführt, was die Herstellung vereinfachen kann.
  • Vorzugsweise sind die Messwertaufnehmer Dehnmessstreifen, deren Arbeitsprinzip elektrisch, optisch oder piezoelektrisch sein kann.
  • Der mechanisch geschwächte Sensorabschnitt kann radial verlaufende erste und zweite Verbindungsstege umfassen, welche gleiche oder unterschiedliche mechanische Eigenschaften haben und in Umfangsrichtung alternierend angeordnet sind. Mit ”radial verlaufend” ist hier jeder Verlauf des mechanisch geschwächten Sensorabschnitts gemeint, der zumindest eine radiale Komponente umfasst. Der radiale Verlauf kann ausschließlich radial sein, jedoch sind davon abweichende Verläufe mit radialen Komponenten ohne weiteres möglich, beispielsweise ein mäandernder Verlauf.
  • Vorzugsweise sind die Verbindungsstege zur Messung von Schub- und/oder Biegespannungen eingerichtet.
  • Vorzugsweise sind, falls die ersten Verbindungsstege sich mechanisch von den zweiten Verbindungsstege unterscheiden, als Messwertaufnehmer dienende Dehnmessstreifen nur an den ersten Verbindungsstegen oder an beiden Verbindungsstegen angebracht. Mit der zweiten Alternative lässt sich der Messbereich vergrößern. Grundsätzlich lässt sich durch eine mechanisch unterschiedliche Ausgestaltung der ersten und zweiten Verbindungsstege erreichen, dass die von einem Dehnmessstreifen gemessene Oberflächendehnung sich trotz gleicher mechanischer Belastung, im vorliegenden Fall also bei gleichem wirksamen Drehmoment voneinander unterscheidet. Bei Vorhandensein mechanisch unterschiedlicher erster und zweiter Verbindungsstege können deshalb beispielsweise die ersten Verbindungsstege so ausgestaltet sein, dass an ihnen befestigte Dehnmessstreifen bereits bei geringen wirksamen Drehmomenten ein relativ hohes elektrisches Nutzsignal erzeugen. Mit solchermaßen ausgestalteten Verbindungsstegen lassen sich geringe Drehmomente besser aufgelöst messen, allerdings ist der Messbereich dann auch entsprechend geringer. Bei dem gewählten Beispiel können die zweiten Verbindungsstege dann so ausgestaltet sein, dass an ihnen befestigte Dehnmessstreifen erst bei höheren Drehmomenten gute elektrische Nutzsignale liefern, was zum Messen höherer Drehmomente vorteilhaft ist. Der Messbereich der an den zweiten Verbindungsstegen angebrachten Dehnmessstreifen ist dann auch entsprechend größer.
  • Vorzugsweise sind im Anschlagflansch mehrere in Umfangsrichtung des Außenflansches äquidistant verteilte Anschlagflanschbohrungen vorhanden, was zu einer besseren Lastverteilung in Umfangsrichtung bei Überlast führen kann.
  • Vorzugsweise hat der Anschlagflansch bezüglich einer Linie durch die Mittelachse des Innenflansches im gleichen Abstand gegenüberliegende Anschlagflanschbohrungen, was zu einer besseren Lastverteilung in radialer Richtung bei Überlast führen kann.
  • Durch obige Maßnahmen kann eine Bruchsicherung durch Überlast einfach und kompakt im Drehmomentsensor vorgesehen werden, sodass auch eine plastische Verformung des Drehmomentsensors vermieden werden kann. Dabei sind die hier vorgesehenen Axialbohrungen einfacher zu fertigen als Radialbohrungen. Des Weiteren kann der Spalt zwischen dem Anschlagstift und der entsprechenden Anschlagflanschbohrung oder der Außenflanschbohrung geringer gewählt werden als bei einer radialen Ausrichtung des Anschlagstifts, vgl. hierzu die 6a, 6b und 7a, 7b in EP 1 353 159 A2 . Zudem ist ein radial verlaufender Anschlagstift gegenüber axialen Verformungen und Kippmomenten am Drehmomentsensor empfindlicher.
  • Der Anschlagflansch kann monolithisch mit dem Innenflansch ausgeführt sein, was einen einfachen und kompakten Aufbau ermöglichen kann.
  • Alternativ kann der Anschlagflansch ein mit dem Innenflansch verbundenes Bauteil sein, vorzugsweise ein mit dem Innenflansch lösbar verbundenes Bauteil. Auf diese Weise kann für den Anschlagflansch ein steiferes Material gewählt werden als für den Grundkörper des Drehmomentsensors und insbesondere den Sensorabschnitt.
  • Vorzugsweise kann der Anschlagflansch ein über eine Presspassung mit dem Innenflansch verbundenes Bauteil sein.
  • Vorzugsweise kann der Anschlagflansch ein über parallel zur axialen Richtung des Grundkörpers verlaufende Schrauben lösbar mit dem Innenflansch verbundenes Bauteil sein. Alternativ kann der Anschlagflansch mit dem Innenflansch mittels einer Klebeverbindung, einer Klebeverbindung und Schrauben, oder einer Presspassung und Schrauben oder auf andere Art verbunden sein.
  • Eine axial zwischen dem Außenflansch und dem Innenflansch angeordnete gummielastische Dichtungsmembran kann den mechanisch geschwächten Sensorabschnitt fluiddicht überdecken. Dies verhindert beispielsweise, dass durch einen zur mechanischen Schwächung mit axial durchgehenden Ausschnitten versehenen Sensorabschnitt Fluid hindurchtreten kann.
  • Vorzugsweise befindet sich die gummielastische Dichtungsmembran axial zwischen den zweiten Krafteinleitungsstellen und dem mechanisch geschwächten Sensorabschnitt. Auf diese Weise lassen sich die Messwertaufnehmer bzw. Dehnmesstreifen zuverlässig vor Fluidkontakt schützen sowie, falls vorhanden, ein Getriebe abdichten.
  • Die Dichtungsmembran kann an den Drehmomentsensor geklemmt oder mit ihm verklebt sein.
  • Vorzugsweise ist die Dichtungsmembran als scheibenförmige Ringmembran ausgebildet, wodurch sie sich leicht zwischen Außen- und Innenflansch einbringen lässt.
  • Vorzugsweise ist die Dichtungsmembran an dem Außen- und/oder Innenflansch angebracht.
  • Vorzugsweise ist die Dichtungsmembran ein Gummi-Formteil, Gummidrehteil oder ein mittels Wasserstrahlbearbeitung hergestelltes Gummiteil.
  • Vorzugsweise hat die Dichtungsmembran einen um mindestens den Faktor 102 geringeren E-Modul als der Grundkörper, vorzugsweise einen um den Faktor 103 bis 105 geringeren E-Modul, vorzugsweise einen um den Faktor 104 bis 105 geringeren E-Modul. Durch einen kleineren E-Modul der Dichtungsmembran wird deren Einfluss auf die Verformung im Sensorabschnitt immer weiter verringert.
  • Die Messwertaufnehmer können Dehnmessstreifen sein, die einen mit dem Grundkörper verbundenen Messgitterabschnitt und einen sich an den Messgitterabschnitt anschließenden, freien Verbindungsabschnitt mit mindestens einem elektrischen Anschlusspunkt haben. Auf diese Weise lassen sich die Dehnmessstreifen schnell und einfach mit ihrem einen Ende an einer Oberfläche und mit ihrem anderen Ende an einem elektrisches Bauteil anbringen.
  • Vorzugsweise ist der mindestens eine elektrische Anschlusspunkt ein Lötpad.
  • Vorzugsweise entspricht der Mindestabstand zwischen dem elektrischen Anschlusspunkt und dem Messgitterabschnitt der Länge des Messgitterabschnitts in dessen Längsrichtung, was die Handhabung des Dehnmessstreifens zu Anbringungszwecken erleichtert.
  • Vorzugsweise ist der Verbindungsabschnitt elastisch und/oder streifenförmig.
  • Vorzugsweise ist der Verbindungsabschnitt in einem unbeanspruchten Grundzustand in eine Vorzugsrichtung gebogen, z. B. U-förmig gebogen.
  • Ein Halteabschnitt, der zum temporären Halten des Verbindungsabschnitts an einem elektrischen Bauteil ausgebildet ist, kann sich jenseits des mindestens einen elektrischen Anschlusspunkts an den Verbindungsabschnitt anschließen. Dadurch wird die Anbringung des anderen Endes des Dehnmessstreifens an einem elektrischen Bauteil erleichtert.
  • Vorzugsweise hat der Halteabschnitt eine zentrale Durchgangsbohrung oder Vertiefung. Diese kann zum temporären Halten des Halteabschnitts an einem elektrischen Bauteil dienen, beispielsweise mittels eines Schraubenziehers.
  • Vorzugsweise ist der Halteabschnitt selbstklebend. In diesem Fall könnte der Halteabschnitt werkzeuglos temporär an einem elektrischen Bauteil gehalten werden.
  • Vorzugsweise ist der Halteabschnitt abgerundet, was Verletzungen bei seiner Handhabung vorbeugen kann.
  • Die Erfindung wird nachfolgend anhand schematischer Zeichnungen genauer erläutert. Dabei sind ähnliche Elemente mit ähnlichen Bezugszeichen versehen, wobei zur Verbesserung der Leserlichkeit der Zeichnungen auf die Darstellung solcher Bezugszeichen teilweise verzichtet worden ist. Es zeigen:
  • 1 links – einen ersten Drehmomentsensor in einer Perspektivansicht von schräg oben, sowie rechts – den ersten, monolithischen Drehmomentsensor in einer Querschnittansicht,
  • 2 rechts – einen zweiten Drehmomentsensor in einer Perspektivansicht von schräg unten, sowie links – den zweiten, monolithischen Drehmomentsensor in einer Querschnittansicht,
  • 3 rechts – einen dritten Drehmomentsensor in einer Perspektivansicht von schräg unten, sowie links – den dritten, zweiteiligen Drehmomentsensor in einer Querschnittansicht,
  • 4 rechts – einen vierten Drehmomentsensor in einer Perspektivansicht von schräg unten, sowie links – den vierten, zweiteiligen Drehmomentsensor in einer Querschnittansicht,
  • 5 einen fünften Drehmomentsensor mit identischen Verbindungsstegen in einer Perspektivansicht,
  • 6 einen sechsten Drehmomentsensor mit unterschiedlichen, alternierend angeordneten Verbindungsstegen in einer Perspektivansicht,
  • 7 einen siebten Drehmomentsensor, der mit einem Anschlagflansch monolithisch ausgeführt ist, in einer Querschnittansicht,
  • 8 einen achten Drehmomentsensor mit einem Anschlagflansch, der ein separat über eine Presspassung mit dem Drehmomentsensor verbundenes Bauteil ist, in einer Querschnittansicht,
  • 9 einen dem achten Drehmomentsensor aus 8 ähnlichen, neunten Drehmomentsensor, bei dem der Anschlagflansch über eine Schraubverbindung mit dem Drehmomentsensor verbunden ist, in einer perspektivischen Explosionsansicht von schräg unten,
  • 10 einen zehnten Drehmomentsensor mit einer geklemmten Dichtungsmembran in einer Querschnittansicht,
  • 11 einen elften Drehmomentsensor mit einer darin verklebten Dichtungsmembran in einer Querschnittansicht,
  • 12 den ersten Drehmomentsensor aus 1 in einer Leichtbauanordnung zusammen mit einem Harmonic-Drive-Getriebe in einer Querschnittansicht,
  • 13 die Leichtbauanordnung aus 12 in auseinander gezogener Darstellung,
  • 14 oben – einen herkömmlichen Dehnmessstreifen, sowie unten – eine herkömmliche Befestigung des Dehnmessstreifens, und
  • 15 oben – einen alternativen Dehnmessstreifen, sowie unten – eine Befestigung des alternativen Dehnmessstreifens.
  • 1 zeigt einen ersten, monolithisch ausgeführten Drehmomentsensor 100 mit einem Grundkörper 101 aus Aluminium oder einer Aluminiumlegierung, der sich in einer radialen Richtung Y des Grundkörpers 101 von einem ringförmigen Innenflansch 103 mit ersten jeweils als Bohrung ausgebildeten Krafteinleitungsstellen 105 über einen mit dehnungsempfindlichen, elektrische Ausgangssignale generierenden Messwertaufnehmern, siehe z. B. 14 und 15, ausgestatteten, mechanisch geschwächten Sensorabschnitt 107 zu einem ringförmigen, monolithischen Außenflansch 109 erstreckt. In einem radial vom Außenflansch 109 vorstehenden Abschnitt befinden sich zweite jeweils als Bohrung ausgebildete Krafteinleitungsstellen 111, wobei diese zweiten Krafteinleitungsstellen 111 in einer axialen Richtung X des Grundkörpers 101 über einen in axialer Richtung X verlaufenden, als dünnwandigen Umfangswandabschnitt ausgebildeten radialelastischen Materialabschnitt 113 mit dem Sensorabschnitt 107 verbunden sind.
  • 2 zeigt einen zweiten, ebenfalls monolithisch ausgeführten Drehmomentsensor 200, bei dem der radialelastische Materialabschnitt 213 als dünnwandiger Boden einer am Außenumfang des Außenflanschs 209 umlaufenden Nut 215 ausgebildet ist. Der radialelastische Materialabschnitt 213 verbindet die zweiten Krafteinleitungsstellen 211 mit am Außenflansch 209 befindlichen dritten jeweils als Bohrung ausgebildeten Krafteinleitungssteilen 211a sowie als Bohrung ausgebildete Zugangsöffnungen 211b. Dabei sind die Zugangsöffnungen 211b in einem unbeanspruchten Grundzustand des Drehmomentsensors 200 konzentrisch zu den zweiten Krafteinleitungsstellen 211 angeordnet. Dabei kann, wie weiter unten bezüglich der 7 bis 9 beschrieben, die Zugangsöffnung 211b als Krafteinleitungsstelle dienen. Zu diesem Zweck kann ein Anschlagelement in einer dieser Krafteinleitungsstellen 211, 211b fixiert sein, das sich in axialer Richtung X erstreckt und in dem unbeanspruchten Grundzustand des Drehmomentsensors 200 umfangsseitig berührungslos von der jeweils anderen Krafteinleitungsstelle 211b, 211 umgeben ist. Im gezeigten Ausführungsbeispiel haben die Zugangsöffnungen 211b einen größeren Durchmesser als die zweiten Krafteinleitungsstellen 211. Selbstverständlich können die Zugangsöffnungen 211b zusätzlich oder ausschließlich dazu verwendet werden, dass Verbindungselemente, z. B. Schrauben oder Bolzen, zu den zweiten Krafteinleitungsstellen 211 hindurchgeführt werden, um diese Verbindungselemente zur Anbringung eines Bauteils, z. B. einer Hülse oder einer Gehäuses, an den zweiten Krafteinleitungsstellen 211 zu ermöglichen.
  • 3 zeigt einen dritten Drehmomentsensor 300 mit einem im Gegensatz zu den 1 und 2 mehrteilig ausgeführten Außenflansch 309. Ein erstes Teil 309a aus Aluminium oder einer Aluminiumlegierung des mehrteiligen Außenflansches 309 erstreckt sich monolithisch in Verlängerung des Sensorabschnitts 307, während ein zweites Teil 309b aus Stahl den radialelastischen Materialabschnitt 313 und die zweiten Krafteinleitungsstellen 311 umfasst. Das zweite Teil 309b ist dabei über parallel zur axialen Richtung X verlaufende Schrauben 310 lösbar mit dem ersten Teil 309a verbunden.
  • 4 zeigt einen vierten Drehmomentsensor 400, der sich von dem in 3 gezeigten dritten Drehmomentsensor 300 im Wesentlichen darin unterscheidet, dass dessen zweite Krafteinleitungsstellen 411 monolithisch mit einem Gehäuse 417 ausgeführt sind, welches einen der Mittelachse des Drehmomentsensors 400 zugewandten Lagersitz 419 aufweist.
  • 5 zeigt einen fünften Drehmomentsensor 500, bei dem der ringförmige, mechanisch geschwächte Sensorabschnitt 507 durch radial verlaufende Verbindungsstege 519 gebildet ist, welche alle gleiche mechanische Eigenschaften haben und in Umfangsrichtung durch Ausschnitte 521 voneinander beabstandet sind. Dabei sind die Verbindungsstege 519 zur Messung von Schub- und/oder Biegespannungen eingerichtet und als Dehnmessstreifen ausgebildete Messwertaufnehmer an allen Verbindungsstegen 519 angebracht. Dabei können Messwertaufnehmer einer ersten Empfindlichkeit und Messwertaufnehmer einer zweiten Empfindlichkeit in Umfangsrichtung alternierend angebracht sein. Ebenso können alternierend Messwertaufnehmer an unterschiedlichen Stellen der Verbindungsstege 519 angebracht werden.
  • 6 zeigt einen sechsten Drehmomentsensor 600, bei dem der ringförmige, mechanisch geschwächte Sensorabschnitt 607 im Gegensatz zu dem in 5 gezeigten fünften Drehmomentsensor 500 radial verlaufende erste und zweite Verbindungsstege 619a, 619b hat, wobei die ersten Verbindungsstege 619a andere mechanische Eigenschaften haben als die zweiten Verbindungsstege 619b und in Umfangsrichtung alternierend mit dazwischen liegenden Ausschnitten 621 angeordnet sind. Messwertaufnehmer sind hier an beiden Verbindungsstegen 619a, 619b angebracht. Alternativ können die Messwertaufnehmer auch nur an den ersten oder zweiten Verbindungsstegen 619a, 619b angebracht sein. Die an den ersten Verbindungsstegen 619a angebrachten ersten Messwertaufnehmer liefern ausschließlich Signale eines ersten Messbereichs und die an den zweiten Verbindungsstegen 619b angebrachten zweiten Messwertaufnehmer liefern ausschließlich Signale eines zweiten Messbereichs, wobei sich die Messbereiche voneinander unterscheiden. Der eine Messbereich kann innerhalb des anderen liegen.
  • Die Verbindungsstege 519, 619a können entsprechend den Verbindungsstegen 14 mit den darauf angebrachten Messwertaufnehmern 61 wie in den Absätzen [0043] bis [0052] der EP 1 353 159 A2 beschrieben ausgebildet sein. Ebenso können die Verbindungsstege 619b massiv oder aber auch entsprechend den Verbindungsstegen 24 bzw. 24' mit den darauf angebrachten Messwertaufnehmern 61 wie in den Absätzen [0055] bis [0057] der EP 1 353 159 A2 beschrieben ausgebildet sein. Dies gilt auch für alle anderen hier beschriebenen Drehmomentsensoren mit Verbindungsstegen.
  • 7 zeigt einen siebten Drehmomentsensor 700, der sich von dem in 2 gezeigten zweiten Drehmomentsensor 200 im Wesentlichen dadurch unterscheidet, dass er mit einem Anschlagflansch 723 monolithisch ausgeführt ist, der sich an einer den zweiten Krafteinleitungsstellen 711 entgegengesetzten Seite des Außenflansches 709 parallel zum Sensorabschnitt 707 erstreckt. Der Anschlagflansch 723 ist nur mit dem Innenflansch 703 drehfest verbunden und weist mehrere zu den axialen Außenflanschbohrungen 711 und den dritten Außenflanschbohrungen 711a in einem unbeanspruchten Grundzustand des Drehmomentsensors 700 konzentrische Anschlagflanschbohrungen 725 auf. Die Anschlagflanschbohrungen 725 haben einen größeren Durchmesser als die Außenflanschbohrungen 711 und 711a und sind sowohl in Umfangsrichtung äquidistant als auch bezüglich einer Linie in radialer Richtung Y durch die Mittelachse des Innenflansches 703 im gleichen Abstand einander gegenüberliegend. Die als Anschlagstifte ausgebildeten Anschlagelemente 727 sind in den dritten Außenflanschbohrungen 711a fixiert und erstrecken sich in axialer Richtung X, wobei sie im unbeanspruchten Grundzustand des Drehmomentsensors 700 umfangsseitig berührungslos von den Anschlagflanschbohrungen 725 umgeben sind. Dabei können entweder die Anschlagflanschbohrungen 725 oder die dritten Außenflanschbohrungen 711a wie hier gezeigt als Durchgangsbohrungen oder alternativ als Sacklöcher ausgebildet sein. Bei einer Überlastung des Sensorabschnitts 707 schlägt der Anschlagstift 727 in der entsprechenden Anschlagflanschbohrung 725 an und stützt sich dort ab, um den Sensorabschnitt 707 zu entlasten.
  • 8 zeigt einen achten Drehmomentsensor 800, der sich von dem in 7 gezeigten siebten Drehmomentsensor 700 im Wesentlichen darin unterscheidet, dass sein Anschlagflansch 823 nicht monolithisch mit dem Innenflansch 803 ausgeführt ist, sondern ein mit dem Innenflansch 803 lösbar verbundenes, separates Bauteil ist. Der Anschlagflansch 823 ist durch eine Presspassung mit dem Innenflansch 803 verbunden.
  • 9 zeigt einen neunten Drehmomentsensor 900, der sich von dem in 8 gezeigten achten Drehmomentsensor 800 im Wesentlichen darin unterscheidet, dass sein Anschlagflansch 923 nicht über eine Presspassung, sondern über parallel zur Axialrichtung X verlaufende, (nicht gezeigte) Schrauben mit dem Innenflansch 903 verbunden ist. Zu diesem Zweck sind entsprechende komplementäre Bohrungen 929a, 929b am Innenflansch 903 und am Anschlagflansch 923 vorhanden.
  • 10 zeigt einen zehnten Drehmomentsensor 1000, der eine gummielastische Dichtungsmembran 1031 zum einseitigen fluiddichten Überdecken des mechanisch geschwächten Sensorabschnitts 1007 am Drehmomentsensor 1000 aufweist. Dabei ist die Dichtungsmembran 1031 mittels Schrauben 1033 ringförmig zwischen dem Innenflansch 1003 und dem Außenflansch 1009 geklemmt. Dabei kann die Klemmung an nur einem vom Innenflansch 1003 und Außenflansch 1009 ausreichend sein. Die hier gezeigte Darstellung soll lediglich illustrieren, dass auch nur die Dichtungsmembran 1031 an herkömmlichen Drehmomentsensoren, wie beispielsweise aus EP 1 353 159 A2 bekannt, angebracht werden kann. Durch eine entsprechende Verlängerung des Außenflansches 1009 in der axialen Richtung X über die Schrauben 1033 hinaus kann ohne Weiteres der zuvor beschriebene radialelastische Materialabschnitt 1013 vorgesehen werden, wobei sich am Ende einer solchen Verlängerung die zweiten Krafteinleitungsstellen 1011 befinden.
  • 11 zeigt einen elften Drehmomentsensor 1100, der sich von dem in 10 gezeigten zehnten Drehmomentsensor 1000 im Wesentlichen darin unterscheidet, dass seine Dichtungsmembran 1131 ringförmig zwischen dem Innenflansch 1103 und dem Außenflansch 1109 mit dem Drehmomentsensor 1000 verklebt ist.
  • Die Dichtungsmembran 1031, 1131 des zehnten oder elften Drehmomentsensors 1000, 1100 kann ein Gummi-Formteil, Gummidrehteil oder ein durch Wasserstrahlschneiden hergestelltes Gummiteil sein, wobei zum Befestigen eine Kombination von Klemmen und Kleben ebenfalls möglich ist. Dabei hat die Dichtungsmembran 1031, 1131 einen um mindestens den Faktor 102 geringeren E-Modul als der Grundkörper 1001, 1101, vorzugsweise einen um den Faktor 102 bis 104 geringeren E-Modul, vorzugsweise einen um den Faktor 104 bis 105 geringeren E-Modul. Je geringer der E-Modul der Dichtungsmembran im Vergleich zum Grundkörper ist, desto weniger verfälscht die Dichtungsmembran das Messergebnis des Drehmomentsensors.
  • 12 und 13 zeigen den ersten Drehmomentsensor 100 aus 1 in einer Leichtbauanordnung 135 mit einem Harmonic-Drive-Getriebe 137, das von innen nach außen einen Wave Generator 139, einen Flexspline 141 und einen Circular Spline 143 hat. Der Circular Spline 143 ist mit einem Gehäuse 145 verschraubt, das wiederum über ein Kreuzrollenlager 147 an einem Abtriebsgehäuse 149 gelagert ist. An dieses Abtriebsgehäuse 149 ist mittels eines Abtriebsflansches 151 der Außenflansch 109 des Drehmomentsensors 100 geschraubt. Der Innenflansch 103 des Drehmomentsensors 100 wiederum ist über einen Gewindering 153 mit dem Flexspline 141 verschraubt.
  • 14 zeigt einen herkömmlichen Dehnmessstreifen 10, der als oben bezeichneter Messwertaufnehmer zu verstehen ist. Dieser Dehnmessstreifen 10 hat einen streifenförmigen Grundkörper 11 mit einem Messgitterabschnitt 13 an einem Ende und einem als Lötpad 15 ausgebildeten elektrischen Anschlusspunkt an einem entgegengesetzten, anderen Ende. Um diesen als Ganzes an einem Bauteil 1 befestigbaren Dehnmessstreifen 10 elektrisch mit einem elektrischen Bauteil 3 zu verbinden, müssen Leitungen 5 erst an das Lötpad 15 und anschließend an das elektrische Bauteil 3 gelötet werden.
  • 15 zeigt einen alternativen Dehnmessstreifen 20, der sich von dem in 14 gezeigten herkömmlichen Dehnmessstreifen 10 im Wesentlichen darin unterscheidet, dass er nur mit seinem Messgitterabschnitt 23 an dem Bauteil 1 befestigbar ist und dass statt separater Leitungen 5 der Dehnmessstreifen 20 über einen sich an den Messgitterabschnitt 23 anschließenden Verbindungsabschnitt 24 verfügt, der an seinem dem Messgitterabschnitt 23 entgegengesetzten Ende das Lötpad 25 aufweist und dessen Länge mindestens dem Messgitterabschnitt 23 entspricht. Dabei ist der Verbindungsabschnitt 24 streifenförmig und biegeelastisch, wobei er auch in einem unbeanspruchten Grundzustand in eine Vorzugsrichtung gebogen sein kann, so dass er beispielsweise U-förmig ist. Der gezeigte Dehnmessstreifen 20 hat darüber hinaus einen abgerundeten Halteabschnitt 27, der sich jenseits des Lötpads 25 an den Verbindungsabschnitt 24 anschließt und zum temporären Halten des Verbindungsabschnitts 24 an dem elektrischen Bauteil 3 ausgebildet ist. Zu diesem Zweck kann der Halteabschnitt 27, wie hier gezeigt, eine zentrale Durchgangsbohrung 29 haben, alternativ auch eine Vertiefung, in welche ein Instrument zum Halten des Dehnmessstreifens 20 am elektrischen Bauteil 3 eingeführt werden kann. Ferner kann der Halteabschnitt 27 zu diesem Zweck auch oder nur selbstklebend sein.

Claims (8)

  1. Drehmomentsensor mit einem Grundkörper (101), der sich in einer radialen Richtung (Y) des Grundkörpers von einem ringförmigen Innenflansch (703; 803; 903) mit ersten Krafteinleitungsstellen (705) über einen mit Ausgangssignale generierenden Messwertaufnehmern (10, 20) ausgestatteten, mechanisch geschwächten Sensorabschnitt (707) zu einem ringförmigen Außenflansch (709) mit zweiten Krafteinleitungsstellen (711) erstreckt, dadurch gekennzeichnet, dass sich an einer den zweiten Krafteinleitungsstellen (711) entgegengesetzten Seite des Außenflansches (709) ein zum Sensorabschnitt (707) paralleler Anschlagflansch (723; 823; 923) erstreckt, der nur mit dem Innenflansch (703; 803; 903) drehfest verbunden ist und mindestens eine zu einer axialen Außenflanschbohrung (711a; 811a; 911a) in einem unbeanspruchten Grundzustand des Drehmomentsensors konzentrische Anschlagflanschbohrung (725) aufweist, wobei ein Anschlagelement (727; 827; 927) in der Außenflanschbohrung (711a; 811a; 911a) oder der Anschlagflanschbohrung (725) fixiert ist und von der anderen der Außenflanschbohrung (711a; 811a; 911a) oder der Anschlagflanschbohrung (725) im unbeanspruchten Grundzustand des Drehmomentsensors berührungslos umgeben ist.
  2. Drehmomentsensor nach Anspruch 1, dadurch gekennzeichnet, dass der Anschlagflansch (723) monolithisch mit dem Innenflansch (703) ausgeführt ist oder der Anschlagflansch (823; 923) ein mit dem Innenflansch (803; 903) verbundenes Bauteil ist.
  3. Drehmomentsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Außenflanschbohrung (711a; 811a; 911a) einen von der Anschlagflanschbohrung (725) verschiedenen Durchmesser hat.
  4. Drehmomentsensor nach Anspruch 3, dadurch gekennzeichnet, dass die Außenflanschbohrung (711a; 811a; 911a) einen im Vergleich zu der Anschlagflanschbohrung (725) geringeren Durchmesser hat.
  5. Drehmomentsensor nach Anspruch 4, dadurch gekennzeichnet, dass das Anschlagelement (727; 827; 927) in der Au- ßenflanschbohrung (711a; 811a; 911a) fixiert ist und sich in einer axialen Richtung (X) des Grundkörpers (101) erstreckt.
  6. Drehmomentsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Anschlagelement (727; 827; 927) ein Stift oder eine Hülse mit einem rundlichen oder polygonalen Querschnitt ist.
  7. Drehmomentsensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Messwertaufnehmer Dehnmessstreifen (20) sind, die einen mit dem Grundkörper (101) verbundenen Messgitterabschnitt (23) und einen sich an den Messgitterabschnitt (23) anschließenden, freien Verbindungsabschnitt (24) mit mindestens einem elektrischen Anschlusspunkt (25) haben.
  8. Drehmomentsensor nach Anspruch 6, dadurch gekennzeichnet, dass sich jenseits des mindestens einen Verbindungspunkts (25) am Verbindungsabschnitt (24) ein Halteabschnitt (27) anschließt, der zum temporären Halten des Verbindungsabschnitts (24) an einem elektrischen Bauteil (3) ausgebildet ist.
DE102016010546.1A 2016-08-31 2016-08-31 Drehmomentsensor mit axialem Anschlagelement Active DE102016010546B3 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102016010546.1A DE102016010546B3 (de) 2016-08-31 2016-08-31 Drehmomentsensor mit axialem Anschlagelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016010546.1A DE102016010546B3 (de) 2016-08-31 2016-08-31 Drehmomentsensor mit axialem Anschlagelement

Publications (1)

Publication Number Publication Date
DE102016010546B3 true DE102016010546B3 (de) 2018-02-08

Family

ID=60996400

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016010546.1A Active DE102016010546B3 (de) 2016-08-31 2016-08-31 Drehmomentsensor mit axialem Anschlagelement

Country Status (1)

Country Link
DE (1) DE102016010546B3 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040857A1 (de) * 2007-08-29 2009-03-05 Trw Automotive Gmbh Drehmomentsensor für ein Lenkrad
DE102008021774A1 (de) * 2008-04-30 2009-12-10 Hottinger Baldwin Messtechnik Gmbh Drehmomentsensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040857A1 (de) * 2007-08-29 2009-03-05 Trw Automotive Gmbh Drehmomentsensor für ein Lenkrad
DE102008021774A1 (de) * 2008-04-30 2009-12-10 Hottinger Baldwin Messtechnik Gmbh Drehmomentsensor

Similar Documents

Publication Publication Date Title
DE102016010551B3 (de) Drehmomentsensor mit radialelastischer Momentübertragung
DE102016010552B3 (de) Drehmomentsensor mit Dichtungsmembran
EP3507581B1 (de) Drehmomentsensor mit nebenschlussspeiche
DE102009014284B4 (de) Drehmomentsensor
EP0575634B1 (de) Drehmomentsensor
EP2395335A1 (de) Drehmoment-Aufnehmer mit U-Profil-Steg
DE102012024264B4 (de) Drehmomentsensor
DE102008010281B4 (de) Sensoreinrichtung
WO2004070334A1 (de) Messsensor mit vorspannvorrichtung
EP0395622B1 (de) Druckaufnehmer
EP0465881B1 (de) Kraftaufnehmer mit Torsionsring
EP0356636B1 (de) Einzugskraft-Messgerät für Werkzeug-Spannvorrichtungen
EP0987532B1 (de) Messvorrichtung zur Bestimmung des Gesamtanzugsmoments, des Kopfreibungsmoments und der Vorspannkraft einer angezogenen Schraubverbindung
EP1543305B1 (de) Kraftaufnehmer zum messen von achskräften
DE2631698A1 (de) Kraftmesswandler
DE102016010546B3 (de) Drehmomentsensor mit axialem Anschlagelement
EP1617196B1 (de) Kraft- und/oder Momenten-Messaufnehmer
DE10302352B4 (de) Kraftaufnehmer zum Messen von Achskräften
DE102004033925A1 (de) Drehmoment-Messaufnehmer
EP0621469B1 (de) Zugkraftmesseinrichtung
AT507198B1 (de) Kraftmessring mit einem ringförmigen gehäuse
EP2187187B1 (de) Wägedisc
DE102007022441B4 (de) Befestigungsring
DE10012983C2 (de) Kraft-Momenten-Sensor
EP4257848A1 (de) Getriebesystem

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final