DE102015115096A1 - Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen - Google Patents

Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen Download PDF

Info

Publication number
DE102015115096A1
DE102015115096A1 DE102015115096.4A DE102015115096A DE102015115096A1 DE 102015115096 A1 DE102015115096 A1 DE 102015115096A1 DE 102015115096 A DE102015115096 A DE 102015115096A DE 102015115096 A1 DE102015115096 A1 DE 102015115096A1
Authority
DE
Germany
Prior art keywords
light source
marking
sensor device
camera
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102015115096.4A
Other languages
English (en)
Inventor
Nadine Sticherling
Alexander Ziegler
Christof Hache
Iko Lindic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huf Huelsbeck and Fuerst GmbH and Co KG
Original Assignee
Huf Huelsbeck and Fuerst GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huf Huelsbeck and Fuerst GmbH and Co KG filed Critical Huf Huelsbeck and Fuerst GmbH and Co KG
Priority to DE102015115096.4A priority Critical patent/DE102015115096A1/de
Priority to PCT/EP2016/064432 priority patent/WO2017041917A1/de
Priority to EP16731869.0A priority patent/EP3317692A1/de
Publication of DE102015115096A1 publication Critical patent/DE102015115096A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/51Display arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Eine Sensoreinrichtung (2) zur optischen Erfassung von Objekten und deren räumlichen Bewegungen. Eine 3D-Kamera erfasst räumliche Daten mit einem Laufzeitverfahren, wobei die 3D-Kamera eine Pulslichtquelle (13) und einen lichtsensitiven Erfassungschip (16) aufweist. Die Pulslichtquelle (13) und der Erfassungschip (16) sind in einem gemeinsamen Bauraum angeordnet und beide sind zu einem Erfassungsbereich der 3D-Kamera ausgerichtet. In dem Bauraum ist eine weitere Lichtquelle als Markierungslichtquelle (21) ausgebildet, wobei die Markierungslichtquelle Licht im sichtbaren Spektrum abstrahlt und derart ausgerichtet ist, dass von der Markierungslichtquelle ausgehend Licht in den Erfassungsbereich (3) der 3D-Kamera abgestrahlt wird.

Description

  • Die Erfindung betrifft Sensoranordnungen, welche zur optisch gestützten Erkennung von Bedienungsgesten oder Bedienungshandlungen an Kraftfahrzeugen eingesetzt werden.
  • Insbesondere betrifft die Erfindung Sensoranordnungen, welche zeitlich und räumlich aufgelöste Informationen erfassen und auswerten, um den Bedienwillen eines Benutzers zu erkennen.
  • Im Stand der Technik sind optische Verfahren bekannt, die Betätigungen in Reaktion auf eine Auswertung von Bildinformationen erkennen und daraufhin z.B. Schaltvorgänge auslösen. Beispielsweise sind hier automatische Videoauswertungen von Überwachungssystemen zu nennen, welche Muster oder Bewegungen aus einzelnen Bildern oder einer Folge von Bilder herauslesen. Außerdem sind zahlreiche andere optisch gestützte Systeme bekannt, wobei zu den grundlegendsten Lichtschranken oder Helligkeitssensoren gehören. Optische Systeme mit höherer Komplexität bedienen sich jedoch oft eines Arrays von optisch sensitiven Erfassungseinheiten, meist als Pixel bezeichnet, die parallel optische Informationen aufnehmen, beispielsweise in Gestalt eines CCD-Arrays.
  • Die DE 10 2008 025 669 A1 offenbart einen optischen Sensor, welcher eine Geste detektiert, woraufhin ein Schließelement eines Fahrzeugs automatisch bewegt wird.
  • Die WO 2008/116699 A2 betrifft einen optischen Sensorchip und bezieht sich auf eine optische Einklemmschutzvorrichtung für die Überwachung einer Fensterscheibe, Schiebetür oder einer Heckklappe in einem Kraftfahrzeug.
  • Die WO 2012/084222 A1 offenbart einen optischen Sensor zur Betätigung und Überwachung eines Schließelements. Da die Gestensteuerung in verschiedenen technischen Bereichen immer größere Akzeptanz erfährt, wurden auch Versuche unternommen, solche rein optischen Systeme zur Erkennung des Bedienwunsches bei Kraftfahrzeugen zu verwenden. Bei diesen Systemen herrscht jedoch weiterhin die Erfassung von Bedienungen über kapazitive Systeme vor.
  • Im Bereich der optischen Erfassung sind Systeme bekannt, welche eine pixelbezogene Ortsinformation, insbesondere eine Distanz von der Sensor- oder Erfassungseinrichtung erfassen. Die WO 2013/001084 A1 offenbart ein System zur berührungslosen Erfassung von Gegenständen und Bediengesten mit einer optisch gestützten Einrichtung ähnlicher Art, wie sie auch für die Erfindung einsetzbar ist.
  • Diese Systeme werden beispielsweise, je nach angewandtem Auswertungsverfahren, als „Time-of-flight“-Systeme oder auch als „3D-Imager“ oder „Range Imager“ bezeichnet. Die Anwendungsgebiete solcher Systeme liegen im Bereich der industriellen Automatisierungstechnik, in der Sicherheitstechnik und im Automobilbereich. In einem Auto werden 3D-Sensoren in Spurhaltesystemen, zum Fußgängerschutz oder als Einparkhilfe eingesetzt. Sowohl Konzepte der Triangulation als auch der Interferometrie und auch der Lichtlaufzeitmessung (Time-of-flight (ToF)) können mit optischen Sensoren umgesetzt werden. In diesem Zusammenhang wird auf diesbezügliche Ausarbeitungen verwiesen, welche die technischen Konzepte und deren Realisierung detailliert beschreiben, insbesondere die Dissertation „Photodetektoren und Auslesekonzepte für 3D-Time-of-Flight-Bildsensoren in 0,35 µm-Standard-CMOS-Technologie", Andreas Spickermann, Fakultät für Ingenieurwissenschaften der, Universität Duisburg-Essen, 2010.
  • Außerdem wird auf die Publikation „Optimized Distance Measurement with 3D-CMOS Image Sensor and Real-Time Processing of the 3D Data for Applications in Automotive and Safety Engineering", Bernhard König, Fakultät für Ingenieurwissenschaften der Universität Duisburg-Essen, 2008 verwiesen.
  • Die vorgenannten Arbeiten beschreiben das Konzept und die Realisierung von einsetzbaren optischen Sensorsystemen, so dass im Rahmen dieser Anmeldung auf deren Offenbarung verwiesen wird und nur zum Verständnis der Anmeldung relevante Aspekte erläutert werden.
  • Die Erfindung betrifft eine Sensoranordnung welche das Time-of-Flight-(ToF)Verfahren nutzt, so dass dieses hier kurz erläutert wird.
  • Beim ToF-Verfahren wird ein Raumbereich mit einer Lichtquelle beleuchtet und die Laufzeit des von einem Objekt im Raumbereich zurück reflektierten Lichtes mit einem Flächensensor aufgenommen. Dazu sollten Lichtquelle und Sensor möglichst nah zueinander angeordnet sein. Aus dem linearen Zusammenhang von Lichtlaufzeit und Lichtgeschwindigkeit lässt sich die Distanz zwischen Sensor und Messobjekt bestimmen. Zur Messung der zeitlichen Verzögerung muss eine Synchronisation zwischen Lichtquelle und Sensor gegeben sein. Durch die Nutzung gepulster Lichtquellen können die Verfahren optimiert werden, denn kurze Lichtpulse (im ns-Bereich) ermöglichen eine effiziente Hintergrundlichtunterdrückung. Außerdem werden durch die Verwendung des gepulsten Lichts mögliche Mehrdeutigkeiten bei der Bestimmung der Distanz vermieden, so lange der Abstand genügend groß ist.
  • Einerseits wird bei diesem Konzept die Lichtquelle gepulst betrieben. Außerdem wird die Detektionseinheit, also das Pixelarray gepulst sensitiv geschaltet, also das Integrationsfenster der einzelnen Pixel wird zeitlich mit der Lichtquelle synchronisiert und in der Integrationsdauer begrenzt. Durch den Vergleich von Ergebnissen mit unterschiedlichen Integrationsdauern können insbesondere Effekte von Hintergrundlicht herausgerechnet werden.
  • Wesentlich ist, dass diese Erfassungsmethode keine rein bildbasierte Erfassungsmethode ist. Es wir bei jedem Pixel eine Abstandsinformation ermittelt, was durch die zeitliche Lichtdetektion erfolgt. Bei Verwendung eines Pixelarrays liegt schließlich eine Matrix von Abstandswerten vor, welche bei zyklischer Erfassung eine Interpretation und Verfolgung von Objektbewegungen zulässt.
  • Die Aufgabe der Erfindung besteht darin, eine optische Sensoreinrichtung mit gesteigerter Bedienerfreundlichkeit zur Verfügung zu stellen.
  • Die Aufgabe wird durch eine Sensoreinrichtung mit den Merkmalen des Patentanspruchs 1 gelöst.
  • Die erfindungsgemäße Sensoreinrichtung weist eine 3D-Kamera, insbesondere eine Time of Flight (ToF-Kamera) auf. Diese Kamera weist eine Pulslichtquelle und einen lichtsensitiven Erfassungschip mit einem Pixelarray auf. Die Pulslichtquelle und der Erfassungschip werden mit einer Steuerschaltung gekoppelt, welche die Lichtpulse und die Auswertung der Sensorsignale koordiniert und steuert. Die Pulslichtquelle kann eine Laserdiode sein, die mit einer entsprechenden Treiberschaltung zur Erzeugung kurzer Pulse gekoppelt ist. Entsprechende Steuerschaltungen und Anordnungen sind aus dem Stand der Technik bekannt.
  • Sowohl die Pulslichtquelle als auch der Erfassungschip sind in einem gemeinsamen Bauraum angeordnet und zu einem Erfassungsbereich der 3D-Kamera hin ausgerichtet.
  • Erfindungsgemäß ist in dem Bauraum eine weitere Lichtquelle, getrennt von der Pulslichtquelle ausgebildet. Diese Lichtquelle ist eine Markierungslichtquelle und strahlt Licht im sichtbaren Spektrum ab. Es kann sich dabei insbesondere um eine oder mehrere Hochleistungs-LED(s) handeln, die beispielsweise rotes, grünes oder mischfarbenes Licht, überwiegend im Bereich zwischen 500 nm und 700 nm abstrahlt/abstrahlen. Die Markierungslichtquelle ist in dem Bauraum so angeordnet und ausgerichtet, dass von ihr im sichtbaren Spektrum abgestrahltes Licht in dem Erfassungsbereich der 3D-Kamera abgestrahlt wird. Die Markierungslichtquelle kann in einem Teil-Raumwinkel des Erfassungsbereiches hineinstrahlen oder auch weite Teile des Erfassungsbereiches ausleuchten. Es kann insbesondere auch ein kleiner Raumwinkelbereich des Erfassungsbereichs als Spotbeleuchtung ausgeleuchtet werden. Diese Markierungslichtquelle dient dazu, dem Benutzer einen Bedienbereich zu markieren, der von dem Benutzer leicht erkennbar ist. In diesem Bedienbereich kann der Benutzer Bediengesten ausführen, die von der 3D-Kamera erfasst und ausgewertet werden. Durch eine solche Markierung und Orientierung des Benutzers werden Fehlbedienungen vermindert. Es wird insbesondere vermieden, dass außerhalb des Zielbereiches ausgeführte Gesten fälschlicherweise als Bedienwunsch erkannt werden. Außerdem kann auf diese Weise ein Bereich mit ausreichendem Signalkontrast markiert werden und Benutzer akzeptieren allgemein Systeme mit klar definiertem Erfassungsbereich eher als Systeme, deren Bedienung unübersichtlich bleibt. Benutzer wünschen üblicherweise, Fahrzeugfunktionen gezielt ausführen zu können, wobei die optische Markierung in einem einheitlichen Bauraum ein System schafft, welches dem Benutzer sowohl die Vorteile einer 3D-Kamera zur Gestenerfassung als auch die Orientierung über eine Beleuchtung liefert.
  • Bevorzugt ist die Sensoreinrichtung insgesamt in einem einheitlichen Gehäuse aufgenommen, also mit Pulslichtquelle, Erfassungschip, Markierungslichtquelle und zugehörigen Komponenten in einem Gehäuse. Auf diese Weise ist eine kompakte Sensoreinrichtung geschaffen, die in Halterungen oder Ausnehmungen am Fahrzeug einsetzbar ist. Die Ansteuerung und Auswertung sowie Versorgung erfolgt über einen einheitlichen Kabelbaum, wobei insbesondere eine Steckerverbindung zur Kopplung mit einem Kabelbaum vorgesehen ist.
  • Es ist besonders vorteilhaft, wenn die Sensoreinrichtung eine einheitliche Platine für die Pulslichtquelle, den Erfassungschip und die Markierungslichtquelle aufweist. Auf diese Weise ist eine feste Relation der Abstände und Ausrichtungen der Komponenten gewährleistet und eine Verschiebung der Komponenten durch Vibrationen oder Umwelteinflüsse ist ausgeschlossen.
  • Es ist besonders vorteilhaft, wenn die Pulslichtquelle, der Erfassungschip und die Markierungslichtquelle entlang einer optischen Achse in dem Bauraum angeordnet sind. Auf diese Weise ist die Erfassung und zugehörige Markierung besonders verlässlich. Außerdem werden Fehlausleuchtungen durch Abweichen der Markierungslichtquelle gegenüber der optischen Achse, und damit Störungen für die Erfassung durch die 3D-Kamera im Erfassungsbereich reduziert.
  • Bei der Anordnung entlang der optischen Achse sind üblicherweise die Komponenten der 3D-Kamera unmittelbar benachbart zueinander angeordnet. Dies ist bereits aufgrund der Signallaufzeiten zwischen Erfassung und Pulslichtquelle erforderlich, da diese mit hoher Präzision zeitlich koordiniert arbeiten müssen.
  • Die Markierungslichtquelle ist in der geraden Verlängerung der optischen Achse zwischen Erfassungschip und Pulslichtquelle neben der 3D-Kamera-Anordnung angeordnet.
  • Es ist besonders bevorzugt, wenn die Markierungslichtquelle benachbart zu einer Anschlussanordnung zur externen Verbindung der Platine angeordnet ist und zur thermischen Ableitung von Verlustwärme mit der Anschlussanordnung gekoppelt ist.
  • Die Markierungslichtquelle ist eine lichtstarke und verlustwärmereiche Lichtquelle. Dies liegt unter anderem daran, dass die Markierungsfunktion auch bei heller Umgebung gewährleistet sein muss, um einen Benutzer verlässlich einen markierten Bereich zu kennzeichnen. Außerdem ist die Verwendung von leistungsstarken, aber verlustarmen Lichtquellen in Gestalt von Laserdioden strengen Reglementierungen hinsichtlich der Gefahr für Verletzungen unterworfen. Daher werden als Markierungslichtquelle insbesondere leistungsstarke Leuchtdioden mit vorgesetzten Fokussierungsoptiken verwandt. Diese Leuchtdioden geben in Betrieb erhebliche Verlustwärme ab. Die bevorzugte Anordnung der Markierungslichtquelle im Bereich der externen Anschlüsse, also insbesondere in Seitenbereichen der Platine und mit einer thermischen Kopplung zu den Anschlüssen führt einen Teil der Verlustwärme zu den Anschlüssen. Dabei wird insbesondere verhindert, dass die Verlustwärme die Erfassung der 3D-Kamera negativ beeinflusst oder die gesamte Sensoreinrichtung zu stark erwärmt.
  • In einer bevorzugten Ausführungsform ist die Markierungslichtquelle wenigstens mit einer flächigen elektrischen Zuleitung als Kühlkörper für Verlustwärme versehen. Die elektrische Zuleitung gleichzeitig als Kühlkörper einzusetzen und dafür mit einer möglichst großen Flächenerstreckung auszubilden, sorgt für eine Ableitung und Abstrahlung der Wärme durch die vergrößerte Oberfläche der Zuleitung. Es ist besonders vorteilhaft, wenn die flächige Zuleitung als Blech ausgeführt ist, welches abschnittsweise freitragend ist und mit Abstand beispielsweise zu unterliegenden Platinen verläuft. Ein solches Zuleitungsblech kann auch in Seitenwandungen des Gehäuses verlaufen.
  • Die Kopplung der flächigen Zuleitungen kann mit der Kopplung an die Anschlussanordnung zur externen Verbindung kombiniert sein, um die thermische Ableitung weiter zu verbessern. Dann sind die flächigen elektrischen Zuleitungen, beispielsweise Zuleitungsbleche, mit den Anschlusseinrichtungen zur Überführung von Wärme thermisch gekoppelt.
  • Es ist vorteilhaft, wenn die Markierungslichtquelle mit einer Markierungsoptik ausgestattet ist, welche eine Strahlformung vornimmt. Eine geeignete Markierungsoptik kann z.B. eine Ausnehmung zur zentrierten Aufnahme einer LED aufweisen und einen Glas- oder Kunststoffkörper, welcher die Strahlen der LED in der gewünschten Weise bündelt oder/und ausrichtet. Eine Markierungsoptik mit einer Aufnahme für die LED in einer Grundseite und einer Abstrahlseite, welche gestuft ausgeführt ist, hat sich als vorteilhaft erwiesen. Durch die Umschließung der LED in einem aufgesetzten Glaskörper oder Kunststoffkörper werden Lichtverluste reduziert. Eine Abstrahlseite der Markierungsoptik mit parallelen Schrägstufen sorgt für eine gerichtete Abstrahlung des Markierungslichts.
  • Die Erfindung wird nun anhand einer beiliegenden Zeichnung näher erläutert.
  • 1 zeigt schematisch die Anordnung einer erfindungsgemäßen Sensoreinrichtung an einem Fahrzeug;
  • 2 zeigt ein Blockschaltbild einer erfindungsgemäßen Sensoreinrichtung;
  • 3 zeigt eine bevorzugte Ausführungsform der Erfindung in einer perspektivischen Darstellung;
  • 4a, 4b, 5a, 5b zeigen die Markierungslichtquelle und Markierungsoptik in verschiedenen Ansichten.
  • In 1 ist das Heck eines Fahrzeuges 1 gezeigt. Eine Sensoreinrichtung 2 ist im heckseitigen Stoßfänger des Fahrzeuges angeordnet. Der Detektionsbereich 3 einer 3D-Sensoranordnung in der Sensoreinrichtung ist nach unten, hinten vom Fahrzeug weg gerichtet. Diese Sensoreinrichtung ist dazu vorgesehen, die Bediengeste für die Betätigung einer Heckklappe zu erfassen. Dazu kann der Benutzer in dem Bereich 3 eine Geste mit seinem Fuß ausführen, die als Bedienwunsch erkannt wird und eine elektrische Öffnung der Heckklappe des Fahrzeuges 1 auslöst.
  • Während der gesamte Erfassungsbereich 3 der 3D-Sensoranordnung sich über einen großen Raumwinkel erstreckt, ist in der Sensoreinrichtung 2 außerdem eine Markierungslichtquelle ausgebildet. Diese Markierungslichtquelle leuchtet einen Bereich 4 aus, der einen Teilbereich des Erfassungsbereiches 3 ist. Diese Markierungslichtquelle leuchtet lichtstark in dem Bereich 4 und strahlt Licht in dem sichtbaren Spektrum ab. Ein Benutzer erkennt diesen markierten Bereich als ausgeleuchteten Bereich auf dem Boden im Heckbereich. Er kann nun zielgerichtet seinen Fuß in diesen Bereich bewegen, der durch das Licht markiert ist. Die Kameraeinrichtung in der Sensoreinrichtung 2 erfasst die Bediengeste und kann eine Heckklappenbetätigung auslösen. Die Markierung durch die Markierungslichtquelle erlaubt es, die Bediengeste zielgerichteter auszuführen und deutlicher von Bewegungen in dem übrigen Bereich 3 zu unterscheiden. Es kann durchaus vorgesehen sein, dass auch die übrigen erfassbaren Bereiche in dem Erfassungsbereich 3 in die Auswertungen im Fahrzeug einbezogen werden. Beispielsweise kann das System geweckt werden, wenn eine Annäherung in dem Bedienbereich 3 detektiert wird. Die Ausführung von konkreten Entriegelungsgesten oder Bewegungsgesten ist jedoch sinnvollerweise in dem markierten Bereich 4 auszuführen. Es ist festzuhalten, dass die Erfassung der 3D-Kamera nicht auf die Markierungslichtquelle angewiesen ist, sondern mit einer Pulslichtquelle in einem anderen Spektralbereich arbeitet. Die Markierung erfolgt ausschließlich zu Leitung des Benutzers.
  • 2 zeigt die Sensoreinrichtung 2 in einem schematischen Blockschaltbild. Ein einheitliches Gehäuse 10 ist als Schutz ausgebildet und nimmt eine Platine 11 auf. Die Platine 11 weist Anschlüsse 12 auf, die mit einem Steckverbinder zur Kopplung der Sensoreinrichtung 2 mit einem Kabelbaum am Fahrzeug ausgebildet ist.
  • Auf der Platine 11 ist eine Pulslichtquelle 13 ausgebildet, in dieser Ausführungsform einer Laserdiode im nahen Infrarotbereich mit einer vorgesetzten Aufweitungsoptik. Die Laserdiode 13 ist mit einer Treiberschaltung 14 gekoppelt, welche die Laserdiode zur Aussendung von kurzen Pulsem im Nanosekundenbereich ansteuert. Die Treiberschaltung 14 wiederum ist mit einer Steuerschaltung 15 gekoppelt, die auch den fotosensitiven Erfassungschip 16 ansteuert. Der Erfassungschip weist in dieser Ausführungsform ein Pixelarray von 30×30 Pixeln auf. Eine solche Pixelmatrix ist für Erfassungen von Bewegungsgesten ausreichen, es können jedoch auch Arrays mit abweichender Auflösung eingesetzt werden.
  • Die Komponenten 13, 14, 15, 16 bilden die 3D-Kamera, die nach dem Laufzeitprinzip arbeitet. Entsprechende Kameramodule und Schaltungen sind dem Stand der Technik bekannt.
  • Die Pulslichtquelle 13 definiert mit dem Erfassungschip 16 zusammen eine optische Achse 20. In Verlängerung der optischen Achse 20 ist eine Markierungslichtquelle 21 ausgebildet. In diesem Beispiel ist die Markierungslichtquelle 21 eine leistungsstarke Leuchtdiode. Die Markierungslichtquelle 21, der Erfassungschip 16 und die Pulslichtquelle 13 liegen also innerhalb eines einheitlichen Gehäuses 10 und auf einer gemeinsamen Platine 11 entlang einer optischen Achse 20. Die Markierungslichtquelle 21 ist außerdem benachbart zu den Anschlüssen 12 angeordnet. Zuleitungsbleche 22a, 22b liefern die Betriebsspannung der Markierungslichtquelle 21 und dienen gleichzeitig als Kühlkörper für die Abgabe der Verlustwärme der Lichtquelle. Eine zugehörige Treiberschaltung 23 ist mit den Zuleitungen 22a, 22b gekoppelt und mit der Schaltung 15, welche auch die Zuschaltung der Markierungslichtquelle koordiniert.
  • Die Zuleitungsbleche 22a, 22b verlaufen beabstandet zu der Platine 11, um Wärme auch durch Konvektion zwischen Platine und Zuleitungsblechen 22a, 22b abzuführen. Außerdem können die Zuleitungsbleche profiliert oder gefaltet sein, um die Kühlwirkung weiter zu verbessern. Auch eine thermische Kopplung mit den externen Verbindungselementen 12 kann vorgesehen sein, um Wärme durch die Verbindungselemente 12 in den Stecker und Zuleitungen abzuführen.
  • Die vorgeschlagene Anordnung ist eine kompakte, einheitliche Sensoranordnung mit einer 3D-Erfassung und Markierung eines Bedienbereiches. Da die Komponenten gemeinsam mit einem Gehäuse aufgenommen sind und zueinander dauerhaft ausgerichtet sind, ist der Einbau am Fahrzeug besonders einfach und zuverlässig
  • In 3 ist eine Baueinheit mit den erfindungswesentlichen Komponenten in einer bevorzugten Ausführungsform gezeigt.
  • Auf einer Platine 50 sind die Pulslichtquelle 51, die Erfassungsoptik 52 mit Erfassungschip, und die Markierungslichtquelle mit Markierungsoptik 55 dargestellt. Die Bauteile sind entlang einer Achse auf der Platine 50 angeordnet. In der Praxis ist die Platine mit den Komponenten durch ein Gehäuse umgeben, welches jeweils Sichtöffnungen für die optischen Strahlengänge aufweist.
  • Die 4a und 4b zeigen die Markierungsoptik 55 und die Markierungslichtquelle 54 getrennt von der Platine und in verschiedenen perspektivischen Ansichten. Es ist deutlich, dass die Markierungslichtquelle in Gestalt einer LED in die Markierungsoptik 55 eintaucht. Die Markierungsoptik 55 hat einen Optikhalter 56, welcher auf der Platine mit Ansätzen an seiner Unterseite festgelegt ist. Die Markierungsoptik 55 ist ein Glaskörper mit einer schräg gestuften Abstrahlseite, welcher die Strahlung der LED ausrichtet und formt. Sowohl die Markierungslichtquelle 54 als auch die Markierungsoptik 55 werden durch den Optikhalter 56 zueinander ausgerichtet und in ihrer Lage gesichert.
  • Die 5a und 5b zeigen die Anordnung der Komponenten Markierungslichtquelle 54, Markierungsoptik 55 und Optikhalter 56 in verschiedenen Darstellungen. In 5a ist eine Explosionsdarstellung gezeigt. Der Glaskörper der Markierungsoptik 55 weist eine gestufte Oberseite auf, welche eine Lenkung der Strahlung von der Markierungslichtquelle 54 bewirkt. Der Glaskörper ist konisch-bauchig geformt und hat Ansätze, die in komplementäre Öffnungen der Optikhalters 56 zum verdrehsicheren Halten eingreifen.
  • 5b zeigt den montierten Zustand, in welchem die Markierungslichtquelle in eine Ausnehmung der Markierungsoptik 55 eintaucht und die Markierungsoptik in dem Optikhalter aufgenommen ist. Der Optikhalter 56 kann mitsamt der Markierungsoptik 55 über der Lichtquelle 54 auf einer unterliegenden Platine montiert werden, wobei der Hohlraum in der Markierungsoptik und die Öffnung des Optikhalters eine Ausrichtung über der Lichtquelle erleichtern.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102008025669 A1 [0004]
    • WO 2008/116699 A2 [0005]
    • WO 2012/084222 A1 [0006]
    • WO 2013/001084 A1 [0007]
  • Zitierte Nicht-Patentliteratur
    • „Photodetektoren und Auslesekonzepte für 3D-Time-of-Flight-Bildsensoren in 0,35 µm-Standard-CMOS-Technologie“, Andreas Spickermann, Fakultät für Ingenieurwissenschaften der, Universität Duisburg-Essen, 2010 [0008]
    • Publikation „Optimized Distance Measurement with 3D-CMOS Image Sensor and Real-Time Processing of the 3D Data for Applications in Automotive and Safety Engineering“, Bernhard König, Fakultät für Ingenieurwissenschaften der Universität Duisburg-Essen, 2008 [0009]

Claims (9)

  1. Sensoreinrichtung (2) zur optischen Erfassung von Objekten und deren räumlichen Bewegungen, aufweisend, eine 3D-Kamera, die räumliche Daten mit einem Laufzeitverfahren erfasst, wobei die 3D-Kamera eine Pulslichtquelle (13; 51) und einen lichtsensitiven Erfassungschip (16; 52) aufweist, wobei die Pulslichtquelle (13; 51) und der Erfassungschip (16; 52) in einem gemeinsamen Bauraum angeordnet sind und beide zu einem Erfassungsbereich der 3D-Kamera ausgerichtet sind, dadurch gekennzeichnet, dass in dem Bauraum eine weitere Lichtquelle als Markierungslichtquelle (21; 54) ausgebildet ist, wobei die Markierungslichtquelle Licht im sichtbaren Spektrum abstrahlt und derart ausgerichtet ist, dass von der Markierungslichtquelle ausgehend Licht in den Erfassungsbereich (3) der 3D-Kamera abgestrahlt wird.
  2. Sensoreinrichtung nach Anspruch 1, wobei die 3D-Kamera und die Markierungslichtquelle (21; 54) in einem gemeinsamen Gehäuse (10) aufgenommen sind.
  3. Sensoreinrichtung nach einem der vorangehenden Ansprüche, wobei die Pulslichtquelle (13; 51), der Erfassungschip (16; 52) und die Markierungslichtquelle (21; 54) auf einer gemeinsamen Platine (11; 30) angeordnet sind.
  4. Sensoreinrichtung nach einem der vorangehenden Ansprüche, wobei die Pulslichtquelle (13; 51), der Erfassungschip (16; 52) und die Markierungslichtquelle (21; 54) entlang einer optischen Achse (20) angeordnet sind.
  5. Sensoreinrichtung nach einem der Ansprüche 3 oder 4, wobei die Markierungslichtquelle (21) benachbart zu einer Anschlussanordnung (12) zur externen Verbindung der Platine angeordnet ist und zur thermischen Ableitung von Verlustwärme mit der Anschlussanordnung gekoppelt ist.
  6. Sensoreinrichtung nach einem der vorangehenden Ansprüche, wobei die Markierungslichtquelle (21) wenigstens mit einer flächigen elektrischen Zuleitung (22a, 22b) als Kühlkörper für Verlustwärme versehen ist.
  7. Sensoreinrichtung nach Anspruch 6, wobei die flächige elektrische Zuleitung (22a, 22b) als Blech ausgebildet ist, welches abschnittsweise freitragend, insbesondere beabstandet zu unterliegenden Platinen (11) angeordnet ist.
  8. Sensoreinrichtung nach einem der vorangehenden Ansprüche, wobei der Markierungslichtquelle (54) eine Markierungsoptik (55) zugeordnet ist, welche mit einer Ausnehmung zur Aufnahme der Markierungsoptik versehen ist und über der Markierungslichtquelle (54) angeordnet ist, so dass die Markierungslichtquelle in die Aufnahme der Markierungsoptik eintaucht.
  9. Sensoreinrichtung nach Anspruch 8, wobei der Markierungslichtquelle (54) und der Markierungsoptik (55) ein Optikhalter (56) zugeordnet ist, welcher die Markierungsoptik (55) verdrehsicher aufnimmt und eine Aufnahme für die Markierungslichtquelle aufweist, wobei der Optikhalter Befestigungsmittel zu Montage auf einer Platine aufweist.
DE102015115096.4A 2015-09-08 2015-09-08 Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen Withdrawn DE102015115096A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015115096.4A DE102015115096A1 (de) 2015-09-08 2015-09-08 Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen
PCT/EP2016/064432 WO2017041917A1 (de) 2015-09-08 2016-06-22 Sensoranordnung zur optischen erfassung von bediengesten an fahrzeugen
EP16731869.0A EP3317692A1 (de) 2015-09-08 2016-06-22 Sensoranordnung zur optischen erfassung von bediengesten an fahrzeugen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015115096.4A DE102015115096A1 (de) 2015-09-08 2015-09-08 Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen

Publications (1)

Publication Number Publication Date
DE102015115096A1 true DE102015115096A1 (de) 2017-03-09

Family

ID=56203366

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015115096.4A Withdrawn DE102015115096A1 (de) 2015-09-08 2015-09-08 Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen

Country Status (3)

Country Link
EP (1) EP3317692A1 (de)
DE (1) DE102015115096A1 (de)
WO (1) WO2017041917A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222816A1 (de) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Markieren eines einen Erfassungsbereich einer fahrzeugseitigen Umfeldsensorik repräsentierenden Bodenbereichs
WO2022117177A1 (de) * 2020-12-01 2022-06-09 Vega Grieshaber Kg Passives statusanzeigemodul für einen sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116699A2 (de) 2007-03-23 2008-10-02 Continental Automotive Gmbh Optischer sensorchip und einklemmschutzvorrichtung mit einem solchen
DE102008025669A1 (de) 2007-06-01 2008-12-11 GM Global Technology Operations, Inc., Detroit Fahrzeugschliesseinrichtungsbetätigungsvorrichtung und Verfahren für nicht freie Hände
WO2012084222A1 (de) 2010-12-24 2012-06-28 Volkswagen Aktiengesellschaft Verfahren zum automatischen betätigen eines schliesselements eines fahrzeugs sowie entsprechende vorrichtung und fahrzeug
WO2013001084A1 (de) 2011-06-30 2013-01-03 Johnson Controls Gmbh Vorrichtung und verfahren zur berührungslosen erfassung von gegenständen und/oder personen und von diesen ausgeführten gesten und/oder bedienvorgängen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058650A1 (en) * 2001-09-25 2003-03-27 Kelvin Shih Light emitting diode with integrated heat dissipater
GB2391702B (en) * 2002-06-07 2006-01-04 Polymer Optics Ltd Modular optical system
US8038465B2 (en) * 2008-01-07 2011-10-18 Lear Corporation Electrical connector and heat sink
DE102012109031A1 (de) * 2012-09-25 2014-03-27 Huf Hülsbeck & Fürst Gmbh & Co. Kg Elektronische Sensoreinheit zur Erfassung der berührungslosen Betätigung einer Tür oder Klappe an einem Kraftfahrzeug
DE102014101206A1 (de) * 2014-01-31 2015-08-06 Huf Hülsbeck & Fürst Gmbh & Co. Kg Montagemodul für ein Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008116699A2 (de) 2007-03-23 2008-10-02 Continental Automotive Gmbh Optischer sensorchip und einklemmschutzvorrichtung mit einem solchen
DE102008025669A1 (de) 2007-06-01 2008-12-11 GM Global Technology Operations, Inc., Detroit Fahrzeugschliesseinrichtungsbetätigungsvorrichtung und Verfahren für nicht freie Hände
WO2012084222A1 (de) 2010-12-24 2012-06-28 Volkswagen Aktiengesellschaft Verfahren zum automatischen betätigen eines schliesselements eines fahrzeugs sowie entsprechende vorrichtung und fahrzeug
WO2013001084A1 (de) 2011-06-30 2013-01-03 Johnson Controls Gmbh Vorrichtung und verfahren zur berührungslosen erfassung von gegenständen und/oder personen und von diesen ausgeführten gesten und/oder bedienvorgängen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
„Photodetektoren und Auslesekonzepte für 3D-Time-of-Flight-Bildsensoren in 0,35 µm-Standard-CMOS-Technologie", Andreas Spickermann, Fakultät für Ingenieurwissenschaften der, Universität Duisburg-Essen, 2010
Publikation „Optimized Distance Measurement with 3D-CMOS Image Sensor and Real-Time Processing of the 3D Data for Applications in Automotive and Safety Engineering", Bernhard König, Fakultät für Ingenieurwissenschaften der Universität Duisburg-Essen, 2008

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017222816A1 (de) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Markieren eines einen Erfassungsbereich einer fahrzeugseitigen Umfeldsensorik repräsentierenden Bodenbereichs
WO2022117177A1 (de) * 2020-12-01 2022-06-09 Vega Grieshaber Kg Passives statusanzeigemodul für einen sensor

Also Published As

Publication number Publication date
WO2017041917A1 (de) 2017-03-16
EP3317692A1 (de) 2018-05-09

Similar Documents

Publication Publication Date Title
EP3033251B1 (de) Sensoranordnung zur erfassung von bediengesten an fahrzeugen
DE102008002086B4 (de) Fahrzeugabbildungssystem und Fahrzeugsteuerungsgerät
EP2946226B1 (de) Universelle sensoranordnung zur erfassung von bediengesten an fahrzeugen
EP2946227B1 (de) Sensoranordnung zur erfassung von bediengesten an fahrzeugen
EP3164735B1 (de) Time-of-flight-kamera, kraftfahrzeug und verfahren zum betrieb einer time-of-flight-kamera in einem kraftfahrzeug
EP3314298A1 (de) Sensorsystem einer sensoreinrichtung eines kraftfahrzeugs
WO2010103061A1 (de) Vorrichtung und verfahren zur detektion mindestens eines objektes
EP3311190A1 (de) Sensorsystem einer sensoreinrichtung eines kraftfahrzeugs
WO2015144405A1 (de) Gesteuerte leuchtenvorrichtung
WO2018036646A1 (de) Vefahren und vorrichtung zur erkennung des öffnungszustands eines garagentores
EP3317695B1 (de) Sensoreinrichtung zur optischen erfassung von betätigungsgesten
DE102015115096A1 (de) Sensoranordnung zur optischen Erfassung von Bediengesten an Fahrzeugen
EP3314297B1 (de) Sensoreinrichtung zur optischen erfassung von betätigungsgesten
EP2562685B1 (de) Verfahren und Vorrichtung zur Klassifizierung eines sich in einem Vorfeld eines Fahrzeugs befindlichen Lichtobjekts
DE102014214710A1 (de) Regendetektionsvorrichtung
DE102017204836A1 (de) Verfahren und Vorrichtung zum Erfassen von Objekten in der Umgebung eines Fahrzeuges
DE102013225155A1 (de) Beleuchtung zur Detektion von Regentropfen auf einer Scheibe mittels einer Kamera
EP3077256B1 (de) Beleuchtung zur detektion von regentropfen auf einer scheibe mittels einer kamera
EP2991452B1 (de) System zur ortsaufgelösten beleuchtungssteuerung
DE102014211543A1 (de) Verfahren und Anordnung zur Erkennung von Gesten in einer Fahrzeugumgebung
DE102011014747B4 (de) Messsystem mit gepulstem aktivem Einseitenlichtsensor zum Empfang des von einem bewegten Objekt reflektierten gepulsten IR/UV-Lichtes
EP1865755A2 (de) Vorrichtung zur Beleuchtungssteuerung
DE102015117967A1 (de) Sensoreinrichtung zur optischen Erfassung von Bedienungsgesten an Fahrzeugen und Verfahren zum Betreiben der Sensoreinrichtung
EP3530527A1 (de) Optisches sensorsystem eines kraftfahrzeugs zur erfassung von bediengesten

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee