DE102015011634B4 - Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states - Google Patents
Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states Download PDFInfo
- Publication number
- DE102015011634B4 DE102015011634B4 DE102015011634.7A DE102015011634A DE102015011634B4 DE 102015011634 B4 DE102015011634 B4 DE 102015011634B4 DE 102015011634 A DE102015011634 A DE 102015011634A DE 102015011634 B4 DE102015011634 B4 DE 102015011634B4
- Authority
- DE
- Germany
- Prior art keywords
- signal
- excitation
- error
- signals
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001939 inductive effect Effects 0.000 title claims abstract description 45
- 230000005284 excitation Effects 0.000 claims abstract description 134
- 230000001360 synchronised effect Effects 0.000 claims abstract description 37
- 238000011156 evaluation Methods 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 11
- 230000011664 signaling Effects 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 37
- 238000012545 processing Methods 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000007480 spreading Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000555745 Sciuridae Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/30—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D18/00—Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/20—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
- G01D5/204—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
- G01D5/2086—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of two or more coils with respect to two or more other coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2218/00—Indexing scheme relating to details of testing or calibration
- G01D2218/10—Testing of sensors or measuring arrangements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Vorrichtung zur Detektion von asymmetrischen Fehlerzuständen (Gegentaktfehlern) und zur Unterscheidung dieser asymmetrischen Fehlerzustände (Gegentaktfehler) von symmetrischen Fehlerzuständen (Gleichtaktfehlern) beim Betreiben und bei der Auswertung der Ausgangssignale eines symmetrischen induktiven Drehwinkelsensorkopfes (303)• mit m, mindestens aber drei, induktiven Empfangsschleifen (S1, S2, S3) und- einer feldinduzierenden Erregerschleife (2) und- mit einem Läufer mit einer das Feld der Erregerschleife (2) verzerrenden Rotorschleife,- wobei insbesondere die Sternspannung der Empfangsschleifen (S1, S2, S3) des induktiven Drehwinkelsensorkopfes (303) im idealen fehlerlosen Fall Null Volt ist, gekennzeichnet dadurch,• dass ein asymmetrischer Fehlerzustand dabei so definiert ist, dass dieser nicht alle der m Empfangsschleifen (S1, S2, S3) und/oder nicht alle Signalpfade der m, mindestens aber drei Signalpfade betrifft, die den jeweiligen Empfangsschleifen (S1, S2, S3) jeweils nachgelagert sind, und• dass die Vorrichtung mindestens einen Signalgenerator (320) aufweist, der mindestens ein Erregersignal (322) erzeugt und• dass sie mindestens eine mittels des Erregersignals (322) modulierte elektrische Strom- oder Spannungsquelle (301) zur Erregung der Erregerschleife (2) des induktiven Drehwinkelsensorkopfes (303) aufweist und• dass sie mindestens eine Vorrichtung, einen Stern-Dreiecks-Umwandlungsblock (307), zur Durchführung einer Stern-Dreiecksumwandlung der Ausgangssignale der m, mindestens aber drei Empfangsschleifen (S1, S2, S3) zur Bildung von m, mindestens jedoch drei, Dreieckssignalen (308) aufweist und• dass sie je Dreieckssignal (308) jeweils mindestens eine Teilvorrichtung mit zwei Eingängen (SIG1, SIG2) aufweist, die aus dem Erregersignal (322) oder einem damit korrelierenden Steuersignal für die Gleichrichtung (321) als erstes Eingangssignal (SIG1) der Teilvorrichtung und dem betreffenden Dreieckssignal (308) als zweites Eingangssignal (SIG2) der Teilvorrichtung je Dreieckssignal (308) ein der Teilvorrichtung und dem jeweiligen Dreieckssignal (308) zugeordnetes Pegelsignal von insgesamt m, mindestens jedoch drei, Pegelsignalen (310) durch Synchrondemodulation und/oder Skalar-Produkt-Bildung erzeugt, wobei diese Teilvorrichtung insbesondere ein Synchrondemodulator sein kann, und• dass sie einen Summierer (324) aufweist, der aus den m, mindestens jedoch drei, Pegelsignalen (310) ein Summensignal (326) durch Summierung bezogen auf ein gemeinsames Referenzpotenzial, insbesondere bezogen auf einen Offset, bildet und• dass sie eine erste Bewertungseinheit, insbesondere einen Komparator (341, 342), aufweist, die das Summensignal (326) mit einem ersten Schwellwert (327, 330) vergleicht und daraus ein erstes Ergebnissignal (333, 334) zur Signalisierung eines asymmetrischen Fehlerzustands (Gegentaktfehler) erzeugt,• wobei diese Signalisierung dieses asymmetrischen Fehlerzustands (Gegentaktfehler) bei einem reinen symmetrischen Fehlerzustand (Gleichtaktfehler) unterbleibt.Device for detecting asymmetrical error states (push-pull errors) and for distinguishing these asymmetrical error states (push-pull errors) from symmetrical error states (common-mode errors) when operating and evaluating the output signals of a symmetrical inductive rotation angle sensor head (303)• with m, but at least three, inductive receiving loops ( S1, S2, S3) and- a field-inducing exciter loop (2) and- with a rotor with a rotor loop that distorts the field of the exciter loop (2),- with the star voltage of the receiving loops (S1, S2, S3) of the inductive rotation angle sensor head (303 ) is zero volts in the ideal error-free case, characterized in that • an asymmetric error state is defined in such a way that it does not affect all of the m receiving loops (S1, S2, S3) and/or not all of the signal paths of the m, but at least three signal paths , which followed the respective receiving loops (S1, S2, S3). and• that the device has at least one signal generator (320) which generates at least one excitation signal (322) and• that it has at least one electrical current or voltage source (301) modulated by means of the excitation signal (322) for excitation of the excitation loop ( 2) of the inductive rotation angle sensor head (303) and• that it has at least one device, a star-delta conversion block (307), for performing a star-delta conversion of the output signals of the m, but at least three receiving loops (S1, S2, S3) for formation of m, but at least three, triangular signals (308) and• that it has at least one partial device with two inputs (SIG1, SIG2) for each triangular signal (308), which consists of the excitation signal (322) or a control signal correlating therewith for the Rectification (321) as the first input signal (SIG1) of the sub-device and the relevant triangular signal (308) as the second input signal (SIG2) of the sub-device For each triangular signal (308), a level signal of a total of m, but at least three, level signals (310) assigned to the sub-device and the respective triangular signal (308) is generated by synchronous demodulation and/or scalar product formation, with this sub-device being able to be a synchronous demodulator in particular , and• that it has a summer (324), which forms a summation signal (326) from the m, but at least three, level signals (310) by summation based on a common reference potential, in particular based on an offset, and• that it has a has a first evaluation unit, in particular a comparator (341, 342), which compares the sum signal (326) with a first threshold value (327, 330) and uses it to generate a first result signal (333, 334) for signaling an asymmetrical error state (push-pull error), • where this signaling of this asymmetrical error state (push-pull error) in a purely symmetrical error state (Eq clock error) is omitted.
Description
Einleitungintroduction
Im Stand der Technik sind verschiedene induktive Drehwinkelsensoren bekannt. Ein Beispiel ist hier die
Damit ein Drehwinkelsensor, insbesondere ein Drehwinkelsensor der auf einem induktiven Messprinzip entsprechend der
Zur besseren Einführung in die in der
Ein der
Die Drehachse, die in ihrem Verdrehungswinkel gegenüber dem Stator vermessen werden soll, durchstößt senkrecht zur Bildebene der
Die Erregerschleife (2) sendet nun ein in erster Linie magnetisches Sendesignal, dass einen Strom in den Läufer induziert. Da die Erregerschleife (2) rotationssymmetrisch bezüglich der Symmetrieachse (Sym) und damit rotationssymmetrisch bezüglich der Drehachse ist, ist diese Induktion in die Rotorschleife des Läufers unabhängig von dessen Drehwinkelposition und damit von dem Verdrehungswinkel des Läufers gegenüber dem Stator, der zu vermessen ist. Mit dieser Drehachse, die längs der Symmetrieachse (Sym) verläuft, ist der Läufer und damit die Rotorschleife typischerweise fest verbunden. Daher ist die Induktion von dem Verdrehungswinkel der Drehachse gegenüber dem Stator abhängig.The excitation loop (2) now sends a primarily magnetic transmission signal that induces a current in the rotor. Since the excitation loop (2) is rotationally symmetrical with respect to the axis of symmetry (Sym) and thus rotationally symmetrical with respect to the axis of rotation, this induction in the rotor loop of the rotor is independent of its angular position and thus of the torsion angle of the rotor relative to the stator that is to be measured. The rotor and thus the rotor loop are typically firmly connected to this axis of rotation, which runs along the axis of symmetry (Sym). The induction therefore depends on the angle of rotation of the axis of rotation relative to the stator.
Ebenso induziert die Erregerschleife (2) in die drei Empfängerschleifen (S1, S2, S3) jeweils einen Strom, der für alle Empfängerschleifen (S1, S2, S3) gleich sein sollte, da diese eine identische Geometrie aufweisen sollten und sich nur um einen Drehwinkel (Δφ/m) um die Drehachse, d.h. die Symmetrieachse (Sym),unterscheiden. Dieser spielt aber wegen der Rotationssymmetrie der Erregerschleife (2) keine Rolle.Likewise, the excitation loop (2) induces a current in each of the three receiver loops (S1, S2, S3), which should be the same for all receiver loops (S1, S2, S3), since they should have an identical geometry and only rotate by one angle (Δφ/m) around the axis of rotation, i.e. the axis of symmetry (Sym). However, due to the rotational symmetry of the excitation loop (2), this is irrelevant.
Je nach Drehposition des Läufers mit seiner Rotorschleife zu den drei Empfängerschleifen (S1, S2, S3) induziert der Läufer jedoch einen unterschiedlichen Strom in die jeweiligen Empfängerschleifen (S1, S2, S3). Die Rückinduktion kann mit der Induktion in einem Asynchronmotor verglichen werden, bei der der Käfigläufer Felder in die drei Statorspulen induziert. (siehe z.B. Spalte 5 Zeilen 45 bis 46 der
Wie immer, ist ein solches System in der Realität nicht ungestört und fehlerfrei zu betreiben. Da solche induktiven Drehwinkelsensoren auch in sicherheitsrelevanten Anwendungen, insbesondere in Automobilen eingesetzt werden sollen, ist es notwendig, diese Fehler, sofern sie nicht schon in der Konstruktion des Sensorelements abgefangen werden können, in der elektronischen Nachverarbeitung abzufangen.As always, such a system cannot be operated undisturbed and error-free in reality. Since such inductive angle-of-rotation sensors are also to be used in safety-relevant applications, in particular in automobiles, it is necessary to intercept these errors in the electronic post-processing if they cannot already be intercepted in the construction of the sensor element.
Hierzu wird in der
Die Kompensation der Störungen in dieser Sternschaltung ist jedoch nicht ausreichend. Die Sternschaltung ist insbesondere nicht in der Lage, Gleichtaktsignale, die beispielsweise über die Erregerschleife (2) in das Sensorsystem (300) bei einer EMV-Einstrahlung eingekoppelt werden, zuverlässig zu unterdrücken. Hierdurch wird die Verstärkung der nachfolgenden Verstärker begrenzt und damit die Robustheit des Systems herabgesetzt.However, the compensation for the disturbances in this star connection is not sufficient. In particular, the star connection is not capable of reliably suppressing common-mode signals that are coupled into the sensor system (300) via the excitation loop (2), for example, in the event of EMC radiation. This limits the amplification of the subsequent amplifiers and thus reduces the robustness of the system.
Das in der
Außerdem wurde im Rahmen der Ausarbeitung des Vorschlags erkannt, dass die in der
Eine ähnliche Vorrichtung ist aus der
Auch sei hier auf die Schriften
Aufgabetask
Es ist somit die Aufgabe der Erfindung eine Vorrichtung und ein Verfahren anzugeben, wie die von dem Sensor bereitgestellten Signale so ausgewertet werden können, dass folgende Fehler erkannt werden können:
- a) Gleichtaktfehler wie eingestreute Felder, Bruch der Erregerschleife, Bruch des Läufers etc. (im Folgenden symmetrische Fehlerzustände genannt)
- b) Gegentaktfehler wie Bruch einer Empfängerschleife oder Verbindung zu derselben, Schäden an den Verstärkereingängen, Kurzschlüsse auf dem Stator oder Läufer, EMV etc. (im Folgenden asymmetrische Fehlerzustände genannt)
- a) Common-mode errors such as interspersed fields, breakage of the excitation loop, breakage of the rotor, etc. (hereinafter referred to as symmetrical error states)
- b) Normal-mode errors such as a broken receiver loop or connection to the same, damage to the amplifier inputs, short circuits on the stator or rotor, EMC, etc. (hereinafter referred to as asymmetric error states)
Gleichzeitig soll eine höhere Robustheit gegenüber der Einstrahlung von Gleichtaktsignalen entstehen. Diese Aufgabe wird durch eine Vorrichtung nach Anspruch 1 gelöst.At the same time, greater robustness against the irradiation of common-mode signals is to be achieved. This object is solved by a device according to claim 1.
Gleichtakt und Gegentaktfehler werden im Stand der Technik bei solchen Sensoren nicht erkannt und sind nicht unterscheidbar.In the prior art, common-mode and differential-mode errors are not detected in such sensors and cannot be distinguished.
Lösungsvorschlagsuggested solution
Die Erfindung des hier vorliegenden Dokuments beansprucht eine Vorrichtung zur Detektion von asymmetrischen Fehlerzuständen (Gegentaktfehlern) und zur Unterscheidung dieser asymmetrischen Fehlerzustände (Gegentaktfehler) von symmetrischen Fehlerzuständen (Gleichtaktfehlern) beim Betreiben und bei der Auswertung der Ausgangssignale eines symmetrischen induktiven Drehwinkelsensorkopfes (303). Die Vorrichtung weist erfindungsgemäß m, mindestens aber drei, induktiven Empfangsschleifen (S1, S2, S3), eine feldinduzierende Erregerschleife (2) und einen Läufer mit einer das Feld der Erregerschleife (2) verzerrenden Rotorschleife auf. Erfindungsgemäß ist insbesondere die Sternspannung der Empfangsschleifen (S1, S2, S3) des induktiven Drehwinkelsensorkopfes (303) im idealen fehlerlosen Fall Null Volt. Die technische Lehre der hier vorgelegten Erfindung zeichnet sich dadurch aus, dass ein asymmetrischer Fehlerzustand dabei so definiert ist, dass dieser nicht alle der m Empfangsschleifen (S1, S2, S3) und/oder nicht alle Signalpfade der m, mindestens aber drei Signalpfade betrifft, die den jeweiligen Empfangsschleifen (S1, S2, S3) jeweils nachgelagert sind. Außerdem weist die Vorrichtung erfindungsgemäß mindestens einen Signalgenerator (320) auf, der mindestens ein Erregersignal (322) erzeugt. Die erfindungsgemäße Vorrichtung weist mindestens eine mittels des Erregersignals (322) modulierte elektrische Strom- oder Spannungsquelle (301) zur Erregung der Erregerschleife (2) des induktiven Drehwinkelsensorkopfes (303) auf. Des Weiteren weist die erfindungsgemäße Vorrichtung mindestens eine Vorrichtung, einen Stern-Dreiecks-Umwandlungsblock (307), zur Durchführung einer Stern-Dreiecksumwandlung der Ausgangssignale der m, mindestens aber drei Empfangsschleifen (S1, S2, S3) zur Bildung von m, mindestens jedoch drei, Dreieckssignalen (308) auf. Darüber hinaus weist die erfindungsgemäße Vorrichtung je Dreieckssignal (308) jeweils mindestens eine Teilvorrichtung mit zwei Eingängen (SIG1, SIG2) auf, die aus dem Erregersignal (322) oder einem damit korrelierenden Steuersignal für die Gleichrichtung (321) als erstes Eingangssignal (SIG1) der Teilvorrichtung und dem betreffenden Dreieckssignal (308) als zweites Eingangssignal (SIG2) der Teilvorrichtung je Dreieckssignal (308) ein der Teilvorrichtung und dem jeweiligen Dreieckssignal (308) zugeordnetes Pegelsignal von insgesamt m, mindestens jedoch drei, Pegelsignalen (310) durch Synchrondemodulation und/oder Skalar-Produkt- Bildung erzeugt. Dabei kann diese Teilvorrichtung insbesondere ein Synchrondemodulator sein. Zusätzlich weist die erfindungsgemäße Vorrichtung einen Summierer (324) auf, der aus den m, mindestens jedoch drei, Pegelsignalen (310) ein Summensignal (326) durch Summierung bezogen auf ein gemeinsames Referenzpotenzial, insbesondere bezogen auf einen Offset, bildet. Die erfindungsgemäße Vorrichtung weist außerdem eine erste Bewertungseinheit, insbesondere einen Komparator (341, 342), auf, die das Summensignal (326) mit einem ersten Schwellwert (327, 330) vergleicht und daraus ein erstes Ergebnissignal (333, 334) zur Signalisierung eines asymmetrischen Fehlerzustands (Gegentaktfehler) erzeugt. Dabei unterbleibt erfindungsgemäß diese Signalisierung dieses asymmetrischen Fehlerzustands (Gegentaktfehler) bei einem reinen symmetrischen Fehlerzustand (Gleichtaktfehler).The invention of the present document claims a device for detecting asymmetrical error states (push-pull errors) and for distinguishing these asymmetrical error states (push-pull errors) from symmetrical error states (common-mode errors) when operating and evaluating the output signals of a symmetrical inductive rotation angle sensor head (303). According to the invention, the device has m, but at least three, inductive receiving loops (S1, S2, S3), a field-inducing excitation loop (2) and a rotor with a rotor loop that distorts the field of the excitation loop (2). According to the invention, the star voltage of the receiving loops (S1, S2, S3) of the inductive rotation angle sensor head (303) is zero volts in the ideal error-free case. The technical teaching of the invention presented here is characterized in that an asymmetrical error state is defined in such a way that it does not affect all of the m receiving loops (S1, S2, S3) and/or not all of the signal paths of the m, but at least three signal paths. which are respectively downstream of the respective receiving loops (S1, S2, S3). In addition, according to the invention, the device has at least one signal generator (320) which generates at least one excitation signal (322). The device according to the invention has at least one electrical current or voltage source (301) modulated by means of the excitation signal (322) for excitation of the excitation loop (2) of the inductive rotation angle sensor head (303). Furthermore, the device according to the invention has at least one device, a star-delta conversion block (307), for performing a star-delta conversion of the output signals of the m, but at least three receiving loops (S1, S2, S3) to form m, but at least three , triangular signals (308). In addition, the device according to the invention has at least one sub-device with two inputs (SIG1, SIG2) for each triangular signal (308), which consists of the excitation signal (322) or a control signal for the rectification (321) correlating therewith as the first input signal (SIG1) of the sub-device and the relevant triangular signal (308) as a second input signal (SIG2) of the sub-device for each triangular signal (308) a level signal assigned to the sub-device and the respective triangular signal (308) of a total of m, but at least three, level signals (310) by synchronous demodulation and/or dot product formation generated. In this case, this sub-device can in particular be a synchronous demodulator. In addition, the device according to the invention has a summator (324) which forms a sum signal (326) from the m, but at least three, level signals (310) by summation based on a common reference potential, in particular based on an offset. The device according to the invention also has a first evaluation unit, in particular a comparator (341, 342), which compares the sum signal (326) with a first threshold value (327, 330) and uses this to generate a first result signal (333, 334) for signaling an asymmetrical Error condition (push-pull error) generated. According to the invention, this signaling of this asymmetrical error state (push-pull error) is omitted in the case of a purely symmetrical error state (common-mode error).
Das Sensorsystem (300) der vorschlagsgemäßen Vorrichtung und sein technisches Umfeld werden zunächst mit Hilfe der
Die Erregerschleife (2) des induktiven Drehwinkelsensorkopfes (303) wird wie zuvor wieder mit einem Erregerstrom durch die Erregerstromquelle (301) erregt. Wiederum zeigen bei korrekter Funktion des induktiven Drehwinkelsensors (303) dessen Empfängerschleifen (S1, S2, S3) jede für sich ein Wechselspannungssignal in Form der Ausgangssignale (304) des induktiven Drehwinkelsensorkopfes, wobei jedes der Ausgangssignale (304) des induktiven Drehwinkelsensorkopfes (303) Einer Empfängerschleife (S1, S2, S3) zugeordnet ist. Dabei sollte die Summe dieser Ausgangssignale (304) des induktiven Drehwinkelsensorkopfes (303) bei korrekter Funktion des besagten induktiven Drehwinkelsensorkopfes (303) im Falle der Sternverschaltung Null ergeben. Typischerweise ist der induktive Drehwinkelsensorkopf (303) bereits sternförmig verschaltet.The excitation loop (2) of the inductive rotation angle sensor head (303) is excited as before with an excitation current from the excitation current source (301). Again, if the inductive angle of rotation sensor (303) is functioning correctly, its receiver loops (S1, S2, S3) each show an AC voltage signal in the form of the output signals (304) of the inductive angle of rotation sensor head, with each of the output signals (304) of the inductive angle of rotation sensor head (303) being one Receiver loop (S1, S2, S3) is assigned. The sum of these output signals (304) of the inductive angle of rotation sensor head (303) should be correct in the case of the star interconnection result in zero. Typically, the inductive angle of rotation sensor head (303) is already connected in a star configuration.
Die Ausgangssignale (304) des Drehwinkelsensorkopfes (303) werden in einem EMV-Filterblock (305) zu gefilterten Ausgangssignalen (306) des Drehwinkelsensorkopfes (303) vorgefiltert, wobei typischerweise nur solche Signalanteile durch den EMV-Filterblock (305) durchgelassen werden, die dem Erregersignal (322) entsprechen, mit dem die Erregerstromquelle (301) gesteuert wird, die den Erregerstrom für die Erregerschleife (2) speist bzw. innerhalb der Bandbreite des Erregersignals (322) liegt. Hierbei wird vorzugsweise ein Filter je Ausgangssignal (304) und/oder je Empfangsschleife (S1, S2, S3) des induktiven Drehwinkelsensorkopfes (303) vorgesehen.The output signals (304) of the rotation angle sensor head (303) are pre-filtered in an EMC filter block (305) to form filtered output signals (306) of the rotation angle sensor head (303), with typically only those signal components being passed through the EMC filter block (305) which Correspond excitation signal (322) with which the excitation current source (301) is controlled, which feeds the excitation current for the excitation loop (2) or is within the bandwidth of the excitation signal (322). A filter is preferably provided for each output signal (304) and/or for each receiving loop (S1, S2, S3) of the inductive rotation angle sensor head (303).
Bei der Ausarbeitung des Vorschlags wurde aber nun erkannt, dass es sinnvoller ist, statt der Sternpunktspannungen zum Zwecke der Fehlererkennung statt der Sternspannungen die Dreiecksspannungen an den Ausgängen (304) des induktiven Drehwinkelsensors (303) auszuwerten. Da die Induktion einer Gleichtaktstörung in alle drei Empfängerschleifen (S1, S2, S3) gleich sein sollte, sollten die Differenzen der Sternspannungen bezüglich der Gleichtaktsignalanteile Null sein.When the proposal was being worked out, however, it was now recognized that it makes more sense to evaluate the delta voltages at the outputs (304) of the inductive angle of rotation sensor (303) instead of the star point voltages for the purpose of fault detection instead of the star voltages. Since the induction of common-mode interference in all three receiver loops (S1, S2, S3) should be the same, the differences in the phase-to-neutral voltages with regard to the common-mode signal components should be zero.
Diese Stern-Dreieck-Umwandlung wird in einem Stern-Dreiecks-Umwandlungsblock (307) durchgeführt, der in
Die Dreieckssignale (308) enthalten somit nach Verschaltung zu einem Dreieck im Stern-Dreiecks-Umwandlungsblock (307) keinen Gleichanteil mehr, wenn das Sensorsystem (300) ansonsten, wie im fehlerfreien Fall vorgesehen, symmetriert ist. Hierbei bedeutet symmetriert, dass alle Empfängerschleifen (S1, S2, S3) bis auf die besagte Verdrehung um die Drehachse, d.h. die Symmetrieachse (Sym), zueinander die gleiche Geometrie mit einer n-zähligen Symmetrie aufweisen und exakt zentrisch angeordnet sind und dass dies auch für die Läuferschleife gilt. Auch die Erregerschleife (2) ist in diesem idealen Fall bezüglich der Symmetrieachse (Sym) vollkommen symmetrisch angebracht.The delta signals (308), after being connected to form a delta in the star-delta conversion block (307), no longer contain a DC component if the sensor system (300) is otherwise balanced, as provided for in the error-free case. In this context, symmetrical means that all receiver loops (S1, S2, S3) apart from the aforementioned rotation about the axis of rotation, i.e. the axis of symmetry (Sym), have the same geometry with an n-fold symmetry and are arranged exactly centrically and that this is also the case applies to the rotor loop. In this ideal case, the excitation loop (2) is also attached completely symmetrically with respect to the axis of symmetry (Sym).
Die Dreiecksspannungen der Dreieckssignale (308) sind darüber hinaus bezüglich ihres Nutzsignalanteils um einen Faktor
Typischerweise wird die vorschlagsgemäße Vorrichtung in einem KFZ mit einer einfachen Gleichspannung, die nicht symmetrisch um den Nullpunkt ist, versorgt. Daher wird in einer bevorzugten Version der vorschlagsgemäßen Vorrichtung zu jedem der drei Dreiecksspannungen der Dreieckssignale (308) ein Gleichspannungssignal, der Offset, durch die Differenzverstärker (401 bis 403) der
Die Summe der Amplituden der Dreiecksspannungen der Dreieckssignale (308) sollte nach der Gleichrichtung durch den nachfolgend beschriebenen Synchrondemodulator Null Volt betragen. Es wurde bei der Ausarbeitung des Vorschlags erkannt, dass diese zur Bewertung des Sensorzustands ausgewertet werden kann. Bei der Ausarbeitung des Vorschlags wurde erkannt, dass hierdurch aufgabengemäße Fehlerzustände erkannt werden können, die den Sensor und/oder die Auswertung in asymmetrischer Weise betreffen. Gleichtaktfehler beeinflussen die Summe der Amplituden der Dreiecksspannungen der Dreieckssignale (308) nach der Gleichrichtung eben gerade nicht. Es wird somit vorschlagsgemäß die Erkennung von Gegentaktfehlern und deren Unterscheidung von Gleichtaktfehlern im Gegensatz zum Stand der Technik möglich. In der vorschlagsgemäßen Vorrichtung wird daher von der Spannungssumme die Betriebsspannung einmal bzw. der besagte Offset zweimal abgezogen, wodurch sich das Summensignal (326) wieder in der Mitte des Aussteuerbereichs nachfolgender Verstärker befindet.The sum of the amplitudes of the triangular voltages of the triangular signals (308) should be zero volts after rectification by the synchronous demodulator described below. When drafting the proposal, it was recognized that this can be evaluated to evaluate the sensor status. When the proposal was being worked out, it was recognized that error states relevant to the task, which affect the sensor and/or the evaluation in an asymmetric manner, can be detected in this way. Common-mode errors do not affect the sum of the amplitudes of the triangular voltages of the triangular signals (308) after rectification. It is thus possible, according to the proposal, to detect differential mode errors and to differentiate them from common mode errors, in contrast to the prior art. In the device according to the proposal, the operating voltage is therefore subtracted once from the voltage sum or the said offset is subtracted twice, as a result of which the sum signal (326) is again in the middle of the modulation range of subsequent amplifiers.
Diese Bildung des Summensignals (326) durch Summenbildung der Pegelsignale (310) findet in einer Summiereinrichtung (324) statt.This formation of the sum signal (326) by summation of the level signals (310) takes place in a summing device (324).
Das so gebildete Summensignal (326) wird beispielsweise mittels eines ersten Komparators (341) mit einem ersten Schwellwert (327), beispielsweise in Form einer ersten Referenzspannung (Vref1) verglichen, die oberhalb des besagten Offsets liegt, und beispielsweise mittels eines zweiten Komparators (342) mit einem zweiten Schwellwert, beispielsweise in Form einer zweiten Referenzspannung (Vref2) verglichen, die unterhalb des Offsets liegt. Es ergeben sich dann typischerweise ein sechstes Ergebnissignal (334) und ein erstes Ergebnissignal (333). Liegt die Spannung des Summensignals (326) außerhalb des durch die erste Referenzspannung (Vref1), also den ersten Schwellwert (327), und die zweite Referenzspannung (Vref2), also den zweiten Schwellwert, definierten, zulässigen Summenspannungsschlauches, so liegt ein entsprechend der Aufgabe des Vorschlags zu detektierender Symmetriefehler, also ein Gegentaktfehler, vor. Außerdem erkennt die Vorrichtung, dass dieser Fehler kein Gleichtaktfehler, also kein symmetrischer Fehlerzustand ist.The sum signal (326) formed in this way is compared, for example, by means of a first comparator (341) with a first threshold value (327), for example in the form of a first reference voltage (V ref1 ), which is above said offset, and for example by means of a second comparator ( 342) is compared with a second threshold value, for example in the form of a second reference voltage (V ref2 ), which is below the offset. A sixth result signal (334) and a first result signal (333) then typically result. If the voltage of the sum signal (326) is outside the permissible sum voltage range defined by the first reference voltage (Vref1), i.e. the first threshold value (327), and the second reference voltage (V ref2 ), i.e. the second threshold value, then there is a corresponding Task of the proposal to be detected symmetry error, so a push-pull error before. In addition, the device recognizes that this error is not a common-mode error, ie not a symmetrical error condition.
In dem Stern-Dreiecks-Umwandlungsblock (307) werden die zugehörigen Dreieckssignale (308) der Ausgangssignale (304) des induktiven Drehwinkelsensorkopfes (303) entsprechend einer Dreiecksschaltung, wie zuvor beschrieben, gebildet. Hierdurch werden die Gleichsignalstörungen entfernt und eine Übersteuerung der nachfolgenden Verstärkereingänge wird unwahrscheinlicher und die Aussteuerreserve steigt. Die so gebildeten drei Dreieckssignale (308) werden sodann in einem Synchrondemodulatorblock (309) gleichgerichtet und gefiltert, um das Erregersignal (322) der Erregerstromquelle (301) zu entfernen, wodurch nur noch ein Gleichsignal überbleibt, das dem jeweiligen Empfangspegel entspricht.In the star-delta conversion block (307), the associated delta signals (308) of the output signals (304) of the inductive rotation angle sensor head (303) are formed according to a delta circuit, as previously described. This removes the DC signal interference and overloading of the subsequent amplifier inputs becomes less likely and the headroom increases. The three triangular signals (308) formed in this way are then rectified and filtered in a synchronous demodulator block (309) in order to remove the excitation signal (322) from the excitation current source (301), which means that only a DC signal remains that corresponds to the respective reception level.
Ein Taktgenerator (320) liefert dabei zum einen das Erregersignal (322) für die Erregerstromquelle (301) und gleichzeitig ein Steuersignal (321) für die Gleichrichtung. Genaugenommen werden die Dreieckssignale (308) mit dem Steuersignal (321) nun in Form des Erregersignals (322) der Erregerstromquelle (301) multipliziert und dann tiefpassgefiltert. Dies ist ein Verfahren, wie man es von Synchrondemodulatoren her kennt. Hierbei wird ein Skalar-Produkt zwischen dem Erregersignal (322) der Erregerstromquelle und dem jeweiligen Dreieckssignal (308) im Synchrondemodulatorblock (309) durch drei separate Synchrondemodulatoren gebildet. Durch die Tiefpassfilterung werden Signalanteile mit höheren Frequenzen dabei unterdrückt. Grundsätzlich ist hier die Verwendung beliebiger Linearformen möglich, sofern die Orthogonalität zweier verschiedener Signale sich unter bestimmbaren Bedingungen hinsichtlich deren Verschiedenheit dieser Signale in Form des Verschwindens des Ergebnisses der Verknüpfung dieser Signale mittels dieser Linearform erreichbar ist.
Zwei beliebige Signale A und B werden im Sinne dieser Offenbarung dann als orthogonal bezüglich eines Signaldemodulators bezeichnet, wenn diese anstelle des ersten Signals (SIG1) und des zweiten Signals (SIG2) in einen der Signaldemodulatoren eingespeist würden und das Ausgangssignal 0 ergäben. In der Realität wird ein solcher Verstärker aber ein Systemrauschen und einen Regelfehler zeigen. Dieses Systemrauschen und diesen Regelfehler kann man durch Einspeisen des Erregersignals (322) an Stelle des ersten Signals (SIG1) in den Synchrondemodulator und konstant halten des zweiten Signals (SIG2) des Synchrondemodulators eindeutig bestimmen. Das Ausgangssignal des Synchrondemudulators wäre dann im Idealfall Null, zeigt aber in der Realität typischerweise das besagte Rauschen und den besagten Regelfehler.Any two signals A and B are then referred to as orthogonal with respect to a signal demodulator for the purposes of this disclosure if they would be fed into one of the signal demodulators instead of the first signal (SIG1) and the second signal (SIG2) and the output signal would result in 0. In reality, however, such an amplifier will show system noise and a control error. This system noise and this control error can be clearly determined by feeding the excitation signal (322) into the synchronous demodulator instead of the first signal (SIG1) and keeping the second signal (SIG2) of the synchronous demodulator constant. In the ideal case, the output signal of the synchronous demodulator would then be zero, but in reality it typically shows the said noise and the said control error.
In dem Beispiel des Synchrondemodulatorblocks (309) wird beispielsweise jedes der Dreiecksignale (308) mit jeweils einem ersten Signaleingang (SIG1) jeweils einer Vorrichtung zur Skalar-Produktbildung entsprechend
Vorzugsweise handelt es sich in einer speziellen Ausprägung des Vorschlagsbei dem Erregersignal (322), das durch den Takt- oder Signalgenerator (320) gebildet wird, um ein Bandbreiten begrenztes Signal mit einer unteren Grenzfrequenz ωmin und einer davon verschiedenen oberen Grenzfrequenz ωmax, die verschieden sein sollten. Dabei sollte die untere Grenzfrequenz ωmin größer als die halbe Frequenzbandbreite Δω= ωmax,- ωmin, sein. Das Tiefpassfilter wird nun vorzugsweise so ausgelegt, dass es Signalanteile mit einer Frequenz größer als die untere Grenzfrequenz ωmin und/oder besser größer als die halbe Frequenzbandbreite Δω /2 zuverlässig unterdrückt und Frequenzanteile unterhalb der halben Frequenzbandbreite Δω /2 möglichst ungedämpft durchlässt. Hierbei beziehen sich alle Aussagen auf die Frequenzbeträge. Das Ergebnis dieser Skalar-Produktbildung sind drei Pegelsignale (310), deren Spannungswert typischerweise ein jeweiliges Maß für die Größe der Induktion des Erregersignals (322) in die Empfangsschleifen (S1, S2, S3) des induktiven Drehwinkelsensorkopfes (303) ist.In a special form of the proposal, the excitation signal (322), which is formed by the clock or signal generator (320), is preferably a bandwidth-limited signal with a lower limit frequency ω min and a different upper limit frequency ω max , the should be different. The lower limit frequency ω min should be greater than half the frequency bandwidth Δω=ω max ,- ω min . The low-pass filter is now preferably designed in such a way that it reliably suppresses signal components with a frequency greater than the lower limit frequency ω min and/or better than half the frequency bandwidth Δω /2 and allows frequency components below half the frequency bandwidth Δω /2 to pass through as undamped as possible. All statements refer to the frequency values. The result of this scalar product formation are three level signals (310), the voltage value of which is typically a respective measure of the size of the induction of the excitation signal (322) in the receiving loops (S1, S2, S3) of the inductive rotation angle sensor head (303).
In einer besonders bevorzugten Variante werden statt einfacher mono-frequenter Erregersignale (322) Spreiz-Code basierte Erregersignale (322) durch den Signalgenerator (320) erzeugt und/oder Zufallssignale und/oder Pseudozufallssignale erzeugt. Dies ist insbesondere in besonders stark gestörten Umgebungen oder bei besonderen Zuverlässigkeitsanforderungen sinnvoll. Allerdings verlängert sich bei der Verwendung von Spreiz-Codes die Totzeit des Sensorsystems. Es ist daher in manchen Fällen sinnvoll, die Art des Erregersignals (322) dynamisch im Betrieb umzuschalten und beispielsweise die Länge des Spreizcodes in Abhängigkeit von der zulässigen Totzeit und/oder der notwendigen Präzision umzuschalten. Ein längerer Spreizcode wird dann verwendet, wenn eine höhere Präzision erforderlich ist, ein kürzerer, oder gar keiner, wenn eine kurze Totzeit erforderlich ist.In a particularly preferred variant, instead of simple mono-frequency excitation signals (322), spread-code-based excitation signals (322) are generated by the signal generator (320) and/or random signals and/or pseudo-random signals are generated. This is particularly useful in environments with particularly high levels of interference or in the case of special reliability requirements. However, the use of spread codes increases the dead time of the sensor system. It is therefore useful in some cases to switch over the type of excitation signal (322) dynamically during operation and, for example, to switch over the length of the spread code as a function of the permissible dead time and/or the required precision. A longer spreading code is used when higher precision is required, a shorter one, or none at all, when short dead time is required.
Bis zu diesem Zeitpunkt in dem Ablauf der Signalverarbeitung in der vorschlagsgemäßen Vorrichtung erfolgte die Verarbeitung im Raummultiplex. D.h. bis zu dieser Stelle im Signalpfad der vorschlagsgemäßen Vorrichtung ist für jede der drei Empfängerschleifen (S1, S2, S3) ein Signalpfad vorhanden, bzw. es sind bis hier her immer drei Signalpfade parallel geführt. Es hat sich gezeigt, dass es ab dieser Stelle ratsam ist, von nun an im Signalpfad die Verarbeitung im Zeitmultiplex vorzunehmen. Hierzu schaltet ein Analog-Multiplexer (311) zyklisch zwischen den bis hierhin erzeugten drei Pegelsignalen (310) um. Das Multiplexerausgangssignal (312) wird einem regelbaren Verstärker (313) zugeführt.Up to this point in the course of the signal processing in the proposed device, the processing has been carried out in spatial multiplex. I.e. up to this point in the signal path of the proposed device there is a signal path for each of the three receiver loops (S1, S2, S3), or there are always three signal paths in parallel up to this point. It has been shown that from this point onwards it is advisable to carry out time-division multiplex processing in the signal path. For this purpose, an analog multiplexer (311) switches cyclically between the three level signals (310) generated up to this point. The multiplexer output signal (312) is fed to an adjustable amplifier (313).
Der in seiner Verstärkung einstellbare regelbare Verstärker (313) verstärkt das Multiplexerausgangssignal (312) zum Verstärkerausgangssignal (314). Dabei wird dessen Verstärkung durch ein Verstärkerregelsignal (318) für alle drei Pegelsignale (310) in gleicher Höhe für je einen Messdurchgang einmal eingestellt. Für die Dauer des Messdurchgangs, bei dem alle drei Pegelsignale (310) bewertet werden, bleibt die Verstärkung des Verstärkers (313) jeweils gleich und wird erst nachdem alle drei Pegelsignale (310) einmal durch eine nachfolgende Kontrolllogik (317) bewertet wurden, durch diese Kontrolllogik (317) am Ende des Messdurchgangs nachgestellt. Diese Nachstellung geschieht dabei so, dass zumindest eines der drei Pegelsignale (310) zu einer Vollaussteuerung des nachfolgenden Analog-zu-Digital-Wandlers (ADC, 315) ohne eine Übersteuerung desselben führt. Hierzu wird das Verstärkerausgangssignal (314) dem Analog-zu-Digital-Wandler (ADC, 315) zugeführt, der das ADC-Ausgangssignal (316) hieraus bildet. Eine dem ADC (315) nachgeordnete Kontrolllogik (317) speichert die Wandelergebnisse des ADCs (315) in Form des ADC-Ausgangssignals (316) während des Messdurchgangs zwischen und wertet am Ende des Messdurchgangs diese Wandelergebnisse des ADCs (315) in Form des ADC-Ausgangssignals (316) aus. Die Kontrolllogik (317) stellt die Verstärkung des Verstärkers (313) mittels des Verstärkerregelsignals (318) jeweils für einen Messdurchgang aller drei Pegelsignale (310) nach oben oder unten am Ende des Messdurchgangs nach, wodurch die Regelschleife für die Verstärkung des Verstärkers (313) geschlossen wird. Hierzu ist anzumerken, dass die Information, die gemessen werden soll, nämlich der Drehwinkel, in der Höhe der Amplituden der Pegelsignale (310) relativ zueinander enthalten ist und durch die gleichartige Verstärkung für alle Pegelsignale (310) während eines Messdurchgangs gerade nicht verändert wird. Die Kontrolllogik steuert nun über ein Multiplexersteuersignal (319) den Multiplexer (311). Die Kontrolllogik (317) wandelt die drei Stati des ADC-Ausgangssignals (316) während der Messung der drei verschiedenen Pegelausgangssignale (310) nun in den gesuchten Messwert (345) des Drehwinkels um.The controllable amplifier (313), whose gain can be adjusted, amplifies the multiplexer output signal (312) to form the amplifier output signal (314). Its amplification is set once by an amplifier control signal (318) for all three level signals (310) at the same level for each measurement run. For the duration of the measurement run, in which all three level signals (310) are evaluated, the amplification of the amplifier (313) remains the same and is only after all three level signals (310) have been evaluated once by a subsequent control logic (317), by this Control logic (317) adjusted at the end of the measurement run. This adjustment is done in such a way that at least one of the three level signals (310) leads to full drive of the downstream analog-to-digital converter (ADC, 315) without overdriving it. For this purpose, the amplifier output signal (314) is fed to the analog-to-digital converter (ADC, 315), which forms the ADC output signal (316) from it. A control logic (317) downstream of the ADC (315) temporarily stores the conversion results of the ADC (315) in the form of the ADC output signal (316) during the measurement run and, at the end of the measurement run, evaluates these conversion results of the ADC (315) in the form of the ADC output signal (316). The control logic (317) adjusts the gain of the amplifier (313) by means of the amplifier control signal (318) for one measurement run of all three level signals (310) up or down at the end of the measurement run, whereby the control loop for the gain of the amplifier (313) is closed. It should be noted here that the information to be measured, namely the angle of rotation, is contained in the height of the amplitudes of the level signals (310) relative to one another and is not changed during a measurement run due to the identical amplification for all level signals (310). The control logic now controls the multiplexer (311) via a multiplexer control signal (319). The control logic (317) now converts the three statuses of the ADC output signal (316) during the measurement of the three different level output signals (310) into the measured value (345) of the angle of rotation sought.
Bei der Ausarbeitung des Vorschlags wurde nun ebenfalls erkannt, dass der Wert des Verstärkerregelsignals (318) der Verstärkung des Verstärkers (313) selbst ein Parameter ist, der zur Feststellung eines symmetrischen Fehlerzustands, also eines Gleichtaktfehlers, des vorschlagsgemäßen Drehwinkelmesssystems geeignet ist.When the proposal was being worked out, it was also recognized that the value of the amplifier control signal (318) of the gain of the amplifier (313) itself is a parameter that is suitable for determining a symmetrical error state, i.e. a common-mode error, of the proposed rotational angle measuring system.
Liegt der Wert des Verstärkerregelsignals (318) über einem vierten Schwellwert (335), dem zulässigen maximalen Verstärkungswert, so kann dies beispielsweise auf eine fehlende Erregung durch einen fehlenden Erregerstrom und/oder eine unterbrochene Erregerschleife oder einen fehlenden Läufer hindeuten.If the value of the amplifier control signal (318) is above a fourth threshold value (335), the permissible maximum amplification value, this can indicate, for example, a lack of excitation due to a lack of excitation current and/or an interrupted excitation loop or a missing rotor.
Liegt der Wert des Verstärkerregelsignals (318) unter einem fünften Schwellwert (336), dem zulässigen minimalen Verstärkungswert, so kann dies auf eine asymmetrische Einstrahlung oder eine unterbrochene Empfängerschleife (2) hindeuten.If the value of the amplifier control signal (318) is below a fifth threshold value (336), the permissible minimum amplification value, this can indicate asymmetric radiation or an interrupted receiver loop (2).
Hierzu wird das Verstärkerregelsignal (318) beispielsweise durch einen dritten Komparator (343) mit dem besagten vierten Schwellwert (335) verglichen und ein drittes Bewertungssignal (337) erzeugt.For this purpose, the amplifier control signal (318) is compared with the said fourth threshold value (335) by a third comparator (343), for example, and a third evaluation signal (337) is generated.
Das Verstärkerregelsignal (318) wird beispielsweise durch einen vierten Komparator (344) mit dem besagten fünfter Schwellwert (336) verglichen und ein viertes Bewertungssignal (338) erzeugt.The amplifier control signal (318) is compared with said fifth threshold value (336) by a fourth comparator (344), for example, and a fourth evaluation signal (338) is generated.
Außerdem kann durch Vergleich mit einem zweiten Schwellwert und einem dritten Schwellwert überprüft werden, ob tatsächlich immer eines der Pegelsignale (310) sich im oberen Aussteuerbereich befindet, sich ein zweites Pegelsignal der Pegelsignale (310) sich im mittleren Ansteuerbereich befindet und ein drittes Pegelsignal der Pegelsignale (310) sich im unteren Ansteuerbereich befindet. Dieser Vergleich wird vorzugsweise durch die Kontrolllogik (317) zum Ende eines Messdurchgangs vorgenommen. Bis dahin werden die Pegelwerte der einzelnen Pegelsignale (310) nach erfolgter Verstärkung im regelbaren Verstärker (313) und Digital-Wandlung im ADC (315), wie beschrieben, von dieser Kontrolllogik (317) zwischengespeichert.In addition, a comparison with a second threshold value and a third threshold value can be used to check whether one of the level signals (310) is actually always in the upper control range, a second level signal of the level signals (310) is in the middle control range and a third level signal of the level signals (310) is in the lower control area. This comparison is preferably made by the control logic (317) at the end of a measurement run. Until then, the level values of the individual level signals (310), after amplification in the controllable amplifier (313) and digital conversion in the ADC (315), as described, are temporarily stored by this control logic (317).
Hieraus ergibt sich bis hierher folgende Liste der Schwellwerte
In einem ersten Schritt (600) wird durch den Multiplexer (311) ein erstes der drei Pegelsignale (310) ausgewählt und ein erster Messwert (316) ermittelt, der durch die Kontrolllogik (317) gespeichert wird.In a first step (600), a first of the three level signals (310) is selected by the multiplexer (311) and a first measured value (316) is determined, which is stored by the control logic (317).
In einem zweiten Schritt (601) wird durch den Multiplexer (311) ein zweites der drei Pegelsignale (310) ausgewählt und ein zweiter Messwert (316) ermittelt, der durch die Kontrolllogik (317) ebenfalls gespeichert wird.In a second step (601), a second of the three level signals (310) is selected by the multiplexer (311) and a second measured value (316) is determined, which is also stored by the control logic (317).
In einem dritten Schritt (602) wird durch den Multiplexer (311) ein drittes der drei Pegelsignale (310) ausgewählt und ein dritter Messwert (316) ermittelt, der durch die Kontrolllogik (317) typischerweise auch gespeichert wird.In a third step (602), a third of the three level signals (310) is selected by the multiplexer (311) and a third measured value (316) is determined, which is typically also stored by the control logic (317).
Im vierten Schritt (603) wird aus diesen drei Werten der Messwert (345) durch die Kontrolllogik (317) ermittelt, aber typischerweise noch nicht ausgegeben.In the fourth step (603), the measured value (345) is determined from these three values by the control logic (317), but is typically not yet output.
Im fünften Schritt (604) wird der Messwert (345) typischerweise bewertet.In the fifth step (604), the measured value (345) is typically evaluated.
Wird der Messwert, insbesondere im Vergleich mit weiteren Messwerten, die parallel oder zuvor gemessen wurden, und/oder mit weiteren Schwellwerten als in Ordnung durch die Kontrolllogik (317) bewertet, so wird in einem sechsten Schritt (606) dieser typischerweise ausgegeben und das System wird typischerweise nicht umparametrisiert.If the measured value is evaluated as OK by the control logic (317), in particular in comparison with other measured values that were measured in parallel or previously, and/or with other threshold values, then in a sixth step (606) this is typically output and the system is typically not reparameterized.
Wird der Messwert, insbesondere im Vergleich mit weiteren Messwerten, die parallel oder zuvor gemessen wurden, und/oder mit weiteren Schwellwerten als nicht in Ordnung durch die Kontrolllogik (317) bewertet, so wird in einem fünften Schritt (605) beispielsweise der letzte als i.O bewertete Messwert ausgegeben und das System wird typischerweise umparametrisiert. Außerdem erfolgt typischerweise eine Fehlermeldung an ein übergeordnetes System. Es ist aber auch denkbar, diese Fehlermeldung in einem Zähler zu erfassen und eine Fehlermeldung erst beim Erreichen eines bestimmten Zählerstandes durch die Kontrolllogik absetzen zu lassen. Das Verhalten dieses Zählers kann dabei so gestaltet werden, dass eine korrekte Messung den Zähler sofort zurücksetzt und ggf. eine entsprechende Entwarnung an ein übergeordnetes System abgesetzt wird. Es kann aber auch mit der gleichen oder einer anderen Geschwindigkeit bis auf Null wieder abwärts gezählt werden, wie aufwärts gezählt wird.If the measured value is evaluated as not OK by the control logic (317), in particular in comparison with other measured values that were measured in parallel or previously, and/or with other threshold values, then in a fifth step (605), for example, the last one is evaluated as OK evaluated measured value is output and the system is typically reparameterized. In addition, an error message is typically sent to a higher-level system. However, it is also conceivable for this error message to be recorded in a counter and for the control logic to issue an error message only when a certain counter reading is reached. The behavior of this counter can be designed in such a way that a correct measurement resets the counter immediately and, if necessary, a corresponding all-clear signal is sent to a higher-level system. However, it can also be counted down to zero at the same or a different speed as is counted up.
Die besagte Umparametriesierung des Systems betrifft typischerweise
- a. die die Frequenz des Erregersignals (322, 522) und/oder
- b. einen für die Erzeugung des Erregersignals (322, 522) verwendeten Spreiz-Code und/oder
- c. ein für die Erzeugung des Erregersignals verwendetes Pseudozufallssignal, insbesondere das Rückkoppelpolynom eines rückgekoppelten Schieberegisters.
- a. the frequency of the excitation signal (322, 522) and / or
- b. a spreading code used to generate the excitation signal (322, 522) and/or
- c. a pseudo-random signal used to generate the excitation signal, in particular the feedback polynomial of a feedback shift register.
Nach dem sechsten oder fünften Schritt beginnt der Messdurchgang in diesem Beispiel wieder mit dem ersten Schritt.After the sixth or fifth step, the measurement process in this example starts again with the first step.
In
Der Multiplexer (311) wird nun einfach entsprechend erweitert. Vorzugsweise bezieht sich ein Messdurchgang auf die Ausgänge eines Synchrondemodulatorblocks (309, 509)The multiplexer (311) is now simply expanded accordingly. A measurement run preferably relates to the outputs of a synchronous demodulator block (309, 509)
Es ist nun sinnvoll, die korrekte Funktion des Sensorsystems mit den zusätzlichen zweiten Pegelsignalen (510), die dem zweiten Synchrondemodulatorblock (509) entstammen, ebenfalls zu überprüfen. Die Summe der Amplituden der Dreiecksspannungen der Dreieckssignale (308) nach der Gleichrichtung durch den Synchrondemodulator zu den zweiten Pegelsignalen (509) muss hier wieder Null Volt betragen. Auch diese Summe der Amplituden der Dreiecksspannungen der Dreieckssignale (308) kann somit zur Bewertung des Sensorzustands wiederum ausgewertet werden. Auch hierdurch können Fehlerzustände (Gegentaktfehler) erkannt werden, die den Sensor und/oder die Auswertung in asymmetrischer Weise betreffen. Durch ein vom ersten Erregersignal (322) unterschiedliches zweites Erregersignal (522) kann dies beispielsweise bei einer anderen Frequenz geschehen. In der vorschlagsgemäßen Vorrichtung wird daher von der Spannungssumme die Betriebsspannung einmal bzw. der besagte Offset zweimal abgezogen, wodurch sich auch das zweite Summensignal (526) wieder in der Mitte des Aussteuerbereichs nachfolgender Verstärker befindet.It now makes sense to also check the correct functioning of the sensor system with the additional second level signals (510) which come from the second synchronous demodulator block (509). The sum of the amplitudes of the triangular voltages of the triangular signals (308) after rectification by the synchronous demodulator to form the second level signals (509) must again be zero volts here. This sum of the amplitudes of the triangular voltages of the triangular signals (308) can thus in turn be evaluated to evaluate the sensor state. Error states (push-pull errors) that affect the sensor and/or the evaluation in an asymmetrical manner can also be detected in this way. A second excitation signal (522) that is different from the first excitation signal (322) can do this, for example, at a different frequency. In the proposed device, therefore, the operating voltage is subtracted once from the voltage sum and the said offset is subtracted twice, as a result of which the second sum signal (526) is again in the middle of the modulation range of subsequent amplifiers.
Diese Bildung des zweiten Summensignals (526) durch Summenbildung der zweiten Pegelsignale (510) findet in einer zweiten Summiereinrichtung (524) statt.This formation of the second sum signal (526) by summation of the second level signals (510) takes place in a second summing device (524).
Das so gebildete zweite Summensignal (526) wird beispielsweise mittels eines fünften Komparators (541) mit einem sechsten Schwellwert (527), beispielsweise ebenfalls in Form einer ersten Referenzspannung (Vref1) verglichen, die oberhalb des besagten Offsets liegt, und beispielsweise mittels eines sechsten Komparators (542) mit einem siebten Schwellwert (530), beispielsweise ebenfalls in Form einer zweiten Referenzspannung (Vref2) verglichen, die unterhalb des Offsets liegt. Es ergeben sich dann typischerweise ein fünftes Ergebnissignal (534) und ein viertes Ergebnissignal (533). Liegt die Spannung des zweiten Summensignals (526) außerhalb des durch die erste Referenzspannung (Vref1), also den sechsten Schwellwert (527), und die zweite Referenzspannung (Vref2), also den siebten Schwellwert (530), definierten, zulässigen Summenspannungsschlauches, so liegt wieder ein entsprechend der Aufgabe des Vorschlags zu detektierender Symmetriefehler vor.The second sum signal (526) formed in this way is compared, for example, by means of a fifth comparator (541) with a sixth threshold value (527), for example also in the form of a first reference voltage (V ref1 ), which is above said offset, and for example by means of a sixth Comparator (542) with a seventh threshold (530), for example also in the form of a second reference voltage (V ref2 ) compared, which is below the offset. A fifth result signal (534) and a fourth result signal (533) then typically result. If the voltage of the second sum signal (526) is outside the permissible sum voltage range defined by the first reference voltage (Vref1), i.e. the sixth threshold value (527), and the second reference voltage (V ref2 ), i.e. the seventh threshold value (530), then there is again a symmetry error to be detected according to the task of the proposal.
Natürlich ist es auch denkbar, den Messdurchgang auf alle Synchrondemodulatorblöcke zu beziehen. Dies aber insofern von Nachteil, als dass die Auflösung eines Blockes dann reduziert wird.Of course, it is also conceivable to relate the measurement run to all synchronous demodulator blocks. However, this is disadvantageous in that the resolution of a block is then reduced.
Ggf. können die oben angegebenen Schwellwerte, das betrifft den vierten und fünften, sowie den zweiten und dritten und den neunten Schwellwert, entsprechend verdoppelt werden.If necessary, the threshold values specified above, which relates to the fourth and fifth, as well as the second and third and the ninth threshold, can be doubled accordingly.
Besonders vorteilhaft ist es, wenn mindestens einer der Signalgeneratoren (320, 520) ein Zufallssignal als Erregersignal (322, 522) verwendet. Auch ist die Verwendung eines Pseudozufallssignals möglich.It is particularly advantageous if at least one of the signal generators (320, 520) uses a random signal as the excitation signal (322, 522). It is also possible to use a pseudo-random signal.
Eine weitere vorteilhafte Ausbildung ist die Verwendung eines Spreiz-Codes für die Erzeugung eines Erregersignals (322, 522) durch einen der Signalgeneratoren (520, 320). Bei einem sehr langen Spreiz-Code steigt jedoch die Reaktionszeit des Sensorsystems. Daher ist es sinnvoll, wenn in diesem Fall der jeweils andere Signalgenerator einen kürzeren Spreizcode oder gar keinen Spreizcode verwendet. Die Spreiz-Codes oder der Basistakt der Signalgeneratoren (520, 320) zur Erzeugung der Erregersignale (322, 522) sollten dabei vorzugsweise so gewählt werden, dass sie zu zueinander orthogonalen Signalen führen. Dies kann gewährleistet werden, wenn der Basistakt des ersten Signalgenerators (322) das 2*m-Fache des Basistakts des zweiten Signalgenerators (522) beträgt und die Spreiz-Code-Länge für den ersten Spreiz-Code des ersten Signalgenerators, einen digitalen Spreiz-Code vorausgesetzt, 2*m Takte beträgt und der erste Spreiz-Code m 1-Werte und m 0-Werte enthält. Auch der zweite Spreiz-Code für die Signalerzeugung durch den zweiten Signalgenerator sollte eine Länge einer geraden Anzahl von Takten haben und gleich viele 1- Werte und 0-Werte aufweisen.A further advantageous embodiment is the use of a spread code for generating an excitation signal (322, 522) by one of the signal generators (520, 320). With a very long spread code, however, the response time of the sensor system increases. It is therefore useful if, in this case, the other signal generator uses a shorter spread code or no spread code at all. The spread codes or the base clock of the signal generators (520, 320) for generating the excitation signals (322, 522) should preferably be selected in such a way that they result in signals that are orthogonal to one another. This can be guaranteed if the base clock of the first signal generator (322) is 2*m times the base clock of the second signal generator (522) and the spread code length for the first spread code of the first signal generator is a digital spread code is 2*m clocks and the first spreading code contains m 1's and m 0's. The second spread code for the signal generation by the second signal generator should also have an even number of clock pulses and have the same number of 1 values and 0 values.
Auch ist es denkbar, dass die beiden Signalgeneratoren jeweils ein Signal unterschiedlicher Frequenz aussenden, wobei bevorzugt das eine Signal ein ganzzahliges Vielfaches des anderen Signals ist. Erregersignale unterschiedlicher Frequenz sind einfachste Beispiele orthogonaler Erregersignale.It is also conceivable that the two signal generators each emit a signal of different frequency, with one signal preferably being an integral multiple of the other signal. Excitation signals of different frequencies are the simplest examples of orthogonal excitation signals.
Es ist sinnvoll, wenn die Kontrolllogik (317) in diesem Fall für die unterschiedlichen Erregersignale (322, 522) einen zweiten Messwert (545) ausgibt.In this case, it makes sense if the control logic (317) outputs a second measured value (545) for the different excitation signals (322, 522).
Ebenso ist es selbstverständlich möglich, dass ein oder mehrere Erregersignale (322, 522), wie beschrieben, nach jeder Messsequenz, also der Messung aller Pegelsignale (310, 510) geändert werden. Dies kann
- d. die Frequenz des Erregersignals (322, 522) betreffen, was einem Frequency-Hopping-Verfahren entspricht, und/oder
- e. einen für die Erzeugung des Erregersignals (322, 522) verwendeten Spreiz-Code betreffen und/oder
- f. ein für die Erzeugung des Erregersignals verwendetes Pseudozufallssignal, insbesondere das Rückkoppelpolynom eines rückgekoppelten Schieberegisters, betreffen.
- i.e. relate to the frequency of the excitation signal (322, 522), which corresponds to a frequency hopping method, and/or
- e. relate to a spreading code used to generate the excitation signal (322, 522) and/or
- f. a pseudo-random signal used to generate the excitation signal, in particular the feedback polynomial of a feedback shift register.
Auf diese Weise können durch Raummultiplex und/oder Zeitmultiplex mehrere Messwerte (345, 545) gewonnen werden, die miteinander und mit weiteren Schwellwerten insbesondere durch Mittelwert und Differenzbildung in einer Auswerteeinheit verglichen werden können. Hierdurch ist es beispielsweise möglich, bei drei parallel gemessenen Messwerten mit drei Erregerstromquellen und drei jeweils zugeordneten Erregerströmen, die durch drei Erregersignale gesteuert werden, drei Messwerte zu erzeugen und damit ein Mehrheits-Voting für den wahrscheinlich korrekten Messwert zu generieren. Hierbei werden durch drei Synchrondemodulatorblöcke jeweils m Pegelsignale erzeugt, die dann wie bereits beschreiben verarbeitet werden. Jeder der drei Zweige wird dabei von je einem Erregersignal gespeist, das aus einem jeweiligen von drei Signalgeneratoren stammt. Natürlich ist es denkbar, dass ein Signalgenerator mehrere dieser verschiedenen Erregersignale gleichzeitig erzeugt.In this way, a number of measured values (345, 545) can be obtained by space multiplex and/or time multiplex, which can be compared with one another and with other threshold values, in particular by averaging and calculating the difference in an evaluation unit. This makes it possible, for example, for three measured values measured in parallel with three excitation current sources and three associated excitation currents, which are controlled by three excitation signals, to generate three measured values and thus generate a majority voting for the probably correct measured value. In this case, m level signals are generated by three synchronous demodulator blocks, which are then processed as already described. Each of the three branches is fed by an excitation signal that originates from one of three signal generators. It is of course conceivable that a signal generator generates several of these different excitation signals at the same time.
Abhängig von dem Bewertungsergebnis können dann die Erregersignale durch die Kontrolllogik oder eine andere Ansteuereinheit geändert werden. Dies ermöglicht es, bei einer starken EMV-Einstrahlung eine Störung zu erkennen und durch Optimierung der Erregersignale zu minimieren, solange die Störung nicht alle Erregersignale in gleicher Weise trifft, was bei typischerweise schmalbandigen Störern zutrifft.Depending on the evaluation result, the excitation signals can then be changed by the control logic or another control unit. This makes it possible to detect interference in the event of strong EMC radiation and to minimize it by optimizing the exciter signals, as long as the interference does not affect all exciter signals in the same way, which typically applies to narrow-band interferers.
Wie in vielen anderen induktiven Sensorsystemen, so ist es auch bei einem Sensorsystem entsprechend der
Diese Modulierbarkeit kann im Falle einer modulierbaren Kapazität (701) beispielsweise durch Zuschalten und Wegschalten von Teilkapazitäten (C1, C2) geschehen.
Die Verarbeitung erfolgt analog zu der der Beschreibung der
Es ist offensichtlich, dass die zweiten weiteren Pegelsignale (710) symmetrisch sein sollten und gleiche Pegel haben sollten. Abweichungen können wie zuvor als Fehler detektiert werden.It is obvious that the second further level signals (710) should be symmetrical and should have equal levels. Deviations can be detected as errors as before.
Diese Modulierbarkeit kann im Falle einer modulierbaren Induktivität (801) beispielsweise durch Zuschalten und Wegschalten von Teilinduktivitäten (L1, L2) geschehen.
Die Verarbeitung erfolgt wieder analog zu der der Beschreibung der
Es ist offensichtlich, dass die zweiten weiteren Pegelsignale (810) wieder symmetrisch sein sollten und gleiche Pegel haben sollten. Abweichungen können wie zuvor als Fehler detektiert werden.It is obvious that the second further level signals (810) should again be symmetrical and should have the same levels. Deviations can be detected as errors as before.
Natürlich kann diese Modulationstechnik auch kombiniert durch gleichzeitigen Einsatz einer modulierbaren Kapazität und einer modulierbaren Induktivität eingesetzt werden.Of course, this modulation technique can also be used in combination by simultaneously using a modulatable capacitance and a modulatable inductance.
Vorteileadvantages
Im Gegensatz zum Stand der Technik kann die vorschlagsgemäße Vorrichtung und das vorschlagsgemäße Verfahren somit die Fehler der Aufgabenstellung bei hoher EMV Robustheit detektieren. Besonders hervorzuheben ist, dass die Vorrichtung in der Lage ist, Gleichtakt und Gegentaktfehler zu unterscheiden und insbesondere im vorschlagsgemäßen Zusammenwirken von Anspruch 1 und 2 auch beide sicher zu detektieren.In contrast to the prior art, the proposed device and the proposed method can thus detect the errors in the task with high EMC robustness. It should be particularly emphasized that the device is able to differentiate between common mode and differential mode errors and, in particular in the proposed interaction of
Bezugszeichenlistereference list
- 22
- Erregerschleifeexcitation loop
- 300300
- Sensorsystemsensor system
- 301301
- Erregerstromquelleexcitation current source
- 303303
- induktiver Drehwinkelsensorkopfinductive rotation angle sensor head
- 304304
- Ausgangssignale des induktiven Drehwinkelsensorkopfes (303)Output signals of the inductive rotation angle sensor head (303)
- 305305
- EMV-FilterblockEMC filter block
- 306306
- gefilterte Ausgangssignale (306) des Drehwinkelsensorkopfes (303)filtered output signals (306) of the rotation angle sensor head (303)
- 307307
- Stern-Dreiecks-UmwandlungsblockStar-delta conversion block
- 308308
- Dreieckssignaletriangular signals
- 309309
- Synchrondemodulatorblocksynchronous demodulator block
- 310310
- Pegelsignalelevel signals
- 311311
- Analog-Multiplexeranalog multiplexer
- 312312
- Multiplexerausgangssignalmultiplexer output signal
- 313313
- regelbarer Verstärkeradjustable amplifier
- 314314
- Verstärkerausgangssignalamplifier output signal
- 315315
- Analog-zu-Digital-Wandler (ADC)Analog to Digital Converter (ADC)
- 316316
- ADC-AusgangssignalADC output signal
- 317317
- Kontrolllogikcontrol logic
- 318318
- Verstärkerregelsignalamplifier control signal
- 319319
- Multiplexersteuersignalmultiplexer control signal
- 320320
- Takt- oder SignalgeneratorClock or signal generator
- 321321
- Steuersignal für die Gleichrichtung.Control signal for rectification.
- 322322
- Erregersignalexcitation signal
- 324324
- Summier-Einrichtung zur Bildung des Summensignals (326)Summation device for forming the sum signal (326)
- 326326
- Summensignal der Pegelsignale (310)Sum signal of the level signals (310)
- 327327
- erster Schwellwertfirst threshold
- 330330
- achter Schwellwerteighth threshold
- 333333
- erstes Ergebnissignalfirst result signal
- 334334
- sechstes Ergebnissignalsixth result signal
- 335335
- vierter Schwellwert, der zulässige maximale Verstärkungswertfourth threshold, the allowed maximum gain value
- 336336
- fünfter Schwellwert, der zulässige minimale Verstärkungswertfifth threshold, the allowable minimum gain value
- 337337
- zweites Ergebnissignalsecond result signal
- 338338
- drittes Ergebnissignalthird result signal
- 341341
- erster Komparator zur Bildung des sechsten Ergebnissignals (334) durch Vergleich des ersten Schwellwertes (327) mit dem Summensignal (326)first comparator for forming the sixth result signal (334) by comparing the first threshold value (327) with the sum signal (326)
- 342342
- zweiter Komparator zur Bildung des ersten Ergebnissignals (333) durch Vergleich des achten Schwellwertes (330) mit dem Summensignal (326)second comparator for forming the first result signal (333) by comparing the eighth threshold value (330) with the sum signal (326)
- 343343
- dritter Komparator zur Bildung des zweiten Ergebnissignals (337) durch Vergleich des vierten Schwellwertes (335) mit dem Verstärkerregelsignal (318)third comparator for forming the second result signal (337) by comparing the fourth threshold value (335) with the amplifier control signal (318)
- 344344
- vierter Komparator zur Bildung des dritten Ergebnissignals (338) durch Vergleich des fünften Schwellwertes (336) mit dem Verstärkerregelsignal (318)fourth comparator for forming the third result signal (338) by comparing the fifth threshold value (336) with the amplifier control signal (318)
- 345345
- gesuchter Messwert (345) des DrehwinkelsMeasured value (345) of the angle of rotation sought
- 401401
- erster Differenzverstärker zur Stern-Dreieckumwandlung der gefilterten Ausgangssignale (306) des Drehwinkelsensorkopfes (303) in ein Dreieckssignal (308)first differential amplifier for star-delta conversion of the filtered output signals (306) of the rotation angle sensor head (303) into a triangular signal (308)
- 402402
- zweiter Differenzverstärker zur Stern-Dreieckumwandlung der gefilterten Ausgangssignale (306) des Drehwinkelsensorkopfes (303) in ein Dreieckssignal (308)second differential amplifier for star-delta conversion of the filtered output signals (306) of the angle of rotation sensor head (303) into a triangular signal (308)
- 403403
- dritter Differenzverstärker zur Stern-Dreieckumwandlung der gefilterten Ausgangssignale (306) des Drehwinkelsensorkopfes (303) in ein Dreieckssignal (308)third differential amplifier for star-delta conversion of the filtered output signals (306) of the rotation angle sensor head (303) into a triangular signal (308)
- 501501
- zweite Erregerstromquellesecond excitation current source
- 509509
- zweiter Synchrondemodulatorblocksecond synchronous demodulator block
- 510510
- zweite Pegelsignalesecond level signals
- 520520
- zweiter Takt- oder Signalgeneratorsecond clock or signal generator
- 521521
- zweites Steuersignal für die Gleichrichtung.second control signal for the rectification.
- 522522
- zweites Erregersignalsecond excitation signal
- 524524
- zweite Summier-Einrichtung zur Bildung des zweiten Summensignals (526)second summing device for forming the second sum signal (526)
- 526526
- zweites Summensignal der zweiten Pegelsignale (510)second sum signal of the second level signals (510)
- 527527
- sechster Schwellwertsixth threshold
- 530530
- siebter Schwellwertseventh threshold
- 533533
- viertes Ergebnissignalfourth result signal
- 534534
- fünftes Ergebnissignalfifth result signal
- 541541
- fünfter Komparator zur Bildung des fünften Ergebnissignals (534) durch Vergleich des sechsten Schwellwertes (527) mit dem zweiten Summensignal (526)fifth comparator for forming the fifth result signal (534) by comparing the sixth threshold value (527) with the second sum signal (526)
- 542542
- sechster Komparator zur Bildung des vierten Ergebnissignals (533) durch Vergleich des siebten Schwellwertes (530) mit dem zweiten Summensignal (526)sixth comparator for forming the fourth result signal (533) by comparing the seventh threshold value (530) with the second sum signal (526)
- 545545
- zweiter Messwert des Drehwinkelssecond reading of the angle of rotation
- 600600
- erster Schritt eines beispielhaften Messdurchgangs (Messung eines ersten der beispielhaft drei Pegelsignale (310))first step of an exemplary measurement run (measurement of a first of the exemplary three level signals (310))
- 601601
- zweiter Schritt eines beispielhaften Messdurchgangs (Messung eines zweiten der beispielhaft drei Pegelsignale (310))second step of an exemplary measurement run (measurement of a second of the exemplary three level signals (310))
- 602602
- dritter Schritt eines beispielhaften Messdurchgangs (Messung eines dritten der beispielhaft drei Pegelsignale (310))third step of an exemplary measurement run (measurement of a third of the exemplary three level signals (310))
- 603603
- vierter Schritt eines beispielhaften Messdurchgangs (Ermittlung des Messergebnisses (345) vor Ausgabe durch die Kontrolllogik (317))Fourth step of an exemplary measurement run (determination of the measurement result (345) before output by the control logic (317))
- 604604
- fünfter Schritt eines beispielhaften Messdurchgangs (Bewertung des Messergebnisses (345))fifth step of an exemplary measurement run (evaluation of the measurement result (345))
- 605605
- sechster Schritt eines beispielhaften Messdurchgangs (Durchführung der Aktionen im Falle eines korrekten Messergebnisses z.B. Ausgabe des Messergebnisses (345))Sixth step of an exemplary measurement run (execution of actions in the event of a correct measurement result, e.g. output of the measurement result (345))
- 606606
- siebter Schritt eines beispielhaften Messdurchgangs (Durchführung der Aktionen im Falle eines nicht korrekten Messergebnisses z.B. Ausgabe eines vorhergehenden Messergebnisses (345))Seventh step of an exemplary measurement run (execution of actions in the event of an incorrect measurement result, e.g. output of a previous measurement result (345))
- 701701
- modulierbare Kapazität, die mit der Erregerschleife (2) einen LC-Schwingkreis bildet.Capacitance that can be modulated, which forms an LC resonant circuit with the excitation loop (2).
- 709709
- zweiter weiterer Synchrondemodulatorblocksecond additional synchronous demodulator block
- 710710
- zweite weitere Pegelsignalesecond further level signals
- 720720
- zweiter weiterer Takt- oder Signalgeneratorsecond additional clock or signal generator
- 721721
- zweites weiteres Steuersignal für die Gleichrichtung.second further control signal for the rectification.
- 722722
- zweites weiteres Erregersignalsecond further excitation signal
- 801801
- modulierbare Induktivität, die mit der Erregerschleife (2) und einer weiteren Kapazität einen LC-Schwingkreis bildet.inductance that can be modulated, which forms an LC resonant circuit with the excitation loop (2) and another capacitance.
- 809809
- zweiter weiterer Synchrondemodulatorblocksecond additional synchronous demodulator block
- 810810
- zweite weitere Pegelsignalesecond further level signals
- 820820
- zweiter weiterer Takt- oder Signalgeneratorsecond additional clock or signal generator
- 821821
- zweites weiteres Steuersignal für die Gleichrichtung.second further control signal for the rectification.
- 822822
- zweites weiteres Erregersignal second further excitation signal
- ΔφΔφ
- Winkelwellenlängeangular wavelength
- ΔωΔω
- = ωmax- ωmin Bandbreite des Erregersignals (322) (Betrag)= ω max - ω min bandwidth of the excitation signal (322) (amount)
- ωmaxωmax
- obere Grenzfrequenz des Erregersignals (322) (Betrag)upper limit frequency of the excitation signal (322) (amount)
- ωminωmin
- untere Grenzfrequenz des Erregersignals (322) (Betrag)lower limit frequency of the excitation signal (322) (amount)
- CC
- Schwingkreiskapazitätresonant circuit capacitance
- C1C1
- erste Teilkapazität der beispielhaften modulierbaren Kapazität (701)first partial capacitance of the exemplary modulatable capacitance (701)
- C2C2
- zweite Teilkapazität der beispielhaften modulierbaren Kapazität (701)second partial capacitance of the exemplary modulatable capacitance (701)
- L1L1
- erste Teilinduktivität der beispielhaften modulierbaren Induktivität (801)first partial inductance of the exemplary modulatable inductance (801)
- L2L2
- zweite Teilinduktivität der beispielhaften modulierbaren Induktivität (801)second partial inductance of the exemplary modulatable inductance (801)
- mm
- Anzahl der EmpfängerschleifenNumber of receiver loops
- OutOut
- Ausgangssignal der Vorrichtung zur Skalar-ProduktbildungOutput of dot product device
- S1S1
- erste Empfängerschleifefirst receiver loop
- S2S2
- zweite Empfängerschleifesecond receiver loop
- S3S3
- dritte Empfängerschleifethird receiver loop
- SIG1SIG1
- erstes Eingangssignal der Vorrichtung zur Skalar-Produktbildungfirst input signal of the dot product device
- SIG2SIG2
- zweites Eingangssignal der Vorrichtung zur Skalar-Produktbildungsecond input signal of the dot product device
- Smsm
- m-te Empfängerschleifemth receiver loop
- SW1SW1
- Schalter der beispielhaften modulierbaren Kapazität (701), der durch das zweite Erregersignal (522) betätigt werden kann.Switch of the exemplary modulatable capacitance (701) that can be actuated by the second excitation signal (522).
- Symsymbol
- Symmetrieachseaxis of symmetry
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015011634.7A DE102015011634B4 (en) | 2014-09-19 | 2015-09-03 | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014013949.2 | 2014-09-19 | ||
DE102014013948.4 | 2014-09-19 | ||
DE102014013949 | 2014-09-19 | ||
DE102014013948 | 2014-09-19 | ||
DE102015011634.7A DE102015011634B4 (en) | 2014-09-19 | 2015-09-03 | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102015011634A1 DE102015011634A1 (en) | 2016-03-24 |
DE102015011634B4 true DE102015011634B4 (en) | 2023-01-12 |
Family
ID=55444852
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102015011634.7A Active DE102015011634B4 (en) | 2014-09-19 | 2015-09-03 | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states |
DE102015011617.7A Active DE102015011617B4 (en) | 2014-09-19 | 2015-09-04 | Procedure for detecting asymmetrical error states and for distinguishing between symmetrical error states for ISO26262-compliant operation of a symmetrical inductive rotation angle sensor |
DE102015012090.5A Granted DE102015012090A1 (en) | 2014-09-19 | 2015-09-10 | Method for low-interference and ISO26262 compliant operation of an inductive rotation angle sensor with m outputs |
DE102015012089.1A Granted DE102015012089A1 (en) | 2014-09-19 | 2015-09-10 | Device for low-interference and ISO26262 compliant operation of an inductive rotation angle sensor with m outputs |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102015011617.7A Active DE102015011617B4 (en) | 2014-09-19 | 2015-09-04 | Procedure for detecting asymmetrical error states and for distinguishing between symmetrical error states for ISO26262-compliant operation of a symmetrical inductive rotation angle sensor |
DE102015012090.5A Granted DE102015012090A1 (en) | 2014-09-19 | 2015-09-10 | Method for low-interference and ISO26262 compliant operation of an inductive rotation angle sensor with m outputs |
DE102015012089.1A Granted DE102015012089A1 (en) | 2014-09-19 | 2015-09-10 | Device for low-interference and ISO26262 compliant operation of an inductive rotation angle sensor with m outputs |
Country Status (1)
Country | Link |
---|---|
DE (4) | DE102015011634B4 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015011634B4 (en) | 2014-09-19 | 2023-01-12 | Elmos Semiconductor Se | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states |
EP3312567B1 (en) | 2016-10-18 | 2019-12-04 | ams AG | Rotary sensor arrangement and method for determining a failure status of such arrangement |
CN107512310B (en) * | 2017-09-13 | 2023-12-08 | 无锡商业职业技术学院 | Hall effect steering wheel angle sensor based on double-stage planetary gear transmission |
DE102022121887A1 (en) | 2022-08-30 | 2024-02-29 | Infineon Technologies Ag | DEVICE AND METHOD FOR COMPENSATING SENSITIVITY Fluctuations in a MAGNETIC FIELD SENSOR CIRCUIT |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1287319B (en) | 1960-12-24 | 1969-01-16 | Continental Elektro Ind Ag | Electrical angle or length measuring device |
DE19526723C1 (en) | 1995-07-21 | 1997-02-13 | Siemens Ag | Electricity meter |
DE19738839A1 (en) | 1997-09-05 | 1999-03-11 | Hella Kg Hueck & Co | Inductive angle sensor |
DE19738836A1 (en) | 1997-09-05 | 1999-03-11 | Hella Kg Hueck & Co | Inductive angle sensor |
US20020143450A1 (en) | 2001-03-27 | 2002-10-03 | Mitsubishi Denki Kabushiki Kaisha | Abnormality detecting method and device for position detecting device, and electric power steering device |
DE102004002629A1 (en) | 2004-01-19 | 2005-08-11 | Elan Schaltelemente Gmbh & Co. Kg | Inductive drive angle position sensor measurement error detection procedure sends sine and cosine output signals to processor for trigonometric comparison |
DE102010031142A1 (en) | 2010-05-07 | 2011-11-10 | Robert Bosch Gmbh | Detecting a metallic or magnetic object |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015011634B4 (en) | 2014-09-19 | 2023-01-12 | Elmos Semiconductor Se | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states |
-
2015
- 2015-09-03 DE DE102015011634.7A patent/DE102015011634B4/en active Active
- 2015-09-04 DE DE102015011617.7A patent/DE102015011617B4/en active Active
- 2015-09-10 DE DE102015012090.5A patent/DE102015012090A1/en active Granted
- 2015-09-10 DE DE102015012089.1A patent/DE102015012089A1/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1287319B (en) | 1960-12-24 | 1969-01-16 | Continental Elektro Ind Ag | Electrical angle or length measuring device |
DE19526723C1 (en) | 1995-07-21 | 1997-02-13 | Siemens Ag | Electricity meter |
DE19738839A1 (en) | 1997-09-05 | 1999-03-11 | Hella Kg Hueck & Co | Inductive angle sensor |
DE19738836A1 (en) | 1997-09-05 | 1999-03-11 | Hella Kg Hueck & Co | Inductive angle sensor |
US20020143450A1 (en) | 2001-03-27 | 2002-10-03 | Mitsubishi Denki Kabushiki Kaisha | Abnormality detecting method and device for position detecting device, and electric power steering device |
DE102004002629A1 (en) | 2004-01-19 | 2005-08-11 | Elan Schaltelemente Gmbh & Co. Kg | Inductive drive angle position sensor measurement error detection procedure sends sine and cosine output signals to processor for trigonometric comparison |
DE102010031142A1 (en) | 2010-05-07 | 2011-11-10 | Robert Bosch Gmbh | Detecting a metallic or magnetic object |
Also Published As
Publication number | Publication date |
---|---|
DE102015011617B4 (en) | 2023-01-12 |
DE102015012089A1 (en) | 2016-03-24 |
DE102015011617A1 (en) | 2016-03-24 |
DE102015011634A1 (en) | 2016-03-24 |
DE102015012090A1 (en) | 2016-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1662353B1 (en) | Method and device for recognition of the direction of travel | |
DE102015011634B4 (en) | Device for ISO26262-compliant operation of an inductive angle of rotation sensor by detecting asymmetric error states | |
DE102007056468A1 (en) | Measurement signal processing device and method for processing at least two measurement signals | |
DE102009000866A1 (en) | Signal processing device for sensing device | |
DE3200529A1 (en) | ANTI-BLOCKING SYSTEM | |
EP1853927B1 (en) | Motion sensor equipped with encoder monitoring circuit and corresponding encoder monitoring method | |
DE3642771C2 (en) | ||
DE112021002293T5 (en) | SYSTEM AND METHOD FOR MONITORING AN ANALOG FRONT END CIRCUIT (AFE CIRCUIT) OF AN INDUCTIVE POSITION SENSOR | |
DE1945206A1 (en) | Device for interpolation | |
EP3311119A1 (en) | Control circuit and method for checking the plausibility of a rotor position angle | |
DE102021108192A1 (en) | CIRCUITS AND METHODS FOR DETECTING SHORT CIRCUITS AND/OR OPEN CIRCUITS IN DIFFERENTIALLY OPERATED LINE NETWORKS | |
DE102011081026A1 (en) | Method for functional testing of an inertial sensor and inertial sensor | |
EP1733196A1 (en) | Arrangement for measuring the torque of rotating machine parts | |
WO2010063554A1 (en) | Domestic appliance comprising a measuring unit and method for transmitting a measurement variable | |
EP1801964A1 (en) | Method for correcting an analogue amplifier output signal, amplifier module and measurement device | |
EP2981851A1 (en) | Object locater and method for locating a metallic and/or magnetizable object | |
DE102010048186B4 (en) | Method, circuit arrangement and monitoring device for signal testing | |
DE102011087493B4 (en) | Capacitive encoder | |
DE19640760C2 (en) | Circuit arrangement for an inductive sensor with two separately arranged sensors | |
DE102020108928A1 (en) | Device with a sensor, control and corresponding method | |
DE102015201544A1 (en) | Rotation rate sensor and method for operating a rotation rate sensor | |
DE102004010785B4 (en) | Configurable input amplifier for position measuring devices | |
DE10306127B4 (en) | Method and circuit arrangement for determining the direction of a magnetic field | |
EP4187208A1 (en) | Assembly and method for position detection with error detection with a position sensor | |
EP2315355B1 (en) | Method and device for operating a pulse detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R081 | Change of applicant/patentee |
Owner name: ELMOS SEMICONDUCTOR SE, DE Free format text: FORMER OWNER: ELMOS SEMICONDUCTOR AKTIENGESELLSCHAFT, 44227 DORTMUND, DE |
|
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |