DE102013110890A1 - Use of enalaprilat for the treatment of neurodegenerative diseases - Google Patents

Use of enalaprilat for the treatment of neurodegenerative diseases Download PDF

Info

Publication number
DE102013110890A1
DE102013110890A1 DE102013110890.3A DE102013110890A DE102013110890A1 DE 102013110890 A1 DE102013110890 A1 DE 102013110890A1 DE 102013110890 A DE102013110890 A DE 102013110890A DE 102013110890 A1 DE102013110890 A1 DE 102013110890A1
Authority
DE
Germany
Prior art keywords
amyloid
beta
enalaprilat
alzheimer
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013110890.3A
Other languages
German (de)
Inventor
Alexey Sergeevich Ivanov
Alexandr Ivanovich Archakov
Alexandr Alexandrovich Makarov
Sergey Alexandrovich Kozin
Yury Vladimirovich Mezentsev
Elena Vladimirovna Kugaevskaya
Filipp Olegovich Tsvetkov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEDERALNOE G BYUDZHETNOE UCHREZHDENI NAUKI INST MOLEKULYARNOI BIOLOG IM V A ENGELGARDTA ROSSIISKOI A
Federalnoe gosudarstvennoe byudzhetnoe uchrezhdeni nauki Institut molekulyarnoi biologii im VA Engelgardta Rossiiskoi akademii nauk (IMB RAN)
Original Assignee
FEDERALNOE G BYUDZHETNOE UCHREZHDENI NAUKI INST MOLEKULYARNOI BIOLOG IM V A ENGELGARDTA ROSSIISKOI A
Federalnoe gosudarstvennoe byudzhetnoe uchrezhdeni nauki Institut molekulyarnoi biologii im VA Engelgardta Rossiiskoi akademii nauk (IMB RAN)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FEDERALNOE G BYUDZHETNOE UCHREZHDENI NAUKI INST MOLEKULYARNOI BIOLOG IM V A ENGELGARDTA ROSSIISKOI A, Federalnoe gosudarstvennoe byudzhetnoe uchrezhdeni nauki Institut molekulyarnoi biologii im VA Engelgardta Rossiiskoi akademii nauk (IMB RAN) filed Critical FEDERALNOE G BYUDZHETNOE UCHREZHDENI NAUKI INST MOLEKULYARNOI BIOLOG IM V A ENGELGARDTA ROSSIISKOI A
Publication of DE102013110890A1 publication Critical patent/DE102013110890A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • A61K38/556Angiotensin converting enzyme inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Neurosurgery (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Hospice & Palliative Care (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Vascular Medicine (AREA)
  • Psychiatry (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft die Verwendung chemischer Verbindungen in der Medizin und insbesondere die Verwendung von Enalaprilat, einer wasserlöslichen Substanz auf der Grundlage eines [L-Alanyl]-[L-Prolin]-Dipeptids, zur Behandlung neurodegenerativer Krankheiten in Zusammenhang einer anomalen Aufnahme von Betaamyloid in Gehirngeweben und insbesondere der Alzheimer-Krankheit. Der Vorteil der Verwendung dieser Substanz ist deren selektiver Effekt auf den molekularen Basisprozess der zinkinduzierten Dimerisierung von Betaamyloid als Ursache für das Fortschreiten der Alzheimer-Krankheit. Ein zusätzlicher Vorteil von Enalaprilat besteht darin, dass diese Substanz in der modernen medizinischen Praxis in Russland und im Ausland seit langem und weit verbreitet als orales Arzneimittel zum Kontrollieren des Blutdrucks eingesetzt wird und sich für die Gesundheit der Patienten als sicher erwies.The invention relates to the use of chemical compounds in medicine and in particular to the use of enalaprilat, a water-soluble substance based on an [L-alanyl] - [L-proline] dipeptide, for the treatment of neurodegenerative diseases in connection with an abnormal uptake of beta-amyloid in Brain tissues and especially Alzheimer's disease. The advantage of using this substance is its selective effect on the basic molecular process of zinc-induced dimerization of beta amyloid as the cause of the progression of Alzheimer's disease. An additional advantage of enalaprilat is that it has long been used widely in modern medical practice in Russia and abroad as an oral medicine to control blood pressure and has been shown to be safe for patient health.

Description

Gebiet der ErfindungField of the invention

Die Erfindung betrifft die Verwendung chemischer Verbindungen in der Medizin und insbesondere die Verwendung von Enalaprilat zur Behandlung neurodegenerativer Krankheiten in Zusammenhang mit der anomalen Aufnahme von Betaamyloid in Gehirngewebe und insbesondere Alzheimer-Krankheit (Überschriften „A61P 25/00“ und „A61P 25/28“ gemäß der überarbeiteten Internationalen Patentklassifikation) in Verbindung mit der Detektion einer neuen Eigenschaft, die dieser Verbindung innewohnt.The invention relates to the use of chemical compounds in medicine and, more particularly, to the use of enalaprilat for the treatment of neurodegenerative diseases associated with the abnormal uptake of beta-amyloid into brain tissue and, in particular, Alzheimer's disease (headings "A61P 25/00" and "A61P 25/28"). according to the revised International Patent Classification) in connection with the detection of a new property inherent in this compound.

Allgemeiner Stand der TechnikGeneral state of the art

Alzheimer-Krankheit ist eine tödliche neurodegenerative Krankheit, bei der es sich um die Hauptursache für geistige Behinderung älterer Menschen (> 55 Jahre) unabhängig von Geschlecht, ethnischer Zugehörigkeit und sozialem Status handelt [1]. Eines der neuromorphologischen Hauptmerkmale dieser Pathologie ist die übermäßige Ansammlung von Betaamyloid in Gehirngeweben in Form von extrazellulären supramolekularen Einheiten-Amyloidplaques- und nach der gängigen Amyloid-Hypothese die Ursache des Auftretens der Alzheimer-Krankheit [2]. Die Entwicklung neuer Strategien der Behandlung der Alzheimer-Krankheit erfolgt derzeit hauptsächlich auf der Grundlage der Kenntnis des Mechanismus der Zusammenlagerung von Betaamyloid [3]. Zu den anerkannten Wegen zur Suche nach Wirkstoffen zur Behandlung der Alzheimer-Krankheit gehört das Hemmen der Bildung wasserlöslicher Betaamyloid-Oligomere [4]. Die Dimerisierung von Betaamyloid-Monomeren ist eine notwendige Voraussetzung der Aggregatbildung [5–7]. Zinkionen spielen für die Aggregation von Betaamyloid eine zentrale Rolle, und spezifische Chelatbildner divalenter Metalle wurden als potenzielle Medikamente zur Therapie der Alzheimer-Krankheit patentiert [8]. Derzeit werden zur Untersuchung der Oligomerisierung von Betaamyloid häufig optische Biosensoren verwendet [9]. Unter Versuchsbedingungen bei Verwendung optischer Biosensoren induzieren Zinkionen jedoch eine nicht-reversible Polymerisierung von Betaamyloid auf der Oberfläche eines optischen Chips, was diesen Chip außer Funktion setzt und es daher nicht ermöglicht, Forschung zur Durchmusterung potenzieller Inhibitoren der zinkinduzierten Oligomerisierung von Betaamyloid zu betreiben. Kürzlich wurde festgestellt, dass Domäne 1–16 von Betaamyloid eine molekulare Determinante der zinkinduzierten Dimerisierung von Betaamyloid ist [10, 11]. Diese Daten ermöglichen die Entwicklung eines Modellsystems der zinkinduzierten Betaamyloid-Dimerisierung auf der Grundlage der Verwendung eines Biosensorsystems, bei dem auf der Oberfläche eines optischen Chips immobilisiertes Fragment 1–16 stabile zinkgebundene Dimere mit einem synthetischen Region-1-16-Analog des vorhandenen Betaamyloids bildet, zusammen mit Zinkionen als wasserlöslichem Analyt in einem Fließpuffersystem bei physiologischen pH-Werten [12]. Dieses System bietet somit die Möglichkeit, eine Fähigkeit verschiedener wasserlöslicher Substanzen zur Verhinderung der Bildung zinkgebundener Dimere der Betaamyloid-Region 1–16 im Echtzeitmodus zu beurteilen.Alzheimer's disease is a deadly neurodegenerative disease that is the leading cause of mental retardation of the elderly (> 55 years) regardless of gender, race or social status [1]. One of the major neuromorphological features of this pathology is the excessive accumulation of beta-amyloid in brain tissues in the form of extracellular supramolecular unit amyloid plaques-and, according to the common amyloid hypothesis, the cause of Alzheimer's disease [2]. The development of new strategies for the treatment of Alzheimer's disease currently occurs mainly on the basis of knowledge of the mechanism of betaamyloid assembly [3]. Recognized ways to search for agents to treat Alzheimer's disease include inhibiting the formation of water-soluble beta-amyloid oligomers [4]. The dimerization of beta-amyloid monomers is a necessary prerequisite for aggregate formation [5-7]. Zinc ions play a central role in the aggregation of beta-amyloid, and specific chelators of divalent metals have been patented as potential drugs for the treatment of Alzheimer's disease [8]. Currently, optical biosensors are widely used to study the oligomerization of beta-amyloid [9]. However, under experimental conditions using optical biosensors, zinc ions induce a non-reversible polymerization of beta-amyloid on the surface of an optical chip, rendering this chip inoperative and therefore unable to conduct research to screen potential inhibitors of zinc-induced oligomerization of beta-amyloid. Recently, beta-amyloid domain 1-16 was found to be a molecular determinant of zinc-induced dimerization of beta-amyloid [10, 11]. These data allow the development of a zinc-induced beta-amyloid dimerization model system based on the use of a biosensor system in which fragment 1-16 immobilized on the surface of an optical chip forms stable zinc-bonded dimers with a synthetic region 1-16 analog of the existing beta amyloid , together with zinc ions as a water-soluble analyte in a fluid buffer system at physiological pH values [12]. This system thus provides the ability to assess the ability of various water-soluble substances to inhibit the formation of zinc-bound dimers of beta-amyloid region 1-16 in real-time mode.

Figurencharacters

1 zeigt ein Sensogramm des Immobilisationsprozesses des Peptids Acetyl-DAEFRHDSGYEVHHQK-Amid («Aβ1-16-G4-C») auf der Oberfläche des optischen Chips „CM5“. 1 shows a sensitogram of the immobilization process of the peptide acetyl DAEFRHDSGYEVHHQK amide ("Aβ1-16-G4-C") on the surface of the optical chip "CM5".

2 zeigt ein Sensogramm der Bindung des wasserlöslichen synthetischen Peptids «Аβ1-16» an das immobilisierte Peptid «Aβ1-16-G4-C» in der Gegenwart von Enalaprilat, Lisinopril und Captopril sowie in deren Abwesenheit. Sensogramm 1: 15 μM Аβ1-16 in 10 mM HEPES-Puffer (рН 6,8), umfassend 100 μM Zn2+; Sensogramm 2: 15 μM Аβ1-16 in 10 mM HEPES-Puffer (рН 6,8), umfassend 100 μM Zn2+ und 100 μM Captopril; Sensogramm 3: 15 μM Аβ1-16 in 10 mM HEPES-Puffer (рН 6,8), umfassend 100 μM Zn2+ und 100 μM Lisinopril; Sensogramm 4: 15 μM Аβ1-16 in 10 mM HEPES-Puffer (рН 6,8), umfassend 100 μM Zn2+ und 100 μM Enalaprilat. 2 shows a sensitogram of the binding of the water-soluble synthetic peptide «Aβ1-16» to the immobilized peptide «Aβ1-16-G4-C» in the presence of enalaprilat, lisinopril and captopril and in their absence. Sensogram 1: 15 μM Aβ1-16 in 10 mM HEPES buffer (RN 6.8) containing 100 μM Zn 2+ ; Sensogram 2: 15 μM Aβ1-16 in 10 mM HEPES buffer (RN 6.8) comprising 100 μM Zn 2+ and 100 μM captopril; Sensogram 3: 15 μM Aβ1-16 in 10 mM HEPES buffer (RN 6.8) comprising 100 μM Zn 2+ and 100 μM lisinopril; Sensogram 4: 15 μM Aβ1-16 in 10 mM HEPES buffer (RN 6.8) comprising 100 μM Zn 2+ and 100 μM enalaprilat.

3 zeigt die Fähigkeit von Enalaprilat zur Hemmung der Bildung zinkinduzierter Dimere von Betaamyloid. 3 demonstrates the ability of enalaprilat to inhibit the formation of zinc-induced dimers of beta-amyloid.

Offenbarung der ErfindungDisclosure of the invention

Die vorliegende Erfindung betrifft die Verwendung von Enalaprilat, einer wasserlöslichen Substanz auf der Grundlage eines Ala-Pro-Dipeptids als spezifischem Inhibitor der zinkinduzierten Dimerisierung von Betaamyloid zum Behandeln neurodegenerativer Störungen des zentralen Nervensystems in Zusammenhang mit pathologischer Aggregation von Betaamyloid, insbesondere zum Behandeln der Alzheimer-Krankheit. Der Vorteil der Verwendung dieser Substanz ist deren selektiver Effekt auf den molekularen Basisprozess der zinkinduzierten Dimerisierung von Betaamyloid als Ursache für das Fortschreiten der Alzheimer-Krankheit. Ein zusätzlicher Vorteil von Enalaprilat besteht darin, dass diese Substanz in der modernen medizinischen Praxis in Russland und im Ausland seit langem und weit verbreitet als orales Arzneimittel zum Kontrollieren des Blutdrucks eingesetzt wird und sich für die Gesundheit der Patienten als sicher erwies.The present invention relates to the use of enalaprilat, a water-soluble substance based on an Ala-Pro dipeptide as a specific inhibitor of zinc-induced dimerization of beta-amyloid for treating neurodegenerative disorders of the central nervous system in connection with pathological aggregation of beta-amyloid, in particular for treating Alzheimer's disease. Illness. Of the The advantage of using this substance is its selective effect on the basic molecular process of zinc-induced dimerization of beta-amyloid as the cause of the progression of Alzheimer's disease. An additional benefit of enalaprilat is that it has long been widely used in modern medical practice in Russia and abroad as an oral drug for controlling blood pressure and has proven safe for the patients' health.

Technisches ErgebnisTechnical result

Das durch Verwendung der patentierbaren Erfindung erreichbare technische Ergebnis besteht aus der Hemmung der Bildung zinkinduzierter Dimere von Betaamyloid. The technical result achievable using the patentable invention consists in inhibiting the formation of zinc-induced dimers of beta-amyloid.

BeispieleExamples

Die Studie zur Hemmwirkung von Enalaprilat auf die Bildung zinkinduzierter Dimere von Betaamyloid umfasste das früher entwickelte In-vitro-Versuchsmodell der zinkinduzierten Betaamyloid-Dimerisierung auf der Grundlage eines optischen Biosensors der Oberflächenplasmonresonanz „BIAcore T100“ (GE Healthcare, USA) [12]. Als optischer Chip, auf dessen Oberfläche sich das immobilisierte synthetische Analog zur Betaamyloid-Region 1–16 befinden muss, wurde ein optischer Vierkanalchip „CM5“ mit einer hydrophilen carboxymethylierten Dextranmatrix verwendet. Alle Analysen auf diesem temperaturkontrollierten Chip wurden bei einer Temperatur von 25 °C durchgeführt. Die Immobilisation des synthetischen Peptids Acetyl-DAEFRHDSGYEVHHQKGGGGC-Amid („Aβ1-16-G4-C“), das an seinem N-Terminus Fragment 1-16 von Betaamyloid umfasst, auf der Oberfläche des „CM5“-Chips wurde in Übereinstimmung mit dem Protokoll zur Bildung von Thiolbindungen durchgeführt, das im „Sensor Surface Handbook“ (Sensoroberflächenhandbuch; GE Healthcare, USA) beschrieben ist. Das Peptid wurde durch Bildung einer Thiolbindung in einer 10-mM-Natriumacetatlösung (pH 4,5) immobilisiert. Zur Regenerierung wurde der „HBS“-Puffer verwendet, der 10 mM HEPES (pH 6,8), 3 mM EDTA, 0,005 % P20 und 150 mM NaCl (pH 7,4) umfasste. Der Reaktionspuffer enthielt 50 mM HEPES (pH 6,8) und 100 μM Zinkionen. Vor dem Gebrauch wurden alle Pufferlösungen filtriert (0,45 μm, Nylon). Die Immobilisationsflussgeschwindigkeit betrug 5 µl/Min. Die carboxymethylierte Dextranmatrix wurde aktiviert, indem ein Gemisch (1:1) aus 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid (EDC) und N-Hydroxysuccinimid (NHS): 30 μl, 400 mM EDC-, 100 mM NHS-Lösung, und dann ein Gemisch aus 80 mM 2-(2-Pyridinyldithioethanamin) (PDEA) in 0,1 M Natriumborat (рН 8,5) injiziert wurden. Ferner wurde die Lösung von Peptid «Aβ1-16-G4-C» (0,05 mg/ml in 0,1 М Natriumacetat-Puffer, рН 4,0), umfassend 1 M NaCl, in den aktivierten Kanal des Chips eingeführt. Nicht umgesetzte Disulfidgruppen auf der Oberfläche des „CM5“-Chips wurden mithilfe einer Lösung von 50 mM Cystein in 0,1 М Natriumacetat-Puffer (рН 4,0) neutralisiert. Die Signalstärke des immobilisierten Liganden «Aβ1-16-G4-C» war 1023 RU. Im Kontrollkanal des Chips wurde das Immobilisationsverfahren ähnlich durchgeführt, jedoch ohne einen Oberflächenaktivierungsschritt. Das Sensogramm des Immobilisationsprozesses ist in 1 angegeben. The enalaprilat inhibitory study of zinc-induced dimers of beta-amyloid included the previously developed in vitro experimental model of zinc-induced beta-amyloid dimerization based on a surface biosensing optical biosensor "BIAcore T100" (GE Healthcare, USA) [12]. As an optical chip, on the surface of which the immobilized synthetic analogue must be located to the beta amyloid region 1-16, a four channel optical chip "CM5" with a hydrophilic carboxymethylated dextran matrix was used. All analyzes on this temperature-controlled chip were carried out at a temperature of 25 ° C. The immobilization of the synthetic peptide acetyl-DAEFRHDSGYEVHHQKGGGGC-amide ("Aβ1-16-G4-C") comprising at its N-terminus beta-amyloid fragment 1-16 on the surface of the "CM5" chip was performed in accordance with the Thiol bond formation protocol described in the "Sensor Surface Handbook" (GE Healthcare, USA). The peptide was immobilized by formation of a thiol bond in a 10 mM sodium acetate solution (pH 4.5). For regeneration, the "HBS" buffer containing 10 mM HEPES (pH 6.8), 3 mM EDTA, 0.005% P20 and 150 mM NaCl (pH 7.4) was used. The reaction buffer contained 50 mM HEPES (pH 6.8) and 100 μM zinc ions. Before use, all buffer solutions were filtered (0.45 μm, nylon). The immobilization flow rate was 5 μl / min. The carboxymethylated dextran matrix was activated by adding a mixture (1: 1) of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS): 30 μl, 400 mM EDC, 100 mM NHS Solution, and then a mixture of 80 mM 2- (2-pyridinyldithioethanamine) (PDEA) in 0.1 M sodium borate (RN 8.5) was injected. Further, the solution of peptide "Aβ1-16-G4-C" (0.05 mg / ml in 0.1 M sodium acetate buffer, рН 4.0) containing 1 M NaCl was introduced into the activated channel of the chip. Unreacted disulfide groups on the surface of the "CM5" chip were neutralized using a solution of 50 mM cysteine in 0.1 M sodium acetate buffer (рН 4.0). The signal strength of the immobilized ligand «Aβ1-16-G4-C» was 1023 RU. In the control channel of the chip, the immobilization procedure was similar, but without a surface activation step. The sensogram of the immobilization process is in 1 specified.

Zur Durchführung von Versuchen zum Beurteilen einer Hemmwirkung verschiedener Verbindungen, einschließlich Enalaprilat, auf die Bildung zinkgebundener Dimere der Betaamyloid-Domäne 1–16 wurden mehrere Reaktionspuffer hergestellt (Tabelle 1). Tabelle 1. Puffersysteme zum Durchführen von Versuchen unter Verwendung eines optischen Plasmonresonanz-Biosensors „BIAcore T100“ Nr. Zusammensetzung von Reaktionspuffern 1 50 mM HEPES, рН 6,8 2 50 mM HEPES, 100 μM ZnCl2, рН 6,8 3 50 mM HEPES, 100 μM ZnCl2, 100 μM Enalaprilat, рН 6,8 4 50 mM HEPES, 100 μM ZnCl2, 100 μM Captopril, рН 6,8 5 50 mM HEPES, 100 μM ZnCl2, 100 μM Lisinopril, рН 6,8 To test for inhibitory effects of various compounds, including enalaprilat, on the formation of zinc-bound dimers of beta-amyloid domain 1-16, several reaction buffers were prepared (Table 1). Table 1. Buffer systems for conducting experiments using a BIAcore T100 optical plasmon resonance biosensor No. Composition of reaction buffers 1 50 mM HEPES, рН 6,8 2 50 mM HEPES, 100 μM ZnCl 2 , RN 6.8 3 50 mM HEPES, 100 μM ZnCl 2 , 100 μM enalaprilat, RN 6.8 4 50 mM HEPES, 100 μM ZnCl 2 , 100 μM captopril, RN 6.8 5 50 mM HEPES, 100 μM ZnCl 2 , 100 μM lisinopril, RN 6.8

Unter Bezugnahme auf die prüfbare Verbindung wurden Proben des wasserlöslichen Analyts «Аβ1-16» in einem geeigneten Reaktionspuffer hergestellt. Jeder Analyt (Gesamtvolumen von 25 µl) wurde dann mit einer Geschwindigkeit von 5 µm/Min. 300 Sekunden lang über die Chipoberfläche geleitet. Dann wurde der Reaktionspuffer ohne Analyt 300 Sekunden lang über die Chipoberfläche geleitet, und der Chip wurde mit einem Regenerationspuffer (20 µl) regeneriert. Von dem Signal entsprechend dem Immobilisationsligandenkanal wurde ein Signal von dem Kontrollkanal des Chips (ohne Immobilisationsligand) abgezogen.With reference to the testable compound, samples of the water-soluble analyte "Aβ1-16" were prepared in a suitable reaction buffer. Each analyte (total volume of 25 μl) was then centrifuged at a rate of 5 μm / min. Passed over the chip surface for 300 seconds. Then, the reaction buffer was passed over the chip surface without analyte for 300 seconds, and the chip was regenerated with a regeneration buffer (20 μl). From the signal corresponding to the immobilization ligand channel, a signal was withdrawn from the control channel of the chip (without immobilization ligand).

Kontrollproben des wasserlöslichen Analyts «Аβ1-16» wurden in Reaktionspuffer Nr. 1 und Nr. 2 (vgl. Tabelle 1) hergestellt. Es war bereits früher gezeigt worden, dass ohne Zinkionen keine Reaktion des Analyts «Аβ1-16» mit dem immobilisierten «Aβ1-16-G4-C» beobachtet wird, während in Anwesenheit von Zinkionen auf der Oberfläche eines optischen Chips Dimerisierung unter Beteiligung des immobilisierten «AP1-16-G4-C» und des Analyts «Аβ1-16» verzeichnet wird [12]. Unter dieser Annahme wurde Puffer Nr. 2 als Reaktionspuffer, der prüfbare Verbindungen aufwies, verwendet. Control samples of the water-soluble analyte "Aβ1-16" were prepared in reaction buffer # 1 and # 2 (see Table 1). It has already been shown previously that without zinc ions no reaction of the analyte "Aβ1-16" with the immobilized "Aβ1-16-G4-C" is observed, whereas in the presence of zinc ions on the surface of an optical chip dimerization involving the immobilized «AP1-16-G4-C» and the analyte «Aβ1-16» [12]. Under this assumption, Buffer # 2 was used as the reaction buffer having testable compounds.

In 2 sind Sensogramme der Bindung des wasserlöslichen synthetischen Analogs der Region 1–16 von Betaamyloid, Acetyl-DAEFRHDSGYEVHHQK-Amid («Аβ1-16»), mit dem immobilisierten Peptid «Aβ1-16-G4-C» in Gegenwart von Enalaprilat, Lisinopril und Captopril sowie in deren Abwesenheit gezeigt. 3 zeigt ein Histogramm (basierend auf den vorstehend genannten Sensogrammen) von Signalstärken eines optischen Biosensors auf dem Chip, auf dem das Peptid «Aβ1-16-G4-C» immobilisiert ist, und als wasserlöslicher Analyt wurde das Peptid «Аβ1-16» in Gegenwart von Zinkionen (100 µM) bei pH 6,8 verwendet, abhängig vom Vorhandensein von Enalaprilat, Captopril und Lisinopril in einer Analytstudie. In Abwesenheit dieser Substanzen ist die Signalstärke maximal (76 RU) und entspricht der Bildung zinkgebundener Dimere der Peptide «Аβ1-16» und «Aβ1-16-G4-C». Das Vorhandensein von Enalaprilat in der Analytstudie reduziert die Anzahl der Dimere abrupt, wodurch die Reduzierung des Signals des optischen Biosensors auf 10 RU induziert wird, was entsprechend den technischen Empfehlungen des Herstellers dieser Vorrichtung jenseits des Schwellenwerts der Messauthentizität liegt und auf das Nichtvorhandensein von Dimerbildung hindeutet. Gleichzeitig zeigten die übrigen geprüften Verbindungen Lisinopril und Captopril, bei denen es sich ausgehend von ihrer chemischen Struktur und ihren physikalisch-chemischen Eigenschaften um Analoge von Enalaprilat handelt [13], keinen bemerkbaren Einfluss auf die Hemmung der Bildung von Betaamyloid-Dimeren. Die resultierenden Daten belegen, dass Enalaprilat ein spezifischer Inhibitor der Bildung zinkinduzierter Dimere von Betaamyloid ist.In 2 are sensograms of the binding of the water-soluble synthetic analogue of region 1-16 of beta-amyloid, acetyl-DAEFRHDSGYEVHHQK-amide ("Аβ1-16»), with the immobilized peptide "Aβ1-16-G4-C" in the presence of enalaprilat, lisinopril and captopril and shown in their absence. 3 shows a histogram (based on the above-mentioned sensograms) of signal strengths of an optical biosensor on the chip on which the peptide "Aβ1-16-G4-C" is immobilized, and as a water-soluble analyte, the peptide "Aβ1-16" in the presence of zinc ions (100 μM) at pH 6.8, depending on the presence of enalaprilate, captopril and lisinopril in an analyte study. In the absence of these substances the signal strength is maximal (76 RU) and corresponds to formation of zinc-bound dimers of the peptides «Aβ1-16» and «Aβ1-16-G4-C». The presence of enalaprilat in the analyte study abruptly reduces the number of dimers, inducing the reduction of the signal of the optical biosensor to 10 RU, which is beyond the threshold of measurement authenticity and suggesting the absence of dimer formation according to the manufacturer's technical recommendations , At the same time, the other compounds tested, lisinopril and captopril, which are analogues of enalaprilat based on their chemical structure and their physicochemical properties, [13] showed no appreciable effect on the inhibition of the formation of beta-amyloid dimers. The resulting data demonstrate that enalaprilate is a specific inhibitor of the formation of zinc-induced dimers of beta-amyloid.

Bezugsverweisereference references

  • 1. Cummings, J.L., Alzheimer's Disease. New England Journal of Medicine, 2004. 351(1): S. 56–67 .1. Cummings, JL, Alzheimer's Disease. New England Journal of Medicine, 2004. 351 (1): p. 56-67 ,
  • 2. Hardy, J. and D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297(5580): S. 353–6 .Second Hardy, J. and DJ Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297 (5580): pp. 353-6 ,
  • 3. Golde, Т.Е., L.S. Schneider, and E.H. Koo, Anti-Ав Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011. 69(2): S. 203–21 3.Third Golde, TTE, LS Schneider, and EH Koo, Anti-Aventi Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011. 69 (2): pp. 203-21 Third
  • 4. Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011.10(9): p. 698–712 .4th Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011.10 (9): p. 698-712 ,
  • 5. Larson, M.E. and S.E. Lesne, Soluble Abeta oligomer production and toxicity. J Neurochem, 2012. 120 Suppl 1: S. 125–39 .5th Larson, ME and SE Lesne, Soluble Abeta oligomer production and toxicity. J Neurochem, 2012. 120 Suppl 1: pp. 125-39 ,
  • 6. Shankar, G.M., et al., Amyloid-[beta] protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Natural Medicines., 2008.14(8): S. 837–842 .6th Shankar, GM, et al., Amyloid- [beta] protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Natural Medicines., 2008.14 (8): p. 837-842 ,
  • 7. Fodero-Tavoletti, M.T., et al., Amyloid-B: The seeds of darkness. The International Journal of Biochemistry & Cell Biology, 2011.43(9): p. 1247–1251 .7th Fodero-Tavoletti, MT, et al., Amyloid B: The seeds of darkness. The International Journal of Biochemistry & Cell Biology, 2011.43 (9): p. 1247-1251 ,
  • 8. Bush, A.I., The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012 .8th. Bush, AI, The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012 ,
  • 9. Cheng, X.R., et al., Label-free methods for probing the interaction of clioquinol with amyloid-[small beta]. Analytical Methods, 2012. 4(8): S. 2228–2232 .9th Cheng, XR, et al., Label-free methods for probing the interaction of clioquinol with amyloid [small beta]. Analytical Methods, 2012. 4 (8): 2228-2232 ,
  • 10. Miller, Y., B. Ma, and R. Nussinov, Zinc ions promote Alzheimer A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA, 2010.107(21): S. 9490–5 .10th Miller, Y., B.M., and R. Nussinov, Zincions promote Alzheimer's A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA, 2010.107 (21): pp. 9490-5 ,
  • 11. Tsvetkov, P.O., et al., Minimal Zn(2+) binding site of amyloid-beta. Biophys J, 2010. 99(10): S. L84–6 .11th Tsvetkov, PO, et al., Minimal Zn (2+) binding site of amyloid-beta. Biophys J, 2010. 99 (10): p. L84-6 ,
  • 12. Kozin, S.A., et al., Zinc-induced dimerization of the amyloid-beta metalbinding domain 1–16 is mediated by residues 11–14. Mol Biosyst, 2011. 7(4): S. 1053–5 .12th Kozin, SA, et al., Zinc-induced dimerization of the amyloid-beta metalbinding domain 1-16 is mediated by residues 11-14. Mol Biosyst, 2011. 7 (4): pp. 1053-5 ,
  • 13. Todd, P.A. and R.C. Heel, Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs, 1986. 31(3): S. 198–248 .13th Todd, PA and RC Heel, Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs, 1986. 31 (3): pp. 198-248 ,

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte Nicht-PatentliteraturCited non-patent literature

  • Cummings, J.L., Alzheimer's Disease. New England Journal of Medicine, 2004. 351(1): S. 56–67 [0013] Cummings, JL, Alzheimer's Disease. New England Journal of Medicine, 2004. 351 (1): p. 56-67 [0013]
  • Hardy, J. and D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297(5580): S. 353–6 [0013] Hardy, J. and DJ Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297 (5580): pp. 353-6 [0013]
  • Golde, Т.Е., L.S. Schneider, and E.H. Koo, Anti-Ав Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011. 69(2): S. 203–21 [0013] Golde, TTE, LS Schneider, and EH Koo, Anti-Aventi Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011. 69 (2): pp. 203-21 [0013]
  • Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011.10(9): p. 698–712 [0013] Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011.10 (9): p. 698-712 [0013]
  • Larson, M.E. and S.E. Lesne, Soluble Abeta oligomer production and toxicity. J Neurochem, 2012. 120 Suppl 1: S. 125–39 [0013] Larson, ME and SE Lesne, Soluble Abeta oligomer production and toxicity. J Neurochem, 2012. 120 Suppl 1: pp. 125-39 [0013]
  • Shankar, G.M., et al., Amyloid-[beta] protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Natural Medicines., 2008.14(8): S. 837–842 [0013] Shankar, GM, et al., Amyloid- [beta] protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Natural Medicines., 2008.14 (8): p. 837-842 [0013]
  • Fodero-Tavoletti, M.T., et al., Amyloid-B: The seeds of darkness. The International Journal of Biochemistry & Cell Biology, 2011.43(9): p. 1247–1251 [0013] Fodero-Tavoletti, MT, et al., Amyloid B: The seeds of darkness. The International Journal of Biochemistry & Cell Biology, 2011.43 (9): p. 1247-1251 [0013]
  • Bush, A.I., The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012 [0013] Bush, AI, The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012 [0013]
  • Cheng, X.R., et al., Label-free methods for probing the interaction of clioquinol with amyloid-[small beta]. Analytical Methods, 2012. 4(8): S. 2228–2232 [0013] Cheng, XR, et al., Label-free methods for probing the interaction of clioquinol with amyloid [small beta]. Analytical Methods, 2012. 4 (8): 2228-2232 [0013]
  • Miller, Y., B. Ma, and R. Nussinov, Zinc ions promote Alzheimer A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA, 2010.107(21): S. 9490–5 [0013] Miller, Y., B.M., and R. Nussinov, Zincions promote Alzheimer's A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA, 2010.107 (21): p. 9490-5 [0013]
  • Tsvetkov, P.O., et al., Minimal Zn(2+) binding site of amyloid-beta. Biophys J, 2010. 99(10): S. L84–6 [0013] Tsvetkov, PO, et al., Minimal Zn (2+) binding site of amyloid-beta. Biophys J, 2010. 99 (10): p. L84-6 [0013]
  • Kozin, S.A., et al., Zinc-induced dimerization of the amyloid-beta metalbinding domain 1–16 is mediated by residues 11–14. Mol Biosyst, 2011. 7(4): S. 1053–5 [0013] Kozin, SA, et al., Zinc-induced dimerization of the amyloid-beta metalbinding domain 1-16 is mediated by residues 11-14. Mol Biosyst, 2011. 7 (4): pp. 1053-5 [0013]
  • Todd, P.A. and R.C. Heel, Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs, 1986. 31(3): S. 198–248 [0013] Todd, PA and RC Heel, Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs, 1986. 31 (3): pp. 198-248 [0013]

Claims (1)

Verwendung von Enalaprilat als Mittel zum Hemmen der Bildung zinkinduzierter Dimere von Betaamyloid bei der Behandlung neurodegenerativer Krankheiten, insbesondere der Alzheimer-Krankheit, in Zusammenhang mit einer anomalen Aufnahme von Betaamyloid in Gehirngeweben.Use of enalaprilat as an agent to inhibit the formation of zinc-induced dimers of beta-amyloid in the treatment of neurodegenerative diseases, particularly Alzheimer's disease, associated with abnormal uptake of beta-amyloid in brain tissues.
DE102013110890.3A 2012-10-05 2013-10-01 Use of enalaprilat for the treatment of neurodegenerative diseases Withdrawn DE102013110890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2012142334/15A RU2530601C2 (en) 2012-10-05 2012-10-05 Zinc-dependent beta-amyloid dimer formation inhibitor
RU2012142334 2012-10-05

Publications (1)

Publication Number Publication Date
DE102013110890A1 true DE102013110890A1 (en) 2014-04-10

Family

ID=49630167

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013110890.3A Withdrawn DE102013110890A1 (en) 2012-10-05 2013-10-01 Use of enalaprilat for the treatment of neurodegenerative diseases

Country Status (4)

Country Link
DE (1) DE102013110890A1 (en)
FR (1) FR2996456A1 (en)
GB (1) GB2508702A (en)
RU (1) RU2530601C2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098889A (en) * 1990-09-17 1992-03-24 E. R. Squibb & Sons, Inc. Method for preventing or inhibiting loss of cognitive function employing a combination of an ace inhibitor and a drug that acts at serotonin receptors
DE10125883A1 (en) * 2001-05-28 2002-12-12 Serumwerk Bernburg Ag Medicines containing an effector of glutathione metabolism together with alpha-lipoic acid in the context of kidney replacement therapy
US6903129B2 (en) * 2001-12-14 2005-06-07 Hoffman-La Roche Inc. D-proline prodrugs
DE10303229B4 (en) * 2003-01-28 2007-07-26 Keyneurotek Ag Ambroxol and Angiotensin Converting Enzyme (ACE) inhibitors Drugs and their use in the treatment of neurodegenerative diseases
JPWO2005011736A1 (en) * 2003-07-30 2006-09-14 株式会社 東北テクノアーチ Preventive and / or therapeutic agent for Alzheimer's disease

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Bush, A.I., The Metal Theory of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012
Cheng, X.R., et al., Label-free methods for probing the interaction of clioquinol with amyloid-[small beta]. Analytical Methods, 2012. 4(8): S. 2228-2232
Cummings, J.L., Alzheimer's Disease. New England Journal of Medicine, 2004. 351(1): S. 56-67
Fodero-Tavoletti, M.T., et al., Amyloid-B: The seeds of darkness. The International Journal of Biochemistry & Cell Biology, 2011.43(9): p. 1247-1251
Golde, Т.Е., L.S. Schneider, and E.H. Koo, Anti-Ав Therapeutics in Alzheimer's Disease: The Need for a Paradigm Shift. Neuron, 2011. 69(2): S. 203-21
Hardy, J. and D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science, 2002. 297(5580): S. 353-6
Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov, 2011.10(9): p. 698-712
Kozin, S.A., et al., Zinc-induced dimerization of the amyloid-beta metalbinding domain 1-16 is mediated by residues 11-14. Mol Biosyst, 2011. 7(4): S. 1053-5
Larson, M.E. and S.E. Lesne, Soluble Abeta oligomer production and toxicity. J Neurochem, 2012. 120 Suppl 1: S. 125-39
Miller, Y., B. Ma, and R. Nussinov, Zinc ions promote Alzheimer A beta aggregation via population shift of polymorphic states. Proc Natl Acad Sci USA, 2010.107(21): S. 9490-5
Shankar, G.M., et al., Amyloid-[beta] protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Natural Medicines., 2008.14(8): S. 837-842
Todd, P.A. and R.C. Heel, Enalapril. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure. Drugs, 1986. 31(3): S. 198-248
Tsvetkov, P.O., et al., Minimal Zn(2+) binding site of amyloid-beta. Biophys J, 2010. 99(10): S. L84-6

Also Published As

Publication number Publication date
RU2530601C2 (en) 2014-10-10
RU2012142334A (en) 2014-04-10
GB2508702A (en) 2014-06-11
FR2996456A1 (en) 2014-04-11
GB201317550D0 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Reichenbach et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model
Cui et al. Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action
Jin et al. Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model
EP3049153B1 (en) Cyclic amyloid-beta-binding peptides and the use thereof
Lu et al. Long-term heroin use was associated with the downregulation of systemic platelets, BDNF, and TGF-β1, and it contributed to the disruption of executive function in Taiwanese Han Chinese
DE102012108598A1 (en) New D3-D enantiomeric peptides derived from D3 and their use
Taleb et al. New application of an old drug proparacaine in treating epilepsy via liposomal hydrogel formulation
EP3747454B1 (en) Amyloid-beta binding peptides and these peptides for use in the therapy and diagnosis of alzheimer's dementia
KR20210100086A (en) Improvement of glymph delivery by manipulation of plasma osmolarity
DE102013110890A1 (en) Use of enalaprilat for the treatment of neurodegenerative diseases
EP3271374B1 (en) Peptides which bind to a specific a-beta-species for the therapy and/or diagnosis of alzheimer's disease
DE102012004589A1 (en) New angiotensin II-receptor agonist, useful for treating neurodegenerative diseases, preferably Alzheimer's dementia, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis
JP7097613B2 (en) Inhibitor of alpha-tubulin acetylation for pain treatment
CN110384712B (en) Application of nucleic acid aptamer in preparation of drug for treating Alzheimer's disease
Wu et al. Bifunctional halloysite nanotube-based Ripk1 siRNA delivery system rescues cognitive impairment by targeting amyloid β plaques for clearance and reducing necrotic neurons in Alzheimer’s disease mice
Williams Characterization of muscle tissue in sepsis induced mouse models
DE102016113166B4 (en) Method for detecting a biofilm and means for detecting a biofilm
Gaba Septic shock
Bahn et al. Serumbiomarker für psychiatrische Erkrankungen.
DE102012108599B4 (en) A-beta oligomer-binding peptides and their use
DE102016114392A1 (en) A compound for the treatment of a disease associated with a desegregation of the alternative complement pathway
Blank Translatome analysis and in vivo Ca 2+ imaging of astrocytes in an Alzheimer’s disease mouse model
Arman Advanced preclinical assessment of hyper-nociception
DE102021005922A1 (en) Inhibition of interaction between viral spike proteins of SARS-CoV-2 and human angiotensin converting enzyme 2 (hACE2)
DE102020113383A1 (en) Pharmaceutical preparation for use in the treatment of SIRS

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee