DE102013014954A1 - Verfahren zum Betreiben eines Brennstoffzellensystems - Google Patents

Verfahren zum Betreiben eines Brennstoffzellensystems Download PDF

Info

Publication number
DE102013014954A1
DE102013014954A1 DE102013014954.1A DE102013014954A DE102013014954A1 DE 102013014954 A1 DE102013014954 A1 DE 102013014954A1 DE 102013014954 A DE102013014954 A DE 102013014954A DE 102013014954 A1 DE102013014954 A1 DE 102013014954A1
Authority
DE
Germany
Prior art keywords
fuel cell
power
load
electrical energy
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102013014954.1A
Other languages
English (en)
Inventor
Holger Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to DE102013014954.1A priority Critical patent/DE102013014954A1/de
Priority to PCT/EP2014/002392 priority patent/WO2015036102A1/de
Publication of DE102013014954A1 publication Critical patent/DE102013014954A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04238Depolarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04932Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems (2) mit wenigstens einer Brennstoffzelle (3), wenigstens einem elektrischen Energiespeicher (10) und wenigstens einer elektrischen Last (Motor 11), deren Leistungsanforderung durch das Brennstoffzellensystem (2) erfüllt wird, wobei zur Reduzierung oder Aufhebung einer Passivierung des Anodenkatalysators der wenigstens einen Brennstoffzelle (3) eine kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) durchgeführt wird, und wobei die elektrische Last (11) währenddessen aus dem elektrischen Energiespeicher (10) versorgt wird. Die Erfindung ist dadurch gekennzeichnet, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) immer nur dann durchgeführt wird, wenn die Leistungsanforderung von einer hohen Leistung auf eine niedrige Leistung wechselt.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Brennstoffzellensystems nach der im Oberbegriff von Anspruch 1 näher definierten Art.
  • Aus dem allgemeinen Stand der Technik ist es bekannt, dass es beim Betrieb oder insbesondere beim Starten eines Brennstoffzellensystems gelegentlich zu einer Wasserstoffunterversorgung einzelner Brennstoffzellen der typischerweise in Form eines Brennstoffzellenstapels aufgebauten Brennstoffzelleneinheit kommen kann. Diese Wasserstoffunterversorgung kann beispielsweise durch sich im Bereich des Anodenraums bildendes Produktwasser oder dergleichen auftreten, welches Gasverteilungskanäle blockiert und damit Einzelzellen hinsichtlich ihrer Wasserstoffversorgung benachteiligt. Der Effekt einer solchen Unterversorgung von einzelnen Zellen ist es dabei, dass dies zu einer Passivierung des Anodenkatalysators führen kann. Eine solche Passivierung des Anodenkatalysators kann dann zur Folge haben, dass die Einzelzellen elektrochemisch nicht mehr aktiv sind und eine erhöhte Degradation des Brennstoffzellenstapels verursachen.
  • Eine Möglichkeit dem entgegenzuwirken ist der Einsatz einer Einzelzellspannungsüberwachung, welche jede Einzelzelle hinsichtlich ihrer Spannung überwacht und im Zweifelsfall entsprechend einschreiten kann. Der Aufbau hierfür ist außerordentlich komplex und aufwändig und ist mit erheblichen Zusatzkosten beim Aufbau des Brennstoffzellenstapels verbunden.
  • Aus der gattungsgemäßen US 2006/0194082 A1 ist ein Brennstoffzellensystem bekannt, welches neben der Brennstoffzelle eine elektrische Energiequelle bzw. einen elektrischen Energiespeicher aufweist. Diese beiden werden über einen gemeinsamen Controller eingesetzt, um die Last entsprechend ihrer Anforderungen mit elektrischer Leistung zu versorgen. Die Anwesenheit des elektrischen Energiespeichers ermöglicht es dabei, dass zur Reduzierung oder Aufhebung einer aufgetretenen Passivierung des Anodenkatalysators eine kurzzeitige vollständige Lastreduzierung an der Brennstoffzelle bzw. dem Brennstoffzellenstapel durchgeführt werden kann, wobei die Last währenddessen aus dem elektrischen Energiespeicher versorgt wird. Dieser Aufbau weist dabei den Nachteil auf, dass er eine hohe Belastung des elektrischen Energiespeichers erzeugt, welcher hierdurch schneller altern kann, was ebenfalls einen Nachteil darstellt. Außerdem kann die Entnahme von hohen Strömen aus dem elektrischen Energiespeicher zu einer deutlichen Wirkungsgradeinbuße des Gesamtsystems führen.
  • Die Aufgabe der hier vorliegenden Erfindung ist es nun, diese Nachteile zu vermeiden und ein Verfahren zum Betreiben eines Brennstoffzellensystems gemäß dem Oberbegriff von Anspruch 1 anzugeben, welches eine Reduzierung oder Aufhebung der Passivierung des Anodenkatalysators mit minimaler Belastung für den elektrischen Energiespeicher realisiert.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren mit den Merkmalen im kennzeichnenden Teil des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens ergeben sich aus den hiervon abhängigen Unteransprüchen. Außerdem ist im Anspruch 6 eine besonders bevorzugte Verwendung des Verfahrens angegeben.
  • Bei dem erfindungsgemäßen Verfahren ist es vorgesehen, dass ähnlich wie im gattungsgemäßen Stand der Technik eine Reduzierung oder Aufhebung einer Passivierung des Anodenkatalysators der wenigstens einen Brennstoffzelle über eine kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle durchgeführt wird. Ebenso wie im Stand der Technik wird die elektrische Last währenddessen aus dem elektrischen Energiespeicher des Brennstoffzellensystems versorgt. Erfindungsgemäß ist es nun so, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle immer nur dann durchgeführt wird, wenn die Leistungsanforderung von hoher Leistung auf niedrige Leistung wechselt. Die vollständige Lastreduzierung, um der Passivierung des Anodenkatalysators entgegenzuwirken bzw. diese wieder aufzuheben, wird bei dem erfindungsgemäßen Verfahren also immer nur dann durchgeführt, wenn ohnehin ein Lastsprung nach unten erfolgt. Dies ist insbesondere bei Brennstoffzellensystemen, welche mit hohen Lasten und sehr dynamisch betrieben werden, ein entscheidender Vorteil. Dadurch, dass der Lastsprung nach unten auftritt, wird die Belastung des elektrischen Energiespeichers deutlich reduziert, sodass einerseits seine Lebensdauer verlängert und andererseits seine elektrische Belastung reduziert wird. Dadurch, dass immer nur nach einem Sprung auf niedrige Lasten die kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle durchgeführt wird, müssen aus dem elektrischen Energiespeicher nur geringe Ströme entnommen werden. Dies führt zu einer Verringerung der entstehenden Abwärme im Bereich des elektrischen Energiespeichers und lässt sich mit einem besseren Wirkungsgrad realisieren, als die Entnahme von sehr viel höheren Strömen. Dadurch steigt der Wirkungsgrad des Gesamtsystems gegenüber dem im gattungsgemäßen Stand der Technik beschriebenen Verfahren an.
  • In einer sehr günstigen Ausgestaltung des erfindungsgemäßen Verfahrens ist es nun außerdem vorgesehen, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle immer nur dann durchgeführt wird, wenn gleichzeitig ein Ladezustand des elektrischen Energiespeichers so hoch ist, dass der elektrische Energiespeicher die benötigte Last bereitstellen kann. Eine solche Absicherung des Brennstoffzellensystems dahingehend, dass der Ladezustand des elektrischen Energiespeichers entsprechend überwacht wird, sodass in jedem Fall eine Versorgung der elektrischen Last mit der angeforderten Leistung möglich ist, stellt ein sehr sicheres und ausfallresistentes System dar, da in diesem Fall in Abhängigkeit des Ladezustands des elektrischen Energiespeichers gegebenenfalls auch auf die Reduzierung oder Aufhebung der Passivierung durch die kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle verzichtet werden kann, wenn dies die elektrische Versorgung der Last mit Leistung gefährdet. Die durchgehende Leistungsversorgung wird als Vorrang eingeräumt.
  • In einer weiteren sehr günstigen Ausgestaltung des erfindungsgemäßen Verfahrens ist es ferner vorgesehen, dass bei jedem Wechsel der Last Anforderung nach unten die vollständige Leistungsreduzierung an der wenigstens einen Brennstoffzelle durchgeführt wird. Eine solche Verfahrensführung, bei welcher bei jedem Lastsprung von oben nach unten automatisch eine kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle durchgeführt wird, ermöglicht es, die Passivierung des Anodenkatalysators sehr effizient zu reduzieren bzw. aufzuheben, wobei keinerlei Messungen oder dergleichen notwendig sind, da bei jedem Lastwechsel die Leistung an der wenigstens einen Brennstoffzelle vollständig reduziert wird. Eine aufwändige Sensorik, die Messung oder Abschätzung der bereits aufgetretenen Passivierung und dergleichen kann daher sehr einfach und effizient unterbleiben.
  • Durch die vollständige Lastreduzierung bei jedem Wechsel der Last nach unten lässt sich somit zumindest theoretisch die Passivierung des Anodenkatalysators sehr effizient reduzieren bzw. aufheben. Allerdings kann es dabei auch zu einem Verweilen der Zellspannung im kritischen Bereich von ca. 1,0 V pro Zelle kommen. Dies ist nicht unbedingt günstig, da auch hierdurch wieder eine Degradation des Kathodenkatalysators und eventuell auch der Brennstoffzellenmembran ausgelöst werden kann. Außerdem wird auch die Batterie häufiger belastet, was die Degradation der Batterie selbst beschleunigen kann. Um dieser Problematik entgegenzuwirken ist es nun gemäß einer weiteren sehr günstigen Ausgestaltung des erfindungsgemäßen Verfahrens vorgesehen, dass die vollständige Lastreduzierung nur bei jedem n-ten Wechsel der Leistungsanforderung nach unten durchgeführt wird. Dabei ist n eine natürliche Zahl größer 1. Die vollständige Lastreduzierung der Brennstoffzelle wird also nicht bei jedem Wechsel der Leistungsanforderung nach unten sondern nur bei jedem n-ten Wechsel, zum Beispiel bei jedem 2., 5., 10., 20., 50., oder 100. mal durchgeführt. Hierzu kann beispielsweise ein Zähler die Anzahl der Lastsprünge nach unten, insbesondere die Anzahl der Lastsprünge nach unten, bei denen die Batterie die erforderliche Leistung zur Verfügung stellen könnte, zählen. Der Zähler wird dazu jeweils um eins hoch gesetzt. Nachdem der Zähler die definierte Anzahl erreicht hat, wird die vollständige Lastreduzierung an der Brennstoffzelle durchgeführt, ansonsten wird bei dem Lastsprung nach unten lediglich der Zähler erhöht und keine vollständige Lastreduzierung durchgeführt.
  • Eine Passivierung der Anode ist insbesondere dann zu erwarten, wenn eine Blockierung der Anode beispielsweise durch flüssiges oder festes Wasser befürchtet werden muss. Dies kann beispielsweise im Startfall, insbesondere im Gefrierstartfall, im Aufwärmbetrieb, während Leerlaufphasen oder in Stopp-Phasen der Fall sein. Auch lange Leerlaufphasen unterhalb der normalen Betriebstemperatur sind hier kritisch. Gemäß einer weiteren sehr vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird es daher vorgeschlagen, die vollständige Lastreduzierung an der Brennstoffzelle zusätzlich in Abhängigkeit der Betriebstemperatur und/oder des Wassergehalts oder der aktuellen Feuchte der Brennstoffzelle entsprechend zu verändern. Erfindungsgemäß ist es dafür vorgesehen, dass die Anzahl der Wechsel der Leistungsanforderung nach unten zwischen zwei aufeinanderfolgenden vollständigen Lastreduzierungen in Abhängigkeit eben dieser Parameter angepasst wird, beispielsweise indem der Grenzwert des Zählers über eine entsprechende Funktion in Abhängigkeit beispielsweise der Betriebstemperatur und/oder des Wassergehalts oder der aktuellen Feuchte der Brennstoffzelle beeinflusst wird. Insbesondere bei Temperaturen zwischen 0°C bis 50°C könnte eine sehr häufige Durchführung der vollständigen Lastreduzierung an der Brennstoffzelle durchaus sinnvoll sein, da hier der Wassergehalt typischerweise entsprechend hoch ist. In einem Bereich der Betriebstemperatur über 50°C bis hin zur normalen Betriebstemperatur ist dies typischerweise nicht der Fall, sodass in diesen Situationen die vollständige Lastreduzierung an der Brennstoffzelle sehr viel seltener durchgeführt werden sollte. Man könnte so beispielsweise im Bereich der Betriebstemperatur zwischen 0°C und 50°C die vollständige Lastreduzierung an der Brennstoffzelle jeweils nach 5. bis 10. Lastsprüngen nach unten auslösen, im Bereich der Betriebstemperatur über 50°C nur noch bei jedem 20. bis 100. Lastsprung nach unten.
  • Alles in allem entsteht so ein Verfahren, welches insbesondere zum Betreiben eines Brennstoffzellensystems in sehr dynamischer Lastführung mit sehr hohen Lastspitzen und häufiger auftretenden Leerlaufzuständen ideal geeignet ist, um einer Passivierung des Anodenkatalysators effizient entgegenzuwirken bzw. eine aufgetretene Passivierung aufzuheben. Das Verfahren eignet sich daher insbesondere zum Betreiben eines Brennstoffzellensystems, welches zur Leistungsversorgung eines Fahrzeugs eingesetzt wird. Vor allem bei Fahrzeugen sind vergleichsweise hohe Leistungen und sehr dynamische Lastsprünge im täglichen Betrieb an der Tagesordnung. Das erfindungsgemäße Verfahren eignet sich daher insbesondere zum Betreiben eines derartigen Brennstoffzellensystems. Es kann bei einem derartigen Brennstoffzellensystem eine hohe Lebensdauer des Brennstoffzellenstapels und der elektrischen Energiespeichereinrichtung erreichen, sodass insgesamt ein sehr effizienter und vergleichsweise kostengünstiger Betrieb des Fahrzeugs mit dem Brennstoffzellensystem möglich wird.
  • Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sowie seiner Verwendung ergeben sich aus dem Ausführungsbeispiel, welches nachfolgend unter Bezugnahme auf die Figur näher beschrieben ist.
  • Die einige beigefügte Figur zeigt ein prinzipmäßig angedeutetes Fahrzeug mit einem Brennstoffzellensystem.
  • In der einzigen beigefügten Figur ist ein prinzipmäßig angedeutetes Fahrzeug 1 mit einem Brennstoffzellensystem 2 zur Versorgung des Fahrzeugs 1 mit elektrischer Antriebsleistung angedeutet. Das Brennstoffzellensystem 2 umfasst dabei eine Brennstoffzelle 3, welche in Form eines Brennstoffzellenstapels ausgebildet ist. Ein solcher Brennstoffzellenstapel ist, wie es aus dem allgemeinen Stand der Technik bekannt und üblich ist, als Stapel von Einzelzellen aufgebaut. Jede der Einzelzellen weist dabei einen Anodenbereich, einen Kathodenbereich, eine protonenleitende Membran und typischerweise einen Kühlbereich auf. Die Einzelzellen sind dann zu dem Stapel aufgestapelt. Dieser wird auch als Brennstoffzellenstack bezeichnet. In der Darstellung der Figur ist lediglich ein Anodenraum 4 sowie ein Kathodenraum 5 prinzipmäßig angedeutet. Dem Anodenraum 4 wird Wasserstoff aus einem Druckgasspeicher 6 zugeführt, dem Anodenraum 5 Luft über eine Luftfördereinrichtung 7. Die Brennstoffzelle 3 stellt elektrische Leistung zur Verfügung, welche über die mit dem Bezugszeichen 8 angedeuteten elektrischen Leitungen zu einer Leistungselektronik 9 gelangt, an welche außerdem eine elektrische Energiespeichereinrichtung 10, beispielsweise eine Hochvoltbatterie, eine Ansammlung von Hochleistungskondensatoren oder auch eine Kombination hiervon angeschlossen ist. Die Leistungselektronik 9 sorgt dann dafür, dass die zum Antreiben des Fahrzeugs 1 geforderte elektrische Leistung in der gewünschten Art und Weise und entsprechend der durch einen Fahrer des Fahrzeugs 1 vorgegebenen Leistungsanforderung an einem angedeuteten Elektromotor 11 ankommt, welcher über eine Achse 12 Räder 13 des Fahrzeugs antreibt. Typischerweise erfolgt die Versorgung der Brennstoffzelle 3 mit Luft als Sauerstofflieferant und mit Wasserstoff aus dem Druckgasspeicher 6 ebenfalls entsprechend der Leistungsanforderung. Die Luft wird dabei von der Luftfördereinrichtung 7, beispielsweise indem diese in ihrer Drehzahl variiert wird, in der gewünschten Menge zugeführt. Der Wasserstoff gelangt aus dem Druckgasspeicher 6 über eine Dosier- und Regeleinrichtung 14 in den Bereich des Anodenraums 4. In dem hier dargestellten Ausführungsbeispiel gelangt nicht verbrauchtes Restgas aus dem Anodenraum 4 über eine Rezirkulationsleitung 15 und eine Rezirkulationsfördereinrichtung 16 zurück und wird dem Anodenraum 4 mit frischem Wasserstoff vermischt erneut zugeführt. Die Rezirkulationsfördereinrichtung 16 ist dabei als Gebläse angedeutet. Diese könnte genauso gut in Form einer Gasstrahlpumpe ausgebildet sein, oder auch als Kombination dieser beiden.
  • Beim Betreiben, insbesondere beim Starten des Brennstoffzellensystems 2 ist es nun so, dass durch eine Unterversorgung von Einzelzellen der Brennstoffzelle 3 mit Gasen, insbesondere mit Wasserstoff, beispielsweise weil im Anodenraum 4 entstehendes Produktwasser Gasverteilungskanäle blockiert oder dergleichen auftreten kann. Die Folge kann eine Passivierung des Anodenkatalysators in den Einzelzellen sein. Dies führt letztlich dazu, dass Einzelzellen der Brennstoffzelle 3 nicht oder nicht mehr richtig arbeiten, was insgesamt die Performance der Brennstoffzelle 3 und insbesondere ihre Lebensdauer nachhaltig verschlechtert. Um dieser Problematik entgegenzuwirken ist es nun bekannt und üblich, dass eine kurzzeitige vollständige Lastreduzierung an der Brennstoffzelle 3 vorgenommen werden kann. Hierdurch kommt es zu einer Reduzierung und im Idealfall zu einer Aufhebung einer gegebenenfalls aufgetretenen Passivierung des Anodenkatalysators im Anodenraum 4 der Brennstoffzelle 3.
  • Bei dem hier dargestellten Fahrzeug 1 wird diese vollständige Lastreduzierung an der Brennstoffzelle 3 nun beispielsweise über die Leistungselektronik 9 gesteuert. Im Falle einer vollständigen Leistungsreduzierung an der Brennstoffzelle 3 wird dann die Versorgung des elektrischen Motors 11 entsprechend der Leistungsanforderung, welche durch den Fahrer beispielsweise in Abhängigkeit einer Fahrpedalstellung vorgegeben wird, aus dem elektrischen Energiespeicher 10 versorgt. Ein ideales Verfahren zum Durchführen einer solchen vollständigen Lastreduzierung zur Reduzierung oder Aufhebung der Passivierung des Anodenkatalysators ist nun so ausgestaltet, dass diese immer dann bzw. immer nur dann erfolgt, wenn ohnehin eine Reduzierung der Leistungsanforderung, also ein Lastsprung nach unten, auftritt. Im Falle eines solchen Lastsprungs nach unten ist die während der vollständigen Lastreduzierung der Brennstoffzelle 3 angeforderte Leistung vergleichsweise gering, sodass diese durch den elektrischen Energiespeicher 10 einfach und energieeffizient bereitgestellt werden kann.
  • Dies kann beispielsweise in Abhängigkeit einer aufgetretenen Passivierung des Anodenkatalysators oder insbesondere bei jedem oder jedem n-ten Lastsprung nach unten, beispielsweise einem Lastsprung zurück in den Leerlauf des Brennstoffzellensystems 2, durchgeführt werden. Eine weitere Möglichkeit, um die sichere und zuverlässige Funktionalität des Fahrzeugs 1 in jedem Fall aufrechtzuerhalten, besteht darin, dass über die Leistungselektronik 9 außerdem der Ladezustand des elektrischen Energiespeichers 10 überwacht wird. Nur wenn der Ladezustand des elektrischen Energiespeichers 10 zur Erfüllung der Leistungsanforderung nach dem Lastsprung ausreichend erscheint, wird die kurzzeitige vollständige Lastreduzierung an der Brennstoffzelle 3 durchgeführt. Stellt die Elektronik der Leistungselektronik 9 fest, dass der Restenergieinhalt des elektrischen Energiespeichers 10 für die Erfüllung der Leistungsanforderung bei abgeschalteter Brennstoffzelle 3 nicht ausreicht, dann wird sie die kurzzeitige vollständige Lastreduzierung an der Brennstoffzelle 3 nicht durchführen, sondern der nächste Lastsprung nach unten wird abgewartet und entsprechend geprüft, ob sich der Ladezustand des elektrischen Energiespeichers 10, beispielsweise durch ein rekuperatives Abbremsen des Fahrzeugs 1 oder durch ein Laden des elektrischen Energiespeichers 10 über die Brennstoffzelle 3 insoweit gebessert hat, als das Verfahren dann durchgeführt werden kann.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2006/0194082 A1 [0004]

Claims (6)

  1. Verfahren zum Betreiben eines Brennstoffzellensystems (2) mit wenigstens einer Brennstoffzelle (3), wenigstens einem elektrischen Energiespeicher (10) und wenigstens einer elektrischen Last (Motor 11), deren Leistungsanforderung durch das Brennstoffzellensystem (2) erfüllt wird, wobei zur Reduzierung oder Aufhebung einer Passivierung des Anodenkatalysators der wenigstens einen Brennstoffzelle (3) eine kurzzeitige vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) durchgeführt wird, und wobei die elektrische Last (11) währenddessen aus dem elektrischen Energiespeicher (10) versorgt wird, dadurch gekennzeichnet, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) immer nur dann durchgeführt wird, wenn die Leistungsanforderung von einer hohen Leistung auf eine niedrige Leistung wechselt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) immer nur dann durchgeführt wird, wenn gleichzeitig ein Ladezustand des elektrischen Energiespeichers (10) so hoch ist, dass der elektrische Energiespeicher (10) die benötigte Leistung für die elektrische Last (11) bereitstellen kann.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei jedem Wechsel der Leistungsanforderung von einer hohen Leistung auf eine niedrige Leistung die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) durchgeführt wird.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die vollständige Lastreduzierung an der wenigstens einen Brennstoffzelle (3) nur bei jedem n-ten Wechsel der Leistungsanforderung von einer hohen Leistung auf eine niedrige Leistung durchgeführt wird, wobei n eine natürliche Zahl größer 1 ist.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Anzahl der Wechsel der Leistungsanforderung von einer hohen Leistung auf eine niedrige Leistung zwischen zwei aufeinanderfolgenden vollständigen Lastreduzierungen an der wenigstens einen Brennstoffzelle (3) in Abhängigkeit der Betriebstemperatur und/oder des Wassergehalts oder der aktuellen Feuchte der Brennstoffzelle (3) verändert wird.
  6. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 5, zum Betreiben eines Brennstoffzellensystems (2) zur Versorgung eines Fahrzeugs (1) mit elektrischer Antriebsleistung.
DE102013014954.1A 2013-09-10 2013-09-10 Verfahren zum Betreiben eines Brennstoffzellensystems Withdrawn DE102013014954A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102013014954.1A DE102013014954A1 (de) 2013-09-10 2013-09-10 Verfahren zum Betreiben eines Brennstoffzellensystems
PCT/EP2014/002392 WO2015036102A1 (de) 2013-09-10 2014-09-03 Verfahren zum betreiben eines brennstoffzellensystems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013014954.1A DE102013014954A1 (de) 2013-09-10 2013-09-10 Verfahren zum Betreiben eines Brennstoffzellensystems

Publications (1)

Publication Number Publication Date
DE102013014954A1 true DE102013014954A1 (de) 2015-03-12

Family

ID=51625989

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102013014954.1A Withdrawn DE102013014954A1 (de) 2013-09-10 2013-09-10 Verfahren zum Betreiben eines Brennstoffzellensystems

Country Status (2)

Country Link
DE (1) DE102013014954A1 (de)
WO (1) WO2015036102A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194082A1 (en) 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006050182A1 (de) * 2006-10-25 2008-04-30 Daimler Ag Verfahren zum Betreiben eines Brennstoffzellensystems
JP5023374B2 (ja) * 2007-02-05 2012-09-12 トヨタ自動車株式会社 燃料電池システム
JP4761162B2 (ja) * 2007-03-07 2011-08-31 トヨタ自動車株式会社 燃料電池システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060194082A1 (en) 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell

Also Published As

Publication number Publication date
WO2015036102A1 (de) 2015-03-19

Similar Documents

Publication Publication Date Title
DE112006001469B4 (de) Brennstoffzellenvorrichtung, deren Verwendung und Leistungsverwaltungsverfahren für ein System, das mit einer Brennstoffzelleinheit ausgestattet ist
EP3146605B1 (de) Verfahren zum betrieb eines bordnetzes eines kraftfahrzeugs und kraftfahrzeug
DE102014100703B4 (de) Leistungsregelung einer Brennstoffzelle mittels Schätzung der Regelabweichung
DE10046631A1 (de) Verfahren zur Regelung der Generatorspannung in einem Kraftfahrzeug
DE112012007029T5 (de) Energieversorgungs-Handhabungssystem und Energieversorgungs-Handhabungsverfahren
EP3276768B1 (de) Elektrisches bordnetzsystem für kraftfahrzeuge mit einem konverter und einem hochlastverbraucher
WO2016020117A1 (de) Bordnetzanordnung und verfahren zum betreiben eines bordnetzes eines elektrisch antreibbaren fortbewegungsmittels mit einer brennstoffzelle
EP1748183A2 (de) Elektrische Einrichtung zur Verstellung der Rotorblätter einer Windenergieanlage
DE102019201712A1 (de) Ladestation für Elektrofahrzeuge mit mindestens zwei Ladesäulen
DE102014209267A1 (de) Heizeinrichtung und Verfahren zum Abbau einer Überspannung in einem Bordnetz eines Fortbewegungsmittels
DE102012222538A1 (de) Vorrichtung und verfahren zum erzeugen von luftdruck in einem umweltfreundlichen fahrzeug
DE102018004717A1 (de) Verfahren zum Energiemanagement
DE102018221989A1 (de) Hochvoltbordnetzanordnung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Hochvoltbordnetzanordnung
DE102017011715A1 (de) Verfahren zur Regeneration einer Brennstoffzelle
WO2021144070A1 (de) Verfahren zum initiieren eines regenerationsprozesses
DE102015004677B4 (de) Verfahren zur Leistungsregelung eines Brennstoffzellensystems
EP2564459B1 (de) Verfahren zur regelung des energiemanagements eines brennstoffzellensystems
DE102018120892A1 (de) Brennstoffzellensystem und Verfahren zum Steuern eines Brennstoffzellensystems
DE102018215723A1 (de) Temperaturabsenkung zur Leitwertreduzierung
DE102007042578B4 (de) Verfahren zum Vergleichmäßigen von mehreren, in Reihe geschalteten Zellen einer Batterie
DE102013014954A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems
DE102017212659A1 (de) Verfahren zum Betreiben eines elektrischen Gesamtbordnetzes, Steuereinheit und Kraftfahrzeug
DE102020203692A1 (de) Verfahren zur Leistungsoptimierung eines elektrifizierten Fahrzeugs und Fahrzeug
DE102016219624A1 (de) Verfahren zur Steuerung eines elektrischen Energiespeichers
DE102019006634A1 (de) Verfahren zur Bereitstellung von Antriebsleistung für ein Fahrzeug

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01M0008040000

Ipc: H01M0008048580