DE102012211949A1 - Diffusor einer Abgasturbine - Google Patents

Diffusor einer Abgasturbine Download PDF

Info

Publication number
DE102012211949A1
DE102012211949A1 DE201210211949 DE102012211949A DE102012211949A1 DE 102012211949 A1 DE102012211949 A1 DE 102012211949A1 DE 201210211949 DE201210211949 DE 201210211949 DE 102012211949 A DE102012211949 A DE 102012211949A DE 102012211949 A1 DE102012211949 A1 DE 102012211949A1
Authority
DE
Germany
Prior art keywords
turbine
diffuser
exhaust gas
flow channel
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201210211949
Other languages
English (en)
Inventor
Alessandro Sofia
Christian Kreienkamp
Daniel Kästli
Daniel Oeschger
Markus Städeli
Reiner Probst
Thomas Rechin
William Gizi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Priority to DE201210211949 priority Critical patent/DE102012211949A1/de
Priority to EP13174301.5A priority patent/EP2685054B1/de
Priority to KR1020130079960A priority patent/KR101501833B1/ko
Priority to CN201310285980.XA priority patent/CN103541778B/zh
Priority to JP2013143731A priority patent/JP5859494B2/ja
Publication of DE102012211949A1 publication Critical patent/DE102012211949A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Der Turbinendiffusor (82) einer Abgasturbine wird durch den Strömungskanal hindurch an den radial innenliegenden, den Strömungskanal begrenzenden Gehäuseteilen (81) welche der Baugruppe des Rotors zugeordnet sind, befestigt. Dies erfolgt über speziell ausgerichtete und ausgestaltete Streben (83). Dies ermöglicht einen gemeinsamen Ausbau von Rotor, Turbinendiffusor und Düsenring in einer Baugruppe, ohne die Aussengehäuse demontieren zu müssen.

Description

  • Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der mit Abgasen von Brennkraftmaschinen beaufschlagten Turbolader.
  • Sie betrifft eine Abgasturbine mit axialer Anströmung mit einem entnehmbaren Rotorblock.
  • Stand der Technik
  • Turbolader werden zur Leistungssteigerung von Hubkolbenmotoren eingesetzt. Diese Turbolader verwenden eine Turbine welche über eine Welle ein Verdichterrad antreibt. Bei Abgasturboladern mit axial angeströmten Abgasturbinen (in diesem Dokument hiernach kurz Axialturbine genannt, wobei diese Art von Axialturbinen eben gerade aufgrund des abströmseitigen Turbinendiffusors, welcher die Strömung in die radiale Richtung umlenkt nicht vergleichbar sein soll mit einer ein- oder mehrstufigen Axialturbine einer Gasturbine) ist der Turbinendiffusor mechanisch – etwa über eine feste Schraubverbindung – mit dem Gasaustrittsgehäuse der Turbine gekoppelt. Dadurch entsteht die Notwendigkeit, beim Ausbau des Turbinenrades in Richtung des Verdichters den Turbinendiffusor vorab vom Gasaustrittsgehäuse zu lösen, was insbesondere bei eingerosteten oder anderswie verklemmten Befestigungsmitteln oder allein aufgrund der Zugänglichkeit der zu lösenden Befestigungsmittel durch die Öffnung im Lagergehäuse eine mühsame und zeitintensive Arbeit sein. Um den Ausbau sämtlicher, der Abgasströmung ausgesetzter Teile eines Abgasturboladers bei der Wartung zu vereinfachen, gibt es Bestrebungen, das Design des Abgasturboladers derart zu optimieren, dass sich der gesamte Rotorblock – also alle rotierenden Teile und zugehörige Lagerbereiche – mitsamt der Leitvorrichtung stromaufwärts der Abgasturbine, zusammen als Einheit aus dem Turbinengehäuse herauslösen lassen. Hierzu eignen sich die herkömmlich ausgestalteten, in 1 abgebildeten Axialturbinen allerdings nicht.
  • Die Verbindung zwischen den Bauteilen Gasaustrittsgehäuse und Turbinendiffusor unterliegen bei herkömmlichen Axialturbinen in der Regel keinen Relativbewegungen und sind durch metallischen Kontakt gegen Gasleckage abgedichtet. Es existiert somit kein Leckageströmung (Turbinenbypass) ausserhalb des Hauptströmungskanals der Turbine zwischen Turbinendiffusor und Gasaustrittsgehäuse und somit auch kein Bedarf für besondere Massnahmen zum Abdichten an dieser Schnittstelle.
  • Kurze Darstellung der Erfindung
  • Die Aufgabe der vorliegenden Erfindung besteht darin, bei einer axial angeströmten Abgasturbine den Turbinendiffusor, welcher die Abgasströmung stromabwärts der Turbinenlaufschaufeln aus axialen in die radiale Richtung umlenkt, mechanisch von den Turbolader-Aussengehäusen zu entkoppeln und stattdessen den Turbinendiffusor, und optional den daran befestigten Düsenring, mechanisch der Rotorbaugruppe zuzuordnen.
  • Erfindungsgemäss wird dies dadurch erreicht, dass der Turbinendiffusor durch den Strömungskanal hindurch an den radial innenliegenden, den Strömungskanal begrenzenden Gehäuseteilen, im Fachjargon Haube genannt, welche der Baugruppe des Rotors zugeordnet sind, befestigt wird. Dies erfolgt über speziell ausgerichtete und ausgestaltete Streben. Dadurch entsteht eine neue Baugruppe, der sogenannte Haubendiffusor.
  • Das umgesetzte Gesamtkonzept ermöglicht einen gemeinsamen Ausbau von Rotor, Turbinendiffusor und Düsenring in einer Baugruppe, ohne die Aussengehäuse demontieren zu müssen.
  • Dadurch ergeben sich kürzere Demontage- und Wiedermontagezeiten.
  • Zudem kann der Einfluss von Verformungen der Aussengehäuse auf das Radialspiel der Turbinenlaufschaufeln und somit auf den Turbinenwirkungsgrad minimiert werden, da der Turbinendiffusor (inklusive des in der Regel als Abdeckring bezeichneten Bereichs direkt über den Laufschaufeln) mechanisch vom Aussengehäuse entkoppelt wird. Dies kann insbesondere für Hochdruckturbolader bei zweistufiger Aufladung relevant sein, da dort signifikante Verformungen der Aussengehäuse möglich sind, die aus Sicherheitsgründen (Vermeiden von Anstreifen der Laufschaufeln am Turbinendiffusor) ein grösseres Schaufelspitzenspiel erforderlich machen würden, falls Turbinendiffusor und Aussengehäuse fest verbunden wären.
  • Durch das Anbinden des Turbinendiffusors an den Rotor anstatt ans Gasaustrittsgehäuse wird der Turbinendiffusor vom Gasaustrittsgehäuse mechanisch entkoppelt. Um Leckageströmung (Turbinenbypass) ausserhalb des Hauptströmungskanals der Turbine durch die neue Schnittstelle zwischen Rotorbaugruppe und Aussengehäuse zu verhindern, wird erfindungsgemäss eine semi-statische Drosseldichtstelle eingeführt.
  • Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen oder sind der detaillierten Beschreibung der Ausführungsbeispiele zu entnehmen.
  • Kurze Beschreibung der Zeichnungen
  • Nachfolgend werden verschiedene Ausführungsformen der Erfindung anhand von Zeichnungen detailliert erläutert. Hierbei zeigt
  • 1 einen entlang der Achse geführten Schnitt durch eine axial angeströmte Abgasturbine eines Abgasturbolader gemäss dem Stand der Technik,
  • 2 einen entlang der Achse geführten Schnitt durch eine axial angeströmte Abgasturbine eines Abgasturbolader mit einem erfindungsgemäss ausgebildeten Turbinendiffusor,
  • 3 eine vergrösserte Darstellung des erfindungsgemäss mechanisch entkoppelten Bereichs zwischen dem Diffusors und dem Gasaustrittsgehäuse der Abgasturbine nach 2, und
  • 4 eine schematische Darstellung der Drosseldichtung im mechanisch entkoppelten Bereich nach 3,
  • Weg zur Ausführung der Erfindung
  • Wie eingangs erwähnt zeigt 1 eine herkömmliche Axialturbine wie sie typischerweise in grossen Abgasturboladern eingesetzt wird. Die Axialturbine ist eine Abgasturbine, welche ein Turbinenrad 30 umfasst, welches am radial äusseren Rand der Radnabe einen Kranz mit Laufschaufeln 31 aufweist, welche einer in axialer Richtung geführten Abgasströmung ausgesetzt werden und die mit dem Turbinenrad verbundene Welle 60 in eine Rotationsbewegung versetzten. Das Abgas wird aus den Brennkammern einer Brennkraftmaschine über ein Gaseintrittsgehäuse 10 zur Turbine geführt. Das Gaseintrittsgehäuse umfasst eine Kalotte 11 mit welcher die rohrförmige Abgaszuleitung in einen ringrohrförmigen Strömungskanal überführt wird.
  • Unmittelbar stromaufwärts der Laufschaufeln ist eine Leitvorrichtung 70, der sogenannte Düsenring angeordnet, mit einer Vielzahl von Leitschaufeln. Bei herkömmlichen Abgasturbinen dieser Bauart ist der Düsenring entweder am Gaseintrittsgehäuse 10 oder am Gasaustrittsgehäuse 20 befestigt. Das Gasaustrittsgehäuse umfasst neben einem grossen Sammelraum einen Diffusor 40, welcher den Strömungskanal stromab der Turbinenlaufschaufeln radial nach aussen begrenzt. Auf der gegenüberliegenden Seite wird der Strömungskanal durch ein am Lagergehäuse 50 befestigtes Gehäuseteil begrenzt, der sogenannten Haube 51. Haube und Diffusor bilden also den Strömungskanal, welcher für die Umlenkung der Strömung aus der axialen in die radiale Richtung verantwortlich ist. Um bei dieser Ausgestaltung des Turbinenbereichs von der Wellenseite her die der Abgasströmung ausgesetzten und daher für die Wartung der Turbine relevanten Bauteile ausbauen zu können, muss nach dem Herausziehen des Turbinenrades zuerst die Verbindung zwischen dem Düsenring und dem Gaseintritts- oder Gasaustrittsgehäuse gelöst werden. Dies kann, wie oben erwähnt, schwierig sein, wenn die entsprechenden Befestigungsmittel eingerostet, verschmutzt oder anderweitig verklemmt sind. Auch ist der Zugang zu den Befestigungsmitteln durch die enge Öffnung im Turbinengehäuse relativ schwierig.
  • Aus diesem Grund wird in der erfindungsgemässen Axialturbine nach 2 der Weg für die Befestigung des Düsenrings am Rotorblock geebnet, indem zwischen der am Rotorblock befestigten Haube und dem Turbinendiffusor Verbindungsstreben eingesetzt werden. Die dadurch neu geschaffene Baugruppe kann mit Haubendiffusor 8 bezeichnet werden. Dieser Haubendiffusor 8 umfasst zwei rohrförmige Abschnitte, den am turbinenseitigen Ende radial aussenliegenden Diffusor 82 sowie die radial innenliegende Haube. Am wellenseitigen Ende des Haubendiffusors, das heisst an dem an den Sammelraum 21 im Gasaustrittsgehäuse 20 angrenzenden Bereich weisen die beiden rohrförmigen Abschnitte eine vergleichbare radiale Höhe auf, die beiden rohrförmigen Abschnitte sind somit gebogen und führen den Strömungskanal von der streng axialen Ausrichtung unmittelbar stromabwärts der Laufschaufeln 31 in die radiale Richtung über. Verbunden sind die beiden rohrförmigen Abschnitte des Haubendiffusors 8 durch mehrere, entlang dem Umfang verteilt angeordneten Streben 83. Die Streben können zwischen Diffusor und Haube geschraubt, geschweisst, gelötet oder direkt eingegossen werden. Fertigungstechnisch ist es vorteilhaft, die gesamte Baugruppe Haubendiffusor 8 als ein einziges Gussteil herzustellen.
  • An dem dem Turbinenrad zugewandten Ende des Turbinendiffusors 82 ist optional der Düsenring 70 befestigt. Damit lässt sich der Düsenring beim Ausbau der nunmehr auch den Turbinendiffusor umfassenden Rotorbaugruppe ebenfalls zusammen mit der Turbinenscheibe aus dem Turbinengehäuse entfernen. Optional kann der Düsenring zusätzlich mit dem inneren Turbinengehäuse, der sogenannten Kalotte verbunden sein, so dass auch diese beim Ausbau mit der Rotorbaugruppe aus dem Turbinengehäuse gezogen werden kann. Alternativ, kann der am Turbinendiffusor befestigte Düsenring mechanisch vom inneren Turbinengehäuse entkoppelt sein, in diesem Fall kann es von Vorteil sein, wenn am Düsenring Mittel vorgesehen sein, welche eine Leckageströmung durch den radial inneren Bereich des Düsenrings verhindern, beispielsweise ein diese Kreisfläche schliessender Gehäusedeckel.
  • Die Anzahl der Streben bestimmt die Erregerordnung von durch die Streben hervorgerufener Schwingungsanregung der Laufschaufeln (Störung im Druckfeld hinter der Rotorebene). Dabei sollte die Erregerordnung so hoch sein, dass eine Anregung der ersten Eigenfrequenz schon im tiefen Drehzahlbereich erfolgt und nicht im hohen, für den Betrieb relevanten Betriebsbereich nahe der Vollastdrehzahl. Dies ist mit einer Strebenanzahl von mindestens 7 gewährleistet.
  • Die Streben weisen vorteilhafterweise einen tropfenförmigen Querschnitt zur Reduzierung von Strömungsverlusten auf. Dabei sollten die Tropfenprofile rotationssymmetrisch angeordnet und radial ausgerichtet sein, so dass die Profilsehne des spiegelsymmetrischen Tropfens parallel zum Radiusvektor des Turboladers verläuft, ohne Anstellwinkel. Aufgrund der drallfreien Abströmung aus dem Diffusor im Auslegungspunkt der Turbine führt dies zu minimalen Verlusten. Sollte hingegen die Turbine so ausgelegt werden, dass ein definierter Austrittsdrall vorhanden ist, müsste ein entsprechender Anstellwinkel zwischen Profilsehne des Tropfens und Radiusvektor definiert werden. Die Querschnittsfläche der Streben sollte ausreichend gross sein, damit Eigenfrequenz des Gesamtbauteils über der Turboladerdrehzahl liegt. Durch die begrenzte radiale Bauhöhe kann der Profilquerschnitt nicht beliebig vergrössert werden, da die Länge der Profilsehen fix ist. Nur durch Aufdicken des Tropfenprofils kann die Steifigkeit erhöht werden. Jede Aufdickung ist mit einer Erhöhung der Strömungsverluste verbunden. Die obere Grenze stellt ein kreisrunder Querschnitt dar.
  • Bezüglich der Umfangsposition der Streben ist es vorteilhaft, eine der mindestens sieben Streben mittig bezüglich der Öffnung im Gasaustrittsgehäuse 20 anzuordnen. Bei Betrieb im Auslegungspunkt des Turboladers und der damit verbundenen drallfreien Abströmung aus der Turbine bilden sich im Gasaustrittsgehäuse zwei Wirbelzöpfe aus, die in der Mitte der Öffnung des Gasaustrittsgehäuses in Richtung Austrittsflansch des Gasaustrittsgehäuses zusammenfliessen. Mit dieser Anordnung werden die Strömungsverluste minimiert.
  • Die Streben 83 sind vorteilhafterweise parallel zur Turboladerachse ausgerichtet und an dem dem Sammelraum im Gasaustrittsgehäuse zugewandten Ende angeordnet, statt radial direkt hinter der Rotorebene des Turbinenrades als Nachleitrad. Auch diese Massnahme führt zu einer Minimierung der Strömungsverluste, da die Streben somit an der Position mit der kleinstmöglichen Geschwindigkeit angebracht sind. Näher an der Turbinenrotorebene und (in eher radialer Ausführung) würden zwar gewisse Vorteile bezüglich der Steifigkeit der Baugruppe Haubendiffusor bringen, allerdings müssten dafür höhere Strömungsverluste hingenommen werden, da dort die Geschwindigkeiten in der Strömung höher sind. Zusätzlich wären höhere Schwingungsanregungen der Laufschaufeln zu erwarten.
  • Wird der Turbinendiffusor vom Gasaustrittsgehäuse mechanisch entkoppelt, beispielsweise indem der Turbinendiffusor, wie oben beschrieben, an die Rotorbaugruppe anstatt ans Gasaustrittsgehäuse angebunden, wird eine neue Schnittstelle zwischen Turbinendiffusor und Gasaustrittsgehäuse geschaffen. Es entsteht zwischen diesen beiden Bauteilen ein Spalt, der als Leckagepfad um die Turbinenstufe herum wirkt. Es besteht die Gefahr, dass sich eine Leckageströmung A ausserhalb des Hauptströmungskanals der Turbine ausbildet (Turbinenbypass), die sich negativ auf den Turbinenwirkungsgrad auswirkt.
  • Durch Relativbewegungen im Betrieb zwischen Turbinendiffusor und Gasaustrittsgehäuse besitzt der Spalt im transienten Betrieb eine zeitlich veränderliche Geometrie. Um Verluste im Turbinenwirkungsgrad durch allfällige Leckageströmung zu begrenzen, muss der Spalt in allen relevanten Betriebszuständen ausreichend abgedichtet werden. Hierfür wird erfindungsgemäss eine semi-statische Dichtung vorgesehen. Besonders geeignet sind Dichtungen auf Kolbenringbasis oder alternativ auf Basis von Lamellenringen. Beide Dichtungstypen sind Drosseldichtungen und werden in der Regel zwischen konzentrischen Zylinderflächen ohne radiale Relativbewegungen und Achsversatz (Desaxierung) eingesetzt. Für den hier vorliegenden Einsatzzweck muss jedoch im Betrieb mit starken radialen Relativbewegungen und Desaxierung zwischen den Zylinderflächen (Turbinendiffusor und Gasaustrittsgehäuse) gerechnet werden. Ein weiteres Problem, das sich bei einer herkömmlichen Anwendung solcher Drosseldichtungen nicht stellt, ist die Verschmutzung durch Abgasrückstände aus der Schwerölverbrennung.
  • Die anhand der 3 und der 4 erläuterte erfindungsgemässe Drosseldichtung umfasst eine Anordnung von metallischen Dichtungsringen 91 (Kolbenringen, Lamellenringen oder ähnliche Elemente) in Nuten 821 auf dem Aussendurchmesser des Turbinendiffusors 82. Die Nutbreite wird dabei so gewählt, dass es nie zum Klemmen aufgrund der radialen und axialen Relativbewegungen des führenden Bauteils am Kolbenring kommt. Zudem kann optional durch die Ausbildung schräger Nutwände verhindert werden, dass bei einer Desaxierung zwischen Turbinendiffusor und Gasaustrittsgehäuse, also bei einer Schiefstellung des Turbinendiffusors bezüglich dem Gasaustrittsgehäuse, ein Dichtungsring in der Nut verklemmt. Die Schräge der Nutwände (Winkel zur radialen Richtung) entspricht dabei vorteilhafterweise der zu erwartenden Schiefstellung im Betrieb. Insbesondere bei knapp bemessenen Spaltbreiten helfen die schrägen Nutwände ein Klemmen des Dichtungsrings zu verhindern.
  • Bei der Montage des Rotors wird der Turbinendiffusor 82 in das Gasaustrittsgehäuse 20 eingefahren (in der 3 von links). Über eine Einfahrschräge 22 des Gasaustrittsgehäuses werden dabei die Dichtungsringe 91 gegen den Innendurchmessers des Gasaustrittsgehäuses 20 verspannt. Im Betrieb stellt sich so eine Anpresskraft der Dichtungsringe gegen den Innendurchmessers des Gasaustrittsgehäuses ein, die sich aus der Vorspannung des Dichtungsrings und einer resultierenden radial nach aussen wirkenden Druckkraft auf den Dichtungsring ergibt. Bei Kolbenringen ist der Effekt der radialen Druckkraft je nach Geometrie von Kolbenring, Nut und Dichtspalt deutlich nutzbar. Ein flacher Kolbenring weist eine hohe Anpassungsfähigkeit gegenüber der axialen Lauffläche auf und ist gegenüber Flattern weniger anfällig, wohingegen ein hochkant stehender, schmaler Kolbenring auf eine hohe Flächenpressung radial und axial ausgelegt ist.
  • Bei Lamellenringen ist aufgrund der fertigungsbedingten Bauform (Verhältnis Durchmesser zu Querschnitt) die resultierende radiale Druckkraft vernachlässigbar klein.
  • 4 zeigt eine schematische Skizze der Dichtungsanordnung mit radial anliegenden Dichtungsringen. Die Anordnung weist optional 1 oder 2 Dichtungsringe auf. Zusätzlich kann optional Sperrluft stromauf der Dichtungsringe oder zwischen den Dichtungsringen zum Verhindern von Verschmutzung im Spalt durch Abgasrückstände. Ebenfalls zum Verhindern von Verschmutzungen im Dichtungsbereich kann stromauf der Dichtungsstellen eine Labyrinthdichtung 822 vorgesehen sein, welche zwar keine wesentliche Drosselwirkung erzeugt, aber durch die Umlenkwirkung zum Abscheiden von Abgasrückständen beiträgt. In den Spalt zwischen dem Turbinendiffusor und dem Gasaustrittsgehäuse eindringende Abgasrückstände können zum Verklemmen der Dichtungsringe führen. Daher muss eine Verschmutzung der Dichtparte möglichst vermieden werden.
  • Alternativ zu den Dichtungsringen kann ein im Gasaustrittsgehäuse oder im Turbinendiffusor vormontiertes Kompensatorblech zur Abdichtung des Spalts eingesetzt werden. Das Kompensatorblech wird dabei durch Montagevorspannung an beiden Bauteilen anliegen. Betriebsverformungen können durch die Formgebung des Blechs gut aufgenommen werden.
  • Bezugszeichenliste
  • 10
    Gaseintrittsgehäuse
    11
    Kalotte (inneres Gaseintrittsgehäuse)
    20
    Gasaustrittsgehäuse
    21
    Sammelraum
    22
    Einfahrschräge
    30
    Turbinenrad
    31
    Laufschaufeln des Turbinenrades
    40
    Turbinendiffusor
    50
    Lagergehäuse
    51
    Haube
    60
    Welle
    70
    Leitvorrichtung (Düsenring)
    8
    Haubendiffusor
    81
    Haube
    82
    Turbinendiffusor
    821
    Nuten im Diffusor
    822
    Labyrinthdichtung
    83
    Strebe
    9
    Drosseldichtung
    91
    Dichtungsring
    A
    Leckageströmung

Claims (6)

  1. Abgasturbine mit axialer Anströmung, umfassend ein Turbinenrad (30) mit einer Vielzahl von Laufschaufeln (31), einer Leitvorrichtung (70) zum Ausrichten der Strömung auf die Laufschaufeln des Turbinenrades sowie einen Strömungskanal, welcher stromabwärts der Laufschaufeln des Turbinenrades angeordnet ist um die Strömung von den Laufschaufeln zu einem Gasaustrittsgehäuse zu leiten und hierfür eine Krümmung aus der axialen Richtung in die radiale Richtung aufweist, wobei der Strömungskanal radial aussen durch einen Turbinendiffusor (40, 82) und radial innen durch ein Gehäuseteil (51, 81) begrenzt ist, dadurch gekennzeichnet, dass der Turbinendiffusor (82) und das den Strömungskanal nach radial innen begrenzende Gehäuseteil (81) durch Streben (83) im Strömungskanal miteinander verbunden sind.
  2. Abgasturbine nach Anspruch 1, wobei der Turbinendiffusor (82), das den Strömungskanal nach radial innen begrenzende Gehäuseteil (81) und die Streben (83) einstückig ausgebildet sind.
  3. Abgasturbine nach Anspruch 1 oder 2, wobei zwischen dem Turbinendiffusor (82), und dem den Strömungskanal nach radial innen begrenzenden Gehäuseteil (81) mindestens sieben Streben (83) angeordnet sind.
  4. Abgasturbine nach einem der Ansprüche 1 bis 3, wobei die Leitvorrichtung (70) am Turbinendiffusor befestigt ist, um beim Ausbau der Baugruppe (8) bestehend aus dem Turbinendiffusor (82), dem den Strömungskanal nach radial innen begrenzenden Gehäuseteil (81) und den Streben (83) zusammen mit dieser Baugruppe (8) aus dem Gehäuse der Turbine gezogen zu werden.
  5. Abgasturbine nach Anspruch 1, wobei der Turbinendiffusor (82) von dem Gasaustrittsgehäuse (20) mechanisch entkoppelt ist, und in einem Spalt zwischen dem Turbinendiffusor (82) und dem Gasaustrittsgehäuse (20) eine Drosseldichtung (9) angeordnet ist.
  6. Abgasturbine nach Anspruch 4, wobei die Drosseldichtung (9) mindestens einen in einer Nut (821) im Turbinendiffusor (82) angeordneten Dichtungsring (91) aufweist.
DE201210211949 2012-07-09 2012-07-09 Diffusor einer Abgasturbine Withdrawn DE102012211949A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE201210211949 DE102012211949A1 (de) 2012-07-09 2012-07-09 Diffusor einer Abgasturbine
EP13174301.5A EP2685054B1 (de) 2012-07-09 2013-06-28 Diffusor einer abgasturbine
KR1020130079960A KR101501833B1 (ko) 2012-07-09 2013-07-08 배기가스 터빈의 디퓨저
CN201310285980.XA CN103541778B (zh) 2012-07-09 2013-07-09 排气涡轮的扩散器
JP2013143731A JP5859494B2 (ja) 2012-07-09 2013-07-09 排気ガスタービンのディフューザ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201210211949 DE102012211949A1 (de) 2012-07-09 2012-07-09 Diffusor einer Abgasturbine

Publications (1)

Publication Number Publication Date
DE102012211949A1 true DE102012211949A1 (de) 2014-01-09

Family

ID=49780747

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210211949 Withdrawn DE102012211949A1 (de) 2012-07-09 2012-07-09 Diffusor einer Abgasturbine

Country Status (1)

Country Link
DE (1) DE102012211949A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH296789A (de) * 1946-05-10 1954-02-28 Buechi Alfred Nicht radial beaufschlagte Turbine.
DE102010009201A1 (de) * 2010-02-24 2011-08-25 Abb Turbo Systems Ag Cartridge-Gehäusefortsatz für ummantelte Shroud-Turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH296789A (de) * 1946-05-10 1954-02-28 Buechi Alfred Nicht radial beaufschlagte Turbine.
DE102010009201A1 (de) * 2010-02-24 2011-08-25 Abb Turbo Systems Ag Cartridge-Gehäusefortsatz für ummantelte Shroud-Turbine

Similar Documents

Publication Publication Date Title
EP0690206B1 (de) Diffusor für Turbomaschine
DE60030894T2 (de) Turbokompressor mit axial verschiebbaren schaufeln wobei die geometrie in längsrichtung unterschiedlich ist
EP2685054B1 (de) Diffusor einer abgasturbine
EP2503246B1 (de) Segmentierter Brennkammerkopf
EP3091177B1 (de) Rotor für eine strömungsmaschine und verdichter
DE102008017844A1 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
WO2010003537A2 (de) Turbinengehäuse für einen abgasturbolader einer brennkraftmaschine
EP0806548A1 (de) Abgasturbine eines Abgasturboladers
EP2503242A2 (de) Brennkammerkopf mit Halterung für Dichtungen an Brennern in Gastrurbinen
EP0999349B1 (de) Axialturbine
EP2966352A1 (de) Brennkammer einer gasturbine mit verschraubtem brennkammerkopf
DE102012001322B4 (de) Schaufelkranzaggregat, Verfahren zu dessen Montage und Turbinenmotor
DE19618313A1 (de) Axialturbine eines Abgasturboladers
DE102014114798A1 (de) Axialventilator mit Außen- und Innendiffusor
EP2730744B1 (de) Abgasturbolader
DE102020202967A1 (de) Abgasturbolader mit Integralgehäuse
AT516978B1 (de) Mehrstufiger abgasturbolader
DE102012211949A1 (de) Diffusor einer Abgasturbine
EP1673519B1 (de) Dichtungsanordnung für eine gasturbine
EP2722495B1 (de) Gaseintrittsgehäuse und zugehörige Abgasturbine
EP2781695A1 (de) Leitvorrichtung einer Abgasturbine
EP1992789A1 (de) Gasaustrittsgehäuse einer Abgasturbine mit einem Stützelement
EP2792855B1 (de) Inneres Lagergehäuse eines Abgasturboladers
CH714152B1 (de) Turbolader.
DE102018221161B4 (de) Abgasturbine eines Abgasturboladers sowie Abgasturbolader mit einem strömungstechnischen Störelement im Turbinengehäuse

Legal Events

Date Code Title Description
R163 Identified publications notified
R082 Change of representative

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

R005 Application deemed withdrawn due to failure to request examination