DE102012204539B4 - Power transistor and method for producing a power transistor - Google Patents
Power transistor and method for producing a power transistor Download PDFInfo
- Publication number
- DE102012204539B4 DE102012204539B4 DE102012204539.2A DE102012204539A DE102012204539B4 DE 102012204539 B4 DE102012204539 B4 DE 102012204539B4 DE 102012204539 A DE102012204539 A DE 102012204539A DE 102012204539 B4 DE102012204539 B4 DE 102012204539B4
- Authority
- DE
- Germany
- Prior art keywords
- power transistor
- graphene layer
- layer
- source region
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 59
- 239000000758 substrate Substances 0.000 claims abstract description 27
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 21
- 230000000903 blocking effect Effects 0.000 claims abstract description 11
- 238000009413 insulation Methods 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 81
- 239000002800 charge carrier Substances 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 230000037230 mobility Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/049—Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/048—Making electrodes
- H01L21/0485—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1054—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/161—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
- H01L29/165—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7781—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with inverted single heterostructure, i.e. with active layer formed on top of wide bandgap layer, e.g. IHEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7788—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7789—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface the two-dimensional charge carrier gas being at least partially not parallel to a main surface of the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0646—PN junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1606—Graphene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
- H01L29/7828—Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Thin Film Transistor (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Leistungstransistor, der ein Substrat (1) aus Siliziumcarbid umfasst, in dem eine Drain-Elektrode (6) und ein Source-Bereich (9, 10) gebildet sind, und zwischen dem Source-Bereich (9, 10) und Drain-Elektrode (6) eine Zone (16) zur Aufnahme einer Sperrspannung gebildet ist, wobei über dem Source-Bereich (9, 10) und unterhalb einer mit einer Gate-Elektrode (4) verbundenen Isolationsschicht (5) eine Graphen-Schicht (12) aufgebracht ist, die mit der Gate-Elektrode (4) in einer Aufsicht wenigstens teilweise überlappend angeordnet ist, so dass in der Graphen-Schicht (12) ein Leitungskanal (13, 14) gebildet ist.Power transistor comprising a substrate (1) made of silicon carbide, in which a drain electrode (6) and a source region (9, 10) are formed, and between the source region (9, 10) and drain electrode ( 6) a zone (16) is formed for receiving a blocking voltage, a graphene layer (12) being applied above the source region (9, 10) and below an insulation layer (5) connected to a gate electrode (4). , which is arranged at least partially overlapping the gate electrode (4) in a plan view, so that a conduction channel (13, 14) is formed in the graphene layer (12).
Description
Die Erfindung betrifft einen Leistungstransistor und ein Verfahren zur Herstellung eines Leistungstransistors insbesondere für Leistungstransistoren mit einem Substrat aus Siliziumcarbid.The invention relates to a power transistor and a method for producing a power transistor, in particular for power transistors with a substrate made of silicon carbide.
Stand der TechnikState of the art
Leistungstransistoren dieser Art sind im allgemeinen Stand der Technik in vielfältiger Weise bekannt. So werden beispielsweise Leistungstransistoren als vertikale MOSFETs bereitgestellt, die eine Vielzahl von Zellen umfassen. Jede einzelne Zelle dieser Transistoren umfasst eine Gate-Elektrode, die zwischen benachbarten Source-Elektroden über einem Isolator angeordnet ist. Der Isolator dient als Gatedielektrikum, sodass durch Anlegen einer Spannung an die Gate-Elektrode ein Leitungskanal zwischen der Source-Elektrode und einer, üblicherweise auf der Rückseite des Substrats angeordneten Drain-Elektrode ausgebildet wird. Bekannte Leistungstransistoren verwenden beispielsweise einen n-dotierten Bereich, der die Source-Elektrode bildet. Dieser Bereich ist von einer p-dotierten Schicht umgeben, an die sich eine n-dotierte Schicht anschließt, um die Drain-Elektrode zu bilden. Durch Anlegen der Steuerspannung an die Gate-Elektrode wird in der p-dotierten Schicht der Leitungskanal ausgebildet. Eine Zone zur Aufnahme einer Sperrspannung wird dabei zwischen der Source-Elektrode und der Drain-Elektrode gebildet.Power transistors of this type are known in a variety of ways in the general state of the art. For example, power transistors are provided as vertical MOSFETs that include a plurality of cells. Each individual cell of these transistors includes a gate electrode arranged between adjacent source electrodes over an insulator. The insulator serves as a gate dielectric, so that a conduction channel is formed between the source electrode and a drain electrode, usually arranged on the back of the substrate, by applying a voltage to the gate electrode. Known power transistors use, for example, an n-doped region that forms the source electrode. This region is surrounded by a p-doped layer, which is followed by an n-doped layer to form the drain electrode. By applying the control voltage to the gate electrode, the conduction channel is formed in the p-doped layer. A zone for receiving a reverse voltage is formed between the source electrode and the drain electrode.
Zur Charakterisierung eines Leistungstransistors sind insbesondere die maximal anlegbare Sperrspannung sowie die Größe des Widerstands des Leitungskanals von Bedeutung. Diese können beispielsweise durch eine gezielte Auswahl der Dotierungen bzw. der Bauteilgeometrien optimiert werden.To characterize a power transistor, the maximum blocking voltage that can be applied and the size of the resistance of the line channel are particularly important. These can be optimized, for example, through a targeted selection of doping or component geometries.
Das Dokument
Die Schrift
Das Dokument
Die Schrift
Das Dokument
Eine mögliche Verbesserung bei Leistungstransistoren könnte darin bestehen, das Substrat nicht aus einem Siliziumkristall sondern aus einem Siliziumcarbid-Kristall herzustellen. Siliziumcarbid weist eine hohe Wärmeleitfähigkeit auf, sodass Leistungstransistoren aus Siliziumcarbid sehr hohe Leistungen verarbeiten können. Bei bekannten Siliziumcarbid-Leistungstransistoren wird der Gesamtwiderstand in Durchlassrichtung zu ca. 30 % von dem Leitungskanal-Widerstand hervorgerufen. Ein Grund dafür liegt in der geringen Ladungsträgerbeweglichkeit im Leitungskanal. Die Isolationsschicht wird üblicherweise aus Siliziumdioxid hergestellt, sodass an der Grenzfläche und der Wechselwirkung zwischen der Isolationsschicht und dem Siliziumcarbidsubstrat nur geringe Ladungsträgerbeweglichkeiten erzeugt werden können.A possible improvement in power transistors could be to make the substrate not from a silicon crystal but from a silicon carbide crystal. Silicon carbide has a high thermal conductivity, meaning that power transistors made of silicon carbide can process very high power levels. In known silicon carbide power transistors, approximately 30% of the total resistance in the forward direction is caused by the line channel resistance. One reason for this is the low charge carrier mobility in the conduction channel. The insulating layer is usually made of silicon dioxide, so that only small charge carrier mobilities can be generated at the interface and the interaction between the insulating layer and the silicon carbide substrate.
Es ist daher Aufgabe der Erfindung Leistungstransistoren hinsichtlich der Verlustleistung in Durchlassrichtung weiter zu verbessern.It is therefore the object of the invention to further improve power transistors with regard to the power loss in the forward direction.
Diese Aufgabe wird in einem ersten Aspekt durch einen Leistungstransistor gelöst, der ein Substrat aus Siliziumcarbid umfasst, in dem eine Drain-Elektrode und ein Source-Bereich gebildet sind, und zwischen dem Source-Bereich und Drain-Elektrode eine Zone zur Aufnahme einer Sperrspannung gebildet ist, wobei über dem Source-Bereich und unterhalb einer mit einer Gate-ElektrodeThis object is achieved in a first aspect by a power transistor which comprises a substrate made of silicon carbide, in which a drain electrode and a source region are formed, and a zone for receiving a reverse voltage is formed between the source region and drain electrode is, with above the source region and below one with a gate electrode
verbundenen Isolationsschicht eine Graphen-Schicht aufgebracht ist, die mit der Gate-Elektrode in einer Aufsicht wenigstens teilweise überlappend angeordnet ist, so dass in der Graphen-Schicht ein Leitungskanal gebildet ist.connected insulation layer, a graphene layer is applied, which is arranged at least partially overlapping with the gate electrode in a plan view, so that a conduction channel is formed in the graphene layer.
Gemäß der Erfindung wird eine Zwischenschicht aus Graphen zwischen der Isolationsschicht und dem Siliziumcarbid-Halbleiter eingeführt. Dadurch wird der Leitungskanal zur Steuerung des Leistungstransistors nicht mehr im Siliziumcarbid-Halbleiter sondern in der Graphen-Schicht erzeugt. Da innerhalb der Graphen-Schicht die Beweglichkeiten der Ladungsträger um Größenordnungen über dem von Siliziumcarbid liegen, wird eine Reduzierung des Leitungskanalwiderstands in Durchlassrichtung erreicht, sodass Leitungsverluste in Durchlassrichtung reduziert werden. Somit wird im eingeschalteten Zustand des Leistungstransistors eine Verringerung der Verlustleistung erreicht, sodass sich die Effizienz des Leistungstransistors erhöht. Für einen erfindungsgemäßen Leistungstransistor ergibt sich somit ein breites Einsatzspektrum über einen weiten Bereich von Spannungsklassen.According to the invention, an intermediate layer of graphene is introduced between the insulation layer and the silicon carbide semiconductor. As a result, the conduction channel for controlling the power transistor is no longer created in the silicon carbide semiconductor but in the graphene layer. Since the mobility of the charge carriers within the graphene layer is orders of magnitude higher than that of silicon carbide, a reduction in the conduction channel resistance in the forward direction is achieved, so that conduction losses in the forward direction are reduced. Thus, when the power transistor is switched on, a reduction in power loss is achieved, so that the efficiency of the power transistor increases. A power transistor according to the invention therefore has a wide range of uses over a wide range of voltage classes.
Gemäß einer Ausführungsform der Erfindung ist die Graphen-Schicht im Bereich der Gate-Elektrode und dem Source-Bereich vollflächig gebildet.According to one embodiment of the invention, the graphene layer is formed over the entire area in the area of the gate electrode and the source area.
Demgemäß erfolgt die laterale Ausdehnung der Graphen-Schicht bis hin zu den Source-Kontakten. Der Ladungsträgertransport findet somit von der Source-Elektrode in der Graphen-Schicht zum Leitungskanal statt. Da der Ladungsträgertransport nunmehr nicht mehr in dem Siliziumcarbid-Halbleiter stattfindet, wird ein weiterer Leitungsverlust vermieden. Folglich wird ein Leistungstransistor geschaffen, der im Vergleich mit einer lediglich unterhalb der Gate-Elektrode angebrachten Graphen-Schicht eine noch geringere Verlustleistung aufweist. Die minimale Ausdehnung der Graphen-Schicht muss dabei den Bereich des Leitungskanals bedecken.Accordingly, the graphene layer expands laterally up to the source contacts. The charge carrier transport therefore takes place from the source electrode in the graphene layer to the conduction channel. Since the charge carrier transport no longer takes place in the silicon carbide semiconductor, further conduction loss is avoided. As a result, a power transistor is created which has an even lower power loss compared to a graphene layer only attached below the gate electrode. The minimum extent of the graphene layer must cover the area of the cable channel.
Gemäß einer weiteren Ausführungsform der Erfindung ist die Zone zur Aufnahme einer Sperrspannung vertikal gebildet.According to a further embodiment of the invention, the zone for receiving a reverse voltage is formed vertically.
Vertikale MOSFET-Strukturen benötigen nur einen geringen Platz für die Transistorgrundzelle, da die Source-Elektrode und die Drain-Elektrode auf gegenüberliegenden Bereichen des Substrats angeordnet sind. Die Erfindung kann auch für vertikale Transistoren eingesetzt werden, sodass die Zone zur Aufnahme einer Sperrspannung weiterhin vertikal gebildet sein kann. Aufgrund der Entkopplung von dem in der Graphen-Schicht gebildeten lateralen Leitungskanal und der vertikalen Sperrzone ist in dieser Ausgestaltung der Erfindung eine Realisierung ohne Einbußen in der maximalen Sperrspannung des Leistungstransistors möglich.Vertical MOSFET structures require only a small amount of space for the transistor base cell because the source and drain electrodes are located on opposite areas of the substrate. The invention can also be used for vertical transistors, so that the zone for receiving a blocking voltage can still be formed vertically. Due to the decoupling of the lateral conduction channel formed in the graphene layer and the vertical blocking zone, implementation is possible in this embodiment of the invention without any loss in the maximum blocking voltage of the power transistor.
In einer weiteren Ausführungsform der Erfindung ist die Zone zur Aufnahme einer Sperrspannung lateral gebildet.In a further embodiment of the invention, the zone for receiving a blocking voltage is formed laterally.
Werden Leistungstransistoren beispielsweise in einer planaren Prozesstechnologie hergestellt, ist die Zone zur Aufnahme der Sperrspannung lateral zwischen dem Leitungskanal und der Drain-Elektrode angelegt. Zwar weist diese Struktur einen größeren Platzbedarf auf, die Erfindung ist jedoch auch für diese Herstellungstechnologien anwendbar.If power transistors are manufactured, for example, using a planar process technology, the zone for receiving the reverse voltage is positioned laterally between the conduction channel and the drain electrode. Although this structure requires more space, the invention is also applicable to these manufacturing technologies.
Gemäß einer weiteren Ausführungsform der Erfindung ist die Graphen-Schicht vertikal angeordnet.According to a further embodiment of the invention, the graphene layer is arranged vertically.
Durch die vertikale Anordnung der Graphen-Schicht kann die Grundzelle des Transistors verkleinert werden und somit der Platzbedarf und die Herstellkosten verringert werden.By arranging the graphene layer vertically, the basic cell of the transistor can be made smaller, thus reducing the space requirement and manufacturing costs.
In einer weiteren Ausgestaltung der Erfindung weist die Graphen-Schicht eine Ladungsträgermobilität auf die größer ist als die Ladungsträgermobilität in einem Silizium- oder Siliziumcarbid-Leitungskanal.In a further embodiment of the invention, the graphene layer has a charge carrier mobility that is greater than the charge carrier mobility in a silicon or silicon carbide line channel.
Während beispielsweise in einer Siliziumcarbid-Schicht die Ladungsträgermobilität im Leitungskanal typischerweise 20 cm2/Vs beträgt, kann die Ladungsträgermobilität innerhalb der Graphen-Schicht um mehrere Größenordnungen größer sein. So wurden beispielsweise in Graphen-Schichten Ladungsträgermobilitäten bis zu 200.000 cm2/Vs gemessen. Somit kann der Widerstand des Leistungstransistors in Durchlassrichtung deutlich verringert werden.For example, while in a silicon carbide layer the charge carrier mobility in the conduction channel is typically 20 cm 2 /Vs, the charge carrier mobility within the graphene layer can be several orders of magnitude larger. For example, charge carrier mobilities of up to 200,000 cm 2 /Vs were measured in graphene layers. The resistance of the power transistor in the forward direction can thus be significantly reduced.
In einer weiteren Ausgestaltung der Erfindung ist die Graphen-Schicht mittels eines epitaktischen Wachstumsprozesses auf dem Siliziumcarbid herstellbar. Die Graphen-Schicht kann dabei monolagig oder mehrlagig ausgeführt sein. Weitere geeignete Möglichkeiten zur Aufbringung der Graphen-Schicht sind z.B. Abscheidung aus der Gasphase oder ein Schichtübertrag von einem Hilfs-Substrat.In a further embodiment of the invention, the graphene layer can be produced on the silicon carbide using an epitaxial growth process. The graphene layer can be monolayer or multilayer. Other suitable options for applying the graphene layer include deposition from the gas phase or a layer transfer from an auxiliary substrate.
Der epitatktische Wachstumsprozess ist ein einfach zu kontrollierender thermischer Prozess. Die Herstellung von Graphen-Schichten mit diesem Verfahren fordert nur einen geringen zusätzlichen Prozessaufwand, sodass die Herstellung eines erfindungsgemäßen Transistors im Vergleich zu einem Leistungstransistor nach dem Stand der Technik gering ist.The epitaxial growth process is an easy to control thermal process. The production of graphene layers using this method requires only a small amount of additional process effort, so that the production of a transistor according to the invention is low compared to a power transistor according to the prior art.
In einem zweiten Aspekt wird die oben genannte Aufgabe auch mit einem Verfahren zur Herstellung eines Leistungstransistors gelöst, das folgendes umfasst:
- - Bereitstellen eines Substrats aus Siliziumcarbid;
- - Bilden eines Source-Bereichs in dem Substrat und eines Drain-Bereichs;
- - Bilden einer Graphen-Schicht auf einer Oberfläche des Substrats wenigstens teilweise überlappend mit einer Gate-Elektrode und teilweise überlappend mit dem Source-Bereich , und einer Zone zur Aufnahme einer Sperrspannung zwischen dem Source-Bereich und dem Drain-Bereich;
- - Bilden einer Isolationsschicht über der Graphen-Schicht; und
- - Bilden der Gate-Elektrode über der Isolationsschicht.
- - Providing a substrate made of silicon carbide;
- - Forming a source region in the substrate and a drain region;
- - Forming a graphene layer on a surface of the substrate at least partially overlapping with a gate electrode and partially overlapping with the source region, and a zone for receiving a reverse voltage between the source region and the drain region;
- - Forming an insulation layer over the graphene layer; and
- - Forming the gate electrode over the insulation layer.
Das vorgestellte Verfahren ermöglicht einen einfachen Herstellungsprozess, sodass ein kostengünstiger Leistungstransistor herstellbar ist.The method presented enables a simple manufacturing process so that a cost-effective power transistor can be produced.
Weitere vorteilhafte Ausführungsformen sind in den übrigen Unteransprüchen angegeben.Further advantageous embodiments are specified in the remaining subclaims.
Offenbarung der ErfindungDisclosure of the invention
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die anhängenden Zeichnungen näher erläutert.The invention is explained in more detail below using exemplary embodiments with reference to the attached drawings.
Die Zeichnungen zeigen:
-
1A eine schematische Querschnittsansicht durch einen erfindungsgemäßen Leistungstransistor gemäß einer ersten Ausführungsform der Erfindung; -
1B den Leistungstransistor aus1A in einer weiteren Darstellung; -
2 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer zweiten Ausführungsform der Erfindung; -
3 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer dritten Ausführungsform der Erfindung; -
4 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer vierten Ausführungsform der Erfindung; -
5A eine schematische Querschnittsansicht durch einen erfindungsgemäßen Leistungstransistor gemäß einer fünften Ausführungsform der Erfindung; -
5B den Leistungstransistor aus5A in einer weiteren Darstellung; -
6 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer sechsten Ausführungsform der Erfindung; -
7 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer siebten Ausführungsform der Erfindung; -
8 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer achten Ausführungsform der Erfindung; -
9 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer neunten Ausführungsform der Erfindung; -
10 eine schematische Querschnittsansicht eines erfindungsgemäßen Leistungstransistors gemäß einer zehnten Ausführungsform der Erfindung; -
11 eine Querschnittsansicht durch einen Leistungstransistor nach dem Stand der Technik.
-
1A a schematic cross-sectional view through a power transistor according to the invention according to a first embodiment of the invention; -
1B the power transistor1A in another representation; -
2 a schematic cross-sectional view of a power transistor according to the invention according to a second embodiment of the invention; -
3 a schematic cross-sectional view of a power transistor according to the invention according to a third embodiment of the invention; -
4 a schematic cross-sectional view of a power transistor according to the invention according to a fourth embodiment of the invention; -
5A a schematic cross-sectional view through a power transistor according to the invention according to a fifth embodiment of the invention; -
5B the power transistor5A in another representation; -
6 a schematic cross-sectional view of a power transistor according to the invention according to a sixth embodiment of the invention; -
7 a schematic cross-sectional view of a power transistor according to the invention according to a seventh embodiment of the invention; -
8th a schematic cross-sectional view of a power transistor according to the invention according to an eighth embodiment of the invention; -
9 a schematic cross-sectional view of a power transistor according to the invention according to a ninth embodiment of the invention; -
10 a schematic cross-sectional view of a power transistor according to the invention according to a tenth embodiment of the invention; -
11 a cross-sectional view through a power transistor according to the prior art.
In den Figuren sind gleiche bzw. bezüglich Ihrer Funktion gleich wirkende Elemente mit identischen Bezugszeichen versehen.In the figures, elements that are the same or have the same function are provided with identical reference numbers.
Im Folgenden wird unter Bezugnahme auf
Die erste Source-Elektrode 2 und die zweite Source-Elektrode 3 sowie die Gate-Elektrode 4 werden beispielsweise durch geeignete Metallisierungen oder dotiertes Polysilizium gebildet. Auf der Rückseite des Substrats 1 ist eine Drain-Elektrode 6 angeordnet, die beispielsweise ebenfalls durch eine geeignete Metallisierung hergestellt werden kann. Unterhalb der ersten Source-Elektrode 2 und der zweiten Source Elektrode befinden sich der erste Source-Bereich 9 und der zweite Source-Bereich 10. Diese weisen in der gezeigten Ausführungsform eine p-Dotierung auf.The
Des Weiteren umfasst das Substrat 1 im gezeigten Beispiel eine n-Dotierung. Das Substrat 1 ist mit einem Drain-Kontakt auf der Rückseite des Substrats 1 verbunden. Über dem Substrat 1 ist eine oder sind mehrere beispielsweise epitaktisch aufgebrachte weitere Schichten 15 angeordnet, die eine im Vergleich zum Substrat 1 niedrigere Dotierung aufweisen. Die weitere Schicht 15 weist ebenfalls eine n-Dotierung auf.Furthermore, the
Unterhalb der ersten Source-Elektrode 2, der Isolationsschicht 5 und der zweiten Source-Elektrode 3 ist eine Graphen-Schicht 12 aufgebracht. Wie
Insgesamt verringern sich somit die Leitungsverluste in Durchlassrichtung wie nachfolgend unter Bezugnahme auf die
Über Anlegen einer Steuerspannung an der Gate-Elektrode 4 wird in der Graphen-Schicht 12 jeweils ein erster Leitungskanal 13 und ein zweiter Leitungskanal 14 ausgebildet, der in
Die in
Die laterale Ausdehnung der Graphen-Schicht 12 erfolgt im gezeigten Ausführungsbeispiel bis zu der ersten Source-Elektrode 2 bzw. der zweiten Source-Elektrode 3. Die erste Source-Elektrode 2 bzw. die zweite Source-Elektrode 3 liegen somit auf der Graphen-Schicht 12, sodass der Ladungsträgertransport von dem Metallisierungsbereich in der Graphen-Schicht 12 bis zu den jeweiligen Leitungskanälen 13 bzw. 14 erfolgt. Somit wird ein Leistungstransistor geschaffen, der einen sehr niedrigen Kanalwiderstand in Durchlassrichtung aufweist.In the exemplary embodiment shown, the lateral extension of the
Aufgrund der Entkopplung der Leitungskanäle 13 und 14 mit der Sperrzone 16 ist die in
Unter Bezugnahme auf
Unter Bezugnahme auf
In
In
Unter Bezugnahme auf
In
Die Ausführungsform gemäß
In der Ausführungsform gemäß
Als weitere alternative Ausführungsform kann der Leistungstransistor nicht wie in den
In der Ausführungsform gemäß
In einer weiteren Ausführungsform gemäß
Im Vergleich zu einem Leistungstransistor nach dem Stand der Technik, der in
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012204539.2A DE102012204539B4 (en) | 2012-03-21 | 2012-03-21 | Power transistor and method for producing a power transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012204539.2A DE102012204539B4 (en) | 2012-03-21 | 2012-03-21 | Power transistor and method for producing a power transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
DE102012204539A1 DE102012204539A1 (en) | 2013-09-26 |
DE102012204539B4 true DE102012204539B4 (en) | 2023-12-07 |
Family
ID=49112197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102012204539.2A Active DE102012204539B4 (en) | 2012-03-21 | 2012-03-21 | Power transistor and method for producing a power transistor |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102012204539B4 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108899369B (en) * | 2018-06-27 | 2020-11-03 | 东南大学 | Graphene channel silicon carbide power semiconductor transistor |
CN114709255B (en) * | 2022-04-02 | 2024-09-10 | 东南大学 | Heterojunction-based high-power-density tunneling semiconductor device and manufacturing process thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070187694A1 (en) | 2006-02-16 | 2007-08-16 | Pfeiffer Loren N | Devices including graphene layers epitaxially grown on single crystal substrates |
JP2008205272A (en) | 2007-02-21 | 2008-09-04 | Fujitsu Ltd | Graphene transistor and manufacturing method thereof |
US20090166686A1 (en) | 2007-12-31 | 2009-07-02 | Atomate Corporation | Edge-Contacted Vertical Carbon Nanotube Transistor |
US20100102292A1 (en) | 2007-03-02 | 2010-04-29 | Nec Corporation | Semiconductor device using graphene and method of manufacturing the same |
DE102011002398B4 (en) | 2010-03-09 | 2014-12-24 | Mitsubishi Electric Corp. | A method of manufacturing a silicon carbide semiconductor device |
-
2012
- 2012-03-21 DE DE102012204539.2A patent/DE102012204539B4/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070187694A1 (en) | 2006-02-16 | 2007-08-16 | Pfeiffer Loren N | Devices including graphene layers epitaxially grown on single crystal substrates |
JP2008205272A (en) | 2007-02-21 | 2008-09-04 | Fujitsu Ltd | Graphene transistor and manufacturing method thereof |
US20100102292A1 (en) | 2007-03-02 | 2010-04-29 | Nec Corporation | Semiconductor device using graphene and method of manufacturing the same |
US20090166686A1 (en) | 2007-12-31 | 2009-07-02 | Atomate Corporation | Edge-Contacted Vertical Carbon Nanotube Transistor |
DE102011002398B4 (en) | 2010-03-09 | 2014-12-24 | Mitsubishi Electric Corp. | A method of manufacturing a silicon carbide semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
DE102012204539A1 (en) | 2013-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60132158T2 (en) | HIGH VOLTAGE SEMICONDUCTOR ARRANGEMENT WITH A FIELD PLATE STRUCTURE | |
DE112016003510B4 (en) | SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE | |
DE102013022570B4 (en) | SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING IT | |
DE112014000679B4 (en) | Insulating layer silicon carbide semiconductor device and process for its production | |
DE112009005320B4 (en) | Power semiconductor component and associated method | |
DE19848828C2 (en) | Semiconductor device with low forward voltage and high blocking capability | |
DE102013022598B3 (en) | Semiconductor component and method for its manufacture | |
DE102008000660B4 (en) | The silicon carbide semiconductor device | |
DE112012002956B4 (en) | Bipolar transistor with insulated gate | |
DE112013002125B4 (en) | Silicon carbide semiconductor device and manufacturing method thereof | |
DE102011086500B4 (en) | Silicon carbide semiconductor device and its manufacturing process | |
DE102010060138B4 (en) | Lateral HEMT | |
DE112012000748T5 (en) | Silicon carbide semiconductor device and method of manufacturing the same | |
DE112009002330T5 (en) | Power mosfet with a strained channel in a semiconductor heterostructure on metal substrate | |
DE112014001221T5 (en) | The silicon carbide semiconductor device | |
DE112015007172T5 (en) | SILICON CARBIDE SEMICONDUCTOR DEVICE | |
DE102013107758B4 (en) | Semiconductor device with a dielectric structure in a trench | |
DE112017002113B4 (en) | semiconductor unit | |
DE112006001280B4 (en) | Semiconductor device and method for its production | |
DE102018118875B4 (en) | Semiconductor device and method for its manufacture | |
DE112014003637T5 (en) | High-voltage semiconductor device and manufacturing method thereof | |
DE10012610C2 (en) | Vertical high-voltage semiconductor component | |
DE102004054286B4 (en) | Silicon carbide semiconductor device with junction field effect transistor, and method for its production | |
DE102007013848B4 (en) | Semiconductor device and method of making the same | |
DE102014108986B4 (en) | Semiconductor component and method for its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |