DE102012008570A1 - Verbindungen und Flüssigkristallines Medium - Google Patents

Verbindungen und Flüssigkristallines Medium Download PDF

Info

Publication number
DE102012008570A1
DE102012008570A1 DE201210008570 DE102012008570A DE102012008570A1 DE 102012008570 A1 DE102012008570 A1 DE 102012008570A1 DE 201210008570 DE201210008570 DE 201210008570 DE 102012008570 A DE102012008570 A DE 102012008570A DE 102012008570 A1 DE102012008570 A1 DE 102012008570A1
Authority
DE
Germany
Prior art keywords
compounds
atoms
formula
groups
replaced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201210008570
Other languages
English (en)
Inventor
Mark Goebel
Rocco Fortte
Detlef Pauluth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE201210008570 priority Critical patent/DE102012008570A1/de
Publication of DE102012008570A1 publication Critical patent/DE102012008570A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/44Oxygen atoms attached in position 4
    • C07D211/46Oxygen atoms attached in position 4 having a hydrogen atom as the second substituent in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/44Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing compounds with benzene rings directly linked
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/123Ph-Ph-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3004Cy-Cy
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3009Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/301Cy-Cy-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3003Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
    • C09K2019/3016Cy-Ph-Ph

Abstract

Die Erfindung betrifft Verbindungen der Formel I, sowie ein flüssigkristallines Medium, vorzugsweise mit einer nematischen Phase und einer negativen dielektrischen Anisotropie, welches a) eine oder mehrere Verbindungen der Formel Iund b) eine oder mehrere Verbindungen der Formel IIund/oder c) eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4enthält, worin die Parameter die in den Ansprüchen 1 und 4 angegebenen Bedeutungen haben, enthält, seine Verwendung in einer elektrooptische Anzeige, besonders in einer Aktivmatrix-Anzeige basierend auf dem VA-, ECB-, PALC-, FFS- oder IPS-Effekt, derartige Anzeigen, die ein solches flüssigkristallines Medium enthalten, sowie die Verwendung der Verbindungen der Formel I, zur Stabilisierung eines flüssigkristallinen Mediums, dass eine oder mehrere Verbindungen der Formel II und eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4 enthält.

Description

  • Die vorliegende Erfindung betrifft neue Verbindungen insbesondere zur Verwendung in Flüssigkristallmedien, aber auch die Verwendung dieser Flüssigkristallmedien in Flüssigkristallanzeigen sowie diese Flüssigkristallanzeigen, besonders Flüssigkristallanzeigen, die den ECB-(electrically controlled birefringence) Effekt mit dielektrisch negativen Flüssigkristallen in einer homeotropen Ausgangsorientierung verwenden. Die erfindungsgemäßen Flüssigkristallmedien zeichnen sich durch eine besonders niedrige Schaltzeit in den erfindungsgemäßen Anzeigen bei gleichzeitig hohem Spannungshaltevermögen (Englisch „voltage holding ratio”, kurz VHR oder auch nur HR) aus.
  • Das Prinzip der elektrisch kontrollierten Doppelbrechung, der ECB-Effekt oder auch DAP-Effekt (Deformation aufgerichteter Phasen) wurde erstmals 1971 beschrieben (M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912). Es folgten Arbeiten von J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) und G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869).
  • Die Arbeiten von J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30), J. Duchene (Displays 7 (1986), 3) und H. Schad (SID 82 Digest Techn. Papers (1982), 244) haben gezeigt, dass flüssigkristalline Phasen hohe Werte für das Verhältnis der elastischen Konstanten K3/K1, hohe Werte für die optische Anisotropie Δn und Werte für die dielektrische Anisotropie Δε ≤ –0,5 aufweisen müssen, um für hochinformative Anzeigeelemente basierend auf dem ECB-Effekt eingesetzt werden zu können. Auf dem ECB-Effekt basierende elektrooptische Anzeigeelemente weisen eine homöotrope Randorientierung auf (VA-Technologie = Vertical Aligned). Auch bei Anzeigen, die den so genannten IPS-(In Plane Switching)Effekt verwenden, können dielektrisch negative Flüssigkristallmedien zum Einsatz kommen.
  • Für die technische Anwendung dieses Effektes in elektrooptischen Anzeigeelementen werden FK-Phasen benötigt, die einer Vielzahl von Anforderungen genügen müssen. Besonders wichtig sind hier die chemische Beständigkeit gegenüber Feuchtigkeit, Luft und physikalischen Einflüssen wie Wärme, Strahlung im infraroten, sichtbaren und ultravioletten Bereich und elektrischen Gleich- und Wechselfeldern.
  • Ferner wird von technisch verwendbaren FK-Phasen eine flüssigkristalline Mesophase in einem geeigneten Temperaturbereich und eine niedrige Viskosität gefordert.
  • In keiner der bisher bekannten Reihen von Verbindungen mit flüssigkristalliner Mesophase gibt es eine Einzelverbindung, die allen diesen Erfordernissen entspricht. Es werden daher in der Regel Mischungen von zwei bis 25, vorzugsweise drei bis 18, Verbindungen hergestellt, um als FK-Phasen verwendbare Substanzen zu erhalten.
  • Matrix-Flüssigkristallanzeigen (MFK-Anzeigen) sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d. h. Transistoren) verwendet werden. Man spricht dann von einer ”aktiven Matrix”, wobei im Allgemeinen Dünnfilm-Transistoren (TFT) verwendet werden, die in der Regel auf einer Glasplatte als Substrat angeordnet sind.
  • Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z. B. CdSe oder TFT's auf der Basis von polykristallinem und u. a. amorphem Silizium. Letztere Technologie hat derzeit weltweit die größte kommerzielle Bedeutung.
  • Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
  • Die bisher am meisten verwendeten TFT-Anzeigen arbeiten üblicherweise mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet. Für TV Anwendungen werden IPS-Zellen oder ECB-(bzw. VAN-)Zellen verwendet, wohingegen für Monitore meist IPS-Zellen oder TN-(Twisted Nematic)Zellen und für „Note Books”, „Lap Tops” und für mobile Anwendungen meist TN-Zellen Verwendung finden.
  • Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d. h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
  • Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen, Monitore und „Note Books” oder für Displays mit hoher Informationsdichte z. B. in Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch einen nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im Allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig für Anzeigen die akzeptable Widerstandswerte über eine lange Betriebsdauer aufweisen müssen.
  • Anzeigen, die den ECB-Effekt verwenden haben sich als so genannte VAN-(Vertically Aligned Nematic) Anzeigen neben IPS-Anzeigen (z. B.: Yeo, S. D., Vortrag 15.3: „A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 und 759) und den lange bekannten TN-Anzeigen, als eine der drei zur Zeit wichtigsten neueren Typen von Flüssigkristallanzeigen insbesondere für Fernsehanwendungen etabliert.
  • Als wichtigste Bauformen sind zu nennen: MVA (Multi-Domain Vertical Alignment, z. B.: Yoshide, H. et al., Vortrag 3.1: „MVA LCD for Notebook or Mobile PCs...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 und Liu, C. T. et al., Vortrag 15.1: „A 46-inch TFT-LCD HDTV Technology...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753), PVA (Patterned Vertical Alignment, z. B.: Kim, Sang Soo, Vortrag 15.4: „Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763) und ASV (Avanced Super View, z. B.: Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: „Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757).
  • In allgemeiner Form werden die Technologien z. B. in Souk, Jun, SID Seminar 2004, Seminar M-6: „Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SID Seminar 2004, Seminar M-7: „LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32, verglichen. Obwohl die Schaltzeiten moderner ECB-Anzeigen durch Ansteuerungsmethoden mit Übersteuerung (overdrive) bereits deutlich verbessert wurden, z. B.: Kim, Hyeon Kyeong et al., Vortrag 9.1: „A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109, ist die Erzielung von videotauglichen Schaltzeiten insbesondere beim Schalten von Graustufen immer noch ein noch nicht zufriedenstellend gelöstes Problem.
  • ECB-Anzeigen verwenden wie ASV-Anzeigen flüssigkristalline Medien mit negativer dielektrischer Anisotropie (Δε), wohingegen TN- und bislang alle gebräuchlichen IPS-Anzeigen flüssigkristalline Medien mit positiver dielektrischer Anisotropie verwenden.
  • In derartigen Flüssigkristallanzeigen werden die Flüssigkristalle als Dielektrika verwendet, deren optische Eigenschaften sich bei Anlegen einer elektrischen Spannung reversibel ändern.
  • Da bei Anzeigen im allgemeinen, also auch bei Anzeigen nach diesen erwähnten Effekten, die Betriebsspannung möglichst gering sein soll, werden Flüssigkristallmedien eingesetzt, die in der Regel überwiegend aus Flüssigkristallverbindungen zusammengesetzt sind, die alle das gleiche Vorzeichen der dielektrischen Anisotropie aufweisen und einen möglichst großen Betrag der dielektrischen Anisotropie haben. Es werden in der Regel allenfalls geringere Anteile an neutralen Verbindungen und möglichst keine Verbindungen mit einem Vorzeichen der dielektrischen Anisotropie, das dem des Mediums entgegengesetzt ist, eingesetzt. Bei den Flüssigkristallmedien mit negativer dielektrischer Anisotropie für ECB-Anzeigen werden somit überwiegend Verbindungen mit negativer dielektrischer Anisotropie eingesetzt. Die eingesetzten Flüssigkristallmedien bestehen in der Regel überwiegend und meist sogar weitestgehend aus Flüssigkristallverbindungen mit negativer dielektrischer Anisotropie.
  • Bei den gemäß der vorliegenden Anmeldung verwendeten Medien werden typischerweise allenfalls nennenswerte Mengen an dielektrisch neutralen Flüssigkristallverbindungen und in der Regel nur sehr geringe Mengen an oder gar keine dielektrisch positiven Verbindungen eingesetzt, da generell die Flüssigkristallanzeigen möglichst niedrige Ansteuerspannungen haben sollen.
  • Für viele praktische Anwendungen in Flüssigkristallanzeigen sind die bekannten Flüssigkristallmedien nicht stabil genug. Insbesondere ihre Stabilität gegen die Bestrahlung mit UV, aber auch bereits mit den üblichen Hintergrundbeleuchtungen führt zu einer Verschlechterung insbesondere der elektrischen Eigenschaften. So nimmt z. B. die Leitfähigkeit signifikant zu.
  • Zur Stabilisierung von Flüssigkristallmischungen wurde bereits die Verwendung von sogenannten „Hindered Amine Light Stabilizers”, kurz HALS, vorgeschlagen.
  • Nematische Flüssigkristallmischungen mit negativer dielektrische Anisotropie, die eine geringe Menge an TINUVIN®770, einer Verbindung der Formel
    Figure 00060001
    als Stabilisatoren enthalten, werden z. B. in WO 2009/129911 A1 vorgeschlagen. Die entsprechenden Flüssigkristallmischungen haben jedoch für einige praktische Anwendungen nicht ausreichende Eigenschaften. Unter anderem sind sie nicht genügend stabil gegen die Belastung durch die Bestrahlung mit typischen CCFL-((Cold Cathod Flourescent Lamp)Hintergrundbeleuchtungen.
  • Ähnliche Flüssigkristallmischungen sind z. B. auch aus EP 2 182 046 A1 , WO 2008/009417 A1 , WO 2009/021671 A1 und WO 2009/115186 A1 bekannt. Dort wird jedoch nicht auf die Verwendung von Stabilisatoren hingewiesen.
  • Diese Flüssigkristallmischungen können gemäß der dortigen Offenbarung optional auch Stabilisatoren verschiedener Arten, wie z. B. Phenole und sterisch gehinderte Amine (Englisch: hindered amine light stabilizers, kurz: HALS) enthalten. Diese Flüssigkristallmischungen sind jedoch durch relativ hohe Schwellenspannungen und durch bestenfalls moderate Stabilitäten gekennzeichnet. Insbesondere sinkt deren „Voltage Holding Ratio” nach Belastung. Außerdem tritt oft eine gelbliche Verfärbung auf.
  • Die Verwendung verschiedener Stabilisatoren in flüssigkristallinen Medien wird z. B. in JP (S)55-023169 (A) , JP (H)05-117324 (A) , WO 02/18515 A1 und JP (H) 09-291282 (A) beschrieben. Auch TINUVIN®123, eine Verbindung der Formel
    Figure 00070001
    wurde zu Stabilisierungszwecken vorgeschlagen.
  • Mesogene Verbindungen mit einer oder zwei HALS-Einheiten werden in EP 1 1784 442 A1 offenbart.
  • HALS mit verschiedenen Substituenten am Stickstoffatom werden in Ohkatsu, Y., J. of Japan Petroleum Institute, 51, 2008, Seiten 191–204 bezüglich ihrer pKB-Werte verglichen. Dabei werden die folgenden Typen von Strukturformeln offenbart.
  • Figure 00070002
  • Die Verbindung TEMPOL, der folgenden Formel
    Figure 00070003
    ist bekannt, sie wird z. B. in Miéville, P. et al, Angew. Chem. 2010, 122, Seiten 6318–6321 erwähnt. Sie ist von verschiednen Herstellern kommerziell erhältlich und wird z. B. in Formulierungen für Vorläufer für Polyolefine, Polystyrole, Polyamide, Beschichtungen und PVC als Polymerisationsinhibitor und, insbesondere in Kombination mit UV-Absorbern, als Licht- bzw. UV-Schutz eingesetzt.
  • Die Flüssigkristallmedien des Standes der Technik mit entsprechend niedrigen Ansteuerspannungen haben relativ geringe elektrische Widerstände bzw. eine geringe VHR und führen in den Anzeigen oft zu unerwünschtem „Flicker” und/oder ungenügender Transmission. Außerdem sind sie nicht ausreichend stabil gegen Temperatur- und/oder UV-Belastung, zumindest dann, wenn sie eine entsprechend hohe Polarität aufweisen, wie sie für niedrige Ansteuerspannungen nötig ist.
  • Andererseits ist die Ansteuerspannung der Anzeigen des Standes der Technik, die eine hohe VHR aufweisen, oft zu groß, insbesondere für Anzeigen die nicht direkt oder nicht durchgehend an das Stromversorgungsnetz angeschlossen werden wie z. B. Anzeigen für mobile Anwendungen.
  • Außerdem muss der Phasenbereich der Flüssigkristallmischung ausreichend breit für die beabsichtigte Anwendung der Anzeige sein.
  • Die Schaltzeiten der Flüssigkristallmedien in den Anzeigen müssen verbessert, also verringert, werden. Dies ist besonders für Anzeigen für Fernseh- oder Multi-Media Anwendungen wichtig. Zur Verbesserung der Schaltzeiten ist in der Vergangenheit wiederholt vorgeschlagen worden, die Rotationsviskosität der Flüssigkristallmedien (γ1) zu optimieren, also Medien mit einer möglichst geringen Rotationsviskosität zu realisieren. Die dabei erzielten Ergebnisse sind jedoch nicht ausreichend für viele Anwendungen und lassen es daher wünschenswert erscheinen, weitere Optimierungsansätze aufzufinden.
  • Ganz besonders wichtig ist eine ausreichende Stabilität der Medien gegen extreme Belastungen, insbesondere gegen UV- und Temperaturbelastung. Besonders bei Anwendungen in Anzeigen in mobilen Geräten wie z. B. Mobiltelefonen kann dieses entscheidend sein.
  • Der Nachteil der bisher bekannten MFK-Anzeigen beruht auf ihrem vergleichsweise niedrigen Kontrast, der relativ hohen Blickwinkelabhängigkeit und der Schwierigkeit in diesen Anzeigen Graustufen zu erzeugen, sowie ihrer ungenügenden VHR und ihrer ungenügenden Lebensdauer.
  • Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten und niedriger Schwellenspannung, mit deren Hilfe verschiedene Graustufen erzeugt werden können und die insbesondere eine gute und stabile VHR aufweisen.
  • Der Erfindung liegt die Aufgabe zugrunde MFK-Anzeigen, nicht nur für Monitor- und TV-Anwendungen, sondern auch für Mobiltelefone und Navigationssysteme, welche auf dem ECB- oder auf dem IPS-Effekt beruhen, bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße und gleichzeitig sehr hohe spezifische Widerstände aufweisen. Insbesondere muss für Mobiltelefone und Navigationssysteme gewährleistet sein, dass diese auch bei extrem hohen und extrem niedrigen Temperaturen arbeiten.
  • Überraschend wurde gefunden, dass Flüssigkristallanzeigen realisiert werden können, die insbesondere in ECB-Anzeigen eine niedrige Schwellenspannung bei geringen Schaltzeiten aufweisen und gleichzeitig eine ausreichend breite nematische Phase, eine günstige, relativ niedrige Doppelbrechung (Δn), gute Stabilität gegen Zersetzung durch thermische und durch UV-Belastung und eine stabile hohe VHR aufweisen, wenn man in diesen Anzeigeelementen nematische Flüssigkristallmischungen verwendet, die mindestens eine Verbindung der Formel I, sowie jeweils mindestens eine Verbindung der Formel II, bevorzugt der Unterformel II-1, und/oder mindestens eine Verbindung ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4, bevorzugt der Formeln III-2, enthalten.
  • Derartige Medien sind insbesondere für elektrooptische Anzeigen mit einer Aktivmatrix-Adressierung basierend auf dem ECB-Effekt sowie für IPS-Anzeigen (In plane switching) zu verwenden.
  • Gegenstand der Erfindung ist somit ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen, welches mindestens eine Verbindung der Formel I und mindestens eine Verbindung, die eine oder mehrere Verbindungen der Formel II und bevorzugt zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis II-4 enthält.
  • Die erfindungsgemäßen Mischungen zeigen sehr breite nematische Phasenbereiche mit Klärpunkten ≥ 70°C, sehr günstige Werte für die kapazitive Schwelle, relativ hohe Werte für die Holding Ratio und gleichzeitig gute Tieftemperaturstabilitäten bei –20°C und –30°C, sowie sehr geringe Rotationsviskositäten. Weiterhin zeichnen sich die erfindungsgemäßen Mischungen durch ein gutes Verhältnis von Klärpunkt und Rotationsviskosität und durch eine hohe negative dielektrische Anisotropie aus.
  • Überraschenderweise wurde nun gefunden, dass flüssigkristalline Medien mit einem geeignet hohen Δε, einem geeigneten Phasenbereich und Δn verwirklicht werden können, welche die Nachteile der Materialien des Standes der Technik nicht oder zumindest nur in erheblich geringerem Maße aufweisen.
  • Hier wurde überraschend gefunden, dass die Verbindungen der Formel I, auch wenn sie alleine ohne zusätzliche Temperaturstabilisatoren verwendet werden, zu einer erheblichen, in vielen Fällen ausreichenden, Stabilisierung von Flüssigkristallmischungen sowohl gegen UV-Belastung, als auch gegen Temperaturbelastung führen. Dieses ist insbesondere in den meisten Fällen, in denen der Parameter R11 in den verwendeten Verbindungen der Formel I O. bedeutet, der Fall. Daher sind die Verbindungen der Formel I, in denen R11 O. bedeutet, besonders bevorzugt, bzw. ist die Verwendung eben dieser Verbindungen in den erfindungsgemäßen Flüssigkristallmischungen besonders bevorzugt.
  • Eine ausreichende Stabilisierung von Flüssigkristallmischungen sowohl gegen UV-Belastung, als auch gegen Temperaturbelastung kann aber auch insbesondere dann erreicht werden, wenn zusätzlich zu der Verbindung der Formel I, bzw. den Verbindungen der Formel I, eine oder mehrere weitere Verbindungen, bevorzugt phenolische Stabilisatoren, in der Flüssigkristallmischung zugegen sind. Diese weiteren Verbindungen sind als Stabilisatoren gegen thermische Belastungen geeignet.
  • Die Erfindung betrifft somit Verbindungen der Formel I, sowie ein flüssigkristallines Medium mit einer nematischen Phase und einer negativen dielektrischen Anisotropie, welches
    • a) eine oder mehrere Verbindungen der Formel I, bevorzugt in einer Konzentration im Bereich von 1 ppm bis zu 1.000 ppm, bevorzugt im Bereich von 1 ppm bis zu 500 ppm, besonders bevorzugt im Bereich von 1 ppm bis zu 250 ppm,
      Figure 00110001
      worin n eine ganze Zahl von 1 bis 4, bevorzugt, 1, 2 oder 3, besonders bevorzugt 1 oder 2, und ganz besonders bevorzugt 2, m (4-n),
      Figure 00110002
      ein organischer Rest mit 4 Bindungsstellen, bevorzugt eine Alkantetrayleinheit mit 1 bis 20 C-Atomen in der zusätzlich zu den im Molekül vorhandenen m Gruppen R12, aber unabhängig davon, ein weiteres H-Atom durch R12 ersetzt sein kann oder mehrere weitere H-Atome durch R12 ersetzt sein können, bevorzugt eine geradkettige Alkantetrayleinheit mit je einer Valenz an je einem der beiden endständigen C-Atome worin eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -(C=O)- so ersetzt sein können, dass nicht zwei O-Atome direkt miteinander verbunden sind, oder ein substituierter oder unsubstituierter aromatischer oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 4 Valenzen, in dem zusätzlich zu den im Molekül vorhandenen m Gruppen R12, aber unabhängig davon, ein weiteres H-Atom durch R12 ersetzt sein kann oder mehrere weitere H-Atome durch R12 ersetzt sein können, Z11 und Z12 unabhängig voneinander -O-, -(C=O)-, -(N-R14)- oder eine Einfachbindung, jedoch nicht beide gleichzeitig -O-, r und s unabhängig voneinander 0 oder 1, Y11 bis Y14 jeweils unabhängig voneinander Alkyl mit 1 bis 4 C-Atomen, bevorzugt Methyl oder Ethyl, besonders bevorzugt alle entweder Methyl oder Ethyl und ganz besonders bevorzugt Methyl, und alternativ auch unabhängig voneinander eines oder beide der Paare (Y11 und Y12) und (Y13 und Y14) gemeinsam eine zweibindige Gruppe mit 3 bis 6 C-Atomen, bevorzugt mit 5 C-Atomen, besonders bevorzugt 1,5-Pentylen, R11 O-R13, O. oder OH, bevorzugt O-R13 oder O. besonders bevorzugt O., iso-Propyloxy, Cyclohexyloxy, Acetophenyloxy oder Benzyloxy und ganz besonders bevorzugt O., R12 bei jedem Auftreten unabhängig voneinander H, F, OR14, NR14R15 eine geradkettige oder verzweigte Alkylkette mit 1–20 C-Atomen, in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, einen Kohlenwasserstoffrest, der eine Cycloalkyl- oder eine Alkylcycloalkyleinheit enthält, und, in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, und in dem ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder ein aromatischer oder heteroaromatischen Kohlenwasserstoffrest, in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, R13 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkylkette mit 1–20 C-Atomen, in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, ein Kohlenwasserstoffrest, der eine Cycloalkyl- oder eine Alkylcycloalkyleinheit enthält, und, in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, und in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder ein aromatischer oder heteroaromatischer Kohlenwasserstoffrest, in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder
      Figure 00130001
      (1,4-Cyclohexylen), worin eine oder mehrere -CH2--Gruppen durch -O-, -CO oder -NR14-ersetzt sein können, oder ein Acetophenyl-Isopropyl- oder 3-Heptylrest sein kann, R14 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkyl- oder Acylgruppe mit 1 bis 10 C-Atomen, bevorzugt n-Akyl, oder einen aromatischen Kohlenwasserstoff- oder Carbonsäurerest mit 6–12 C-Atomen, bevorzugt mit der Maßgabe, dass bei N(R14)(R15) mindestens ein Acylrest vorhanden ist, R15 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkyl- oder Acylgruppe mit 1 bis 10 C-Atomen, bevorzugt n-Akyl, oder einen aromatischen Kohlenwasserstoff- oder Carbonsäurerest mit 6–12 C-Atomen, bevorzugt mit der Maßgabe, dass bei N(R14)(R15) mindestens ein Acylrest vorhanden ist, R16 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 C-Atomen in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, bedeutet, mit den Maßgaben, dass, im Fall n = 1, R11 = O. und -[Z11-]r-[Z12]s- = -O-, -(CO)-O-, -O-(CO)-, -O-(CO)-O-, -NR14- oder -NR14-(CO)-,
      Figure 00140001
      nicht geradkettiges oder verzweigtes Alkyl mit 1 bis 10 C-Atomen, auch Cycloalkyl, Cycloalkylalkyl, oder Alkylcyloalkyl, wobei in allen diesen Gruppen eine oder mehrere -CH2- Gruppen durch -O- so ersetzt sein können, dass im Molekül keine zwei O-Atome direkt miteinander verbunden sind, bedeutet im Fall n = 2 und R11 = O.,
      Figure 00150001
      nicht
      Figure 00150002
      bedeutet, und im Fall n = 2 und R11 = O-R13, R13 nicht n-C1-9-Alkyl bedeutet, und
    • b) eine oder mehrere Verbindungen der Formel II
      Figure 00150003
      worin R21 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen oder einen unsubstituierten Alkenylrest mit 2 bis 7 C-Atomen, bevorzugt einen n-Alkylrest, besonders bevorzugt mit 3, 4 oder 5 C-Atomen, und R22 einen unsubstituierten Alkenylrest mit 2 bis 7 C-Atomen, bevorzugt mit 2, 3, oder 4 C-Atomen, stärker bevorzugt einen Vinylrest oder einen 1-Propenylrest und insbesondere einen Vinylrest bedeuten, und/oder
    • c) eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Formeln III-1 bis III-4, bevorzugt der Formel III-2,
      Figure 00160001
      worin R31 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen, bevorzugt einen n-Alkylrest, besonders bevorzugt mit 2 bis 5 C-Atomen, R32 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen oder einen unsubstituierten Alkoxyrest mit 1 bis 6 C-Atomen, bevorzugt mit 2, 3 oder 4 C-Atomen, und m, n und o jeweils unabhängig voneinander 0 oder 1, bedeuten, enthält.
  • Bevorzugt sind die folgenden Ausführungsformen
    Figure 00170001
  • In der vorliegenden Anmeldung umfassen die Elemente alle ihre jeweiligen Isotope. Insbesondere können in den Verbindungen ein oder mehrere H durch D ersetzt sein und dieses ist in einigen Ausführungsformen auch besonders bevorzugt. Ein entsprechend hoher Deuterierungsgrad der entsprechenden Verbindungen ermöglicht z. B. eine Detektion und Wiedererkennung der Verbindungen. Dieses ist insbesondere bei den Verbindungen der Formel I in einigen Fällen sehr hilfreich.
  • In der vorliegenden Anmeldung bedeutet
    Alkyl besonders bevorzugt geradkettiges Alkyl, insbesondere CH3-, C2H5-, n-C3H7, n-C4H9- oder n-C5H11-, und
    Alkenyl besonders bevorzugt CH2=CH-, E-CH3-CH=CH-, CH2=CH-CH2-CH2-, E-CH3-CH=CH-CH2-CH2- oder E-(n-C3H7)-CH=CH-.
  • Bevorzugt enthalten die flüssigkristallinen Medien gemäß der vorliegenden Anmeldung insgesamt 1 ppm bis 1.000 ppm, bevorzugt 1 ppm bis 500 ppm, noch stärker bevorzugt 1 bis 250 ppm, bevorzugt bis 200 ppm, und, ganz besonders bevorzugt, 1 ppm bis 100 ppm an Verbindungen der Formel I.
  • Bevorzugt beträgt die Konzentration der Verbindungen der Formel I in den erfindungsgemäßen Medien 90 ppm oder weniger, besonders bevorzugt 50 ppm oder weniger. Ganz besonders bevorzugt beträgt die Konzentration der Verbindungen der Formel I in den erfindungsgemäßen Medien 10 ppm oder mehr bis 80 ppm oder weniger.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung bedeutet bei den Verbindungen der Formel I
    Figure 00180001
    Figure 00190001
    -[Z11-]r-[Z12-]s bei jedem Auftreten unabhängig voneinander -O-, (C=O)-O- oder -O-(C=O)-, -(N-R14)- oder eine Einfachbindung, bevorzugt -O- oder -(C=O)-O- oder -O-(C=O)-, und/oder
    R11 -O., OH oder O-R13, bevorzugt:
    -O., -O-CH(-CH3)2, -O-CH(-CH3)(-CH2)3-CH3,
    -O-CH(-C2H5)(-CH2)3-CH3,
    Figure 00190002
    R12, wenn vorhanden, Alkyl oder Alkoxy, und/oder
    R13, iso-Propyl oder 3-Heptyl, Acetophenyl oder Cyclohexyl.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung bedeutet bei den Verbindungen der Formel I die Gruppierung
    Figure 00190003
    bei jedem Auftreten unabhängig voneinander,
    Figure 00200001
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung haben bei den Verbindungen der Formel I alle vorhandenen Gruppierungen
    Figure 00200002
    dieselbe Bedeutung.
  • Diese Verbindungen eignen sich hervorragend als Stabilisatoren in Flüssigkristallmischungen. Insbesondere stabilisieren sie die VHR der Mischungen gegen UV-Belastung.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der Verbindungen der Formeln I-1 bis I-9, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln I-1 bis I-4,
    Figure 00210001
    Figure 00220001
    Figure 00230001
    worin die Parameter die oben unter Formel I angegebenen Bedeutungen haben und
    t eine ganze Zahl von 1 bis 12
    R17 eine geradkettige oder verzweigte Alkylkette mit 1–12 C-Atomen in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können oder ein aromatischer oder heteroaromatischer Kohlenwasserstoffrest in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können,
    bedeuten.
  • In einer noch stärker bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-1a-1 bis I-8a-1
    Figure 00230002
    Figure 00240001
    Figure 00250001
    Figure 00260001
  • In einer noch stärker bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-2a-1 und I-2a-2
    Figure 00260002
  • In einer alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-1b-1 und I-1b-2
    Figure 00270001
  • In einer alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-1c-1 und I-1c-2
    Figure 00270002
  • In einer weiteren alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-1d-1 bis I-1d-4
    Figure 00270003
    Figure 00280001
  • In einer weiteren alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-3d-1 bis I-3d-8
    Figure 00280002
    Figure 00290001
  • In einer weiteren alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-4d-1 und I-4d-2
    Figure 00290002
    Figure 00300001
  • In einer weiteren alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-1e-1 und I-1e-2
    Figure 00300002
  • In einer weiteren alternativen, bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien jeweils eine oder mehrere Verbindungen der Formel I ausgewählt aus der Gruppe der folgenden Verbindungen, der Formeln I-5e-1 bis I-8e-1
    Figure 00300003
    Figure 00310001
  • Vorzugsweise enthalten die Medien gemäß der vorliegenden Erfindung zusätzlich zu den Verbindungen der Formel I, bzw. deren bevorzugter Unterformeln, eine oder mehrere dielektrisch neutrale Verbindungen der Formel II in einer Gesamtkonzentration im Bereich von 5% oder mehr bis 90% oder weniger, bevorzugt von 10% oder mehr bis 80% oder weniger, besonders bevorzugt von 20% oder mehr bis 70% oder weniger.
  • Vorzugsweise enthält das erfindungsgemäße Medium eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Formeln III-1 bis III-4 in einer Gesamtkonzentration im Bereich von 10% oder mehr bis 80% oder weniger, bevorzugt von 15% oder mehr bis 70% oder weniger, besonders bevorzugt von 20% oder mehr bis 60% oder weniger.
  • Insbesondere bevorzugt enthält das erfindungsgemäße Medium
    eine oder mehrere Verbindungen der Formel III-1 in einer Gesamtkonzentration im Bereich von 5% oder mehr bis 30% oder weniger,
    eine oder mehrere Verbindungen der Formel III-2 in einer Gesamtkonzentration im Bereich von 3% oder mehr bis 30% oder weniger,
    eine oder mehrere Verbindungen der Formel III-3 in einer Gesamtkonzentration im Bereich von 5% oder mehr bis 30% oder weniger,
    eine oder mehrere Verbindungen der Formel III-4 in einer Gesamtkonzentration im Bereich von 1% oder mehr bis 30% oder weniger.
  • Bevorzugte Verbindungen der Formel II sind die Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln II-1 und II-2, bevorzugt der Formel II-1,
    Figure 00320001
    worin
    Alkyl einen Alkylrest mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen,
    Alkenyl einen Alkenylrest mit 2 bis 5 C-Atomen, bevorzugt mit 2 bis 4 C-Atomen, besonders bevorzugt 2 C-Atomen,
    Alkenyl' einen Alkenylrest mit 2 bis 5 C-Atomen, bevorzugt mit 2 bis 4 C-Atomen, besonders bevorzugt mit 2 bis 3 C-Atomen,
    bedeuten.
  • Die erfindungsgemäßen Medien enthalten bevorzugt eine oder mehrere Verbindungen der Formel III-1, bevorzugt eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1-1 und III-1-2
    Figure 00330001
    worin die Parameter die oben bei Formel III-1 gegeben Bedeutung haben und bevorzugt
    R31 einen Alkylrest mit 2 bis 5 C-Atomen, bevorzugt mit 3 bis 5 C-Atomen, und
    R32 einen Alkyl- oder Alkoxyrest mit 2 bis 5 C-Atomen, bevorzugt einen Alkoxyrest mit 2 bis 4 C-Atomen, oder ein Alkenyloxyrest mit 2 bis 4 C-Atomen.
    bedeuten.
  • Die erfindungsgemäßen Medien enthalten bevorzugt eine oder mehrere Verbindungen der Formel III-2, bevorzugt eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-2-1 und III-2-2
    Figure 00340001
    worin die Parameter die oben bei Formel III-2 gegeben Bedeutung haben und bevorzugt
    R31 einen Alkylrest mit 2 bis 5 C-Atomen, bevorzugt mit 3 bis 5 C-Atomen, und
    R32 einen Alkyl- oder Alkoxyrest mit 2 bis 5 C-Atomen, bevorzugt einen Alkoxyrest mit 2 bis 4 C-Atomen oder ein Alkenyloxyrest mit 2 bis 4 C-Atomen,
    bedeuten.
  • Die erfindungsgemäßen Medien enthalten bevorzugt eine oder mehrere Verbindungen der Formel III-3, bevorzugt eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-3-1 und III-3-2
    Figure 00340002
    worin die Parameter die oben bei Formel III-3 gegeben Bedeutung haben und bevorzugt
    R31 einen Alkylrest mit 2 bis 5 C-Atomen, bevorzugt mit 3 bis 5 C-Atomen, und
    R32 einen Alkyl- oder Alkoxyrest mit 2 bis 5 C-Atomen, bevorzugt ein Alkoxyrest mit 2 bis 4 C-Atomen oder ein Alkenyloxyrest mit 2 bis 4 C-Atomen,
    bedeuten.
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien enthalten eine oder mehrere Verbindungen der Formel II ausgewählt aus der Gruppe der Verbindungen der Formeln II-1 und II-2.
  • In einer davon abweichenden bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien enthalten keine Verbindungen der Formel II.
  • Bevorzugt enthalten die erfindungsgemäßen Medien die folgenden Verbindungen in den angegebenen Gesamtkonzentrationen
    10–60 Gew.-% einer oder mehrerer Verbindungen ausgewählt aus der Gruppe der Verbnindungen der Formeln III-1 bis III-4 und/oder
    30–80 Gew.-% einer oder mehrerer Verbindungen der Formeln IV und/oder V
    wobei der Gesamtgehalt aller Verbindungen in dem Medium 100% beträgt.
  • In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln OH-1 bis OH-6
    Figure 00360001
  • Diese Verbindungen eignen sich hervorragend zur Stabilisierung der Medien gegen thermische Belastungen.
  • In einer anderen bevorzugten Ausführungsform der vorliegenden Erfindung, in der die erfindungsgemäßen Medien insbesondere eine oder mehrere Verbindungen Formel I enthalten, in denen R11, bzw. mindestens einer von R11, O. bedeutet, können diese Medien auch ausreichende Stabilität aufweisen, wenn sie keine Phenolverbindung, insbesondee ausgewählt aus der Gruppe der Verbindungen der Formeln OH-1 bis OH-6, enthalten.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien mindestens jeweils eine oder mehrere Verbindungen der Formel I bei denen die Gruppen R11 der einen Verbindungen der Formel I eine andere Bedeutung haben als bei den anderen Verbindungen der Formel I.
  • Gegenstand der vorliegenden Erfindung sind auch elektrooptische Anzeigen oder elektrooptische Komponenten, die erfindungsgemäße flüssigkristalline Medien enthalten. Bevorzugt sind elektrooptische Anzeigen die auf dem VA- oder dem ECB-Effekt basieren und insbesondere solche, die mittels einer Aktivmatrix-Adressierungsvorrichtung angesteuert werden.
  • Dementsprechend ist die Verwendung eines erfindungsgemäßen flüssigkristallinen Mediums in einer elektrooptischen Anzeige oder in einer elektrooptischen Komponente ebenfalls Gegenstand der vorliegenden Erfindung, ebenso wie ein Verfahren zur Herstellung der erfindungsgemäßen flüssigkristallinen Medien, dadurch gekennzeichnet, dass eine oder mehrere Verbindungen der Formel I mit einer oder mehreren Verbindungen, die eine oder mehrere Verbindungen der Formel II enthalten, bevorzugt mit eine oder mehrere Verbindungen der Teilformel II-1, mit einer oder mehreren weiteren Verbindungen, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4 und IV und/oder V, gemischt wird.
  • Außerdem betrifft die vorliegenden Erfindung ein Verfahren zur Stabilisierung eines flüssigkristallinen Mediums, das eine oder mehrere Verbindungen der Formeln II und eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4 enthält, dadurch gekennzeichnet, dass dem Medium eine oder mehrere Verbindungen der Formel I zugesetzt werden.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel IV
    Figure 00380001
    worin
    R41 Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen, und
    R42 Alkyl mit 1 bis 7 C-Atomen oder Alkoxy mit 1 bis 6 C-Atomen, beide bevorzugt mit 2 bis 5 C-Atomen,
    bedeuten.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel IV, ausgewählt aus der Gruppe der Verbindungen der Formeln IV-1 und IV-2,
    Figure 00380002
    worin
    Alkyl und Alkyl' unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen
    Alkoxy Alkoxy mit 1 bis 5 C-Atomen, bevorzugt mit 2 bis 4 C-Atomen.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel V
    Figure 00390001
    worin
    R51 und R52 unabhängig voneinander eine der für R21 und R22 gegebenen Bedeutung haben und bevorzugt Alkyl mit 1 bis 7 C-Atomen, bevorzugt n-Alkyl, besonders bevorzugt n-Alkyl mit 1 bis 5 C-Atomen, Alkoxy mit 1 bis 7 C-Atomen, bevorzugt n-Alkoxy, besonders bevorzugt n-Alkoxy mit 2 bis 5 C-Atomen, Alkoxyalkyl, Alkenyl oder Alkenyloxy mit 2 bis 7 C-Atomen, bevorzugt mit 2 bis 4 C-Atomen, bevorzugt Alkenyloxy,
    Figure 00390002
    bis
    Figure 00390003
    soweit vorhanden, jeweils unabhängig voneinander
    Figure 00390004
    bevorzugt
    Figure 00400001
    bevorzugt
    Figure 00400002
    und, wenn vorhanden,
    Figure 00400003
    Z51 bis Z53 jeweils unabhängig voneinander -CH2-CH2-, -CH2-O-, CH=CH-, -C≡C-, -COO- oder eine Einfachbindung, bevorzugt -CH2-CH2-, -CH2-O- oder eine Einfachbindung und besonders bevorzugt eine Einfachbindung,
    p und q jeweils unabhängig voneinander 0 oder 1,
    (p + q) bevorzugt 0 oder 1,
    bedeuten.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen ausgewählt der Formel V ausgewählt aus der Gruppe der Verbindungen der Formeln V-1 bis V-10, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln V-1 bis V-5,
    Figure 00410001
    Figure 00420001
    worin die Parameter die oben unter Formel V gegebenen Bedeutungen haben und
    Y5 H oder F bedeutet und bevorzugt
    R51 Alkyl mit 1 bis 7 C-Atomen oder Alkenyl mit 2 bis 7 C-Atomen und
    R52 Alkyl mit 1 bis 7 C-Atomen, Alkenyl mit 2 bis 7 C-Atomen oder Alkoxy mit 1 bis 6 C-Atomen, bevorzugt Alkyl oder Alkenyl, besonders bevorzugt Alkenyl,
    bedeuten.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel V-1, ausgewählt aus der Gruppe der Verbindungen der Formeln V-1a und V-1b, bevorzugt der Formel V-1b,
    Figure 00420002
    worin
    Alkyl und Alkyl' unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen,
    Alkoxy Alkoxy mit 1 bis 5 C-Atomen, bevorzugt mit 2 bis 4 C-Atomen.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel V-3, ausgewählt aus der Gruppe der Verbindungen der Formeln V-3a und V-3b,
    Figure 00430001
    worin
    Alkyl und Alkyl' unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen und
    Alkenyl Alkenyl mit 2 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen bedeuten.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel V-4 ausgewählt aus der Gruppe der Verbindungen der Formeln V-4a und V-4b,
    Figure 00430002
    worin
    Alkyl und Alkyl' unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen.
  • In einer weiteren bevorzugten Ausführungsform enthält das Medium eine oder mehrere Verbindungen der Formel III-4, bevorzugt der Formel III-4-a,
    Figure 00440001
    worin
    Alkyl und Alkyl' unabhängig voneinander Alkyl mit 1 bis 7 C-Atomen, bevorzugt mit 2 bis 5 C-Atomen,
    bedeuten.
  • Die Flüssigkristallmedien gemäß der vorliegenden Erfindung können eine oder mehrere chirale Verbindungen enthalten.
  • Besonders bevorzugte Ausführungsformen der vorliegenden Erfindung erfüllen eine oder mehrere der folgenden Bedingungen,
    wobei die Akronyme (Abkürzungen) in den Tabellen A bis C erläutert und in Tabelle D durch Beispiele illustriert sind.
    • i. Das flüssigkristalline Medium hat eine Doppelbrechung von 0,060 oder mehr, besonders bevorzugt von 0,070 oder mehr.
    • ii. Das flüssigkristalline Medium hat eine Doppelbrechung von 0,130 oder weniger, besonders bevorzugt von 0,120 oder weniger.
    • iii. Das flüssigkristalline Medium hat eine Doppelbrechung im Bereich von 0,090 oder mehr bis 0,120 oder weniger.
    • iv. Das flüssigkristalline Medium hat eine negative dielektrische Anisotropie mit einem Betrag von 2,0 oder mehr, besonders bevorzugt von 3,0 oder mehr.
    • v. Das flüssigkristalline Medium hat eine negative dielektrische Anisotropie mit einem Betrag von 5,5 oder weniger, besonders bevorzugt von 4.0 oder weniger.
    • vi. Das flüssigkristalline Medium hat eine negative dielektrische Anisotropie mit einem Betrag im Bereich von 2,5 oder mehr bis 3,8 oder weniger.
    • vii. Das flüssigkristalline Medium enthält eine oder mehrere besonders bevorzugte Verbindungen der Formeln II ausgewählt aus den nachfolgend genannten Teilformeln:
      Figure 00450001
      Figure 00460001
      worin Alkyl die oben gegebene Bedeutung besitzt und bevorzugt, jeweils unabhängig voneinander Alkyl mit 1 bis 6, bevorzugt mit 2 bis 5 C-Atomen und besonders bevorzugt n-Alkyl, bedeutet.
    • viii. Die Gesamtkonzentration der Verbindungen der Formel II im Gesamtgemisch beträgt 25% oder mehr, bevorzugt 30% oder mehr und liegt bevorzugt im Bereich von 25% oder mehr bis 49% oder weniger, besonders bevorzugt im Bereich von 29% oder mehr bis 47% oder weniger, und ganz besonders bevorzugt im Bereich von 37% oder mehr bis 44% oder weniger.
    • ix. Das flüssigkristalline Medium enthält eine oder mehrere Verbindungen der Formel II ausgewählt aus der Gruppe der Verbindungen folgenden Formeln: CC-n-V und/oder CC-n-Vm, insbesondere bevorzugt CC-3-V, bevorzugt in einer Konzentration von bis zu 50% oder weniger, besonders bevorzugt bis zu 42% oder weniger, und optional zusätzlich CC-3-V1, bevorzugt in einer Konzentration von bis zu 15% oder weniger, und/oder CC-4-V, bevorzugt in einer Konzentration von bis zu 20% oder weniger, besonders bevorzugt bis zu 10% oder weniger.
    • x. Die Gesamtkonzentration der Verbindungen der Formel CC-3-V im Gesamtgemisch beträgt 20% oder mehr, bevorzugt 25% oder mehr.
    • xi. Der Anteil an Verbindungen der Formeln III-1 bis III-4 im Gesamtgemisch beträgt 50% oder mehr und bevorzugt 75% oder weniger.
    • xii. Das flüssigkristalline Medium besteht im Wesentlichen aus Verbindungen der Formeln I, II, III-1 bis III-4, IV und V, bevorzugt aus Verbindungen der Formeln I, II und III-1 bis III-4.
    • xiii. Das flüssigkristalline Medium enthält eine oder mehrere Verbindungen der Formel IV vorzugsweise in einer Gesamtkonzentration von 5% oder mehr, insbesondere von 10% oder mehr, und ganz besonders bevorzugt von 15% oder mehr bis 40% oder weniger.
  • Ein weiterer Gegenstand der Erfindung ist eine elektrooptische Anzeige mit einer Aktivmatrix-Adressierung basierend auf dem VA- bzw. ECB-Effekt, dadurch gekennzeichnet, dass sie als Dielektrikum ein flüssigkristallines Medium gemäß der vorliegenden Erfindung enthält.
  • Vorzugsweise weist die Flüssigkristallmischung einen nematischen Phasenbereich mit einer Breite von mindestens 80 Grad und eine Fließviskosität ν20 von maximal 30 mm2·s–1 bei 20°C auf.
  • Die erfindungsgemäße Flüssigkristallmischung weist ein Δε von –0,5 bis –8,0, insbesondere von –1,5 bis –6,0 auf, und ganz besonders bevorzugt von –2,0 bis –5,0 auf, wobei Δε die dielektrische Anisotropie bedeutet.
  • Die Rotationsviskosität γ1 ist vorzugsweise 120 mPa·s oder weniger, insbesondere 100 mPa·s oder weniger.
  • Die erfindungsgemäßen Mischungen sind für alle VA-TFT-Anwendungen geeignet, wie z. B. VAN, MVA, (S)-PVA und ASV. Weiterhin sind sie für IPS (In plane switching)-, FFS (Fringe field switching)- und PALC-Anwendungen mit negativem Δε geeignet.
  • Die nematischen Flüssigkristallmischungen in den erfindungsgemäßen Anzeigen enthalten in der Regel zwei Komponenten A und B, die ihrerseits aus einer oder mehreren Einzelverbindungen bestehen.
  • Die erfindungsgemäßen flüssigkristallinen Medien enthalten bevorzugt 4 bis 15, insbesondere 5 bis 12, und besonders bevorzugt 10 oder weniger, Verbindungen. Diese sind vorzugsweise ausgewählt aus der Gruppe der Verbindungen der Formeln I, II und III-1 bis III-4, und/oder IV und/oder V.
  • Die erfindungsgemäßen flüssigkristallinen Medien können optional auch mehr als 18 Verbindungen enthalten. In diesem Fall enthalten sie vorzugsweise 18 bis 25 Verbindungen.
  • Neben Verbindungen der Formeln I bis V können auch noch andere Bestandteile zugegen sein, z. B. in einer Menge von bis zu 45%, vorzugsweise jedoch bis zu 35%, insbesondere bis zu 10%, der Gesamtmischung.
  • Optional können die erfindungsgemäßen Medien auch eine dielektrisch positive Komponente enthalten, deren Gesamtkonzentration bevorzugt 10% oder weniger bezogen auf das gesamte Medium beträgt.
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Flüssigkristallmedien insgesamt bezogen auf die Gesamtmischung
  • 10 ppm oder mehr bis 1000 ppm oder weniger, bevorzugt 50 ppm oder mehr bis 500 ppm oder weniger, besonders bevorzugt 100 ppm oder mehr bis 400 ppm oder weniger und ganz besonders bevorzugt 150 ppm oder mehr bis 300 ppm oder weniger, der Verbindung der Formel I.
  • 20% oder mehr bis 60% oder weniger, bevorzugt 25% oder mehr bis 50% oder weniger, besonders bevorzugt 30% oder mehr bis 45% oder weniger, an Verbindungen der Formel II und
  • 50% oder mehr bis 70% oder weniger an Verbindungen der Formeln III-1 bis III-4.
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Flüssigkristallmedien Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln I, II, III-1 bis III-4, IV und V, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln I, II und III-1 bis III-4, bevorzugt bestehen sie überwiegend, besonders bevorzugt im wesentlichen und ganz besonders bevorzugt nahezu vollständig aus den Verbindungen der genannten Formeln.
  • Die erfindungsgemäßen Flüssigkristallmedien weisen bevorzugt eine nematische Phase von jeweils mindestens von –20°C oder weniger bis 70°C oder mehr, besonders bevorzugt von –30°C oder weniger bis 80°C oder mehr, ganz besonders bevorzugt von –40°C oder weniger bis 85°C oder mehr und am allermeisten bevorzugt von –40°C oder weniger bis 90°C oder mehr auf.
  • Hierbei bedeutet der Begriff „eine nematische Phase aufweisen” einerseits, dass bei tiefen Temperaturen bei der entsprechenden Temperatur keine smektische Phase und keine Kristallisation beobachtet wird und andererseits, dass beim Aufheizen aus der nematischen Phase noch keine Klärung auftritt. Die Untersuchung bei tiefen Temperaturen wird in einem Fließviskosimeter bei der entsprechenden Temperatur durchgeführt sowie durch Lagerung in Testzellen einer der elektrooptischen Anwendung entsprechenden Schichtdicke für mindestens 100 Stunden überprüft. Wenn die Lagerstabilität bei einer Temperatur von –20°C in einer entsprechenden Testzelle 1.000 h oder mehr beträgt, wird das Medium als bei dieser Temperatur stabil bezeichnet. Bei Temperaturen von –30°C bzw. –40°C betragen die entsprechenden Zeiten 500 h bzw. 250 h. Bei hohen Temperaturen wird der Klärpunkt nach üblichen Methoden in Kapillaren gemessen.
  • In einer bevorzugten Ausführungsform sind die erfindungsgemäßen Flüssigkristallmedien durch Werte der optischen Anisotropien im mittleren bis niedrigen Bereich gekennzeichnet. Die Werte der Doppelbrechung liegen bevorzugt im Bereich von 0,065 oder mehr bis 0,130 oder weniger, besonders bevorzugt im Bereich von 0,080 oder mehr bis 0,120 oder weniger und ganz besonders bevorzugt im Bereich von 0,085 oder mehr bis 0,110 oder weniger.
  • In dieser Ausführungsform haben die erfindungsgemäßen Flüssigkristallmedien eine negative dielektrische Anisotropie und weisen relativ hohe Werte des Betrags der dielektrischen Anisotropie (|Δε|) auf, die bevorzugt im Bereich von 2,7 oder mehr bis 5,3 oder weniger, bevorzugt bis 4,5 oder weniger, bevorzugt von 2,9 oder mehr bis 4,5 oder weniger, besonders bevorzugt von 3,0 oder mehr bis 4,0 oder weniger und ganz besonders bevorzugt von 3,5 oder mehr bis 3,9 oder weniger, liegen.
  • Die erfindungsgemäßen Flüssigkristallmedien weisen relativ kleine Werte für die Schwellenspannung (V0) im Bereich von 1,7 V oder mehr bis 2,5 V oder weniger, bevorzugt von 1,8 V oder mehr bis 2,4 V oder weniger, besonders bevorzugt von 1,9 V oder mehr bis 2,3 V oder weniger und ganz besonders bevorzugt von 1,95 V oder mehr bis 2,1 V oder weniger, auf.
  • In einer weiteren bevorzugten Ausführungsform weisen die erfindungsgemäßen Flüssigkristallmedien bevorzugt relativ niedrige Werte der mittleren dielektrischen Anisotropie (εav. ≡ (ε∥ + 2ε⊥)/3) auf, die bevorzugt im Bereich von 5,0 oder mehr bis 7,0 oder weniger, bevorzugt von 5,5 oder mehr bis 6,5 oder weniger, noch mehr bevorzugt von 5,7 oder mehr bis 6,4 oder weniger, besonders bevorzugt von 5,8 oder mehr bis 6,2 oder weniger und ganz besonders bevorzugt von 5,9 oder mehr bis 6,1 oder weniger, liegen.
  • Außerdem weisen die erfindungsgemäßen Flüssigkristallmedien hohe Werte für die VHR in Flüssigkristallzellen auf.
  • Diese sind in frisch gefüllten Zellen bei 20°C in den Zellen größer oder gleich 95%, bevorzugt größer oder gleich 97%, besonders bevorzugt größer oder gleich 98% und ganz besonders bevorzugt größer oder gleich 99% und nach 5 Minuten im Ofen bei 100°C in den Zellen größer oder gleich 90%, bevorzugt größer oder gleich 93%, besonders bevorzugt größer oder gleich 96% und ganz besonders bevorzugt größer oder gleich 98%.
  • In der Regel weisen dabei Flüssigkristallmedien mit einer geringen Ansteuerspannung bzw. Schwellenspannung eine geringere VHR auf als solche mit einer größeren Ansteuerspannung bzw. Schwellenspannung und umgekehrt.
  • Diese bevorzugten Werte für die einzelnen physikalischen Eigenschaften werden von den erfindungsgemäßen Medien bevorzugt auch jeweils miteinander kombiniert eingehalten.
  • In der vorliegenden Anmeldung bedeutet der Begriff „Verbindungen”, auch geschrieben als „Verbindung(en)”, sofern nicht explizit anders angegeben, sowohl eine als auch mehrere Verbindungen.
  • Die einzelnen Verbindungen werden, sofern nichts anderes angegeben, in den Mischungen in Konzentrationen generell jeweils von 1% oder mehr bis 30% oder weniger, bevorzugt von 2% oder mehr bis 30% oder weniger und besonders bevorzugt von 3% oder mehr bis 16% oder weniger eingesetzt.
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen flüssigkristallinen Medien
    die Verbindung der Formel I,
    eine oder mehrere Verbindungen der Formel II, bevorzug ausgewählt aus der Gruppe der Verbindungen der Formeln CC-n-V und CC-n-Vm, bevorzugt CC-3-V, CC-3-V1, CC-4-V und CC-5-V, besonders bevorzugt ausgewählt aus der Gruppe der Verbindungen CC-3-V, CC-3-V1 und CC-4-V, ganz besonders bevorzugt der Verbindung CC-3-V und gegebenenfalls zusätzlich der Verbindung CC-4-V und/oder CC-3-V1,
    eine oder mehrere Verbindungen der Formel III-1-1, bevorzugt der Formel CY-n-Om, ausgewählt aus der Gruppe der Verbindungen der Formeln CY-3-O2, CY-3-O4, CY-5-O2 und CY-5-O4,
    eine oder mehrere Verbindungen der Formel III-1-2, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formel CCY-n-m und CCY-n-Om, bevorzugt der Formel CCY-n-Om, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln CCY-3-O2, CCY-2-O2, CCY-3-O1, CCY-3-O3, CCY-4-O2, CCY-3-O2 und CCY-5-O2,
    optional, bevorzugt obligatorisch, eine oder mehrere Verbindungen der Formel III-2-2, bevorzugt der Formel CLY-n-Om, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln CLY-2-O4, CLY-3-O2, CLY-3-O3,
    eine oder mehrere Verbindungen der Formel III-3-2, bevorzugt der Formel CPY-n-Om, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln CPY-2-O2 und CPY-3-O2, CPY-4-O2 und CPY-5-O2,
    eine oder mehrere Verbindungen der Formel III-4, bevorzugt der Formel PYP-n-m, bevorzugt ausgewählt aus der Gruppe der Verbindungen der Formeln PYP-2-3 und PYP-2-4.
  • Für die vorliegende Erfindung bedeutet im Zusammenhang mit der Angabe der Bestandteile der Zusammensetzungen, wenn nicht im Einzelfall anders angegeben:
    • – „enthalten”: die Konzentration der betreffenden Bestandteile in der Zusammensetzung beträgt bevorzugt 5% oder mehr, besonders bevorzugt 10% oder mehr, ganz besonders bevorzugt 20% oder mehr,
    • – „überwiegend bestehen aus”: die Konzentration der betreffenden Bestandteile in der Zusammensetzung beträgt bevorzugt 50% oder mehr, besonders bevorzugt 55% oder mehr und ganz besonders bevorzugt 60% oder mehr,
    • – „im wesentlichen bestehen aus”: die Konzentration der betreffenden Bestandteile in der Zusammensetzung beträgt bevorzugt 80% oder mehr, besonders bevorzugt 90% oder mehr und ganz besonders bevorzugt 95% oder mehr und
    • – „nahezu vollständig bestehen aus”: die Konzentration der betreffenden Bestandteile in der Zusammensetzung beträgt bevorzugt 98% oder mehr, besonders bevorzugt 99% oder mehr und ganz besonders bevorzugt 100,0%.
  • Dies gilt sowohl für die Medien als Zusammensetzungen mit ihren Bestandteilen, die Komponenten und Verbindungen sein können, als auch für die Komponenten mit ihren Bestandteilen, den Verbindungen. Lediglich in Bezug auf die Konzentration einer einzelnen Verbindung im Verhältnis zum gesamten Medium bedeutet der Begriff enthalten: die Konzentration der betreffenden Verbindung beträgt bevorzugt 1% oder mehr, besonders bevorzugt 2% oder mehr, ganz besonders bevorzugt 4% oder mehr.
  • Für die vorliegende Erfindung bedeutet ”≤” kleiner oder gleich, bevorzugt kleiner und ”≥” größer oder gleich, bevorzugt größer.
  • Für die vorliegende Erfindung bedeuten
    Figure 00530001
    trans-1,4-Cyclohexylen und
    Figure 00540001
    1,4-Phenylen.
  • Für die vorliegende Erfindung bedeuten die Begriffe „dielektrisch positive Verbindungen” solche Verbindungen mit einem Δε > 1,5, „dielektrisch neutrale Verbindungen” solche mit –1,5 ≤ Δε ≤ 1,5 und „dielektrisch negative” Verbindungen solche mit Δε < –1,5. Hierbei wird die dielektrische Anisotropie der Verbindungen bestimmt, indem 10% der Verbindungen in einem flüssigkristallinen Host gelöst werden und von der resultierenden Mischung die Kapazität in mindestens jeweils einer Testzelle mit 20 μm Schichtdicke mit homeotroper und mit homogener Oberflächenorientierung bei 1 kHz bestimmt wird. Die Messspannung beträgt typischerweise 0,5 V bis 1,0 V, sie ist jedoch stets niedriger als die kapazitive Schwelle der jeweiligen untersuchten Flüssigkristallmischung.
  • Als Hostmischung für dielektrisch positive und dielektrisch neutrale Verbindungen wird ZLI-4792 und für dielektrisch negative Verbindungen ZLI-2857, beide von Merck KGaA, Deutschland, verwendet. Aus der Änderung der Dielektrizitätskonstante der Hostmischung nach Zugabe der zu untersuchenden Verbindung und Extrapolation auf 100% der eingesetzten Verbindung werden die Werte für die jeweiligen zu untersuchenden Verbindungen erhalten. Die zu untersuchende Verbindung wird zu 10% in der Hostmischung gelöst. Wenn die Löslichkeit der Substanz hierzu zu gering ist, wird die Konzentration schrittweise solange halbiert, bis die Untersuchung bei der gewünschten Temperatur erfolgen kann.
  • Die erfindungsgemäßen Flüssigkristallmedien können bei Bedarf auch weitere Zusatzstoffe wie z. B. Stabilisatoren und/oder pleochroitische Farbstoffe und/oder chirale Dotierstoffe in den üblichen Mengen enthalten. Die eingesetzte Menge dieser Zusatzstoffe beträgt bevorzugt insgesamt 0% oder mehr bis 10% oder weniger bezogen auf die Menge der gesamten Mischung, besonders bevorzugt 0,1% oder mehr bis 6% oder weniger. Die Konzentration der einzelnen eingesetzten Verbindungen beträgt bevorzugt 0,1% oder mehr bis 3% oder weniger. Die Konzentration dieser und ähnlicher Zusatzstoffe wird bei der Angabe der Konzentrationen sowie der Konzentrationsbereiche der Flüssigkristallverbindungen in den Flüssigkristallmedien in der Regel nicht berücksichtigt.
  • In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Flüssigkristallmedien einen Polymervorläufer, der eine oder mehrere reaktive Verbindungen, bevorzugt reaktive Mesogene und bei Bedarf auch weitere Zusatzstoffe wie z. B. Polymerisationsinitiatoren und/oder Polymerisationsmoderatore in den üblichen Mengen enthalten. Die eingesetzte Menge dieser Zusatzstoffe beträgt insgesamt 0% oder mehr bis 10% oder weniger bezogen auf die Menge der gesamten Mischung bevorzugt 0,1% oder mehr bis 2% oder weniger. Die Konzentration dieser und ähnlicher Zusatzstoffe wird bei der Angabe der Konzentrationen sowie der Konzentrationsbereiche der Flüssigkristallverbindungen in den Flüssigkristallmedien nicht berücksichtigt.
  • Die Zusammensetzungen bestehen aus mehreren Verbindungen, bevorzugt aus 3 oder mehr bis 30 oder weniger, besonders bevorzugt aus 6 oder mehr bis 20 oder weniger und ganz besonders bevorzugt aus 10 oder mehr bis 16 oder weniger Verbindungen, die auf herkömmliche Weise gemischt werden. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in den Komponenten gelöst, die den Hauptbestandteil der Mischung ausmachenden. Dies erfolgt zweckmäßigerweise bei erhöhter Temperatur. Liegt die gewählte Temperatur über dem Klärpunkt des Hauptbestandteils, so ist die Vervollständigung des Lösungsvorgangs besonders leicht zu beobachten. Es ist jedoch auch möglich, die Flüssigkristallmischungen auf anderen üblichen Wegen, z. B. unter Verwendung von Vormischungen oder aus einem so genannten „Multi Bottle System” herzustellen.
  • Die erfindungsgemäßen Mischungen zeigen sehr breite nematische Phasenbereiche mit Klärpunkten 65°C oder mehr, sehr günstige Werte für die kapazitive Schwelle, relativ hohe Werte für die Holding Ratio und gleichzeitig sehr gute Tieftemperaturstabilitäten bei –30°C und –40°C. Weiterhin zeichnen sich die erfindungsgemäßen Mischungen durch niedrige Rotationsviskositäten γ1 aus.
  • Es versteht sich für den Fachmann von selbst, dass die erfindungsgemäßen Medien für die Verwendung in VA-, IPS-, FFS- oder PALC-Anzeigen auch Verbindungen enthalten kann, worin beispielsweise H, N, O, Cl, F durch die entsprechenden Isotope ersetzt sind.
  • Der Aufbau der erfindungsgemäßen Flüssigkristallanzeigen entspricht der üblichen Geometrie, wie sie z. B. in EP-OS 0 240 379 , beschrieben wird.
  • Mittels geeigneter Zusatzstoffe können die erfindungsgemäßen Flüssigkristallphasen derart modifiziert werden, dass sie in jeder bisher bekannt gewordenen Art von z. B. ECB-, VAN-, IPS-, GH- oder ASM-VA-LCD-Anzeige einsetzbar sind.
  • In der nachfolgenden Tabelle E werden mögliche Dotierstoffe angegeben, die den erfindungsgemäßen Mischungen zugesetzt werden können. Sofern die Mischungen einen oder mehrere Dotierstoffe enthalten, wird er in Mengen von 0,01% bis 4%, vorzugsweise 0,1% bis 1,0%, eingesetzt.
  • Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen zugesetzt werden können, vorzugsweise in Mengen von 0,01% bis 6%, insbesondere 0,1% bis 3%, werden nachfolgend in Tabelle F genannt.
  • Alle Konzentrationen sind für die Zwecke der vorliegenden Erfindung, soweit nicht explizit anders vermerkt, in Massenprozent angegeben und beziehen sich auf die entsprechende Mischung oder Mischungskomponente, soweit nicht explizit anders angegeben.
  • Alle angegebenen Werte für Temperaturen in der vorliegenden Anmeldung, wie z. B. der Schmelzpunkt T(C, N), der Übergang von der smektischen (S) zur nematischen (N) Phase T(S, N) und der Klärpunkt T(N, I), sind in Grad Celsius (°C) und alle Temperaturdifferenzen entsprechend Differenzgrad (° oder Grad) angegeben, sofern nicht explizit anders angegeben.
  • Der Begriff „Schwellenspannung” bezieht sich für die vorliegende Erfindung auf die kapazitive Schwelle (V0), auch Freedericksz-Schwelle genannt, sofern nicht explizit anders angegeben.
  • Alle physikalischen Eigenschaften werden und wurden nach "Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status Nov. 1997, Merck KGaA, Deutschland bestimmt und gelten für eine Temperatur von 20°C und Δn wird bei 589 nm und Δε bei 1 kHz bestimmt, sofern nicht jeweils explizit anders angegeben.
  • Die elektrooptischen Eigenschaften, z. B. die Schwellenspannung (V0) (kapazitive Messung) werden, ebenso wie das Schaltverhalten, in bei der Firma Merck Japan hergestellten Testzellen bestimmt. Die Messzellen haben Substrate aus Natriumglas (Sodalime Glas) und sind in einer ECB- bzw. VA-Konfiguration mit Polyimidorientierungsschichten (SE-1211 mit Verdünner **26 (Mischungsverhältnis 1:1) beide der Firma Nissan Chemicals, Japan), die senkrecht zueinander gerieben sind und die eine homöotrope Orientierung der Flüssigkristalle bewirken, ausgeführt. Die Fläche der durchsichtigen, nahezu quadratischen Elektroden aus ITO beträgt 1 cm2.
  • Die verwendeten Flüssigkristallmischungen sind, wenn nicht anders angegeben, nicht mit einem chiralen Dotierstoff versetzt, sie eignen sich aber auch besonders für Anwendungen, in denen eine solche Dotierung erforderlich ist.
  • Die VHR wird in bei der Firma Merck Japan hergestellten Testzellen bestimmt. Die Messzellen haben Substrate aus Natriumglas (Sodalime Glas) und sind mit Polyimidorientierungsschichten (AL-3046 der Firma Japan Synthetic Rubber, Japan) mit einer Schichtdicke von 50 nm, die senkrecht zueinander gerieben sind ausgeführt. Die Schichtdicke beträgt einheitlich 6,0 μm. Die Fläche der durchsichtigen Elektroden aus ITO beträgt 1 cm.
  • Die VHR wird bei 20°C (VHR20) und nach 5 Minuten im Ofen bei 100°C (VHR100) in einem kommerziell erhältlichen Gerät der Firma Autronic Melchers, Deutschland bestimmt. Die verwendete Spannung hat eine Frequenz von 60 Hz.
  • Die Genauigkeit der Messwerte der VHR hängt vom jeweiligen Wert der VHR ab. Dabei nimmt die Genauigkeit mit geringer werdenden Werten ab.
  • Die bei Werten in den verschiedenen Größenbereichen in der Regel beobachten Abweichungen sind in ihrer Größenordnung in der folgenden Tabelle zusammen gestellt.
    VHR-Bereich Abweichung (relativ)
    VHR-Werte ΔGVHR/VHR/%
    von bis ca.
    99,6% 100% +/–0,1
    99,0% 99,6% +/–0,2
    98% 99% +/–0,3
    95% 98% +/–0,5
    90% 95% +/–1
    80% 90% +/–2
    60% 80% +/–4
    40% 60% +/–8
    20% 40% +/–10
    10% 20% +/–20
  • Die Stabilität gegen Bestrahlung mit UV wird in einem „Suntest CPS” einem kommerziellen Gerät der Firma Heraeus, Deutschland untersucht. Dabei werden die versiegelten Testzellen 2,0 Stunden ohne zusätzliche thermische Belastung bestrahlt. Die Bestrahlungsleistung im Wellenlängebereich von 300 nm bis 800 nm beträgt 765 W/m2 V. Es wird ein UV „cut-off” Filter mit einer Kantenwellenlänge von 310 nm verwendet um den sogenannten Fensterglasmodus (Englisch: „window glass mode”) zu simulieren. Bei jeder Versuchsserie werden für jede Bedingung mindestens vier Testzellen untersucht und die jeweiligen Ergebnisse werden als Mittelwerte der entsprechenden einzelnen Messungen angegeben.
  • Die üblicherweise durch die Belastung, z. B. durch Bestrahlung mit UV durch eine LCD-Hintergrundbeleuchtung, verursachte Abnahme der Voltage Holding Ratio (ΔVHR) wird nach der folgenden Gleichung (1) bestimmt: ΔVHR(t) = VHR(t) – VHR(t = 0) (1).
  • Die relative Stabilität (Srel) einer LC Mischung gegenüber einer Belastung für eine Zeit t bestimmt man gemäß der folgenden Gleichung, Gleichung (2): Srel(t) = VHRref (t = 0) – VHRref(t) / VHR (t = 0) – VHR (t) (2) wobei „ref” für die entsprechende unstabilisierte Mischung steht.
  • Eine weitere Kenngröße, die neben der VHR die Leitfähigkeit der Flüssigkristallmischungen charakterisieren kann, ist die Ionendichte („ion density”). Hohe Werte der Ionendichte führen oft zur Entstehung von Displayfehler wie Imagesticking und Flackern. Die Ionendichte wird bevorzugt in Testzellen bestimmt, die bei Merck JapanLtd. hergestellten werden. Die Testzellen haben Substrate aus Natriumglas (Sodalime Glas) und sind mit Polyimidorientierungsschichten (AL-3046 der Firma Japan Synthetic Rubber, Japan) mit einer Schichtdicke des Polyimids von 40 nm ausgeführt. Die Schichtdicke der Flüssigkristallmischung beträgt einheitlich 5,8 μm. Die Fläche der kreisförmigen, durchsichtigen Elektroden aus ITO, die zusätzlich mit einem „guard-ring” ausgestattet sind, beträgt 1 cm2. Die Genauigkeit der Messmethode beträgt ca. ±15%. Die Zellen werden vor der Befüllung mit der betreffenden Flüssigkristallmischung über Nacht in einem Ofen bei 120°C getrocknet.
  • Die Ionendichte wird mit einem kommerziell erhältlichen Gerät der Firma TOYO, Japan gemessen. Bei der Messmethode handelt es sich im Wesentlichen um eine zur Cyclovoltametrie analogen Messmethode, wie in M. Inoue, „Recent measurement of Liquid Crystal Material Characterisitcs", Proceedings IDW 2006, LCT-7-1,647 beschrieben. Hierbei wird eine angelegte Gleichspannung gemäß eines vorgegebenen Dreiecksprofils zwischen einem positiven bzw. negativen Maximalwert variiert. Ein komplettes Durchlaufen des Profils bildet somit einen Messzyklus. Ist die angelegte Spannung groß genug, so dass sich die Ionen im Feld zur jeweiligen Elektrode bewegen können, entsteht durch Entladung der Ionen ein Ionenstrom. Die übertragene Ladungsmenge liegt hierbei typischerweise im Bereich von einigen pC bis zu wenigen nC. Dieses macht eine hochempfindliche Detektion notwendig, die durch das oben genannte Gerät gewährleistet ist. Die Resultate werden in einer Strom/Spannungs-Kurve dargestellt. Der Ionenstrom ist hierbei durch Auftreten eines Peaks bei Spannungen, die kleiner sind als die Schwellspannung der Flüssigkristallmischung, zu erkennen. Durch Integration der Peakfläche erhält man den Wert für die Ionendichte der untersuchten Mischung. Pro Mischung werden vier Testzellen gemessen. Die Wiederholfrequenz der Dreiecksspannung beträgt 0,033 Hz, die Messtemperatur 60°C, die Maximalspannung ±3 V bis ±10 V je nach der Größe der dielektrischen Anisotropie der betreffenden Mischung.
  • Die Rotationsviskosität wird mit der Methode des rotierenden Permanentmagneten und die Fließviskosität in einem modifizierten Ubbelohde-Viskosimeter bestimmt. Für die Flüssigkristallmischungen ZLI-2293, ZLI-4792 und MLC-6608, alle Produkte der Firma Merck KGaA, Darmstadt, Deutschland, betragen die bei 20°C bestimmten Werte der Rotationsviskosität 161 mPa·s, 133 mPa·s bzw. 186 mPa·s und die der Fließviskosität (ν) 21 mm2·s–1, 14 mm2·s–1 bzw. 27 mm2·s–1.
  • Es werden, wenn nicht explizit anders angegeben, die folgenden Symbole verwendet:
  • Vo
    Schwellenspannung, kapazitiv [V] bei 20°C,
    ne
    außerordentlicher Brechungsindex gemessen bei 20°C und 589 nm,
    no
    ordentlicher Brechungsindex gemessen bei 20°C und 589 nm,
    Δn
    optische Anisotropie gemessen bei 20°C und 589 nm,
    ε∥
    dielektrische Suszeptibilität senkrecht zum Direktor bei 20°C und 1 kHz,
    ε⊥
    dielektrische Suszeptibilität parallel zum Direktor bei 20°C und 1 kHz,
    Δε
    dielektrische Anisotropie bei 20°C und 1 kHz, cp. bzw. T(N, I) Klärpunkt [°C],
    ν
    Fließviskosität gemessen bei 20°C [mm2·s–1],
    γ1
    Rotationsviskosität gemessen bei 20°C [mPa·s],
    K1
    elastische Konstante, ”splay”-Deformation bei 20°C [pN],
    K2
    elastische Konstante, ”twist”-Deformation bei 20°C [pN],
    K3
    elastische Konstante, ”bend”-Deformation bei 20°C [pN] und
    LTS
    Tieftemperaturstabilität der Phase („low temperature stability”), bestimmt in Testzellen,
    VHR
    Spannungshaltevermögen („voltage holding ratio”),
    ΔVHR
    Abnahme der Voltage Holding Ratio,
    Srel
    relative Stabilität der VHR.
  • Die folgenden Beispiele erläutern die vorliegende Erfindung ohne sie zu begrenzen. Sie zeigen dem Fachmann jedoch bevorzugte Mischungskonzepte mit bevorzugt einzusetzenden Verbindungen und deren jeweiligen Konzentrationen sowie deren Kombinationen miteinander. Außerdem illustrieren die Beispiele, welche Eigenschaften und Eigenschaftskombinationen zugänglich sind.
  • Für die vorliegende Erfindung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A bis C erfolgt. Alle Reste CnH2n+1, CmH2m+1 und ClH2l+1 bzw. CnH2n, CmH2m und ClH2l sind geradkettige Alkylreste bzw. Alkylenreste jeweils mit n, m bzw. l C-Atomen. In Tabelle A sind die Ringelemente der Kerne der Verbindung codiert, in Tabelle B sind die Brückenglieder aufgelistet und in Tabelle C sind die Bedeutungen der Symbole für die linken bzw. rechten Endgruppen der Moleküle aufgelistet. Die Akronyme werden aus den Codes für die Ringelemente mit optionalen Verknüpfungsgruppen, gefolgt von einem ersten Bindestrich und den Codes für die linke Endgruppe, sowie einem zweiten Bindestrich und den Codes für die rechts Endgruppe, zusammengesetzt. In Tabelle D sind Beispielstrukturen von Verbindungen mit ihren jeweiligen Abkürzungen zusammengestellt. Tabelle A: Ringelemente
    Figure 00630001
    Figure 00640001
    Tabelle B: Brückenglieder
    E -CH2-CH2-
    V -CH=CH-
    T -C≡C-
    W -CF2-CF2-
    B -CF=CF-
    Z -CO-O- ZI -O-CO-
    X -CF=CH- XI -CH=CF-
    O -CH2-O- OI -O-CH2-
    Q -CF2-O- QI -O-CF2-
    Tabelle C: Endgruppen
    Links einzelstehend oder in Kombination Rechts einzelstehend oder in Kombination
    -n- CnH2n+1- -n -CnH2n+1
    -nO- CnH2n+1-O- -nO -O- CnH2n+1
    -V- CH2=CH- -V -CH=CH2
    -nV- CnH2n+1-CH=CH- -nV -CnH2n-CH=CH2
    -Vn- CH2=CH-CnH2n- -Vn -CH=CH-CnH2n+1
    -nVm- CnH2n+1-CH=CH-CmH2m- -nVm -CnH2n-CH=CH-CmH2m+1
    -N- N≡C- -N -C≡N
    -S- S=C=N- -S -N=C=S
    -F- F- -F -F
    -CL- Cl- -CL -Cl
    -M- CFH2- -M -CFH2
    -D- CF2H- -D -CF2H
    -T- CF3- -T -CF3
    -MO- CFH2O- -OM -OCFH2
    -DO- CF2HO- -OD -OCF2H
    -TO- CF3O- -OT -OCF3
    -A- H-C≡C- -A -C≡C-H
    -nA- CnH2n+1-C≡C- -An -C≡C-CnH2n+1
    -NA- N≡C-C≡C- -AN -C≡C-C≡N
    Links nur in Kombination Rechts nur in Kombination
    -...n...- -CnH2n- -...n... -CnH2n-
    -...M...- -CFH- -...M... -CFH-
    -...D...- -CF2- -...D... -CF2-
    -...V...- -CH=CH- -...V... -CH=CH-
    -...Z...- -CO-O- -...Z... -CO-O-
    -...ZI... -O-CO- -...ZI... -O-CO-
    -...K...- -CO- -...K... -CO-
    -...W...- -CF=CF- -...W... -CF=CF-
    worin n und m jeweils ganze Zahlen und die drei Punkte „...” Platzhalter für andere Abkürzungen aus dieser Tabelle sind.
  • Vorzugsweise enthalten die erfindungsgemäßen Mischungen neben den Verbindungen der Formeln I eine oder mehrere Verbindungen der nachfolgend genannten Verbindungen.
  • Folgende Abkürzungen werden verwendet:
    (n, m und z unabhängig voneinander jeweils eine ganze Zahl, bevorzugt 1 bis 6) Tabelle D
    Figure 00660001
    Figure 00670001
    Figure 00680001
    Figure 00690001
    Figure 00700001
    Figure 00710001
  • In der Tabelle E werden chirale Dotierstoffe genannt, die bevorzugt in den erfindungsgemäßen Mischungen eingesetzt werden. Tabelle E
    Figure 00720001
    Figure 00730001
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen, ausgewählt aus der Gruppe der Verbindungen der Tabelle E.
  • In der Tabelle F werden Stabilisatoren genannt, die bevorzugt zusätzlich zu den Verbindungen der Formel I in den erfindungsgemäßen Mischungen eingesetzt werden können. Der Parameter n bedeutet hier eine ganze Zahl im Bereich von 1 bis 12. Insbesondere die gezeigten Phenolderivate sind als zusätzliche Stabilisatoren einsetzbar, da sie als Antioxidantien wirken. Tabelle F
    Figure 00750001
    Figure 00760001
    Figure 00770001
    Figure 00780001
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Medien eine oder mehrere Verbindungen, ausgewählt aus der Gruppe der Verbindungen der Tabelle F, insbesondere eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der beiden Formeln
    Figure 00780002
  • Beispiele
  • Die folgenden Beispiele erläutern die vorliegende Erfindung, ohne sie in irgendeiner Weise zu beschränken. Aus den physikalischen Eigenschaften wird dem Fachmann jedoch deutlich, welche Eigenschaften zu erzielen sind und in welchen Bereichen sie modifizierbar sind. Insbesondere ist also die Kombination der verschiedenen Eigenschaften, die vorzugsweise erreicht werden können, für den Fachmann gut definiert.
  • Substanzbeispiele
  • Die folgenden Substanzen sind bevorzugte Substanzen der Formel I gemäß der vorliegenden Anmeldung, bzw. gemäß der vorliegenden Anmeldung bevorzugt einzusetzende Substanzen der Formel I.
    Figure 00790001
    Figure 00800001
    Figure 00810001
    Figure 00820001
    Figure 00830001
    Figure 00840001
    Figure 00850001
    Figure 00860001
    Synthesebeispiel 1: Synthese von Bis(2,2,6,6-tetramethyl-4-piperidyl)-N,N'-dioxyl succinat (Substanzbeispiel 1)
    Figure 00860002
  • 2,15 g (12,26 mmol) 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 40 mg (0,33 mmol) 4-(Dimethylamino)-pyridin und 1 ml (12,4 mmol) getrocknetes Pyridin werden in 20 ml trockenem Dichlormethan vorgelegt. Anschließend wird aktiviertes Molsieb 4 Ångström zugegeben und 90 min bei Raumtemperatur (kurz RT; ca. 22°C) gerührt. Die Reaktionslösung wird auf eine Temperatur im Bereich von 7 bis 10°C gekühlt und langsam mit 0,71 ml (6,13 mmol) Bernsteinsäuredichlorid versetzt und wird für 18 h bei RT gerührt. Die Reaktionslösung wird mit ausreichend ges. NaHCO3-Lösung und Dichlormethan versetzt und die organische Phase abgetrennt. Es wird mit Wasser und ges. NaCl-Lösung gewaschen, über Na2SO4 getrocknet, filtriert und eingeengt. Das Rohprodukt wird über Kieselgel mit Dichlormethan/Methyl-tertbutylether (95:5) gereinigt und man erhält das Produkt als weißen Feststoff mit einer Reinheit von > 99.5%. Synthesebeispiel 2: Synthese von Bis(2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl)decandiat (Substanzbeispiel 4)
    Figure 00870001
  • Es werden 28.5 g (166 mmol) 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-Oxyl (freies Radikal) und 250 mg (2.05 mmol) 4-(Dimethylamino)-pyridin in 300 ml entgastem Dichlormethan gelöst und mit 50.0 ml (361 mmol) Triethylamin versetzt. Es wird nachentgast und auf 0°C gekühlt und es werden 10 g (41.4 mmol) Sebacinsäure-chlorid gelöst in 100 ml entgastem Dichlormethan bei 0–5°C zugetropft und für 18 h bei Raumtemperatur gerührt. Nach vollständigem Umsatz wird unter Eiskühlung mit Wasser und HCl (pH = 4–5) versetzt und für 30 min. nachgerührt. Die organische Phase wird abgetrennt und die Wasserphase wird mit Dichlormethan nachextrahiert und die vereinigten Phasen mit gesättigter NaCl-Lösung gewaschen und über Na2SO4 getrocknet, filtriert und eingeengt. Man erhält 24.4 g einer roten Flüssigkeit, die zusammen über 100 g Al2O3 basisch und 500 g Kieselgel mit Dichlormethan/Methyltertbuthylether (95/5) gefrittet werden. Man erhält orangene Kristalle, die in entgastem Acetonitril bei 50°C gelöst und bei –25°C kristallisiert werden. Man erhält das Produkt als orangene Kristalle mit einer HPLC-Reinheit von 99.9%. Synthesebeispiel 3: Synthese von Bis(2,2,6,6-tetramethyl-4-piperidyl)-N,N'-dioxyl butandiol (Substanzbeispiel 7)
    Figure 00880001
  • 15,0g (60%-ig in Mineralöl, 375 mmol) NaH werden unter Schutzgas mit ausreichend Pentan versetzt und absetzen gelassen. Der Pentanüberstand wird abpipetiert und vorsichtig unter Kühlung mit Isopropanol gequencht. Das gewaschene NaH wird nun vorsichtig mit 100 ml THF versetzt. Die Reaktionsmischung wird auf 55°C erhitzt und tropfenweise vorsichtig mit einer Lösung aus 50,0 g (284 mmol) 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl in 400 ml THF versetzt. Der entstehende Wasserstoff wird direkt abgeführt. Es wird nach vollständiger Zugabe der Lösung über Nacht (16 h) bei 60°C nachgerührt. Die Reaktionsmischung wird anschließend auf 5°C gekühlt und portionsweise mit 1,4-Butandioldimethylsulfonat versetzt. Anschließend wird die Mischung langsam auf 60°C erhitzt und für 16 h bei dieser Temperatur gerührt. Nach vollständigem Umsatz wird auf RT abgekühlt und unter Kühlung mit 200 ml 6%-iger Ammoniaklösung in Wasser versetzt und 1 h lang gerührt. Anschließend wird die organische Phase abgetrennt, die wässrige Phase mit Methyl-tertbutylether nachgewaschen, die vereinigten organischen Phasen mit ges. NaCl-Lösung gewaschen, getrocknet und eingeengt. Das Rohprodukt wird über Kieselgel mit Dichlormethan/Methyl-tertbutylether (8:2) gereinigt und aus Acetonitril bei –20°C kristallisiert. Man erhält das Produkt als rosa kristallinen Feststoff mit einer Reinheit von > 99.5%. Synthesebeispiel 4: Synthese von Bernsteinsäure bis-[2,2,6,6-tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-yl]ester (Substanzbeispiel 24)
    Figure 00890001
    Schritt 4.1: Synthese von 2,2,6,6-Tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-ol
    Figure 00890002
  • 5,0 g (29,03 mmol) 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 7,80 g (58,1 mmol) 2-Phenyl-propionaldehyd und 100,6 mg (1.02 mmol) Kupfer(I)chlorid werden in 20 ml tert-Butanol vorgelegt. Dann werden 6,45 ml (58,06 mmol) 35%-ige Wasserstoffperoxidlösung vorsichtig und langsam zugetropft so, dass die Innentemperatur 30°C nicht überschreitet. Es wird daher während des Zutropfens mittels Eiskühlung gekühlt. Bei der Reaktion entsteht Sauerstoff, der bei zu schneller Zugabe und zu hoher Temperatur spontan in großem Umfang frei würde. Nach vollständiger Zugabe wird die Reaktionslösung für weitere 16 h bei RT nachgerührt und anschließend mit ausreichend Wasser/Methyltertbutylether versetzt und die organische Phase abgetrennt. Die organische Phase wird mit 10%-iger Ascorbinsäure peroxidfrei gewaschen und der Peroxidgehalt überprüft. Es wird anschließend mit 10%-iger NaOH-Lösung, Wasser und ges. NaCl-Lösung gewaschen, über Na2SO4 getrocknet, filtriert und eingeengt. Das erhaltene Rohprodukt wird mit Heptan/Methyltertbutylether (1:1) über Kieselgel gereinigt und man erhält das Produkt als farblose Kristalle.
  • Schritt 4.2: Synthese von Bernsteinsäure bis-[2,2,6,6-tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-yl]ester
  • 1.52 g (5.5 mmol) des Produkts der vorherigen Stufe, der Verbindung 2,2,6,6-Tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-ol, 15,3 mg (0,125 mmol) Dimethylaminopyridin und 1,02 ml (12,6 mmol) getrocknetes Pyridin werden in 10 ml Dichlormethan vorgelegt und auf eine Temperatur im Bereich von 7 bis 10°C gekühlt. Dann werden 0,255 ml (2,199 mmol) Bernsteinsäuredichlorid als solches zugetropft und gegebenenfalls nachdosiert, wenn noch Hydroxyverbindung vorhanden ist. Die Reaktionsmischung wird nach vollständigem Umsatz mit Dichlormethan direkt über Kieselgel filtriert und anschließend mit Heptan/Methyltertbuthylether (1:1) und reinem Methyl-tertbutylether eluiert. Das erhaltene Produkt wird gelöst in Acetonitril mittels präperativer HPLC (2 Chromolithsäulen mit Acetonitril 50 ml/min) gereinigt. Man erhält das Produkt als gelbes Öl mit einer Reinheit von > 99.9%. Synthesebeispiel 5: Synthese von Pentansäure 2,2,6,6-tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-yl ester (Substanzbeispiel 31)
    Figure 00900001
  • Es werden 2,5 g (9,01 mmol) der Verbindung 2,2,6,6-Tetramethyl-1-(1-phenyl-ethoxy)-piperidin-4-ol des Schritts 3.1 und 55,1 mg (0,45 mmol) (4-Dimethylaminopyridin) in 50,0 ml trockenem Dichlormethan gelöst und auf 3°C gekühlt. Es wird bei dieser Temperatur mit 5,47 ml (27,03 mmol) Valeriansäureanhydrid versetzt und 14 h bei Raumtemperatur gerührt. Nach vollständigem Umsatz wird vorsichtig auf Eiswasser gegossen, mit 2N HCl auf pH 6 eingestellt und die organische Phase angetrennt. Die wässrige Phase wird mit Dichlormethan extrahiert und die vereinigten organischen Phasen mit gesättigter NaCl-Lösung, einem Gemisch aus Wasser und Triethylamin (300:50 ml) gewaschen und über MgSO4 getrocknet, filtriert und eingeengt. Nach Aufreinigung an Kieselgel mit Heptan/Methyltertbuthylether (9:1) erhält man das Produkt als farbloses Öl. Synthesebeispiel 6: Synthese von Butandisäure-1,4-bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)ester (Substanzbeispiel 49)
    Figure 00910001
  • Es werden 40 ml Wasser und 80 ml Dioxan gemischt und mittels Argonstrom sorgfältig entgast. In das Lösungsmittelgemisch werden 2,0 g (4,7 mmol) des freien Radikals des Substanzbeispiels 1 (Synthesebeispiel 1) gelöst und portionsweise mit 4,95 g (28,1 mmol) Ascorbinsäure versetzt. Das Reaktionsgemisch entfärbt sich hierbei und es wird bei 40°C für 18 h unter Schutzgasatmosphäre gerührt. Es wird auf Raumtemperatur abgekühlt und mit 100 ml Wasser versetzt kurz nachgerührt und die anfallenden Kristalle abgesaugt. Das Kristallisat wird in 50 ml entgastem THF heiß gelöst und die unlöslichen Bestandteile abfiltriert und das Filtrat bei –25°C kristallisiert. Die leicht rosa gefärbten Kristalle werden dann bei Raumtemperatur aus Acetonitril für 18 h ausgerührt und man erhält das Produkt als schwach rosa gefärbte Kristalle mit einer HPLC-Reinheit von 100%. Synthesebeispiel 7: Synthese von Decandisäure-1,10-bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)ester (Substanzbeispiel 50)
    Figure 00910002
  • Alle verwendeten Lösungsmittel werden zuvor mittels Argonstrom gründlich entgast. Bei der Aufarbeitung sind Braunglasgeräte zu verwenden. Es wird 1,70 g (3,32 mmol) des freien Radikals des Substanzbeispiels 4 (Synthesebeispiel 2) in 60 ml Dioxan gelöst. Anschließend werden 3,6 g (20 mmol) Ascorbinsäuregelöst in 30 ml Wasser zu der Lösung bei Raumtemperatur zugetropft. Es tritt hierbei eine Entfärbung der Reaktionslösung ein und nach 1 h Rühren bei Raumtemperatur ist die Umsetzung vollständig. Es wird mit 100 ml Dichlormethan extrahiert, die organischen Phase mit Wasser gewaschen und über Na2SO4 getrocknet, filtriert und eingeengt. Die anfallenden gelben Kristalle werden bei 160°C und 10–2 mbar für 5 min getrocknet und man erhält ein zähes, langsam kristallisierendes Öl.
  • Es werden Flüssigkristallmischungen mit den Zusammensetzungen und den Eigenschaften wie in den folgenden Tabellen angegeben hergestellt und untersucht.
  • Beispiele 1.1 und 1.2 und Vergleichsbeispiele 1.0 und 1.1:
  • Die folgende Mischung (M-1), die insgesamt knapp über 40% an Verbindungen mit einer Alkenylendgruppe und 8% einer Verbindung mit einer Cyclohexenylen-Einheit enthält, wird hergestellt und untersucht.
    Mischung M-1
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 75,4°C
    No. Abkürzung /Massen-% ne(20°C, 589 nm) = 1,5933
    1 CY-3-O2 15,0 Δn(20°C, 589 nm) = 0,1077
    2 CY-5-O2 6,0 ε⊥(20°, 1 kHz) = 6,5
    3 CCY-3-O2 3,0 Δε(20°, 1 kHz) = –3,0
    4 CLY-3-O2 8,0
    5 CPY-2-O2 8,0 γ1(20°C) = 93 mPa·s
    6 CPY-3-O2 8,0
    7 PYP-2-3 11,5 k11(20°C) = 12,9 pN
    8 CC-3-V 35,0 k33(20°C) = 14,8 pN
    9 CCP-V-1 5,5
    Σ 100,0 V0(20°C) = 2,35 V
  • Die Mischung M-1 wird in vier Teile geteilt und wie im weiteren beschrieben untersucht.
  • Vergleichsbeispiele 1.0 und 1.1
  • Zunächst wird die Stabilität der Voltage Holding Ratio der Mischung (M-1) selbst, sowie von einer weiteren Probe dieser Mischung, der 250 ppm der Verbindungen TINUVIN®770 zugesetzt wurden, bestimmt. Die resultierende Mischung (CM-1-1) wird, ebenso wie die Mischung M-1 selbst, in einer Testzelle mit einem Orientierungsmaterial für homeotrope Ausrichtung und flächigen ITO-Elektroden auf ihre Stabilität gegen die Beleuchtung mit einer Kaltkathoden (CCFL)-LCD-Hintergrundbeleuchtung untersucht. Dazu werden entsprechende Testzellen 750 Stunden der Beleuchtung ausgesetzt. Danach wird jeweils die Voltage Holding Ratio nach 5 Minuten bei einer Temperatur von 100°C bestimmt. Die Ergebnisse sind unten Tabelle 1 zusammengestellt. Hier, wie im Folgenden, werden für jede einzelne Mischung jeweils sechs Testzellen gefüllt und untersucht. Die angegeben Werte sind der Mittelwert der sechs Einzelwerte und deren Standardabweichung (σ), auch für den Fall, dass die Stendardabweichung kleiner ist als die oben angegebene Genauigkeit der Messwerte.
  • Beispiele 1.1 und 1.2
  • Als nächstes werden der Mischung M-1 63 ppm bzw. alternativ 250 ppm der Verbindung des Synthesebeispiels 1
    Figure 00940001
    zugegeben und die resultierenden Mischungen (M-1-1 bzw. M-1-2), wie oben beschrieben, auf ihre Stabilität untersucht. Die Ergebnisse sind in der folgenden Tabelle, Tabelle 1, aufgeführt.
  • Die relativen Abweichungen der „Voltage Holding Ratio”-Werte bei verschiedenen Messserien, liegt typischer Weise im Bereich von ca. 3 bis 4%.
  • Die üblicherweise, durch die Belastung verursachte Abnahme der Voltage Holding Ratio (ΔVHR) wird, wie oben im Text beschrieben bestimmt. So erhält man für das Beispiel 1.1 eine relative Stabilisierung von Srel(750 h) = 1,9 gegenüber der Referenzmischung (Vergleichsbeispiel 1.0). Tabelle 1
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 750 h t = 750 h
    V1.0 1 M-1 keiner 0 95,4 ± 0,3 63 ± 0,9 1
    V1.1 2 CM-1-1 T770 250 95,3 ± 0,4 71 ± 1,8 1,3
    B1.1 3 M-1-1 I* 63 93,7 ± 0,5 77 ± 1,2 1,9
    B1.2 4 M-1-2 I* 250 93,0 ± 0,7 72 ± 1,1 1,5
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    T770 TINUVIN®770
  • Außerdem würden für die vier Mischungen die Ionendichten bestimmt. Die Ergebnisse sind in der folgenden Tabelle (Tabelle 2) zusammengestellt. Tabelle 2
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm Ionendichte/pC Srel(t)
    t = 750 h
    V1.0 1 M-2 keiner 0 159 ± 21 1
    V1.1 2 CM-1-1 T770 250 851 ± 89 1,3
    B1.1 3 M-1-1 I* 50 179 ± 17 1,9
    B1.2 4 M-1-2 I* 250 234 ± 26 1,5
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    T770: TINUVIN®770
  • Man erkennt hier gut, dass die Verbindung des Synthesebeispiels 1 bereits in relativ niedrigen Konzentrationen deutlich stabilisierende Eigenschaften zeigt, die sowohl denen der Ausgangsmischung, als auch denen der Vergleichsmischung deutlich überlegen sind. Zudem ist die Ionendichte gegenüber der undotierten Referenz nahezu unverändert. TINUVIN®770 hingegen zeigt eine viermal so hohe Ionendichte was auf eine stärkere ionische Wechselwirkung mit dem Polyimid schliessen lässt. TINUVIN®770 zeigt somit eine wesentlich größere Wechselwirkung mit dem Orientierungsmaterial. Für die Verbindung des Synthesebeispiels 1 sieht das Verhalten wesentlich günstiger aus.
  • Die Verbindung des Synthesebeispiels 1 weist in einer Konzentration von 63 ppm eine allen anderen hier untersuchten Stabilisatoren überlegene Stabilisierungsaktivität auf. Dieses führt zu einer Reduzierung der Gefahr von Imagesticking bei Belastung durch die Hintergrundbeleuchtung.
  • Beispiele 2.1 und 2.2 und Vergleichsbeispiele 2.0 und 2.1:
  • Die folgende Mischung (M-2), die 37% an Verbindungen mit einer Alkenylendgruppe enthält, wird hergestellt und untersucht.
    Mischung M-2
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 74°C
    No. Abkürzung /Massen-% ne(20°C, 589 nm) = 1,5927
    1 CY-3-O2 15,0 Δn(20°C, 589 nm) = 0,1072
    2 CY-3-O4 3,0 ε⊥(20°, 1 kHz) = 6,6
    3 CCY-3-O2 6,0 Δε(20°, 1 kHz) = –3,0
    4 CCY-3-O3 3,5
    5 CCY-4-O2 5,0 γ1(20°C) = n. z. b. mPa·s
    6 CPY-2-O2 8,0
    7 CPY-3-O2 8,0 k11(20°C) = 12,4 pN
    8 PYP-2-3 8,0 k33(20°C) = 13,9 pN
    9 PYP-2-4 6,5
    10 CC-3-V 37,0 V0(20°C) = 2,27 V
    Σ 100,0
    Bemerkung:
    n. z. b. noch zu bestimmen
  • Die Mischung M-2 wird, wie bei Beispiel 1 beschrieben, in vier Teile geteilt und, wie dort beschrieben, alternativ mit zwei unterschiedlichen Konzentrationen der Verbindung des Synthesebeispiels 1 bzw. mit TINUVIN®770 versetzt und die entsprechenden Mischungen in Testzellen auf ihre Stabilität gegen die Beleuchtung mit einer LCD-Hintergrundbeleuchtung untersucht. Für die Mischungen die die Verbindung Synthesebeispiels 1 enthalten werden auch hier vergleichbar günstige Ergebnisse erzielt wie bei Beispiel 1.
  • Beispiele 3.1 und 3.2 und Vergleichsbeispiele 3.0 und 3.1:
  • Die folgende Mischung (M-3), die 40% an Verbindungen mit einer Alkenylendgruppe enthält, wird hergestellt und untersucht.
    Mischung M-3
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 74,9°C
    No. Abkürzung /Massen-% ne(20°C, 589 nm) = 1,5931
    1 CY-3-O2 10,0 Δn(20°C, 589 nm) = 0,1081
    2 PY-3-O2 10,0 ε⊥(20°, 1 kHz) = 6,5
    3 CCY-3-O2 11,0 Δε(20°, 1 kHz) = –3,0
    4 CPY-2-O2 8,5
    5 CPY-3-O2 10,5 γ1(20°C) = n. z. b. mPa·s
    6 PYP-2-3 7,0
    7 CC-3-V 33,5 k11(20°C) = 13,0 pN
    8 CC-3-V1 6,5 k33(20°C) = 15,9 pN
    9 CCP-3-1 3,0
    Σ 100,0 V0(20°C) = 2,43 V
    Bemerkung:
    n. z. b. noch zu bestimmen
  • Die Mischung M-3 wird, wie bei Beispiel 1 beschrieben, in vier Teile geteilt und, wie dort beschrieben, alternativ mit zwei unterschiedlichen Konzentrationen der Verbindung des Synthesebeispiels 1 bzw. mit TINUVIN®770 versetzt und die entsprechenden Mischungen in Testzellen auf ihre Stabilität gegen die Beleuchtung mit einer LCD-Hintergrundbeleuchtung untersucht. Für die Mischungen die die Verbindung Synthesebeispiels 1 enthalten werden auch hier vergleichbar günstige Ergebnisse erzielt wie bei Beispiel 1. Diese sind in den folgenden beiden Tabellen zusammengestellt. Tabelle 3
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 1.000 h t = 1.000 h
    V3.0 1 M-3 keiner 0 98,0 ± 0,3 68 ± 2 1
    V3.1 2 CM-3-1 T770 250 96,6 ± 0,4 79 ± 2 1,7
    B3.1 3 M-3-1 I* 25 97,3 ± 0,2 77 ± 1 1,5
    B3.2 4 M-3-2 I* 50 n. z. b. n. z. b. n. z. b.
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    T770 TINUVIN®770
    n. z. b. noch zu bestimmen Tabelle 4
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm Ionendichte/pC Srel(t)
    t = 1000 h
    V3.0 1 M-3 keiner 0 181 ± 25 1,0
    V3.1 2 CM-3-1 T770 250 1.031 ± 58 1,7
    B3.1 3 M-3-1 I* 25 224 ± 29 1,5
    B3.2 4 M-3-2 I* 50 n. z. b. n. z. b.
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen
  • Beispiele 4.1 bis 4.3 und Vergleichsbeispiele 4.0 und 4.1:
  • Die folgende Mischung (M-4), die insgesamt knapp über 38% an Verbindungen mit einer Alkenylendgruppe enthält, wird hergestellt und untersucht.
    Mischung M-4
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 74,7°C
    No. Abkürzung /Massen-% ne(20° C, 589 nm) = 1,5923
    1 CY-3-O2 15,0 Δn(20°C, 589 nm) = 0,1082
    2 CY-5-O2 6,5 ε⊥(20°, 1 kHz) = 6,6
    3 CCY-3-O2 11,0 Δε(20°, 1 kHz) = –3,0
    4 CPY-2-O2 5,5
    5 CPY-3-O2 10,5 γ1(20°C) = 97 mPa·s
    6 PYP-2-3 12,5
    7 CC-3-V 28,5 k11(20°C) = n. z. b. pN
    8 CC-3-V1 10,0 k33(20°C) = n. z. b. pN
    9 PPGU-3-F 0,5
    F 100,0 V0(20°C) = n. z. b. V
    Bemerkung:
    n. z. b. noch zu bestimmen
  • Die Mischung M-4 wird in mehrere Teile geteilt und wie im weiteren beschrieben untersucht.
  • Als nächstes werden den verschiedenen Teilen der Mischung M-4 250 ppm TINUVIN®770 bzw. jeweils alternativ, 50 ppm der Verbindung des Substanzbeispiels 47
    Figure 01000001
    50 ppm der Verbindung des Substanzbeispiels 48
    Figure 01000002
    250 ppm der Verbindung des Substanzbeispiels 49 (Synthesebeispiel 6)
    Figure 01000003
    zugegeben und die resultierenden Mischungen (CM-4.1 und M-4-1 bis M-4-3), wie oben beschrieben, auf ihre Stabilität untersucht. Die Ergebnisse sind in den folgenden beiden Tabellen aufgeführt. Tabelle 5
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 1.000 h t = 1 000 h
    V4.0 1 M-4 keiner 0 98,6 ± 0,3 73,6 ± 0,4 1,0
    V4.1 2 CM-4-1 T770 250 97,3 ± 0,1 87,4 ± 0,5 2,5
    B4.1 3 M-4-1 47* 50 97,4 ± 0,3 87,0 ± 0,9 2,4
    B4.2 4 M-4-2 48* 50 97,7 ± 0,3 84,3 ± 2,0 2,0
    B4.3 5 M-4-2 49* 250 98,6 ± 0,2 80,8 ± 2,0 1,4
    Bemerkungen:
    47*: Verbindung des Substanzbeispiels 47
    48*: Verbindung des Substanzbeispiels 48
    49*: Verbindung des Substanzbeispiels 49
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen
  • Bei der Belastung mit einem CCFL Backlight zeigt sich, dass z. B. die Verbindung des Substanzbeispieles 47 eine fast ebenso große stabilisierende Wirkung besitzt wie TINUVIN®770. Tabelle 6
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm Ionendichte/pC Srel(t)
    t = 1000 h
    V4.0 1 M-4 keiner 0 87 ± 7 1,0
    V4.1 2 CM-4-1 T770 250 851 ± 89 2,5
    B4.1 3 M-4-1 47* 50 266 ± 34 2,4
    B4.2 4 M-4-2 48* 50 228 ± 53 2,0
    B4.3 5 M-4-2 49* 250 98 ± 14 1,4
    Bemerkungen:
    47*: Verbindung des Substanzbeispiels 47
    48*: Verbindung des Substanzbeispiels 48
    49*: Verbindung des Substanzbeispiels 49
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen
  • Alle hier uhntersuchten neuen Verbindungen zeigen deutlich geringere Werte der Ionendichte als TINUVIN®770. Es ist also mit einer bedeutend geringeren Anzahl von Ionen zu rechnen, die durch die Stabilisatoren verursacht werden.
  • Beispiele 5.1 bis 5.6 Vergleichsbeispiele 5.0 und 5.1:
  • Die folgende Mischung (M-5), die insgesamt knapp über 36% an Verbindungen mit einer Alkenylendgruppe enthält, wird hergestellt und untersucht.
    Mischung M-5
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 74,6°C
    No. Abkürzung /Massen-% ne(20°C, 589 nm) = 1,5938
    1 CY-3-O2 9,0 Δn(20°C, 589 nm) = 0,1082
    2 PY-3-O2 13,5 ε⊥(20°, 1 kHz) = 6,9
    3 CCY-3-O1 8,0 Δε(20°, 1 kHz) = –3,2
    4 CCY-3-O2 3,0
    5 CCY-4-O2 3,0 γ1(20°C) = 94 mPa·s
    6 CPY-2-O2 10,0
    7 CPY-3-O2 10,0 k11(20°C) = 13,0 pN
    8 CC-3-V 36,5 k33(20°C) = 14,6 pN
    9 CPP-3-2 6,5
    10 PPGU-3-F 0,5 V0(20°C) = 2.29 V
    Σ 100,0
  • Die Mischung M-5 wird in mehrere Teile geteilt und wie im weiteren beschrieben untersucht. Als nächstes werden den verschiedenen Teilen der Mischung M-5 jeweils alternativ 25 ppm, 50 ppm bzw. 100 ppm der Verbindung des Substanzbeispiels 1, die auch in Beispiel 1 verwendet wird, zugesetzt. Tabelle 7
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 1.000 h t = 1.000 h
    V5.0 1 M-5 keiner 0 94 ± 0,5 30 ± 2 1,0
    B5.1 3 M-5-1 I* 25 94 ± 0,5 42 ± 2 1,4
    B5.2 4 M-5-2 I* 50 94 ± 0,5 62 ± 2 2,1
    B5.3 5 M-5-2 I* 100 94 ± 0,5 77 ± 1 2,6
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1 Tabelle 8
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm Ionendichte /pC Srel(t)
    t = 1.000 h
    B5.1 3 M-5-1 I* 25 169 ± 9 1,0
    B5.2 4 M-5-2 I* 50 n. z. b. 1,4
    B5.3 5 M-5-2 I* 100 n. z. b. 2,1
    B5.1 3 M-5-1 I* 25 n. z. b. 2,6
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    n. z. b. noch zu bestimmen
  • Die Mischung M-5 wird erneut hergestellt und wieder in mehrere in mehrere Teile geteilt und wie im weiteren beschrieben untersucht. Als nächstes werden den verschiedenen Teilen der Mischung M-5 jeweils alternativ 250 ppm TINUVIN®770, 50 ppm der Verbindung des Synthesebeispiels 2 (Substanzbeispiels 4)
    Figure 01030001
    bzw. 50 ppm, bzw. 250 ppm der Verbindung des Synthesebeispiels 8 (Substanzbeispiels 50)
    Figure 01030002
    zugesetzt. Tabelle 9
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 500 h t = 500 h
    V5.1 2 CM-5-1 T770 250 94 ± 0,6 72 ± 2 1,0
    B5.4 6 M-5-4 II* 50 95 ± 0,2 77 ± 2 1,2
    B5.5 7 M-5-5 VIII* 50 95 ± 0,3 71 ± 2 1,5
    B5.6 8 M-5-6 VIII* 250 94 ± 1,1 78 ± 2 1,7
    Bemerkungen:
    II*: Verbindung des Synthesebeispiels 2
    VIII*: Verbindung des Synthesebeispiels 8
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen Tabelle 10
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm Ionendichte/pC Srel(t)
    t = 500 h
    V5.1 2 CM-5-1 T770 V5.1 1.247 ± 40 1,0
    B5.4 6 M-5-4 II* B5.4 n. z. b. 1,2
    B5.5 7 M-5-5 VIII* B5.5 n. z. b. 1,5
    B5.6 8 M-5-6 VIII* B5.6 n. z. b. 1,7
    Bemerkungen:
    II*: Verbindung des Synthesebeispiels 2
    VIII*: Verbindung des Synthesebeispiels 8
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen
  • Beispiele 6.1 bis 6.3 und Vergleichsbeispiele 6.0 und 6.1:
  • Die folgende Mischung (M-6), die 35,5% an Verbindungen mit einer Alkenylendgruppe enthält, wird hergestellt und untersucht.
    Mischung M-6
    Zusammensetzung Physikalische Eigenschaften
    Verbindung Konzentration T(N, I) = 75°C
    No. Abkürzung /Massen-%
    1 CY-3-O2 2,0 Δn(20°C, 589 nm) = 0,1112
    2 CCY-3-O1 5,0
    3 CCY-3-O2 7,0 Δε(20°, 1 kHz) = –2,6
    4 CPY-2-O2 9,0
    5 CPY-3-O2 9,0 γ1(20°C) = 83 mPa·s
    6 PY-3-O2 12,5
    7 PYP-2-3 10,0 k11(20°C) = 13,2 pN
    8 CC-3-V 37,5 k33(20°C) = 15,1 pN
    9 CC-3-V1 8,0
    Σ 100,0 V0(20°C) = 2,56 V
    Bemerkung:
    n. z. b. noch zu bestimmen
  • Die Mischung M-6 wird in mehrere Teile geteilt und alternativ mit jeweils 250 ppm verschiedener Verbindungen, und zwar mit TINUVIN®770, der Verbindung des Synthesebeispiels 1, der Verbindung des Synthesebeispiels 2 (Substanzbeispiels 4), bzw. der Verbindung des Synthesebeispiels 8 (Substanzbeispiels 50), versetzt und die entsprechenden Mischungen in Testzellen auf ihre Stabilität gegen die Beleuchtung mit einer LCD-Hintergrundbeleuchtung untersucht. Tabelle 11
    Bsp. Nr. Mischung Stabilisator c(Stab.)/ppm VHR(t)/% Srel(t)
    t = 0 h t = 500 h t = 500 h
    V6.0 2 M-6 keiner 0 75 ± 1,0 51 ± 1 1,0
    V6.1 2 CM-6-1 T770 250 88 ± 1,0 69 ± 1 1,5
    B6.1 6 M-6-1 I* 250 83 ± 1,7 74 ± 2 8,5
    B6.2 7 M-6-2 II* 250 71 ± 1,1 67 ± 1 5,1
    B6.3 8 M-6-3 VIII* 250 71 ± 19 63 ± 1 28
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    II*: Verbindung des Synthesebeispiels 2
    VIII*: Verbindung des Synthesebeispiels 8
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen Tabelle 12
    Bsp. Nr. Mischung Stabilisator c(Stab.) /ppm Ionendichte /pC Srel(t)
    t = 500 h
    V6.0 2 M-6 keiner 0 n. z. b. 1,0
    V6.1 2 CM-6-1 T770 250 n. z. b. 1,5
    B6.1 6 M-6-1 I* 250 n. z. b. 8,5
    B6.2 7 M-6-2 II* 250 n. z. b. 5,1
    B6.3 8 M-6-3 VIII* 250 n. z. b. 2,8
    Bemerkungen:
    I*: Verbindung des Synthesebeispiels 1
    II*: Verbindung des Synthesebeispiels 2
    VIII*: Verbindung des Synthesebeispiels 8
    T770: TINUVIN®770
    n. z. b. noch zu bestimmen
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2009/129911 A1 [0022]
    • EP 2182046 A1 [0023]
    • WO 2008/009417 A1 [0023]
    • WO 2009/021671 A1 [0023]
    • WO 2009/115186 A1 [0023]
    • JP 55-023169 (A) [0025]
    • JP 05-117324 (A) [0025]
    • WO 02/18515 A1 [0025]
    • JP 09-291282 (A) [0025]
    • EP 11784442 A1 [0026]
    • EP 0240379 [0130]
  • Zitierte Nicht-Patentliteratur
    • M. F. Schieckel und K. Fahrenschon, ”Deformation of nematic liquid crystals with vertical orientation in electrical fields”, Appl. Phys. Lett. 19 (1971), 3912 [0002]
    • J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193) [0002]
    • G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869) [0002]
    • J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30) [0003]
    • J. Duchene (Displays 7 (1986), 3) [0003]
    • H. Schad (SID 82 Digest Techn. Papers (1982), 244) [0003]
    • TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210–288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris [0012]
    • STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris [0012]
    • Yeo, S. D., Vortrag 15.3: „A LC Display for the TV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 und 759 [0013]
    • MVA (Multi-Domain Vertical Alignment, z. B.: Yoshide, H. et al., Vortrag 3.1: „MVA LCD for Notebook or Mobile PCs...”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9 [0014]
    • Liu, C. T. et al., Vortrag 15.1: „A 46-inch TFT-LCD HDTV Technology...”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753 [0014]
    • PVA (Patterned Vertical Alignment, z. B.: Kim, Sang Soo, Vortrag 15.4: „Super PVA Sets New State-of-the-Art for LCD-TV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763) [0014]
    • ASV (Avanced Super View, z. B.: Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: „Development of High Quality LCDTV”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757) [0014]
    • Souk, Jun, SID Seminar 2004, Seminar M-6: „Recent Advances in LCD Technology”, Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SID Seminar 2004, Seminar M-7: „LCD-Television”, Seminar Lecture Notes, M-7/1 bis M-7/32 [0015]
    • Kim, Hyeon Kyeong et al., Vortrag 9.1: „A 57-in. Wide UXGA TFT-LCD for HDTV Application”, SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109 [0015]
    • Ohkatsu, Y., J. of Japan Petroleum Institute, 51, 2008, Seiten 191–204 [0027]
    • Miéville, P. et al, Angew. Chem. 2010, 122, Seiten 6318–6321 [0028]
    • ”Merck Liquid Crystals, Physical Properties of Liquid Crystals”, Status Nov. 1997, Merck KGaA, Deutschland [0137]
    • M. Inoue, „Recent measurement of Liquid Crystal Material Characterisitcs”, Proceedings IDW 2006, LCT-7-1,647 [0148]

Claims (18)

  1. Verbindung der Formel I
    Figure 01070001
    worin n 1, 2, 3 oder 4, m (4-n),
    Figure 01070002
    ein organischer Rest mit 4 Bindungsstellen Z11 und Z12 unabhängig voneinander -O-, -(C=O)-, -(N-R14)- oder eine Einfachbindung, jedoch nicht beide gleichzeitig -O-, r und s unabhängig voneinander 0 oder 1, Y11 bis Y14 jeweils unabhängig voneinander Alkyl mit 1 bis 4 C-Atomen und alternativ auch unabhängig voneinander eines oder beide der Paare (Y11 und Y12) und (Y13 und Y14) gemeinsam eine zweibindige Gruppe mit 3 bis 6 C-Atomen, R11 O-R13, O. oder OH, bevorzugt O-R13 oder O. besonders bevorzugt O., iso-Propyloxy, Cyclohexyloxy, Acetophenyloxy oder Benzyloxy und ganz besonders bevorzugt O., R12 bei jedem Auftreten unabhängig voneinander H, F, OR14, NR14R15 eine geradkettige oder verzweigte Alkylkette mit 1–20 C-Atomen, in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, einen Kohlenwasserstoffrest, der eine Cycloalkyl- oder eine Alkylcycloalkyleinheit enthält, und, in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, und in dem ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder ein aromatischer oder heteroaromatischen Kohlenwasserstoffrest, in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, R13 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkylkette mit 1–20 C-Atomen, in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, ein Kohlenwasserstoffrest, der eine Cycloalkyl- oder einer Alkylcycloalkyleinheit enthält, und, in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, und in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder ein aromatischer oder heteroaromatischen Kohlenwasserstoffrest, in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, oder
    Figure 01090001
    (1,4-Cyclohexylen) worin eine oder mehrere -CH2--Gruppen durch -O-, -CO oder -NR14-ersetzt sein können, oder ein Acetophenyl-Isopropyl- oder 3-Heptylrest sein kann. R14 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkyl- oder Acylgruppe mit 1 bis 10 C-Atomen oder einen aromatischen Kohlenwasserstoff- oder Carbonsäurerest mit 6–12 C-Atomen, R15 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkyl- oder Acylgruppe mit 1 bis 10 C-Atomen oder einen aromatischen Kohlenwasserstoff- oder Carbonsäurerest mit 6–12 C-Atomen, R16 bei jedem Auftreten unabhängig voneinander eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 10 C-Atomen in dem eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können, bedeutet, mit den Maßgaben, dass, im Fall n = 1, R11 = O. und -[Z11-]r-[Z12]s- = -O-, -(CO)-O-, -O-(CO)-, -O-(CO)-O-, -NR14- oder -NR14-(CO)-,
    Figure 01090002
    nicht ein nicht geradkettiges oder verzweigtes Alkyl mit 1 bis 10 C-Atomen, auch Cycloalkyl, Cycloalkylalkyl, oder Alkylcyloalkyl, wobei in allen diesen Gruppen eine oder mehrere -CH2-Gruppen durch -O- so ersetzt sein können, dass im Molekül keine zwei O-Atome direkt miteinander verbunden sind, bedeutet, im Fall n = 2 und R11 = O.,
    Figure 01100001
    nicht
    Figure 01100002
    bedeutet, und im Fall n = 2 und R11 = O-R13, R13 nicht n-C1-9-Alkyl bedeutet,
  2. Verbindung der Formel I ausgewählt aus der Gruppe der Verbindungen der Formeln I-1 bis I-9
    Figure 01100003
    Figure 01110001
    Figure 01120001
    worin die Parameter die in Anspruch 1 angegebenen Bedeutungen haben und t eine ganze Zahl von 1 bis 12 R17 eine geradkettige oder verzweigte Alkylkette mit 1–12 C-Atomen in der eine -CH2--Gruppe oder mehrere -CH2--Gruppen durch -O- oder -C(=O)- ersetzt sein können, jedoch nicht zwei benachbarte -CH2--Gruppen durch -O- ersetzt sein können oder ein aromatischer oder heteroaromatischer Kohlenwasserstoffrest in denen ein H-Atom oder mehrere H-Atome durch OR14, N(R14)(R15) oder R16 ersetzt sein können, bedeuten.
  3. Verbindung der Formel I ausgewählt aus der Gruppe der Verbindungen der Formeln I-1a-1 bis I-8a-1
    Figure 01130001
    Figure 01140001
    Figure 01150001
  4. Flüssigkristallines Medium, dadurch gekennzeichnet, dass es a) eine oder mehrere Verbindungen der Formel I, wie in einem der Ansprüche 1 bis 3 definiert, und b) eine oder mehrere Verbindungen der Formel II
    Figure 01150002
    worin R21 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen oder einen unsubstituierten Alkenylrest mit 2 bis 7 C-Atomen und R22 einen unsubstituierten Alkenylrest mit 2 bis 7 C-Atomen, bedeuten, und/oder c) eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4
    Figure 01160001
    worin R31 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen, R32 einen unsubstituierten Alkylrest mit 1 bis 7 C-Atomen, oder einen unsubstituierten Alkoxyrest mit 1 bis 6 C-Atomen, und m, n und o jeweils unabhängig voneinander 0 oder 1 bedeuten, enthält.
  5. Medium nach Anspruch 4, dadurch gekennzeichnet, dass die Gesamtkonzentration der Verbindungen der Formel I, im Gesamtmedium 1 ppm oder mehr bis 1.000 ppm oder weniger beträgt.
  6. Medium nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass es eine Verbindung der Formel II, wie in Anspruch 4 angegeben, worin R21 n-Propyl und R22 Vinyl bedeuten, enthält.
  7. Medium nach Anspruch 6, dadurch gekennzeichnet, dass die Gesamtkonzentration der Verbindungen der Formel II im Gesamtmedium 25% oder mehr bis 45% oder weniger beträgt.
  8. Medium nach einem oder mehreren der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel III-2-2
    Figure 01170001
    worin R31 und R32 die jeweiligen in Anspruch 4 bei Formel III-2 gegeben Bedeutungen haben, enthält.
  9. Medium nach einem oder mehreren der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen der Formel III-4, wie in Anspruch 4 angegeben, enthält.
  10. Medium nach einem oder mehreren der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass es zusätzlich eine oder mehrere chirale Verbindungen enthält.
  11. Elektrooptische Anzeige oder elektrooptische Komponente dadurch gekennzeichnet, dass sie ein flüssigkristallines Medium nach einem oder mehreren der Ansprüche 4 bis 10 enthält.
  12. Anzeige nach Anspruch 11, dadurch gekennzeichnet, dass sie auf dem VA- oder dem ECB-Effekt basiert.
  13. Anzeige nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass sie eine Aktivmatrix-Adressierungsvorrichtung aufweist.
  14. Verwendung einer Verbindung der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 in einem flüssigkristallinen Medium.
  15. Verwendung eines flüssigkristallinen Mediums nach einem oder mehreren der Ansprüche 4 bis 10 in einer elektrooptischen Anzeige oder in einer elektrooptischen Komponente.
  16. Verfahren zur Herstellung eines flüssigkristallinen Mediums nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine oder mehrere Verbindungen der Formel I nach einem oder mehreren der Ansprüche 1 bis 3 mit einer oder mehreren Verbindungen der Formel II nach Anspruch 4 und/oder einer oder mehreren Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln III-1 bis III-4 nach Anspruch 4 gemischt wird.
  17. Verfahren zur Stabilisierung eines flüssigkristallinen Mediums, dadurch gekennzeichnet, dass dem Medium eine oder mehrere Verbindungen der Formeln I und gegebenenfalls eine oder mehrere Verbindungen ausgewählt aus der Gruppe der Verbindungen der Formeln OH-1 bis OH-6
    Figure 01180001
    Figure 01190001
    zugesetzt wird.
  18. Verfahren zur Herstellung einer Verbindung der Formel I nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Edukt 4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl eingesetzt wird.
DE201210008570 2011-04-21 2012-04-18 Verbindungen und Flüssigkristallines Medium Withdrawn DE102012008570A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201210008570 DE102012008570A1 (de) 2011-04-21 2012-04-18 Verbindungen und Flüssigkristallines Medium

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102011018629 2011-04-21
DE102011018629.8 2011-04-21
DE102011103024 2011-06-01
DE102011103024.0 2011-06-01
DE102012003870.4 2012-02-25
DE102012003870 2012-02-25
DE201210008570 DE102012008570A1 (de) 2011-04-21 2012-04-18 Verbindungen und Flüssigkristallines Medium

Publications (1)

Publication Number Publication Date
DE102012008570A1 true DE102012008570A1 (de) 2012-10-25

Family

ID=46967504

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201210008570 Withdrawn DE102012008570A1 (de) 2011-04-21 2012-04-18 Verbindungen und Flüssigkristallines Medium

Country Status (1)

Country Link
DE (1) DE102012008570A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053990A1 (de) * 2015-02-09 2016-08-10 Samsung Display Co., Ltd. Flüssigkristallzusammensetzung und flüssigkristallanzeigevorrichtung damit
EP3093328A1 (de) * 2015-05-13 2016-11-16 Merck Patent GmbH Flüssigkristallines medium
WO2016188605A1 (en) * 2015-05-22 2016-12-01 Merck Patent Gmbh Liquid-crystalline medium
WO2019228939A1 (en) * 2018-05-30 2019-12-05 Merck Patent Gmbh Compounds and liquid-crystalline medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523169A (en) 1978-08-09 1980-02-19 Seiko Epson Corp Liquid crystal composition and display elements comprising it
EP0240379A1 (de) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Doppelschicht-Flüssigkristallzelle mit elektrisch gesteuerter Doppelbrechung
JPH05117324A (ja) 1991-10-31 1993-05-14 Mitsubishi Rayon Co Ltd 液晶複合体並びに液晶光学装置及びその製造方法
JPH09291282A (ja) 1996-04-26 1997-11-11 Sumitomo Chem Co Ltd 安定化した液晶材料およびこれを用いた液晶素子
WO2002018515A1 (en) 2000-08-30 2002-03-07 Clariant International Ltd. Liquid crystal mixture
EP1784442A1 (de) 2004-08-26 2007-05-16 Wacker Chemie AG Vernetzbare siloxan-harnstoff-copolymere
WO2008009417A1 (de) 2006-07-19 2008-01-24 Merck Patent Gmbh Flüssigkristallines medium
WO2009021671A1 (de) 2007-08-15 2009-02-19 Merck Patent Gmbh Flüssigkristallines medium
WO2009115186A1 (de) 2008-03-17 2009-09-24 Merck Patent Gmbh Flüssigkristallines medium
WO2009129911A1 (de) 2008-04-22 2009-10-29 Merck Patent Gmbh, Flüssigkristallines medium
EP2182046A1 (de) 2008-10-30 2010-05-05 Merck Patent GmbH Flüssigkristallines Medium und Flüssigkristallanzeige

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523169A (en) 1978-08-09 1980-02-19 Seiko Epson Corp Liquid crystal composition and display elements comprising it
EP0240379A1 (de) 1986-02-28 1987-10-07 Commissariat A L'energie Atomique Doppelschicht-Flüssigkristallzelle mit elektrisch gesteuerter Doppelbrechung
JPH05117324A (ja) 1991-10-31 1993-05-14 Mitsubishi Rayon Co Ltd 液晶複合体並びに液晶光学装置及びその製造方法
JPH09291282A (ja) 1996-04-26 1997-11-11 Sumitomo Chem Co Ltd 安定化した液晶材料およびこれを用いた液晶素子
WO2002018515A1 (en) 2000-08-30 2002-03-07 Clariant International Ltd. Liquid crystal mixture
EP1784442A1 (de) 2004-08-26 2007-05-16 Wacker Chemie AG Vernetzbare siloxan-harnstoff-copolymere
WO2008009417A1 (de) 2006-07-19 2008-01-24 Merck Patent Gmbh Flüssigkristallines medium
WO2009021671A1 (de) 2007-08-15 2009-02-19 Merck Patent Gmbh Flüssigkristallines medium
WO2009115186A1 (de) 2008-03-17 2009-09-24 Merck Patent Gmbh Flüssigkristallines medium
WO2009129911A1 (de) 2008-04-22 2009-10-29 Merck Patent Gmbh, Flüssigkristallines medium
EP2182046A1 (de) 2008-10-30 2010-05-05 Merck Patent GmbH Flüssigkristallines Medium und Flüssigkristallanzeige

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Merck Liquid Crystals, Physical Properties of Liquid Crystals", Status Nov. 1997, Merck KGaA, Deutschland
ASV (Avanced Super View, z. B.: Shigeta, Mitzuhiro und Fukuoka, Hirofumi, Vortrag 15.2: "Development of High Quality LCDTV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 754 bis 757)
G. Labrunie und J. Robert (J. Appl. Phys. 44 (1973), 4869)
H. Schad (SID 82 Digest Techn. Papers (1982), 244)
J. Duchene (Displays 7 (1986), 3)
J. F. Kahn (Appl. Phys. Lett. 20 (1972), 1193)
J. Robert und F. Clerc (SID 80 Digest Techn. Papers (1980), 30)
Kim, Hyeon Kyeong et al., Vortrag 9.1: "A 57-in. Wide UXGA TFT-LCD for HDTV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 106 bis 109
Liu, C. T. et al., Vortrag 15.1: "A 46-inch TFT-LCD HDTV Technology...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 750 bis 753
M. F. Schieckel und K. Fahrenschon, "Deformation of nematic liquid crystals with vertical orientation in electrical fields", Appl. Phys. Lett. 19 (1971), 3912
M. Inoue, "Recent measurement of Liquid Crystal Material Characterisitcs", Proceedings IDW 2006, LCT-7-1,647
Miéville, P. et al, Angew. Chem. 2010, 122, Seiten 6318-6321
MVA (Multi-Domain Vertical Alignment, z. B.: Yoshide, H. et al., Vortrag 3.1: "MVA LCD for Notebook or Mobile PCs...", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch I, S. 6 bis 9
Ohkatsu, Y., J. of Japan Petroleum Institute, 51, 2008, Seiten 191-204
PVA (Patterned Vertical Alignment, z. B.: Kim, Sang Soo, Vortrag 15.4: "Super PVA Sets New State-of-the-Art for LCD-TV", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 760 bis 763)
Souk, Jun, SID Seminar 2004, Seminar M-6: "Recent Advances in LCD Technology", Seminar Lecture Notes, M-6/1 bis M-6/26 und Miller, Ian, SID Seminar 2004, Seminar M-7: "LCD-Television", Seminar Lecture Notes, M-7/1 bis M-7/32
STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris
TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris
Yeo, S. D., Vortrag 15.3: "A LC Display for the TV Application", SID 2004 International Symposium, Digest of Technical Papers, XXXV, Buch II, S. 758 und 759

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3053990A1 (de) * 2015-02-09 2016-08-10 Samsung Display Co., Ltd. Flüssigkristallzusammensetzung und flüssigkristallanzeigevorrichtung damit
US20160230091A1 (en) * 2015-02-09 2016-08-11 Samsung Display Co., Ltd. Liquid crystal composition, and liquid crystal display including the same
EP3093328A1 (de) * 2015-05-13 2016-11-16 Merck Patent GmbH Flüssigkristallines medium
WO2016188605A1 (en) * 2015-05-22 2016-12-01 Merck Patent Gmbh Liquid-crystalline medium
US20180291270A1 (en) * 2015-05-22 2018-10-11 Merck Patent Gmbh Liquid-crystalline medium
US10975308B2 (en) * 2015-05-22 2021-04-13 Merck Patent Gmbh Liquid-crystalline medium
WO2019228939A1 (en) * 2018-05-30 2019-12-05 Merck Patent Gmbh Compounds and liquid-crystalline medium

Similar Documents

Publication Publication Date Title
EP2514800B1 (de) Verbindungen und flüssigkristallines Medium
EP2722380B1 (de) Flüssigkristallines Medium, Methode zu seiner Stabilisierung und Flüssigkristallanzeige
EP3354709B1 (de) Verbindungen und flüssigkristallines medium
EP2722381B1 (de) Flüssigkristallines medium, methode zu seiner stabilisierung und flüssigkristallanzeige
EP3354710B1 (de) Verbindungen und flüssigkristallines medium
EP2649153B1 (de) Flüssigkristallines medium und elektrooptische anzeige
EP3133137B1 (de) Flüssigkristallines medium und elektrooptische anzeige
EP2265691B1 (de) Flüssigkristallines medium
EP2199362B1 (de) Flüssigkristallines Medium
DE102009011666B4 (de) Flüssigkristallines Medium und seine Verwendung
DE102011013007A1 (de) Flüssigkristallines Medium und Elektrooptische Anzeige
EP3093328B1 (de) Flüssigkristallines medium
EP3303518B1 (de) Flüssigkristallines medium
EP2993216A1 (de) Verbindungen und flüssigkristallines medium
EP3279289B1 (de) Piperidin-derivate und flüssigkristallines medium
WO2010057575A1 (de) Flüssigkristallines medium
DE102012008570A1 (de) Verbindungen und Flüssigkristallines Medium
DE102015013980A1 (de) Heterocyclische Verbindung, Flüssigkristallines Medium, Methode zu seiner Stabilisierung und Fküssigkristallanzeige

Legal Events

Date Code Title Description
R005 Application deemed withdrawn due to failure to request examination