DE102011083865A1 - Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components - Google Patents
Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components Download PDFInfo
- Publication number
- DE102011083865A1 DE102011083865A1 DE102011083865A DE102011083865A DE102011083865A1 DE 102011083865 A1 DE102011083865 A1 DE 102011083865A1 DE 102011083865 A DE102011083865 A DE 102011083865A DE 102011083865 A DE102011083865 A DE 102011083865A DE 102011083865 A1 DE102011083865 A1 DE 102011083865A1
- Authority
- DE
- Germany
- Prior art keywords
- component
- producing
- ceramic
- sic
- workpieces according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/19—Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/003—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
- C04B37/005—Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5062—Borides, Nitrides or Silicides
- C04B41/5064—Boron nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3826—Silicon carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5472—Bimodal, multi-modal or multi-fraction
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/665—Local sintering, e.g. laser sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/08—Non-oxidic interlayers
- C04B2237/083—Carbide interlayers, e.g. silicon carbide interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/04—Ceramic interlayers
- C04B2237/08—Non-oxidic interlayers
- C04B2237/086—Carbon interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/02—Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
- C04B2237/16—Silicon interlayers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/363—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/36—Non-oxidic
- C04B2237/365—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/38—Fiber or whisker reinforced
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/52—Pre-treatment of the joining surfaces, e.g. cleaning, machining
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/70—Forming laminates or joined articles comprising layers of a specific, unusual thickness
- C04B2237/704—Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/78—Side-way connecting, e.g. connecting two plates through their sides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
Verfahren zum Herstellen eines Bauteils aus keramischen Werkstücken mit den Schritten: a) Ablegen von plattenförmigen keramischen Werkstoffen in definierten Positionen in einen oder mehrere Tiegel oder in definierten Positionen auf ein oder mehrere Gestelle, wobei die Kanten so aneinander gelegt werden, dass ein definierter Spalt zwischen den Platten entsteht, b) Vollflächiges Überziehen des Spalts mit einem Lot und anschließende Trocknung, d) Reaktives Löten mit einem definierten Strahlendurchmesser, wobei sowohl der Spalt als auch der Bereich der Kanten der plattenförmigen keramischen Werkstoffe gleichmäßig überstrichen wird.A method for producing a component from ceramic workpieces comprising the steps of: a) depositing plate-shaped ceramic materials in defined positions in one or more crucibles or in defined positions on one or more racks, wherein the edges are placed against each other so that a defined gap between b) full-surface coating of the gap with a solder and subsequent drying, d) reactive soldering with a defined beam diameter, wherein both the gap and the region of the edges of the plate-shaped ceramic materials is evenly painted over.
Description
Gegenstand der Erfindung ist ein Verfahren zum Laserstrahllöten zur Herstellung von keramischen Bauteilen.The invention relates to a method for laser beam soldering for the production of ceramic components.
Das technische Gebiet der Erfindung kann als Reaktivlöten bezeichnet werden, das heißt dass Temperaturen von mehr als 1200°C zur Anwendung kommen, was ermöglicht, den hergestellten Verbund dort einsetzen zu können, wo die Temperaturen zum Beispiel 900°C überschreiten und bis 1600°C oder sogar darüber hinaus gehen.The technical field of the invention can be referred to as reactive soldering, that is to say that temperatures of more than 1200 ° C. are used, which makes it possible to use the composite produced where the temperatures exceed, for example, 900 ° C. and up to 1600 ° C. or even go beyond that.
Aufgrund der hohen Temperaturen – zum Beispiel um 1000°C – denen Keramiken wie beispielsweise das SiSiC ausgesetzt sein können, ist die Herstellung von keramischen Bauteilen durch Klebung mit organischen Produkten ausgeschlossen.Due to the high temperatures - for example, around 1000 ° C - which may be exposed to ceramics such as SiSiC, the production of ceramic components by adhesion with organic products is excluded.
Stand der Technik ist es, SiSiC Keramiken mittels Laserschneiden zu bearbeiten. Thermisches Abtragen mit Laserstrahlen wird als Abtrennen von Werkstoffteilchen durch Wärmevorgänge definiert, wobei Wärme durch Energieumsetzung beim Auftreten eines Laserstrahls am Werkstück entsteht. Mit Lasern ist eine Bearbeitung unabhängig von der Werkstoffhärte möglich, wobei kein Verschleiß am Werkstoff entsteht. Der Schwerpunkt von Laseranwendungen bei der Bearbeitung von Keramiken liegt in der trennenden Bearbeitung von plattenförmigen oder dünnwandig gekrümmten Werkstücken. Neben dieser trennenden Bearbeitung bietet die Laserbehandlung die Möglichkeit eines Materialabtrags von der Oberfläche ohne völliges Durchtrennen des Werkstückes. The state of the art is to process SiSiC ceramics by means of laser cutting. Thermal ablation with laser beams is defined as separation of material particles by heat processes, whereby heat is generated by energy conversion when a laser beam appears on the workpiece. With lasers, a treatment is possible regardless of the material hardness, with no wear on the material. The focus of laser applications in the processing of ceramics lies in the separating processing of plate-shaped or thin-walled curved workpieces. In addition to this separating treatment, the laser treatment offers the possibility of material removal from the surface without complete cutting of the workpiece.
Da Siliciumkarbid keine eigene Schmelzphase bildet, sind die klassischen Verbindungstechniken, die mit oder ohne Schweißzusatzwerkstoff (WIG-, Elektronen- oder Laserschweißen) arbeiten und ein partielles Schmelzen der zu verbindenden Teile implizieren, nicht benutzbar für die Behebung von kritischen Fehlern von Materialien auf Siliciumkarbidbasis, da man ein Substrat oder ein Teil aus Keramik nicht schmelzen lassen kann und insbesondere das SiC sich vor dem Schmelzen zersetzt.Since silicon carbide does not form its own molten phase, the classical joining techniques that work with or without welding consumables (TIG, electron or laser welding) and imply a partial melting of the parts to be joined are not usable for the removal of critical defects of silicon carbide based materials, since a substrate or a part made of ceramic can not be melted and in particular the SiC decomposes before melting.
Daher ist ein stoffschlüssiges Fügeverfahren wie bei den oxidischen Keramiken, bei denen die zu verbindenden Teile im Nahtbereich lokal aufgeschmolzen werden, nicht möglich. Therefore, a cohesive joining method as in the oxide ceramics, in which the parts to be joined are locally melted in the seam area, not possible.
Infolgedessen sind gegenwärtig das Diffusionsschweißen in der Feststoff Phase, die Sinterverbindungstechnik und das reaktive Löten die häufigsten Techniken zur feuerfesten Verbindung von Keramiken.As a result, solid-phase diffusion bonding, sintered bonding, and reactive soldering are currently the most common techniques for refractory bonding of ceramics.
Das Diffusionsschweißen in der Feststoff Phase sowie die Sinterverbindungstechnik haben den Nachteil, problematisch zu sein in Bezug auf ihre Durchführung.Diffusion bonding in the solid phase as well as the sintered joining technique have the disadvantage of being problematic in terms of their performance.
Der LSI-Prozess (Liquid Silicon Infiltration) zeichnet sich hingegen durch kurze Prozesszeiten und niedrige Herstellungskosten aus.In contrast, the LSI process (Liquid Silicon Infiltration) is characterized by short process times and low production costs.
Bei der Realisierung einer Verbindung zwischen Keramiken besonders wichtig, die Restspannungen zu begrenzen, die sich bei der Abkühlung aufgrund unterschiedlicher Wärmeausdehnungskoeffizienten der zu verbindenden Teile entwickeln, wenn sie von unterschiedlicher Art sind, aber auch zwischen der Keramik und dem Lot, wenn die beiden Keramiken von derselben Art sind. Aus diesem Grund muss der Wärmeausdehnungskoeffizient des Lots sehr genau dem der zu verbindenden Keramikteile entsprechen.In the realization of a connection between ceramics, it is particularly important to limit the residual stresses that develop during cooling due to different coefficients of thermal expansion of the parts to be joined, if they are of different types, but also between the ceramics and the solder, if the two ceramics of of the same kind. For this reason, the coefficient of thermal expansion of the solder must correspond very closely to that of the ceramic parts to be joined.
Es stellt sich daher die Aufgabe, ein neues Verfahren zum stoffschlüssigen Löten von keramischen Bauteilen zu finden. Dabei sollte eine mechanisch feste, korrosions- und hochtemperaturbeständige Verbindung aus ähnlichem oder identischem Material vom Lot zu dem umgebenden Gefüge bei lokal begrenztem Energieeintrag gewährleistet werden. It is therefore the task of finding a new method for cohesive soldering of ceramic components. In this case, a mechanically strong, corrosion and high temperature resistant compound of similar or identical material from the solder to the surrounding structure should be ensured with a localized energy input.
Gelöst wird diese Aufgabe durch ein Verfahren zum Herstellen eines Bauteils aus keramischen Werkstücken mit den folgenden Schritten:
- a) Ablegen von plattenförmigen keramischen Werkstoffen in definierten Positionen in einen oder mehrere Tiegel oder in definierten Positionen auf ein oder mehrere Gestelle, wobei die Kanten so aneinander gelegt werden, dass ein definierter Spalt (Länge, Breite, Tiefe) zwischen den Platten entsteht,
- b) Vollflächiges Überziehen des Spalts mit einem Lot und anschließende Trocknung,
- d) Reaktives Löten mit einem definierten Strahlendurchmesser, wobei sowohl der Spalt als auch der Bereich der Kanten der plattenförmigen keramischen Werkstoffe gleichmäßig mit Lot bedeckt sind.
- a) placing plate-shaped ceramic materials in defined positions in one or more crucibles or in defined positions on one or more racks, wherein the edges are placed against each other so that a defined gap (length, width, depth) is formed between the plates,
- b) full-surface coating of the gap with a solder and subsequent drying,
- d) reactive soldering with a defined beam diameter, wherein both the gap and the region of the edges of the plate-shaped ceramic materials are uniformly covered with solder.
Das reaktive Löten erfolgt stoffschlüssig unter Zufuhr von Siliciumkarbidpulver oder einer Mischung aus Si, C und SiC Pulver. Damit der Wärmeausdehnungskoeffizient des Lots fast gleich aber etwas höher ist als der des Siliciumkarbids, darf der Siliciumgehalt den Wert von 97%, angegeben als Atomprozentgehalt, möglichst nicht überschreiten. Ein Verfahren, das Lote verwendet, deren Atomprozentgehalte innerhalb des oben genannten Bereichs liegen, ist einfach anzuwenden, denn diese Zusammensetzungen besitzen sehr gute Benetzungs- und Hafteigenschaften gegenüber SiC. Die Lotzusammensetzung selbst ist nicht teuer, denn sie enthält keine teuren Elemente. Bevorzugt wird das Löten mit dem Laser in freier Atmosphäre oder wenn notwendig in Schutzgasatmosphäre durchgeführt.The reactive soldering takes place cohesively with supply of silicon carbide powder or a mixture of Si, C and SiC powder. In order for the coefficient of thermal expansion of the solder to be almost equal but slightly higher than that of the silicon carbide, the silicon content must not exceed the value of 97%, expressed as atomic percentage. A method that uses solders whose atomic percentages are within the above range is easy to use because these compositions have very good wetting and adhesion properties to SiC. The Lotzusammensetzung itself is not expensive, because it contains no expensive elements. The soldering is preferably carried out with the laser in the free atmosphere or, if necessary, in a protective gas atmosphere.
Vorzugsweise haben die plattenförmigen Werkstücke eine Dicke von 3 bis 15 mm.Preferably, the plate-shaped workpieces have a thickness of 3 to 15 mm.
Die Oberfläche des Tiegels, die zu den Platten zeigt, wird bevorzugt vor dem Ablegen der plattenförmigen keramischen Werkstoffe mit einer BN-Suspension bestrichen.The surface of the crucible facing the plates is preferably coated with a BN suspension prior to laying down the plate-shaped ceramic materials.
Bevorzugt bestehen der oder die Tiegel oder das oder die Gestelle aus Graphit. Der Spalt zwischen den Platten weist vorzugsweise einen Abstand von 0,1 mm bis 1 mm auf.Preferably, the crucible or frame (s) are made of graphite. The gap between the plates preferably has a distance of 0.1 mm to 1 mm.
Bevorzugt wird ein kontinuierlicher oder ein gepulster Laser zum reaktiven Löten oder eine Kombination der beiden Laserbetriebsarten eingesetzt.Preferably, a continuous or a pulsed laser for reactive soldering or a combination of the two laser modes is used.
Es ist bevorzugt, dass ein CO2 Laser oder ein Nd:YAG-Laser oder eine Kombination der beiden Laserquellen zum reaktiven Löten eingesetzt wird.It is preferable that a CO 2 laser or a Nd: YAG laser or a combination of the two laser sources is used for reactive soldering.
Vorzugsweise wird das Löten mit einem Laser in freier Atmosphäre oder in Schutzgasatmosphäre durchgeführt.Preferably, the soldering is performed with a laser in a free atmosphere or in a protective gas atmosphere.
Als Laser wird vorzugsweise ein kurzgepulster Laser mit einer Pulszeit kleiner 10 ps und einem Fokusdurchmesser von 20 µm verwendet.The laser used is preferably a short-pulse laser with a pulse time of less than 10 ps and a focus diameter of 20 μm.
Vorzugsweise beträgt der definierte Strahlendurchmesser 1 bis 10 mm.Preferably, the defined beam diameter is 1 to 10 mm.
Bevorzugt erfolgt keine Vorbehandlung des keramischen Materials, bis auf mechanisches Aufbereiten der Fügeflächen, beispielsweise Entfetten oder Entstauben des keramischen Materials.Preference is given to no pretreatment of the ceramic material, except for mechanical preparation of the joining surfaces, for example degreasing or dedusting of the ceramic material.
Als Lotzusammensetzung wird vorzugsweise eine mit im keramischen Grundmaterial enthaltenen Verbindungen beziehungsweise Elementen wie SiC und/oder Si und/oder C eingesetzt.The solder composition used is preferably a compound or elements such as SiC and / or Si and / or C contained in the ceramic base material.
Die Lotzusammensetzung besteht bevorzugt aus SiC und/oder C und/oder Si in einer Menge von 5 bis 95 Gew.-% SiC und/oder C und/oder Si, bezogen auf das Gewicht der Lotzusammensetzung und liegt in einer Form vor, die aus einem Pulver, Körnern, Stücken, Teilchen, einem Gewebe, einem Nonwoven, einem Filz oder einem Schaum bestehen kann.The solder composition preferably consists of SiC and / or C and / or Si in an amount of from 5 to 95% by weight of SiC and / or C and / or Si, based on the weight of the solder composition, and is in a form consisting of a powder, grains, pieces, particles, a woven fabric, a nonwoven, a felt or a foam.
Vorzugsweise wird ein Pulver einer Lotzusammensetzung gebildet, dieses Pulver mit einem organischen Bindemittel in Suspension oder pastöse Form aufbereitet und die Abschnitte oder Kanten der zu lötenden Formkörper mit der erhaltenen Suspension überzogen werden.Preferably, a powder of a solder composition is formed, this powder is treated with an organic binder in suspension or pasty form and the sections or edges of the molded body to be soldered are coated with the resulting suspension.
Das Pulver der Lotzusammensetzung wird bevorzugt zu Presslingen verarbeitet und durch Einwirkung von Lasern auf die zu lötenden Teile lokal aufgeschmolzen.The powder of the solder composition is preferably processed into compacts and locally melted by the action of lasers on the parts to be soldered.
Beim reaktiven Löten wird als Spülgas bevorzugt Stickstoff oder Druckluft oder als Schutzgas ein Edelgas wie beispielsweise Argon oder Helium eingesetzt.In reactive soldering, preference is given to using nitrogen or compressed air as purge gas or inert gas such as argon or helium as protective gas.
Vorzugsweise wird beim reaktiven Löten eine Temperatur von mindestens 1200°C durch das Laserlicht an den Plattenkanten und im Spalt erreicht.Preferably, in reactive soldering, a temperature of at least 1200 ° C is achieved by the laser light at the plate edges and in the gap.
Bevorzugt sind die gelöteten Teile wieder lösbar.Preferably, the soldered parts are detachable again.
Besonders bevorzugt werden die Platten durch das reaktive Löten mit einer SiSiC Schicht fest verbunden.Particularly preferably, the plates are firmly bonded by reactive soldering with a SiSiC layer.
Es ist bevorzugt, dass die Materialien auf Siliciumkarbidbasis ausgewählt werden aus drucklos gesintertem Siliciumkarbid („PLS-SiC“); silicium-infiltriertem Siliciumkarbid („SiSiC“ oder „RBSC“); porösem rekristallisiertem Siliciumkarbid („RSiC“); Graphit-Silicium („C-SiC“), das aus Graphit besteht und mit einer Schicht aus SiC überzogen ist; den SiC/SiC-Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern; den C/SiC-Verbundwerkstoffen, zum Beispiel mit Fasern oder Whiskern aus Kohlenstoff und mit einer SiC-Matrix; den SiC-Einkristallen; den Verbundwerkstoffen aus SiC mit einer anderen Keramik, zum Beispiel SiC/Si3N4 und SiC/TiN-Verbundwerkstoffen.It is preferable that the silicon carbide-based materials are selected from non-pressure sintered silicon carbide ("PLS-SiC"); silicon-infiltrated silicon carbide ("SiSiC" or "RBSC"); porous recrystallized silicon carbide ("RSiC"); Graphite silicon ("C-SiC") made of graphite and coated with a layer of SiC; the SiC / SiC composites, for example with fibers or whiskers; the C / SiC composites, for example with fibers or whiskers of carbon and with a SiC matrix; the SiC single crystals; the SiC composites with another ceramic, for example, SiC / Si 3 N 4 and SiC / TiN composites.
Bevorzugt weisen die Materialien auf Siliciumkarbidbasis einen Siliciumkarbidgehalt größer oder gleich 80 Gew.-% auf.Preferably, the silicon carbide-based materials have a silicon carbide content greater than or equal to 80% by weight.
Die Materialien auf Siliciumkarbidbasis werden bevorzugt zur Herstellung von keramischen Formkörpern für den Automobilbau, den Bau von Luft- und Raumfahrzeugen sowie für den Ofenbau verwendet.The silicon carbide-based materials are preferably used for the production of ceramic moldings for the automotive industry, the construction of aircraft and spacecraft and for furnace construction.
Beispiel 1example 1
Herstellung der Mischung des LotesPreparation of the mixture of the solder
In einem Eirich Intensivmischer werden 400 g Si-Pulver (mittlere Korngröße 100 µm) 300 g SiC Pulver der Körnung F 360 (Korngröße d50: 22,8 ± 1,0 µm), 200 g Pulver der Körnung F 600 (Korngröße d50: 9,3 ± 1,0 µm) und 240 g Pulver der Körnung F 1200 (Korngröße d50: 3,0 ± 0,5 µm), sowie 50 g eines Graphitpulvers der mittleren Korngröße 30 µm gegeben und die Mischung bei einer Wirblerdrehzahl 200 U/min für 5 min und anschließend bei 1200 U/min unter Zugabe von 300 ml Ethanol und 10 ml Parafinöl homogenisiert. Die sich dabei bildende plastöse durch Ethanol feuchte Masse wird in einen Behälter mit Deckel umgefüllt.In an Eirich intensive mixer, 400 g of Si powder (average particle size 100 μm) 300 g of SiC powder of grain size F 360 (particle size d 50: 22.8 ± 1.0 μm), 200 g of powder of grain size F 600 (particle size d 50: 9 , 3 ± 1.0 μm) and 240 g of powder of grain size F 1200 (particle size d 50: 3.0 ± 0.5 μm), and 50 g of a graphite powder of average grain size 30 μm and the mixture at a swirling speed 200 U / min for 5 min and then homogenized at 1200 rev / min with the addition of 300 ml of ethanol and 10 ml of paraffin oil. The thereby forming plastic ethanol wet mass is transferred to a container with a lid.
Beispiel 2Example 2
Verbindung der keramischen WerkstückeConnection of the ceramic workpieces
Die vorbereiteten und entfetteten plattenförmigen keramischen Werkstücke einer Dicke von 15 mm werden in einen Tiegel aus Graphit gelegt. Die Oberfläche des Tiegels die zu den Platten zeigt wurde vorher mit BN-Suspension beschichtet um ein späteres ankleben durch aufgeschmolzenes Silicium zu verhindern. Die gesäuberten Kanten werden so aneinander gelegt dass ein Spalt mit einem Abstand von 1 mm zwischen den Platten entsteht. In diesen Spalt wird nun das hergestellte Lot Schichtweise eingefüllt. Hierbei ist darauf zu achten das keine Luftblasen mit eingeschlossen werden. Der Spalt wir ca. 1mm überschichtet und anschließend erfolgt die Trocknung bei RT an Luft. Mittels eines CO2 Lasers der Wellenlänge 10,6 µm wird unter einer Schutzgasatmosphäre und einer maximalen Leistung von 700 W wird mit einem Strahlendurchmesser von 3mm so ausgerichtet das er sowohl den Spalt wie auch den Bereich der Kanten der Platten mit jeweils einem Millimeter gleichmäßig überstreicht. Durch das Laserlicht wird eine Temperatur > 1420°C in den Plattenkanten und im Spalt erreicht und es kommt zum Aufschmelzen des Silziums, die gleichzeitig einsetzende Reaktion des Siliciums mit Kohlenstoff führt in einer exothermen Reaktion zur Bildung von SiC. Durch die zusätzliche Wärme die durch die Reaktion gebildet wird erfolgt ein Aufheizen auch in die Tiefe des Spaltes und die Plattenkanten. Durch dieses reaktive Löten werden die Platten mit einer SiSiC Schicht fest miteinander verbunden.The prepared and degreased plate-shaped ceramic workpieces of a thickness of 15 mm are placed in a crucible made of graphite. The surface of the crucible facing the plates was previously coated with BN suspension to prevent subsequent sticking by molten silicon. The cleaned edges are put together so that there is a gap of 1 mm between the plates. In this gap, the produced solder is now filled layer by layer. It is important to ensure that no air bubbles are included. The gap is covered by approx. 1mm and then dried at RT in air. Using a CO 2 laser of wavelength 10.6 microns is under a protective gas atmosphere and a maximum power of 700 W is aligned with a beam diameter of 3mm so that it covers both the gap and the area of the edges of the plates evenly with one millimeter. The laser light reaches a temperature> 1420 ° C in the plate edges and in the gap and it comes to the melting of the silicon, the simultaneous onset of reaction of silicon with carbon in an exothermic reaction to form SiC. Due to the additional heat which is formed by the reaction, heating also takes place in the depth of the gap and the plate edges. This reactive soldering bonds the plates together with a SiSiC layer.
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011083865A DE102011083865A1 (en) | 2011-09-30 | 2011-09-30 | Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components |
PCT/EP2012/068295 WO2013045306A1 (en) | 2011-09-30 | 2012-09-18 | Laser soldering of silicon carbide-based materials for the production of ceramic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011083865A DE102011083865A1 (en) | 2011-09-30 | 2011-09-30 | Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102011083865A1 true DE102011083865A1 (en) | 2013-04-04 |
Family
ID=46851526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE102011083865A Withdrawn DE102011083865A1 (en) | 2011-09-30 | 2011-09-30 | Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102011083865A1 (en) |
WO (1) | WO2013045306A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112552068B (en) * | 2020-11-26 | 2022-12-20 | 西安鑫垚陶瓷复合材料有限公司 | Protection tool and method for rivet welding of C/SiC-ZrC and C/SiC ceramic matrix composite |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2585654B2 (en) * | 1987-12-04 | 1997-02-26 | 宮本 勇 | Ceramic joining method |
EP0356800B1 (en) * | 1988-08-15 | 1992-05-06 | Shin-Etsu Chemical Co., Ltd. | Silicon carbide ceramics bonding compositions |
JPH02149476A (en) * | 1988-08-15 | 1990-06-08 | Shin Etsu Chem Co Ltd | Binder for silicon carbide ceramics |
DD300645A5 (en) * | 1989-07-21 | 1992-06-25 | Friedrich-Schiller-Universitaet Jena,De | PROCESS FOR CONNECTING COMPONENTS FROM SI C CERAMICS |
US5503703A (en) * | 1994-01-10 | 1996-04-02 | Dahotre; Narendra B. | Laser bonding process |
DE4412792A1 (en) * | 1994-04-14 | 1995-10-19 | Leybold Materials Gmbh | Appts. for joining flat workpieces |
FR2748471B1 (en) * | 1996-05-07 | 1998-06-12 | Commissariat Energie Atomique | BRAZING ASSEMBLY OF CERAMIC MATERIALS CONTAINING SILICON CARBIDE |
FR2872072B1 (en) * | 2004-06-24 | 2006-09-29 | Snecma Propulsion Solide Sa | METHOD OF BRAZING PARTS OF SILICURE THERMOSTRUCTURAL COMPOSITE MATERIAL |
-
2011
- 2011-09-30 DE DE102011083865A patent/DE102011083865A1/en not_active Withdrawn
-
2012
- 2012-09-18 WO PCT/EP2012/068295 patent/WO2013045306A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013045306A1 (en) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60103378T2 (en) | METHOD FOR CONNECTING COMPONENTS BASED ON SILICON CARBIDE MATERIAL BY MEANS OF NON REACTIVE FIRE-RESISTANT HARDENING, HARD LOT COMPOSITION, FIRE-RESISTANT CONNECTION AND COMPOUND | |
JP5665295B2 (en) | Moderately refractory assembly process for SiC-based material articles by non-reactive brazing, brazing composition, and joints and assemblies obtained by this process | |
US9713860B2 (en) | Compositions for joining and assembling parts made of SiC-based materials | |
JP6026287B2 (en) | Method for joining parts made of SiC-based materials by non-reactive brazing using additional reinforcements, brazing composition, and joints and assemblies obtained by such methods | |
CA2627786C (en) | Braze system with matched coefficients of thermal expansion | |
US8590770B2 (en) | Method for assembling, joining parts made of SiC-based materials by non-reactive brazing, brazing compositions, and joint and assembly obtained by said method | |
DE102015109372A1 (en) | COMPOSITE WEAR PROTECTION AND METHOD FOR THE PRODUCTION THEREOF | |
Yang et al. | Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag-Cu-Ti+ W composite filler | |
WO2003106374A1 (en) | Method for producing gas-tight and high-temperature resistant unions of shaped parts, which are made of a non-oxidic ceramic material, by using a laser | |
DE112004001944T5 (en) | Lot based protective layer for silicon based substrate | |
Li et al. | The effect of high temperature heat-treatment on the strength of C/C to C/C–SiC joints | |
Zhao et al. | Interfacial microstructure and mechanical properties of porous-Si3N4 ceramic and TiAl alloy joints vacuum brazed with AgCu filler | |
KR20130040873A (en) | Dispersion, method for producing same, and use thereof | |
Fan et al. | Joining of Cf/SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni)+ Ti filler based on in-situ alloying concept | |
DE102011083864A1 (en) | Laser beam brazing of silicon carbide based materials | |
US8728261B2 (en) | Method for producing ceramic joined body | |
Sun et al. | Microstructure evolution and bonding mechanism of ZrO2 ceramic and Ti-6Al-4V alloy joints brazed by Bi2O3-B2O3-ZnO glass paste | |
DE102011083865A1 (en) | Laser beam brazing of silicon carbide based materials for the manufacture of ceramic components | |
DE102006050985A1 (en) | Method for coating metal workpieces or machine components comprises adding a hard material in the form of solid bodies to increase the wear resistance of the alloy used in the coating | |
DE102012016203A1 (en) | Process for nanostructuring of ceramic, glass, carbon, boron, silicon and composite materials | |
JP2010059048A (en) | Method for assembling moderately refractory article made of sic-based material by non-reactive brazing of brazing composition in oxidizing atmosphere, and refractory joint and assembly obtained by the method | |
DE102015205595B3 (en) | Process for producing ceramic fiber composite materials | |
DE102014216994B4 (en) | Process for the preparation of a tempering element and tempering element produced by the process | |
DE102006007552B4 (en) | Process for coating bodies of graphite or carbon fiber reinforced carbon and bodies of graphite or carbon fiber reinforced carbon | |
DE102007047014B4 (en) | Process for producing a gas-tight and high-temperature-resistant connection of molded parts by means of laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20150401 |