DE102011009624A1 - Verfahren und Vorrichtung zur Prozessüberwachung - Google Patents

Verfahren und Vorrichtung zur Prozessüberwachung Download PDF

Info

Publication number
DE102011009624A1
DE102011009624A1 DE102011009624A DE102011009624A DE102011009624A1 DE 102011009624 A1 DE102011009624 A1 DE 102011009624A1 DE 102011009624 A DE102011009624 A DE 102011009624A DE 102011009624 A DE102011009624 A DE 102011009624A DE 102011009624 A1 DE102011009624 A1 DE 102011009624A1
Authority
DE
Germany
Prior art keywords
layer
component
detected
last
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011009624A
Other languages
English (en)
Inventor
Karl-Heinz Dusel
Manuel Hertter
Thomas Hess
Andreas Jakimov
Bertram Kopperger
Wilhelm Meir
Hans-Christian Melzer
Wilhelm Satzger
Siegfried Sikorski
Josef Wärmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Priority to DE102011009624A priority Critical patent/DE102011009624A1/de
Priority to PCT/DE2012/000020 priority patent/WO2012100766A1/de
Priority to US13/981,186 priority patent/US9952236B2/en
Priority to EP12704658.9A priority patent/EP2667988B1/de
Publication of DE102011009624A1 publication Critical patent/DE102011009624A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/31Calibration of process steps or apparatus settings, e.g. before or during manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Powder Metallurgy (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Offenbart ist ein Verfahren zur Überwachung eines generativen Fertigungsprozesses in Echtzeit, wobei ein Bauteil zumindest optisch und der Bauraum thermisch beim Schichtauftrag erfasst werden, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens.

Description

  • Die Erfindung betrifft ein Verfahren zur Überwachung eines generativen Fertigungsprozesses nach dem Oberbegriff des Patentanspruchs 1 und eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
  • Ein Verfahren und eine Vorrichtung zur generativen Herstellung eines Bauteils sind z. B. in dem deutschen Patent DE 196 49 865 C1 gezeigt. Das Bauteil wird in einem Bauraum aus einer Vielzahl von einzelnen Pulverschichten aufgebaut. Dabei wird ein Laserstrahl gemäß einer Querschnittsgeometrie eines dreidimensionalen Datenmodells über eine zu erzeugende Schicht geführt, die dann an einer vorhergehenden Pulverschicht fixiert wird. Die generative Herstellung eignet sich insbesondere zur Herstellung von Bauteilen mit komplexen Geometrien, jedoch erfolgt eine Überprüfung der Bauteileigenschaften bisher nur im Anschluss der Bauteilherstellung, wodurch verhältnismäßig hohe Kosten für Qualitätssicherungsmaßnahmen anfallen.
  • In jüngster Zeit ist jedoch verstärkt die Tendenz zu beobachten, den generativen Fertigungsprozess direkt und kontinuierlich zu überwachen. So wird beispielsweise in der DE 100 58 748 C1 eine Überwachung des Herstellungsprozesses unter Verwendung von optischen und thermischen Sensoren vorgeschlagen. In der Zeitschrift „rapidX”, Zeitschrift für additive Fertigung, Carl Hanser Verlag, München, Ausgabe 1–2010 wird in dem Artikel „Fertig zum Abheben" ebenfalls eine direkte und kontinuierliche Überwachung eines generativen Fertigungsprozesses erwähnt. Ebenso wird in dem Beitrag „Generative Verfahren Einsatz und Forschung" vom 29. April 2009 zum Kooperationsforum „Generative Fertigungstechnologien unter der Folienüberschrift „Schritte zur Qualifizierung des SLM-Prozesses" eine Prozessüberwachung mittels optischer Systeme genannt. Gemäß diesem Stand der Technik scheint eine direkte und kontinuierliche Überwachung eines generativen Fertigungsprozesses wie einem selektiven Lasersintern (SLS) oder einem selektiven Laserschmelzen (SLM) per se bekannt zu sein, jedoch erfolgt keine Spezifizierung des jeweiligen Überwachungsprozesses.
  • Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zur Überwachung eines generativen Fertigungsprozesses vorzustellen das eine direkte und kontinuierliche Prozessüberwachung ermöglicht, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens zu schaffen.
  • Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 oder durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 11.
  • Bei einem erfindungsgemäßen Verfahren zur Überwachung eines generativen Fertigungsprozesses, bei dem ein Bauteil anhand eines dreidimensionalen Datenmodells aus einer Vielzahl von Schichten in einem Bauraum gebildet wird und eine nachfolgende Schicht an einer vorhergehenden Schicht mittels eines Hochenergiestrahls fixiert wird, werden erfindungsgemäß das Bauteil zumindest optisch und der Bauraum thermisch beim Schichtauftrag erfasst. Die erfindungsgemäße Lösung ermöglicht eine direkte und kontinuierliche und somit Online- bzw. Echtzeit-Prozessüberwachung, wodurch Information über jede hergestellte Schicht des Bauteils erfasst werden. Dabei können durch die zumindest optische Überwachung der jeweiligen Schicht bzw. des jeweiligen Schichtabschnitts in Kombination mit der thermischen Überwachung des Bauraums Wechselwirkungen zwischen dem Bauteil und dem Bauraum erkannt werden. Am Ende des Fertigungsprozesses kann eine detaillierte Aussage über den Zustand bzw. die Eigenschaften des gefertigten Bauteils und somit über dessen Qualität getroffen werden. Nachträgliche Arbeitsschritte zur Qualitätssicherung erübrigen sich somit. Kosten für die nachträgliche Qualitätssicherung werden vollständig eliminiert. Die Informationen über das Bauteil sind dabei lückenlos verfügbar, so dass die Qualität jeder einzelnen Schicht bzw. jedes einzelnen Schichtabschnitts erfasst wird.
  • Bei einem bevorzugten Ausführungsbeispiel werden die erfassten Daten während des Fertigungsprozesses bewertet und beim Überschreiten einer jeweiligen maximal zulässigen Abweichung Prozessparameter entsprechend geändert. Hierdurch wird der laufende Herstellungsprozess in Echtzeit nachgeregelt, wodurch das Bauteil in optimaler Qualität erstellt werden kann. Somit wird ausgeschlossen, dass sich bspw. Bindungsfehler über das gesamte Bauteil ausbreiten.
  • Bevorzugterweise erfolgt eine Umrisserkennung bzw. eine optische 2D-Vermessung nach der zuletzt erzeugten Schicht und/oder nach dem Aufbringen eines Pulvers. Hierdurch kann ein Einzelverzug jeder Schicht erfasst und die jeweilige Strahlführung bei der folgenden Schicht entsprechend angepasst werden. Die Umrisserkennung kann beispielsweise im Rahmen einer 2D-Bildverarbeitung erfolgen.
  • Erfolgt die 2D-Untersuchung nach dem Auftragen des Pulvers, jedoch vor dem Sintern bzw. Aufschmelzen, so können Poren detektiert und beseitigt werden.
  • Alternativ bzw. ergänzend kann eine Farbanalyse der zuletzt erzeugten Schicht durchgeführt werden, wodurch beispielsweise Fremdpartikel erfasst werden können.
  • Bei einer Verfahrensvariante wird nach der zuletzt gefertigten Schicht hinsichtlich ihrer Beschaffenheit bzw. Eigenschaften wie Bindungsfehler, Schichtdicke und Fremdpartikel untersucht. Dies kann beispielsweis mittels einer thermischen Analyse basierend auf Methoden und Mitteln der Thermografie erfolgen. Erfolgt die Thermografische Untersuchung nach dem Auftragen des Pulvers jedoch vor dem Sintern bzw. Aufschmelzen, so können Fremdpartikel detektiert werden. Liegen Fremdpartikel vor so kann die Pulverlage einfach abgezogen werden.
  • Die Erfassung der Beschaffenheit der jeweiligen Schicht kann auch bzw. ergänzend zur thermischen Analyse mittels von der Schicht reflektierten Lichtes erfolgen. Dies kann beispielsweise mittels einer Lichtquelle zur Aussendung von Lichtwellen und mit einem Lichtsensor zur Erfassung des reflektierten Lichts durchgeführt werden.
  • Die Beschaffenheit der zuletzt erzeugten Schicht kann auch mittels Wirbelströmen erfasst werden. Dies kann beispielsweise durch Wirbelstromsensoren erfolgen und eignet sich insbesondere bei ebenen Schichten.
  • Bei einem Ausführungsbeispiel wird ein von dem Hochenergiestrahl erzeugtes Schmelzbad thermisch erfasst, so dass kontrolliert werden kann, ob der Hochenergiestrahl hinsichtlich seiner Paramater wie Leistung, Strahldurchmesser, Vorschub optimal eingestellt ist. Diese thermische Überwachung kann beispielsweise durch eine Verfolgung der Temperatur des Schmelzbades beim Energiestrahlauftreffpunkt mit Hilfe eines nachsteuernden Pyrometers erfolgen.
  • Bei einem Ausführungsbeispiel wird das Bauteil nach seiner Herstellung bzgl. seines gesamten Verzugs erfasst. Dies kann über eine optische 3D-Vermessung des gefertigten Bauteils im Rahmen einer 3D-Bildverarbeitung erfolgen.
  • Eine Verfahrensvariante ermöglicht eine Klassifizierung von Schichtmaterial in Echtzeit, auf der dann aufbauend Prozessparameter eingestellt werden bzw. eine Parametersteuerung erfolgt. Bei Verwendung eines Pulvers als Schichtmaterial können somit Schwankungen in der Pulverqualität während des Fertigungsprozesses durch angepasste Prozessparameter ausgeglichen werden.
  • Eine erfindungsgemäße Durchführung eines derartigen Verfahrens hat zumindest eine optische Erfassungseinrichtung zur optischen Erfassung zumindest einer Bauteilschicht und zumindest eine thermische Erfassungseinrichtung zur thermischen Erfassung eines das Bauteil aufnehmenden Bauraums. Eine derartige Vorrichtung ermöglicht eine direkte und kontinuierliche Überwachung sämtlicher Bauteilschichten und eine Steuerung und Regelung von Prozessparametern.
  • Sonstige vorteilhafte Ausführungsbeispiele der Erfindung sind Gegenstand weiterer Unteransprüche.
  • Bei einem bevorzugten erfindungsgemäßen Verfahren wird ein Bauteil schichtweise aus einer Vielzahl von Schichten, vorzugsweise aus einem Pulvermaterial, in einem Bauraum gebildet. Dabei wird ein Hochenergiestrahl wie ein Laser- oder ein Elektronenstrahl entsprechend einer Querschnittsgeometrie eines dreidimensionalen Datenmodells über eine zu verfestigende Schicht geführt, die beim Verfestigen an der vorhergehenden Schicht fixiert wird. Beim Auftreffen des Hochenergiestrahls wird ein Schmelzbad gebildet und die zu verfestigende Schicht wird partiell aufgeschmolzen. Nach einer Weiterführung des Hochenergiestrahls kühlt der aufgeschmolzene Schichtabschnitt ab und ist an einem vorhergehenden Schichtabschnitt bzw. der vorhergehenden Schicht fixiert. Die darunter liegende Schicht wird zumindest teilweise erneut geschmolzen, es entsteht eine durchgehende Schweißverbindung.
  • Zur Überwachung des Fertigungsprozesses werden das Bauteil optisch sowie thermisch und der Bauraum thermisch beim Schichtauftrag erfasst. Eine optische Erfassung kann zum Beispiel mittels einer optischen Kamera erfolgen, deren aufgezeichnetes Bild dann zur Bewertung mit einem Soll-Bild der zuletzt erzeugten Schicht überlagert wird. Eine thermische Erfassung kann zum Beispiel mittels einer Wärmebildkamera erfolgen, bei der die von dem Bauraum abgegebene Wärmestrahlung im Infrarotbereich erfasst wird, die im Wesentlichen von dem in den Bauraum positionierten Bauteil bzw. Bauteilabschnitt und dem Hochenergiestrahl bestimmt wird. Die erfassten Ist-Daten über den Zustand der aufgebrachten Bauteilschicht und des Bauraums werden mit hinterlegten Soll-Daten verglichen. Beim Überschreiten einer jeweiligen maximal zulässigen Abweichung wird aktiv in die Prozesssteuerung eingegriffen und Prozessparameter werden entsprechend geändert. So kann zum Beispiel bei einem zu hohen Temperaturgradienten innerhalb des Bauteils der Schichtauftrag, der Hochenergiestrahl bzgl. seiner Parameter wie Leistung, Strahldurchmesser und Vorschub entsprechend geändert werden. Ebenso kann eine Vorwärmung des Pulvers auf eine bestimmte Temperatur zum Auftrag an die ermittelten Ist-Daten angepasst werden. Des Weiteren wird zur Einstellung der Prozessparameter die Qualität des Pulvers an sich erfasst und ausgewertet.
  • Bevorzugterweise wird eine 2D-Bildverarbeitung der zuletzt erzeugten Schicht zur Erkennung ihrer Umrisse durchgeführt. Bei einem ermittelten Schichtverzug außerhalb vorgebender Toleranzgrenzen wird zumindest die Führung des Hochenergiestrahls entsprechend angepasst.
  • Zusätzlich erfolgt eine thermische Analyse der zuletzt erzeugten Schicht beispielsweise mit Hilfe der Thermografie zur Messung der jeweiligen Schichteigenschaften wie Bindungsfehler innerhalb der Schicht, Bindungsfehler zur vorhergehenden Schicht, Schichtdicke sowie in der Schicht eingebundene Fremdpartikel. Des Weiteren wird die zuletzt erzeugte Schicht mit Licht bestrahlt und das reflektierte Licht zur Ermittlung von Fremdpartikeln und Verarbeitungsfehlern kontinuierlich erfasst und ausgewertet. Wenn es sich bei der zuletzt erzeugten Schicht um eine ebene Schicht handelt, wird ihre Beschaffenheit bzw. ihr Aufbau zusätzlich mittels Wirbelströmen erfasst und entsprechend ausgewertet.
  • Nach der Erzeugung des Bauteils wird eine optische 3D-Vermessung durchgeführt. Dabei wird zur Erkennung eines Bauteilverzuges seine Außengeometrie vollumfänglich erfasst.
  • Zusätzlich wird während des Fertigungsprozesses die Temperatur des Schmelzbades beim Auftreffen des Hochenergiestrahls auf die jeweilige Schicht mit Hilfe eines dem Hochenergiestrahl nachsteuernden Pyrometers beobachtet.
  • Eine erfindungsgemäße Vorrichtung zur Durchführung einer derartigen Prozessüberwachung weist zumindest eine optische Erfassungseinrichtung wie eine optische Kamera zur Erfassung einer Bauteilschicht bzw. des gesamten Bauteils sowie eine thermische Erfassungseinrichtung wie eine Wärmebildkamera zur thermischen Erfassung des Bauraums auf. Darüber hinaus hat die Vorrichtung einen dem Hochenergiestrahl nachsteuerbaren Pyrometer, eine Lichterfassungseinrichtung mit einer Lichtquelle zur Aussendung von Lichtwellen in Richtung der zuletzt erzeugten Schicht und mit einem Lichtsensor zur Erfassung des reflektierten Lichtes, sowie einen Wirbelstromsensor zum Erfassen des jeweiligen Schichtaufbaus.
  • Offenbart ist ein Verfahren zur Überwachung eines generativen Fertigungsprozesses in Echtzeit, wobei ein Bauteil zumindest optisch und der Bauraum thermisch beim Schichtauftrag erfasst werden, sowie eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19649865 C1 [0002]
    • DE 10058748 C1 [0003]
  • Zitierte Nicht-Patentliteratur
    • Carl Hanser Verlag, München, Ausgabe 1–2010 wird in dem Artikel „Fertig zum Abheben” [0003]
    • „Generative Verfahren Einsatz und Forschung” vom 29. April 2009 zum Kooperationsforum „Generative Fertigungstechnologien unter der Folienüberschrift „Schritte zur Qualifizierung des SLM-Prozesses” [0003]

Claims (12)

  1. Verfahren zur Überwachung eines generativen Fertigungsprozesses, bei dem ein Bauteil anhand eines dreidimensionalen Datenmodells aus einer Vielzahl von Schichten in einem Bauraum gebildet wird, wobei eine nachfolgende Schicht an einer vorhergehenden Schicht mittels eines Hochenergiestrahls fixiert wird, dadurch gekennzeichnet, dass das Bauteil zumindest optisch und der Bauraum thermisch beim Schichtauftrag erfasst werden.
  2. Verfahren nach Anspruch 1, wobei die erfassten Daten während des Fertigungsprozesses bewertet und beim Überschreiten einer maximal zulässigen Abweichung Prozessparameter geändert werden.
  3. Verfahren nach Anspruch 1 oder 2, wobei eine 2D-Vermessung nach einer zuletzt erzeugten Schicht und/oder nach dein Auftragen eines Pulvers durchgeführt wird.
  4. Verfahren nach Anspruch 1, 2 oder 3, wobei eine Farbanalyse der zuletzt erzeugten Schicht durchgeführt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine thermische Analyse nach der zuletzt erzeugten Schicht und/oder nach dem Auftragen eines Pulvers durchgeführt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei von der zuletzt erzeugten Schicht reflektiertes Licht erfasst wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Beschaffenheit der zuletzt erzeugten Schicht mittels Wirbelströmen erfasst wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, wobei ein vom Hochenergiestrahl erzeugtes Schmelzbad thermisch erfasst wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, wobei nach dem letzten Schichtauftrag und/oder nach dem Auftragen eines Pulvers eine optische 3D-Vermessung des Bauteils durchgeführt wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine Klassifizierung von Schichtmaterial durchgeführt wird und auf dieser aufbauend eine Steuerung von Prozessparametern erfolgt.
  11. Verfahren nach einem der vorhergehenden Ansprüchen, wobei die Rauheit nach einer erzeugten Schicht und/oder nach dem Aufbringen eines Pulvers über ein Lasertastschnittverfahren erfasst wird.
  12. Vorrichtung zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche mit zumindest einer optischen Erfassungseinrichtung zur optischen Erfassung zumindest einer Bauteilschicht und zumindest einer thermischen Erfassungseinrichtung zur thermischen Erfassung eines das Bauteil aufnehmenden Bauraums.
DE102011009624A 2011-01-28 2011-01-28 Verfahren und Vorrichtung zur Prozessüberwachung Withdrawn DE102011009624A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102011009624A DE102011009624A1 (de) 2011-01-28 2011-01-28 Verfahren und Vorrichtung zur Prozessüberwachung
PCT/DE2012/000020 WO2012100766A1 (de) 2011-01-28 2012-01-11 Verfahren und vorrichtung zur prozessüberwachung
US13/981,186 US9952236B2 (en) 2011-01-28 2012-01-11 Method and device for process monitoring
EP12704658.9A EP2667988B1 (de) 2011-01-28 2012-01-11 Verfahren und vorrichtung zur prozessüberwachung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011009624A DE102011009624A1 (de) 2011-01-28 2011-01-28 Verfahren und Vorrichtung zur Prozessüberwachung

Publications (1)

Publication Number Publication Date
DE102011009624A1 true DE102011009624A1 (de) 2012-08-02

Family

ID=45688361

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011009624A Withdrawn DE102011009624A1 (de) 2011-01-28 2011-01-28 Verfahren und Vorrichtung zur Prozessüberwachung

Country Status (4)

Country Link
US (1) US9952236B2 (de)
EP (1) EP2667988B1 (de)
DE (1) DE102011009624A1 (de)
WO (1) WO2012100766A1 (de)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003760A1 (de) * 2013-03-06 2014-09-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils
DE102013208651A1 (de) * 2013-05-10 2014-11-13 Eos Gmbh Electro Optical Systems Verfahren zum automatischen Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
DE102013214320A1 (de) 2013-07-22 2015-01-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102013017792A1 (de) * 2013-10-28 2015-04-30 Cl Schutzrechtsverwaltungs Gmbh Verfahren zum Herstellen eines dreidimensionalen Bauteils
DE102014212246B3 (de) * 2014-06-26 2015-08-06 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
DE102014202020A1 (de) * 2014-02-05 2015-08-06 MTU Aero Engines AG Verfahren und Vorrichtung zur Bestimmung von Eigenspannungen eines Bauteils
DE102014201818A1 (de) * 2014-01-31 2015-08-06 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur verbesserten Steuerung des Energieeintrags in einem generativen Schichtbauverfahren
EP2823917A3 (de) * 2013-07-09 2015-09-16 MTU Aero Engines GmbH Regelung bei generativer Fertigung mittels Wirbelstromprüfung
EP2942130A1 (de) * 2014-05-09 2015-11-11 MTU Aero Engines GmbH Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs
WO2015169309A1 (de) * 2014-05-09 2015-11-12 MTU Aero Engines AG Thermographie zur qualitätssicherung in einem generativen fertigungsverfahren
DE102014216567A1 (de) * 2014-08-21 2016-02-25 MTU Aero Engines AG Verfahren zur Gütebestimmung eines additiv gefertigten Bauteils
DE102015204800B3 (de) * 2015-03-17 2016-12-01 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines additiven Herstellungsverfahrens hergestellten Bauteils
DE102015110264A1 (de) * 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
CN106312062A (zh) * 2016-08-02 2017-01-11 西安铂力特激光成形技术有限公司 一种检验铺粉质量的方法及增材制造设备
DE102015212837A1 (de) * 2015-07-09 2017-01-12 Siemens Aktiengesellschaft Verfahren zur Überwachung eines Prozesses zur pulverbettbasierten additiven Herstellung eines Bauteils und Anlage, die für ein solches Verfahren geeignet ist
DE102015224266A1 (de) * 2015-12-04 2017-06-08 Bayerische Motoren Werke Aktiengesellschaft Überwachungsvorrichtung, Fertigungssystem sowie Verfahren zur Überwachung einer Fertigungsstation
DE102015122005A1 (de) * 2015-12-16 2017-06-22 Airbus Operations Gmbh Vorrichtung und Verfahren zum schichtweisen Aufbau einer dreidimensionalen Struktur
DE102016201086A1 (de) * 2016-01-26 2017-07-27 Airbus Operations Gmbh Additives fertigungssystem und prüfverfahren für additiv gefertigte bauteile
DE102016201289A1 (de) * 2016-01-28 2017-08-03 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung und Vorrichtung
DE102016201290A1 (de) * 2016-01-28 2017-08-17 Siemens Aktiengesellschaft Verfahren zur Qualitätssicherung und Vorrichtung
DE102016104677A1 (de) * 2016-03-14 2017-09-14 Cl Schutzrechtsverwaltungs Gmbh Anlage zur additiven Herstellung dreidimensionaler Objekte
DE102016210542A1 (de) * 2016-06-14 2017-12-14 Testia Gmbh 3D-Druckverfahren und 3D-Druckvorrichtung
DE102016212081A1 (de) * 2016-07-04 2018-01-04 MTU Aero Engines AG Verfahren zum Ermitteln eines Datenmodells für ein Schichtbauverfahren und Schichtbauvorrichtung zum Herstellen wenigstens eines Bauteilbereichs eines Bauteils
DE102016212080A1 (de) * 2016-07-04 2018-01-04 MTU Aero Engines AG Schichtbauverfahren und Schichtbauvorrichtung zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016213609A1 (de) * 2016-07-25 2018-01-25 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Ermittlung der Bauteilqualität
DE102016121803A1 (de) * 2016-11-14 2018-05-17 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
US10070069B2 (en) 2015-05-19 2018-09-04 MTU Aero Engines AG Method and device for determining a contour, at least in regions, of at least one additively manufactured component layer
DE102018127407A1 (de) * 2018-11-02 2020-05-07 Industrieanlagen-Betriebsgesellschaft Mbh Verfahren zur Aufbereitung und zur Untersuchung eines Pulvers mittels instrumenteller Analytik und Verwendung
US10722985B2 (en) 2013-03-08 2020-07-28 Concept Laser Gmbh Method for assessing the structural quality of three-dimensional components
CN113195130A (zh) * 2018-11-07 2021-07-30 通快激光与系统工程有限公司 运行制造设备的方法及用于由粉末材料增材制造构件的制造设备
US11167475B2 (en) 2014-01-16 2021-11-09 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
DE102021209868B3 (de) 2021-09-07 2023-02-02 Volkswagen Aktiengesellschaft Verfahren zum Bestimmen einer Dichteverteilung von Druckmaterial innerhalb eines Grünkörpers und Vorrichtung zum Erzeugen eines Grünkörpers mittels eines generativen Fertigungsverfahrens
US11618217B2 (en) 2014-01-16 2023-04-04 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US11673314B2 (en) 2014-01-16 2023-06-13 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US11679560B2 (en) 2014-01-16 2023-06-20 Hewlett-Packard Development Company, L.P. Generating a three-dimensional object
DE102021133930B3 (de) 2021-12-20 2023-06-22 Universität Stuttgart, Körperschaft Des Öffentlichen Rechts Verfahren zur Bestimmung einer Temperaturverteilung in und/oder unmittelbar um ein Schmelzbad bei einem Laser- oder Elektronenstrahlschmelzen

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8992816B2 (en) 2008-01-03 2015-03-31 Arcam Ab Method and apparatus for producing three-dimensional objects
GB0816308D0 (en) 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
EP2454039B1 (de) 2009-07-15 2014-09-03 Arcam Ab Verfahren zur herstellung von dreidimensionalen objekten
WO2013098054A1 (en) 2011-12-28 2013-07-04 Arcam Ab Method and apparatus for detecting defects in freeform fabrication
CN104066536B (zh) 2011-12-28 2016-12-14 阿卡姆股份公司 用于制造多孔三维物品的方法
CN104853901B (zh) 2012-12-17 2018-06-05 阿卡姆股份公司 添加材料制造方法和设备
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
FR3010334B1 (fr) * 2013-09-09 2015-09-25 Michelin & Cie Dispositif de depot de lit de poudre sur une surface muni d'une sonde a reponse electromagnetique, et procede correspondant
EP2848392A1 (de) * 2013-09-11 2015-03-18 Siemens Aktiengesellschaft Verfahren zur Qualitätssicherung von durch generative Fertigungsprozesse hergestellten Bauteilen sowie Anlage
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
SE1450569A1 (sv) * 2014-05-14 2015-11-03 Katarina Gustafsson En metod och en apparat för geometrisk verifiering vid additiv tillverkning av tredimensionella objekt
DE102014214939A1 (de) 2014-07-30 2016-03-03 MTU Aero Engines AG Kamerabasierte Rauheitsbestimmung für generativ hergestellte Bauteile
US9310188B2 (en) 2014-08-20 2016-04-12 Arcam Ab Energy beam deflection speed verification
DE102015011013B4 (de) 2014-08-22 2023-05-04 Sigma Additive Solutions, Inc. Verfahren zur Überwachung von generativen Fertigungsprozessen
WO2016081651A1 (en) 2014-11-18 2016-05-26 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US20160167303A1 (en) 2014-12-15 2016-06-16 Arcam Ab Slicing method
EP3245045A4 (de) 2015-01-13 2018-10-31 Sigma Labs, Inc. Materialqualifizierungssystem und methodologie
US9406483B1 (en) 2015-01-21 2016-08-02 Arcam Ab Method and device for characterizing an electron beam using an X-ray detector with a patterned aperture resolver and patterned aperture modulator
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10207489B2 (en) 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US10583483B2 (en) 2015-10-15 2020-03-10 Arcam Ab Method and apparatus for producing a three-dimensional article
WO2017085470A1 (en) 2015-11-16 2017-05-26 Renishaw Plc Module for additive manufacturing apparatus and method
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
JP6194045B1 (ja) * 2016-03-09 2017-09-06 株式会社松浦機械製作所 三次元造形方法
JP6194044B1 (ja) * 2016-03-09 2017-09-06 株式会社松浦機械製作所 三次元造形方法
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
JP7065351B2 (ja) * 2016-09-02 2022-05-12 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
US10730785B2 (en) * 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
CN117926184A (zh) * 2017-01-30 2024-04-26 西门子能源国际公司 与覆盖层兼容的热障涂层系统
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
KR101997338B1 (ko) * 2017-07-31 2019-07-05 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 3차원 조형 방법
KR101997337B1 (ko) * 2017-07-31 2019-07-05 가부시키가이샤 마쓰우라 기카이 세이사쿠쇼 3차원 조형 방법
US10576684B2 (en) * 2017-08-02 2020-03-03 Matsuura Machinery Corporation Three-dimensional shaping method
US10773459B2 (en) 2017-08-02 2020-09-15 Matsuura Machinery Corporation Three-dimensional shaping method
CN109501271B (zh) 2017-09-14 2021-11-23 通用电气公司 增材制造工艺计划的优化方法及优化器,增材制造方法
US20190099809A1 (en) 2017-09-29 2019-04-04 Arcam Ab Method and apparatus for additive manufacturing
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US10620103B2 (en) * 2018-05-15 2020-04-14 Honeywell International Inc. Devices and methods for evaluating the spreadability of powders utilized in additive manufacturing
US11396046B2 (en) 2019-02-12 2022-07-26 General Electric Company Methods for additively manufacturing components with reduced build failures caused by temperature variations
WO2021015726A1 (en) 2019-07-19 2021-01-28 Hewlett-Packard Development Company, L.P. Adjustments to forming data for forming a build layer
US20210268740A1 (en) * 2020-02-28 2021-09-02 The Boeing Company Methods and Systems for Detection of Impurities in Additive Manufacturing Material
US11964430B2 (en) 2020-09-17 2024-04-23 Concept Laser Gmbh Controlling irradiation parameters of an additive manufacturing machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
DE10058748C1 (de) 2000-11-27 2002-07-25 Markus Dirscherl Verfahren zur Herstellung eines Bauteils sowie Vorrichtung zur Durchführung des Verfahrens
US20020104973A1 (en) * 2001-02-08 2002-08-08 Kerekes Thomas A. Surface scanning system for selective deposition modeling
DE102004017769A1 (de) * 2003-04-09 2004-12-09 3D Systems, Inc., Valencia Sintern unter Verwendung von Thermobild-Rückkopplung
EP1815936B1 (de) * 2006-02-01 2009-11-11 Rolls-Royce plc Verfahren zur Herstellung eines Werkstückes mit Überprüfung des Objektes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046426A (en) 1996-07-08 2000-04-04 Sandia Corporation Method and system for producing complex-shape objects
US6122564A (en) * 1998-06-30 2000-09-19 Koch; Justin Apparatus and methods for monitoring and controlling multi-layer laser cladding
US6580959B1 (en) * 1999-03-11 2003-06-17 Precision Optical Manufacturing (Pom) System and method for remote direct material deposition
US6630995B1 (en) * 1999-09-07 2003-10-07 Applied Materials, Inc. Method and apparatus for embedded substrate and system status monitoring
SE521124C2 (sv) * 2000-04-27 2003-09-30 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US6694284B1 (en) * 2000-09-20 2004-02-17 Kla-Tencor Technologies Corp. Methods and systems for determining at least four properties of a specimen
DE10310385B4 (de) * 2003-03-07 2006-09-21 Daimlerchrysler Ag Verfahren zur Herstellung von dreidimensionalen Körpern mittels pulverbasierter schichtaufbauender Verfahren
US7689003B2 (en) * 2006-03-20 2010-03-30 Siemens Energy, Inc. Combined 2D and 3D nondestructive examination
DE602007006307D1 (de) 2006-06-20 2010-06-17 Univ Leuven Kath Verfahren und vorrichtung zur in-situ-überwachung und rückkopplungssteuerung selektiver laserpulverbearbeitung
DE102007056984A1 (de) * 2007-11-27 2009-05-28 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts mittels Lasersintern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
DE10058748C1 (de) 2000-11-27 2002-07-25 Markus Dirscherl Verfahren zur Herstellung eines Bauteils sowie Vorrichtung zur Durchführung des Verfahrens
US20020104973A1 (en) * 2001-02-08 2002-08-08 Kerekes Thomas A. Surface scanning system for selective deposition modeling
DE102004017769A1 (de) * 2003-04-09 2004-12-09 3D Systems, Inc., Valencia Sintern unter Verwendung von Thermobild-Rückkopplung
EP1815936B1 (de) * 2006-02-01 2009-11-11 Rolls-Royce plc Verfahren zur Herstellung eines Werkstückes mit Überprüfung des Objektes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Generative Verfahren Einsatz und Forschung" vom 29. April 2009 zum Kooperationsforum "Generative Fertigungstechnologien unter der Folienüberschrift "Schritte zur Qualifizierung des SLM-Prozesses"
Carl Hanser Verlag, München, Ausgabe 1-2010 wird in dem Artikel "Fertig zum Abheben"

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003760A1 (de) * 2013-03-06 2014-09-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines generativen Lasersinter- und/oder Laserschmelzverfahrens hergestellten Bauteils
EP2964449B1 (de) 2013-03-06 2018-05-30 MTU Aero Engines GmbH Verfahren und vorrichtung zur qualitätsbeurteilung eines mittels eines generativen lasersinter- und/oder laserschmelzverfahrens hergestellten bauteils
US10520427B2 (en) 2013-03-06 2019-12-31 MTU Aero Engines AG Method and device for evaluating the quality of a component produced by means of an additive laser sintering and/or laser melting method
US10900890B2 (en) 2013-03-06 2021-01-26 MTU Aero Engines AG Method and device for evaluating the quality of a component produced by means of an additive laser sintering and/or laser melting method
US11931955B2 (en) 2013-03-06 2024-03-19 MTU Aero Engines AG Method for evaluating the quality of a component produced by an additive sintering and/or melting method
US10722985B2 (en) 2013-03-08 2020-07-28 Concept Laser Gmbh Method for assessing the structural quality of three-dimensional components
DE102013208651A1 (de) * 2013-05-10 2014-11-13 Eos Gmbh Electro Optical Systems Verfahren zum automatischen Kalibrieren einer Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
US10336008B2 (en) 2013-05-10 2019-07-02 Eos Gmbh Electro Optical Systems Method for automatic calibration of a device for generative production of a three-dimensional object
US10427244B2 (en) 2013-07-09 2019-10-01 MTU Aero Engines AG Control in generative production
EP2823917A3 (de) * 2013-07-09 2015-09-16 MTU Aero Engines GmbH Regelung bei generativer Fertigung mittels Wirbelstromprüfung
DE102013214320A1 (de) 2013-07-22 2015-01-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts
WO2015010855A1 (de) * 2013-07-22 2015-01-29 Eos Gmbh Electro Optical Systems Vorrichtung und verfahren zum schichtweisen herstellen eines dreidimensionalen objekts
EP3062991B1 (de) 2013-10-28 2018-12-05 CL Schutzrechtsverwaltungs GmbH Verfahren zum herstellen eines dreidimensionalen bauteils
US10807192B2 (en) 2013-10-28 2020-10-20 Concept Laser Gmbh Method for producing a three-dimensional component
DE102013017792A1 (de) * 2013-10-28 2015-04-30 Cl Schutzrechtsverwaltungs Gmbh Verfahren zum Herstellen eines dreidimensionalen Bauteils
US11167475B2 (en) 2014-01-16 2021-11-09 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US11679560B2 (en) 2014-01-16 2023-06-20 Hewlett-Packard Development Company, L.P. Generating a three-dimensional object
US11673314B2 (en) 2014-01-16 2023-06-13 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
US11618217B2 (en) 2014-01-16 2023-04-04 Hewlett-Packard Development Company, L.P. Generating three-dimensional objects
DE102014201818A1 (de) * 2014-01-31 2015-08-06 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur verbesserten Steuerung des Energieeintrags in einem generativen Schichtbauverfahren
US10525689B2 (en) 2014-01-31 2020-01-07 Eos Gmbh Electro Optical Systems Method and device for the improved control of the energy input in a generative layer construction method
DE102014202020B4 (de) * 2014-02-05 2016-06-09 MTU Aero Engines AG Verfahren und Vorrichtung zur Bestimmung von Eigenspannungen eines Bauteils
US9696142B2 (en) 2014-02-05 2017-07-04 MTU Aero Engines AG Method and apparatus for determining residual stresses of a component
DE102014202020A1 (de) * 2014-02-05 2015-08-06 MTU Aero Engines AG Verfahren und Vorrichtung zur Bestimmung von Eigenspannungen eines Bauteils
DE102014208768B4 (de) * 2014-05-09 2019-07-11 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
DE102014208768A1 (de) * 2014-05-09 2015-12-17 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
WO2015169309A1 (de) * 2014-05-09 2015-11-12 MTU Aero Engines AG Thermographie zur qualitätssicherung in einem generativen fertigungsverfahren
EP2942130A1 (de) * 2014-05-09 2015-11-11 MTU Aero Engines GmbH Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs
DE102014212246B3 (de) * 2014-06-26 2015-08-06 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätssicherung
DE102014216567A1 (de) * 2014-08-21 2016-02-25 MTU Aero Engines AG Verfahren zur Gütebestimmung eines additiv gefertigten Bauteils
US9964496B2 (en) 2014-08-21 2018-05-08 MTU Aero Engines AG Method for the quality assessment of a component produced by means of an additive manufacturing method
DE102015204800B3 (de) * 2015-03-17 2016-12-01 MTU Aero Engines AG Verfahren und Vorrichtung zur Qualitätsbeurteilung eines mittels eines additiven Herstellungsverfahrens hergestellten Bauteils
US10043257B2 (en) 2015-03-17 2018-08-07 MTU Aero Engines AG Method and device for the quality evaluation of a component produced by means of an additive manufacturing method
US10070069B2 (en) 2015-05-19 2018-09-04 MTU Aero Engines AG Method and device for determining a contour, at least in regions, of at least one additively manufactured component layer
DE102015110264A1 (de) * 2015-06-25 2016-12-29 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung wenigstens eines dreidimensionalen Objekts
US11911957B2 (en) 2015-06-25 2024-02-27 Concept Laser Gmbh Methods for damage detection during additive manufacturing of at least one three-dimensional object using detected layer information and smoothness
EP3441163B1 (de) * 2015-06-25 2022-01-05 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur generativen herstellung wenigstens eines dreidimensionalen objekts
EP3313595B1 (de) * 2015-06-25 2022-01-05 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur generativen herstellung wenigstens eines dreidimensionalen objekts
DE102015212837A1 (de) * 2015-07-09 2017-01-12 Siemens Aktiengesellschaft Verfahren zur Überwachung eines Prozesses zur pulverbettbasierten additiven Herstellung eines Bauteils und Anlage, die für ein solches Verfahren geeignet ist
DE102015224266A1 (de) * 2015-12-04 2017-06-08 Bayerische Motoren Werke Aktiengesellschaft Überwachungsvorrichtung, Fertigungssystem sowie Verfahren zur Überwachung einer Fertigungsstation
DE102015122005A1 (de) * 2015-12-16 2017-06-22 Airbus Operations Gmbh Vorrichtung und Verfahren zum schichtweisen Aufbau einer dreidimensionalen Struktur
DE102016201086A1 (de) * 2016-01-26 2017-07-27 Airbus Operations Gmbh Additives fertigungssystem und prüfverfahren für additiv gefertigte bauteile
DE102016201289A1 (de) * 2016-01-28 2017-08-03 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung und Vorrichtung
DE102016201290A1 (de) * 2016-01-28 2017-08-17 Siemens Aktiengesellschaft Verfahren zur Qualitätssicherung und Vorrichtung
US11014294B2 (en) 2016-03-14 2021-05-25 Concept Laser Gmbh System for additively producing three-dimensional objects
DE102016104677A1 (de) * 2016-03-14 2017-09-14 Cl Schutzrechtsverwaltungs Gmbh Anlage zur additiven Herstellung dreidimensionaler Objekte
DE102016210542A1 (de) * 2016-06-14 2017-12-14 Testia Gmbh 3D-Druckverfahren und 3D-Druckvorrichtung
EP3257608A3 (de) * 2016-06-14 2017-12-27 Testia GmbH 3d-druckverfahren und 3d-druckvorrichtung
DE102016212080A1 (de) * 2016-07-04 2018-01-04 MTU Aero Engines AG Schichtbauverfahren und Schichtbauvorrichtung zum additiven Herstellen zumindest eines Bauteilbereichs eines Bauteils
DE102016212081A1 (de) * 2016-07-04 2018-01-04 MTU Aero Engines AG Verfahren zum Ermitteln eines Datenmodells für ein Schichtbauverfahren und Schichtbauvorrichtung zum Herstellen wenigstens eines Bauteilbereichs eines Bauteils
US11141923B2 (en) 2016-07-25 2021-10-12 Eos Gmbh Electro Optical Systems Method and device of detecting part quality of a three dimensional manufacturing object
EP3488305B1 (de) * 2016-07-25 2023-08-30 EOS GmbH Electro Optical Systems Verfahren und vorrichtung zur ermittlung der bauteilqualität
DE102016213609A1 (de) * 2016-07-25 2018-01-25 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Ermittlung der Bauteilqualität
CN106312062B (zh) * 2016-08-02 2018-09-25 西安铂力特增材技术股份有限公司 一种检验铺粉质量的方法及增材制造设备
US10718721B2 (en) 2016-08-02 2020-07-21 Xi'an Bright Laser Technologies Co., Ltd. Powder spreading quality test method and additive manufacturing device
CN106312062A (zh) * 2016-08-02 2017-01-11 西安铂力特激光成形技术有限公司 一种检验铺粉质量的方法及增材制造设备
US10942062B2 (en) 2016-11-14 2021-03-09 Cl Schutzrechtsverwaltungs Gmbh Apparatus for additively manufacturing of three-dimensional objects
DE102016121803A1 (de) * 2016-11-14 2018-05-17 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
DE102018127407A1 (de) * 2018-11-02 2020-05-07 Industrieanlagen-Betriebsgesellschaft Mbh Verfahren zur Aufbereitung und zur Untersuchung eines Pulvers mittels instrumenteller Analytik und Verwendung
CN113195130A (zh) * 2018-11-07 2021-07-30 通快激光与系统工程有限公司 运行制造设备的方法及用于由粉末材料增材制造构件的制造设备
DE102021209868B3 (de) 2021-09-07 2023-02-02 Volkswagen Aktiengesellschaft Verfahren zum Bestimmen einer Dichteverteilung von Druckmaterial innerhalb eines Grünkörpers und Vorrichtung zum Erzeugen eines Grünkörpers mittels eines generativen Fertigungsverfahrens
DE102021133930B3 (de) 2021-12-20 2023-06-22 Universität Stuttgart, Körperschaft Des Öffentlichen Rechts Verfahren zur Bestimmung einer Temperaturverteilung in und/oder unmittelbar um ein Schmelzbad bei einem Laser- oder Elektronenstrahlschmelzen

Also Published As

Publication number Publication date
WO2012100766A1 (de) 2012-08-02
US20130343947A1 (en) 2013-12-26
US9952236B2 (en) 2018-04-24
EP2667988B1 (de) 2021-04-07
EP2667988A1 (de) 2013-12-04

Similar Documents

Publication Publication Date Title
EP2667988B1 (de) Verfahren und vorrichtung zur prozessüberwachung
DE102014208768B4 (de) Verfahren und Vorrichtung zur Qualitätssicherung
EP2964449B1 (de) Verfahren und vorrichtung zur qualitätsbeurteilung eines mittels eines generativen lasersinter- und/oder laserschmelzverfahrens hergestellten bauteils
EP3434450B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen bauteils
DE102014212246B3 (de) Verfahren und Vorrichtung zur Qualitätssicherung
EP3441163B1 (de) Vorrichtung zur generativen herstellung wenigstens eines dreidimensionalen objekts
EP2942130B1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs
DE102004016669B3 (de) Verfahren zur Prüfung einer Laserschweissnaht
EP3095591B1 (de) Verfahren und vorrichtung zum zumindest bereichsweisen ermitteln einer kontur wenigstens einer generativ hergestellten bauteilschicht
EP3463811B1 (de) Verfahren und vorrichtung zur generativen fertigung von bauteilen
WO2016113253A1 (de) Vorrichtung zur generativen herstellung dreidimensionaler bauteile
DE102015207254A1 (de) Vorrichtung und Verfahren zur generativen Herstellung eines dreidimensionalen Objektes
WO2012019577A2 (de) Verfahren zum herstellen eines dreidimensionalen bauteils
DE102011009345B3 (de) Verfahren und Vorrichtung zur Erfassung einer Partikeldichteverteilung im Strahl einer Düse
EP2666612A1 (de) Verfahren und Vorrichtung zum Abbilden wenigstens eines dreidimensionalen Bauteils
DE102016201290A1 (de) Verfahren zur Qualitätssicherung und Vorrichtung
EP3174655A1 (de) Kamerabasierte rauheitsbestimmung für generativ hergestellte bauteile
DE102018203444A1 (de) Verfahren und Vorrichtung zum selbstoptimierenden, additiven Herstellen von Bauteilkomponenten
DE102018200566B4 (de) System und Verfahren zur Überwachung der Fertigungsgenauigkeit bei der additiven Herstellung dreidimensionaler Bauteile
DE102016209065B4 (de) Verfahren und Vorrichtung zur Prozessüberwachung bei der generativen Fertigung von Bauteilen
DE102016200324A1 (de) Verfahren zum Ermitteln einer Konzentration wenigstens eines Werkstoffs in einem Pulver für ein additives Herstellverfahren
DE10103255A1 (de) Verfahren zur automatischen Beurteilung von Laserbearbeitungsprozessen
DE102019006758A1 (de) Verfahren zum Optimieren eines Schmelzschweißverfahrens zur Herstellung einer Schweißnaht sowie Schmelzschweißanlage
EP3478442B1 (de) Vorrichtung zur prozessüberwachung bei einem auftragschweiss-verfahren
DE102020212858A1 (de) System zur Überwachung eines Schichtbauverfahrens

Legal Events

Date Code Title Description
R016 Response to examination communication
R081 Change of applicant/patentee

Owner name: MTU AERO ENGINES AG, DE

Free format text: FORMER OWNER: MTU AERO ENGINES GMBH, 80995 MUENCHEN, DE

Effective date: 20130806

R016 Response to examination communication
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: B22F0003105000

Ipc: B22F0010800000

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee