DE102010035935A1 - R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay - Google Patents

R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay Download PDF

Info

Publication number
DE102010035935A1
DE102010035935A1 DE201010035935 DE102010035935A DE102010035935A1 DE 102010035935 A1 DE102010035935 A1 DE 102010035935A1 DE 201010035935 DE201010035935 DE 201010035935 DE 102010035935 A DE102010035935 A DE 102010035935A DE 102010035935 A1 DE102010035935 A1 DE 102010035935A1
Authority
DE
Germany
Prior art keywords
spark gap
delay
voltage
fault
utilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE201010035935
Other languages
German (de)
Inventor
Anmelder Gleich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BORGEEST, KAI, PROF. DR. ING., DE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE201010035935 priority Critical patent/DE102010035935A1/en
Publication of DE102010035935A1 publication Critical patent/DE102010035935A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T2/00Spark gaps comprising auxiliary triggering means
    • H01T2/02Spark gaps comprising auxiliary triggering means comprising a trigger electrode or an auxiliary spark gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T4/00Overvoltage arresters using spark gaps
    • H01T4/10Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel
    • H01T4/12Overvoltage arresters using spark gaps having a single gap or a plurality of gaps in parallel hermetically sealed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

The device has a spark gap (4) utilized to prepare another spark gap (5) for fast ignition during occurrence of fault, where the spark gaps are accommodated in a same gas discharge space. A delay wiring (6) of inductor outside of the gas discharge space supplies over-voltage of the latter spark gap opposite to the former spark gap with a delay, where minimum length of the wiring amounts to 40 m. The spark gaps are provided for securing two symmetrical conductors against earth and for sequential ignition in connection with the wiring.

Description

Es ist bekannt, dass schädliche Überspannungen 7 auf elektrischen Leitungen wie in 1 dargestellt durch Schutzelemente 10 zwischen der zu schützenden Leitung 8 und der zugehörigen Rückleitung 9 (z. B. der Masseleitung) begrenzt werden können. Bei Überspannungen führen die Schutzelemente 10 einen Strom an der zu schützenden Schaltung 11 vorbei. Durch einen Spannungsabfall an den Leitungswiderständen oder an zusätzlich eingefügten Widerständen 12 liegt an der zu schützenden Schaltung eine niedrigere (bei korrekter Auslegung unschädliche) Spannung an, als sie ohne schützende Beschaltung anläge. Die heute verwendeten Schutzelemente 10 sind Funkenstrecken, typischerweise mit einer Edelgasfüllung zwischen den Elektroden, Varistoren oder Silizium-Halbleiterbauelemente (Z-Dioden, Thyristoren).It is known that harmful overvoltages 7 on electrical wires like in 1 represented by protective elements 10 between the line to be protected 8th and the associated return line 9 (eg the ground line) can be limited. Overvoltages cause the protective elements 10 a current at the circuit to be protected 11 past. Due to a voltage drop across the line resistors or to additionally inserted resistors 12 is at the circuit to be protected to a lower (harmless if correctly designed) voltage, as it aläge without protective circuitry. The protective elements used today 10 are spark gaps, typically with an inert gas filling between the electrodes, varistors or silicon semiconductor devices (Z-diodes, thyristors).

Bei elektrischen Leitungen, die der Übermittlung von Signalen dienen, führt der Schutz vor Überspannungen zu einem Zielkonflikt zwischen Kriterien, welche die Schutzwirkung beschreiben, einerseits und der nicht beabsichtigten Beeinflussung des zu übertragenden Signals im ungefährdeten Betrieb andererseits.In the case of electrical lines which serve to transmit signals, the protection against overvoltages leads to a conflict of objectives between criteria which describe the protective effect, on the one hand, and the unintentional influence on the signal to be transmitted during safe operation, on the other hand.

Das zu übertragende Signal kann im überpannungsfreien Normalbetrieb unbeabsichtigt gedämpft werden durch den Wirkleitwert oder Blindleitwert des Schutzelements 10, der zu einem Spannungsabfall an Leitungsimpedanzen oder den Widerständen 12 führt und mit diesen bei frequenzunabhängigen Leitwerten als konstanter Spannungsteiler wirkt und folglich das Nutzsignal dämpft, bei frequenzabhängigen Leitwerten als frequenzabhängiger Spannungsteiler (Tiefpass).The signal to be transmitted can be attenuated unintentionally in overvoltage-free normal operation by the conductance or susceptibility of the protection element 10 which leads to a voltage drop across line impedances or resistors 12 leads and acts with them at frequency-independent conductances as a constant voltage divider and thus attenuates the useful signal at frequency-dependent conductances as a frequency-dependent voltage divider (low-pass).

Wenn die Leitwerte des Schutzelements nicht konstant sind, sondern von der anliegenden Spannung abhängen, der Zusammenhang zwischen dem Strom durch das Schutzelement und die Spannung über dem Schutzelement also nichtlinear ist, kann das Schutzelement in Verbindung mit der umgebenden Beschaltung unbeabsichtigt Oberwellen oder Intermodulationsprodukte der im zu übertragenden Signal enthaltenen Frequenzen verursachen.If the conductivities of the protection element are not constant, but depend on the applied voltage, that is, the relationship between the current through the protection element and the voltage across the protection element is non-linear, the protection element in conjunction with the surrounding circuitry may inadvertently create harmonics or intermodulation products cause transmitted signals.

Im ungestörten Betrieb sind Funkenstrecken frei von Nichtlinearitäten. Der Leitwert wird durch die Kapazität zwischen den Elektroden bestimmt. Je kleiner diese Kapazität ist, umso größer ist der Frequenzbereich, im welchem der kapazitive Blindstrom für die technische Anwendung nicht relevant ist. Diese Eigenschaften prädestinieren Funkenstrecken als Schutzelemente für signalübertragende elektrische Leitungen.In undisturbed operation, spark gaps are free of nonlinearities. Conductance is determined by the capacitance between the electrodes. The smaller this capacitance is, the larger the frequency range in which the capacitive reactive current is not relevant for the technical application. These properties predestine spark gaps as protective elements for signal-transmitting electrical lines.

Nachteilig ist jedoch erstens, dass Funkenstrecken nur für Ansprechspannungen ab 90 V handelsüblich sind.The disadvantage, however, first, that spark gaps are commercially available only for threshold voltages from 90 V.

Nachteilig ist zweitens, dass die tatsächliche Ansprechspannung bei impulsförmigen Überspannungen wesentlich über den angegebenen Nennwerten der Ansprechspannung liegt, so kann eine Funkenstrecke mit einer Nennansprechspannung von 90 V bei realistischen impulsförmigen Überspannungen erst bei mehreren 100 V ansprechen [1].Secondly, it is disadvantageous that the actual response voltage for pulse-like overvoltages is significantly above the specified nominal values of the response voltage, so a spark gap with a nominal response voltage of 90 V can only respond to several 100 V at realistic impulse-type overvoltages [1].

Eine Lösung des zweiten Problems liegt wie in 0 oder in 2 dargestellt in der Verwendung zweier in einem Gehäuse 3 eng benachbarter Funkenstrecken, wobei die erste Funkenstrecke 4 eine Vorionisation erzeugt, die zu einer schnelleren Zündung der zweiten Funkenstrecke 5 führt. Das verzögernde Übertragungsglied 6 muss eine an den Eingangsklemmen 1 anstehende Störspannung verzögern, so dass diese nach erfolgter Vorionisation auf die zweite Funkenstrecke trifft. Derartige Funkenstrecken sind zur Absicherung zweier symmetrischer Leitungen gegen Masse Stand der Technik, neu ist die sequenzielle Zündung in Verbindung mit einem Verzögerungsglied. Der Anschluss 2 ist in dieser Schaltung der geschützte Ausgang.A solution to the second problem is as in 0 or in 2 shown in the use of two in a housing 3 closely adjacent spark gaps, with the first spark gap 4 generates a preionization, which leads to a faster ignition of the second spark gap 5 leads. The delaying transmission link 6 must be one at the input terminals 1 decelerating the perturbing voltage so that it hits the second spark gap after preionization. Such spark gaps are for securing two symmetrical lines to ground state of the art, new is the sequential ignition in conjunction with a delay element. The connection 2 is the protected output in this circuit.

Exemplarisch kann das System mit einer handelsüblichen symmetrischen Funkenstrecke nach ITU K12 [2] aufgebaut werden. Das Verzögerungsglied muss das Signal mindestens um den internen Verzug zwischen beiden Teilfunkenstrecken verzögern, der nach [2] bis zu 200 ns betragen kann.As an example, the system can be constructed with a commercially available symmetrical spark gap according to ITU K12 [2]. The delay element must delay the signal at least by the internal delay between the two partial spark gaps, which can be up to 200 ns after [2].

Der Überspannungsableiter kann dämpfungsarm realisiert werden mit einer Leitung als Verzögerungsglied, deren Mindestlänge 40 m beträgt.The surge arrester can be realized with low attenuation with a line as a delay element whose minimum length is 40 m.

Eine kompaktere, in Geräte integrierbare, aber stärker dämpfende und als Tiefpass wirkende Anordnung ist mit einer Induktivität anstelle der Verzögerungsleitung realisierbar.A more compact, device-integrated, but more strongly attenuating and low-pass arrangement can be realized with an inductance instead of the delay line.

Die Tiefpasswirkung einer Induktivität als Verzögerungsglied kann durch eine passive Allpass-Schaltung gemäß 2 vermieden werden.The low-pass effect of an inductance as a delay element can be achieved by a passive all-pass circuit according to FIG 2 be avoided.

Zitierte NichtpatentliteraturQuoted non-patent literature

  • [1] H. Singer, J. L. ter Haseborg, F. Weitze, H. Garbe: ”Response of Arresters and Spark Gaps at Different Impulse Steepnesses”, 5th International Symposium an High Voltage Engineering, Braunschweig, August 1987 [1] H. Singer, JL ter Haseborg, F. Weitze, H. Garbe: "Response of Arresters and Spark Gaps at Different Impulse Steepnesses", 5th International Symposium on High Voltage Engineering, Braunschweig, August 1987
  • [2] International Telecommunication Union (ITU), Telecommunication Standardization Sector of ITU, Recommendation K12 „Characteristics of gas discharge tubes for the protection of telecommunications installations” (02/2006), S. 6 [2] International Telecommunication Union (ITU), Telecommunication Standardization Sector of ITU, Recommendation K12 "Characteristics of gas discharge tubes for the protection of telecommunications installations" (02/2006), p. 6

Claims (1)

Überspannungsschutzeinrichtung, dadurch gekennzeichnet, dass eine Funkenstrecke 4 benutzt wird, um eine im gleichen Gasentladungsraum untergebrachte zweite Funkenstrecke 5 bei Eintreffen einer Störung für eine schnellere Zündung vorbereitet zu haben, wobei eine Verzögerungsbeschaltung 6 außerhalb des Entladungsraumes die Überspannung der zweiten Funkenstrecke gegenüber der ersten Funkenstrecke verzögert zuführt.Overvoltage protection device, characterized in that a spark gap 4 is used to a housed in the same gas discharge space second spark gap 5 have prepared for a faster ignition when a fault occurs, with a delay circuit 6 outside the discharge space, the overvoltage of the second spark gap with respect to the first spark gap delayed supplies.
DE201010035935 2010-08-31 2010-08-31 R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay Ceased DE102010035935A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE201010035935 DE102010035935A1 (en) 2010-08-31 2010-08-31 R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010035935 DE102010035935A1 (en) 2010-08-31 2010-08-31 R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay

Publications (1)

Publication Number Publication Date
DE102010035935A1 true DE102010035935A1 (en) 2012-03-01

Family

ID=45566010

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201010035935 Ceased DE102010035935A1 (en) 2010-08-31 2010-08-31 R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay

Country Status (1)

Country Link
DE (1) DE102010035935A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114383A1 (en) * 2017-06-28 2019-01-03 Phoenix Contact Gmbh & Co. Kg Surge arresters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546402A (en) * 1983-08-29 1985-10-08 Joslyn Mfg. And Supply Co. Hermetically sealed gas tube surge arrester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546402A (en) * 1983-08-29 1985-10-08 Joslyn Mfg. And Supply Co. Hermetically sealed gas tube surge arrester

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. Singer, J. L. ter Haseborg, F. Weitze, H. Garbe: "Response of Arresters and Spark Gaps at Different Impulse Steepnesses", 5th International Symposium an High Voltage Engineering, Braunschweig, August 1987
International Telecommunication Union (ITU), Telecommunication Standardization Sector of ITU, Recommendation K12 "Characteristics of gas discharge tubes for the protection of telecommunications installations" (02/2006), S. 6

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114383A1 (en) * 2017-06-28 2019-01-03 Phoenix Contact Gmbh & Co. Kg Surge arresters
DE102017114383B4 (en) 2017-06-28 2019-04-18 Phoenix Contact Gmbh & Co. Kg Surge

Similar Documents

Publication Publication Date Title
RU2071161C1 (en) Transients protective gear for electric circuits of telecommunication equipment
KR101171228B1 (en) Protection devices for power line against high altitude electromagnetic pulse
EP3304671B1 (en) Overvoltage protection circuit
DE102010012684A1 (en) Surge protection device
MXPA05003457A (en) Overvoltage protection circuit.
DE102010035935A1 (en) R-voltage protection device, has spark gap utilized to prepare another spark gap for fast ignition during occurrence of fault, where delay wiring supplies over-voltage of latter spark gap opposite to former spark gap with delay
DE102017218584B4 (en) Gas-filled surge arrester and surge protection circuit
DE3111096A1 (en) Mains power supply transient protection arrangement for electrical apparatuses
DE102015200186A1 (en) Overvoltage protection device and lamp with such a surge protection device
EP0193989B1 (en) Overvoltage protection circuit for a broadband line system
RU2337449C1 (en) Device for equipment overvoltage protection
KR200435646Y1 (en) Surge protector
KR101253226B1 (en) Low capacitance type surge protect for communication and tm/tc communication line
KR101065795B1 (en) Surge Protective Device using Thyristor
DE202015102834U1 (en) Overvoltage protection circuit
CN109217275B (en) High-voltage-resistant lightning-protection surge suppression circuit, device and power adapter
Durham et al. TVSS designs
DE102016203109A1 (en) Surge arrester with means for measuring transient overvoltages
Gurevich Cheap Varistors or Expensive TVS-diodes?
US20130301179A1 (en) Discrete Silicon Avalanche Diode Array
CN104953577A (en) Anti-surge power supply protection device for electronic equipment
DE102019135206A1 (en) Surge protection device as well as system
Řezníček et al. Reaction of surge protection devices on overvoltage signals with different steepness
JP7361939B2 (en) Overvoltage protection for test taps of HV bushings
DE4141074C1 (en)

Legal Events

Date Code Title Description
R016 Response to examination communication
R084 Declaration of willingness to licence
R081 Change of applicant/patentee

Owner name: BORGEEST, KAI, PROF. DR. ING., DE

Free format text: FORMER OWNER: BORGEEST, KAI, PROF. DR. ING. , 63743 ASCHAFFENBURG, DE

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R006 Appeal filed
R008 Case pending at federal patent court
R003 Refusal decision now final
R011 All appeals rejected, refused or otherwise settled