DE102010011170A1 - Nozzle head for a lance - Google Patents

Nozzle head for a lance Download PDF

Info

Publication number
DE102010011170A1
DE102010011170A1 DE201010011170 DE102010011170A DE102010011170A1 DE 102010011170 A1 DE102010011170 A1 DE 102010011170A1 DE 201010011170 DE201010011170 DE 201010011170 DE 102010011170 A DE102010011170 A DE 102010011170A DE 102010011170 A1 DE102010011170 A1 DE 102010011170A1
Authority
DE
Germany
Prior art keywords
nozzle head
carbon nanotubes
blowing lance
lance
dispersion mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE201010011170
Other languages
German (de)
Inventor
Thomas Söntgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Priority to DE201010011170 priority Critical patent/DE102010011170A1/en
Priority to EP20110157406 priority patent/EP2369019B1/en
Publication of DE102010011170A1 publication Critical patent/DE102010011170A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/22Arrangements of air or gas supply devices
    • F27B3/225Oxygen blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier

Abstract

Um eine Blaslanze mit einem Düsenkopf auszubilden, bei der der Kantenverschleiß an den Düsenaustrittsöffnungen erheblich reduziert und die Standzeit des Blaslanzendüsenkopfes verlängert ist, wird erfindungsgemäß vorgeschlagen, den Düsenkopf der Blaslanze pulvermetallurgisch aus einem Dispersionsgemisch mit einem hochtemperaturleitfähigen Metall wie beispielsweise Kupfer oder Aluminium als Basis und einem die thermische und und/oder die mechanische Eigenschaft des Basismetalls verbessernden Zusatzmaterial wie beispielsweise Kohlenstoff-Nanoröhren (Carbon Nano Tubes = CNT) oder Titandiborid (TiB2) herzustellen.In order to form a blowing lance with a nozzle head, in which the edge wear at the nozzle outlet openings is considerably reduced and the service life of the blowing lance nozzle head is extended, it is proposed according to the invention to powder metallurgically form the nozzle head of the blowing lance from a dispersion mixture with a high-temperature conductive metal such as copper or aluminum as the base and one the thermal and and / or the mechanical property of the base metal improving additional material such as carbon nanotubes (Carbon Nano Tubes = CNT) or titanium diboride (TiB2).

Description

Die Erfindung betrifft eine Blaslanze mit einem Düsenkopf aus einem hochtemperaturleitfähigen Material zum Aufblasen von Gasen, insbesondere von Sauerstoff auf Metallschmelzen.The invention relates to a lance with a nozzle head made of a high-temperature conductive material for inflating gases, in particular oxygen on molten metal.

Derartige Blaslanzen werden zum Beispiel in Stahlwerken eingesetzt, die nach dem Sauerstoff-Aufblasverfahren, vorzugsweise nach dem LD-Verfahren, arbeiten. Bei diesem Stahlherstellungsverfahren werden im Roheisen enthaltene Begleitelemente mit Hilfe von Sauerstoff aufoxidiert und als Schlacke entfernt. Der Sauerstoff wird dazu mit einer hohen Geschwindigkeit auf das in einem Konverter befindliche flüssige Roheisen aufgeblasen. Durch die aus dem Lanzenkopf austretenden Sauerstoffstrahlen wird das Roheisenbad intensiv durchmischt und unerwünschte Bestandteile wie Kohlenstoff, Phosphor, Schwefel, Silizium usw. werden verbrannt.Such lances are used, for example, in steel mills, which operate according to the oxygen inflation method, preferably according to the LD method. In this steelmaking process, accompanying elements contained in pig iron are oxidized by means of oxygen and removed as slag. The oxygen is then inflated at a high speed onto the liquid pig iron in a converter. Due to the oxygen jets emerging from the lance head, the pig iron bath is intensively mixed and unwanted components such as carbon, phosphorus, sulfur, silicon, etc. are burnt.

Der Blaslanzenkopf wird innenseitig Sauerstoffdrücken bis 15 bar und den genannten hohen Strömungsgeschwindigkeiten ausgesetzt. Das erfordert in diesem Bereich absolut glatte und geometrisch absolut richtige Konturen. Außenseitig wird der Blaslanzenkopf durch Strahlungshitze bis 2000°C und durch aufgeschäumte Schlacke mit Eisengehalten bis zu 20%, beaufschlagt. Diesen Anforderungen ist der Blaslanzenkopf während der Aufblasdauer bis zu 20 Minuten ausgesetzt. Daher muss der Lanzenkopf durch beispielsweise Wasser gekühlt werden.The lance head is exposed inside oxygen pressures up to 15 bar and said high flow velocities. This requires absolutely smooth and geometrically absolutely correct contours in this area. On the outside, the lance head is exposed to radiant heat up to 2000 ° C and foamed slag containing iron up to 20%. These requirements, the lance head is exposed during the Aufblasdauer up to 20 minutes. Therefore, the lance head must be cooled by, for example, water.

Damit ein Blaslanzenkopf im Hinblick auf die Metallurgie des Stahlherstellungsprozesses in der gewünschten Weise arbeiten kann, muss die erforderliche Sauerstoffmenge möglichst optimal über die Düsenaustrittsöffnungen mit der Metallschmelze, zum Beispiel dem Roheisenbad, in Berührung gebracht werden. Der aufgrund der vorliegenden Betriebsdaten konzipierte Blaslanzenkopf arbeitet naturgemäß nur so lange optimal, wie seine mit hoher Präzision gefertigten Düsen ihre ursprüngliche, nach den Gesetzen der Strömungslehre bestimmte Form behalten. Dies gilt insbesondere für die Kanten der Düsenaustrittsöffnungen. Die Geometrie der Düsen, insbesondere Lavaldüsen, ist so ausgelegt, dass der Gasstrahl unter strömungstechnisch einwandfreien Bedingungen austritt. Kommt es während des Betriebes zum sogenannten Kantenverschleiß, ist ein optimales Arbeiten der Düsen nicht mehr gewährleistet. Unter Kantenverschleiß ist eine mehr oder weniger ausgeprägte Abrundung oder Ausfransung der ursprünglich scharfkantigen Düsenaustrittsöffnungen zu verstehen. Die Folgen eines solchen Kantenverschleißes sind in erster Linie zu hohe Verschlackung des Eisens und damit unzureichendes Stahlausbringen und als dessen Folge zu hoher Verschleiß an sehr teurem Feuerfestmaterial, also Verminderung der Konverterhaltbarkeit.In order for a lance head to work in the desired manner with regard to the metallurgy of the steelmaking process, the required amount of oxygen must be brought into contact as optimally as possible with the molten metal, for example the pig iron bath, via the nozzle outlet openings. Naturally, the lance head designed on the basis of the present operating data works optimally only as long as its nozzles, which have been manufactured with high precision, retain their original shape determined by the laws of fluid mechanics. This applies in particular to the edges of the nozzle outlet openings. The geometry of the nozzles, in particular Laval nozzles, is designed so that the gas jet emerges under fluidically perfect conditions. If it comes to so-called edge wear during operation, optimal working of the nozzles is no longer guaranteed. By edge wear is meant a more or less pronounced rounding or fraying of the originally sharp-edged nozzle outlet openings. The consequences of such edge wear are primarily too high slagging of the iron and thus insufficient Stahlausbringen and as a result to high wear on very expensive refractory material, so reducing the converter durability.

Ein Blaslanzenkopf kann also metallurgisch ungeeignet und damit für den Stahlwirtschaftsbetrieb unwirtschaftlich werden, lange bevor er in Folge von Undichtigkeiten im Wasserkühlsystem ausgewechselt werden muss.A lance head may therefore be metallurgically unsuitable and thus become uneconomical for the steel business, long before it must be replaced as a result of leaks in the water cooling system.

Zur Erhöhung der Standzeiten einer Blaslanze für Konverter oder dergleichen wird in der JP 63206420 A vorgeschlagen, die Endbereiche der Düsenöffnungen mit hitzebeständigem Metall oder Keramik auszukleiden.To increase the service life of a lance for converter or the like is in the JP 63206420 A proposed to line the end portions of the nozzle openings with refractory metal or ceramic.

In der DE 101 02 854 C2 wird eine Sauerstoffblaslanze beschrieben, bei der die Düsenmündungen des Lanzenkopfes durch Mündungsringe aus einem feuerfesten Keramikmaterial, die in einer Umfangsfalz der Düsenmündung befestigt sind, verstärkt sind.In the DE 101 02 854 C2 An oxygen blowing lance is described in which the nozzle mouths of the lance head are reinforced by neck rings of a refractory ceramic material secured in a circumferential fold of the nozzle mouth.

Um das Ankleben von schmelzflüssiger Schlacke im Bereich der Düsenöffnungen und der damit verbundenen Korrosion des Blaslanzenkopfes zu verhindern, werden gemäß der JP 61295313 A diese gefährdeten Bereiche mit einer Schichtdicke von ca. 5 μm mit Titannitrid (TiN), Titancarbid (TiC) oder Ti (N, C) überdeckt.In order to prevent the adhesion of molten slag in the region of the nozzle openings and the associated corrosion of the lance head are, according to the JP 61295313 A These hazardous areas with a layer thickness of about 5 microns with titanium nitride (TiN), titanium carbide (TiC) or Ti (N, C) covered.

Die JP 8311524 A offenbart eine Blaslanze, bei der zum Schutz des Lanzenkopfes auf dem Lanzenkopf Formstücke (tiles) mit einer Kantenlänge von max. 100 mm aus Zirkonoxid (ZrO2) oder Aluminiumoxid (Al2O3) befestigt und die Fugen zwischen den Formstücken mit einer feuerfesten Masse gefüllt werden.The JP 8311524 A discloses a lance, in which for the protection of the lance head on the lance head fittings (tiles) with an edge length of max. 100 mm of zirconium oxide (ZrO 2 ) or aluminum oxide (Al 2 O 3 ) attached and the joints between the fittings are filled with a refractory material.

Schließlich ist aus der DE 33 22 556 A1 eine Blaslanze mit einem auswechselbaren Mundstück aus Zirkonoxid (ZrO2) bekannt.Finally, out of the DE 33 22 556 A1 a lance with a replaceable zirconia mouthpiece (ZrO 2 ) known.

Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom geschilderten Stand der Technik darin, eine Blaslanze mit einem Düsenkopf auszubilden, bei der der Kantenverschleiß an den Düsenaustrittsöffnungen erheblich reduziert und die Standzeit des Blaslanzendüsenkopfes verlängert wirdThe object of the present invention, starting from the described prior art is to form a lance with a nozzle head, in which the edge wear at the nozzle outlet openings is significantly reduced and the service life of Blaslanzendüsenkopfes is extended

Die gestellte Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 dadurch gelöst, dass der Düsenkopf der Blaslanze pulvermetallurgisch aus einem Dispersionsgemisch mit einem hochtemperaturleitfähigen Metall als Basis und einem die thermische und und/oder die mechanische Eigenschaft verbessernden Zusatzmaterial hergestellt ist.The stated object is achieved with the characterizing features of claim 1, characterized in that the nozzle head of the lance is powder metallurgically made of a dispersion mixture with a high-temperature conductive metal as a base and a thermal and / or mechanical property improving additive material.

Auf Grund der Eigenschaften von Kohlenstoff-Nanoröhren mit einer Wärmeleitfähigkeit λ von ca. 6000 W/m·K und einem dem Grafit entsprechenden hohen Sublimationspunkt oberhalb von 3800°C, einer geringen Dichte von 1,3 bis 1,4 g/cm3 sowie einer mechanischen Zugfestigkeit von bis zu 63 GPa (Stahl besitzt eine Zugfestigkeit von nur 2 GPa) sind durch eine gesteuerte Einlagerung bezüglich der Menge von Kohlenstoff-Nanoröhren als Zusatzmaterial in das Basismetall Aluminium bzw. Kupfer deren relevante Eigenschaften hinsichtlich ihrer Verwendung in Düsenköpfen wesentlich höher und gut einstellbar.Due to the properties of carbon nanotubes with a thermal conductivity λ of about 6000 W / m · K and a graphite corresponding high sublimation above 3800 ° C, a low density of 1.3 to 1.4 g / cm 3 and a mechanical tensile strength of up to 63 GPa (steel has a tensile strength of only 2 GPa) are significantly higher and easily adjustable by a controlled incorporation with respect to the amount of carbon nanotubes as a filler in the base metal aluminum or copper whose relevant properties in terms of their use in the nozzle heads.

Die Wärmeleitfähigkeit λ von ca. 400 W/m·K von Kupfer und die Wärmeleitfähigkeit λ von ca. 220 W/m·K von Aluminium würde durch die Einlagerung von Kohlenstoff-Nanoröhren deutlich erhöht werden. Ebenso wird auch die thermische Belastbarkeit durch den hohen Sublimationspunkt der Kohlenstoff-Nanoröhren und die Schlag- und Zugfestigkeit durch diese Einlagerung von Kohlenstoff-Nanoröhren gesteigert, sodass erfindungsgemäß der pulvermetallurgisch gefertigte Düsenkopf eine hohe Verschleißfestigkeit und eine Erhöhung der Wärmeleitfähigkeit aufweist. Die Erhöhung der Verschleißfestigkeit führt zu einer wesentlichen Steigerung der Stand-/Betriebszeiten gegenüber den zurzeit gefertigten Düsenköpfen aus Kupfer oder Kupferlegierungen und dadurch zur Steigerung der Produktionszeit/Menge und die Erhöhung der Wärmeleitfähigkeit führt zu einer Produktionssteigerung und/oder zur Verminderung der Produktionskosten.The thermal conductivity λ of about 400 W / m · K of copper and the thermal conductivity λ of about 220 W / m · K of aluminum would be significantly increased by the incorporation of carbon nanotubes. Likewise, the thermal load capacity is increased by the high sublimation point of the carbon nanotubes and the impact and tensile strength by this incorporation of carbon nanotubes, so that according to the invention the powder metallurgically manufactured nozzle head has a high wear resistance and an increase in the thermal conductivity. The increase in wear resistance leads to a significant increase in the stand / operating times compared to the currently manufactured nozzle heads made of copper or copper alloys, thereby increasing the production time / amount and increasing the thermal conductivity leads to an increase in production and / or to reduce production costs.

Da Aluminium eine wesentlich niedrigere Dichte als Kupfer hat, besitzen die pulvermetallurgisch gefertigten Düsenköpfe aus Aluminium mit eingelagerten Kohlenstoff-Nanoröhren einen erheblichen Gewichtsvorteil, was zu konstruktiven Vorteilen in der Gesamtanlage führt.Since aluminum has a much lower density than copper, the powder-metallurgically manufactured nozzle heads made of aluminum with embedded carbon nanotubes have a considerable weight advantage, which leads to constructive advantages in the overall system.

Das alternativ zu den Kohlenstoff-Nanoröhren einlagerbare Titandiborid besitzt nur eine unterhalb von Kupfer bzw. Aluminium liegende Wärmeleitfähigkeit λ von ca. 27 W/m·K. Der Vorteil einer Einlagerung von Titandiborid in das Basismetall Kupfer bzw. Aluminium ist begründet durch seinen hohen Schmelzpunkt mit ca. 2900°C, seiner chemischen Beständigkeit und seiner hohen mechanischen Festigkeit, die in gleicher Weise wie bei der Einlagerung von Kohlenstoff-Nanoröhren zu einer Erhöhung der Verschleißfestigkeit der pulvermetallurgisch gefertigten Düsenköpfe führt, während eine Erhöhung der Wärmeleitfähigkeit durch das Titandiborid nicht möglich ist.The titanium diboride, which can be incorporated alternatively to the carbon nanotubes, has only a thermal conductivity λ of approx. 27 W / m · K lying below copper or aluminum. The advantage of incorporating titanium diboride in the base metal copper or aluminum is due to its high melting point of about 2900 ° C, its chemical resistance and its high mechanical strength, in the same manner as in the storage of carbon nanotubes to an increase the wear resistance of the powder metallurgically manufactured nozzle heads leads, while an increase in the thermal conductivity is not possible by the titanium diboride.

ZITATE ENTHALTEN IN DER BESCHREIBUNG QUOTES INCLUDE IN THE DESCRIPTION

Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.This list of the documents listed by the applicant has been generated automatically and is included solely for the better information of the reader. The list is not part of the German patent or utility model application. The DPMA assumes no liability for any errors or omissions.

Zitierte PatentliteraturCited patent literature

  • JP 63206420 A [0006] JP 63206420 A [0006]
  • DE 10102854 C2 [0007] DE 10102854 C2 [0007]
  • JP 61295313 A [0008] JP 61295313A [0008]
  • JP 8311524 A [0009] JP 8311524 A [0009]
  • DE 3322556 A1 [0010] DE 3322556 A1 [0010]

Claims (5)

Blaslanze mit Düsenkopf aus einem hochtemperaturleitfähigen Material zum Aufblasen von Gasen, insbesondere von Sauerstoff auf Metallschmelzen, dadurch gekennzeichnet, dass der Düsenkopf der Blaslanze pulvermetallurgisch aus einem Dispersionsgemisch mit einem hochtemperaturleitfähigen Metall als Basis und einem die thermische und und/oder die mechanische Eigenschaft des Basismetalls verbessernden Zusatzmaterial hergestellt ist.Blow lance with nozzle head of a high-temperature conductive material for inflating gases, in particular oxygen on molten metal, characterized in that the nozzle head of the lance powder metallurgically from a dispersion mixture with a high-temperature conductive metal as a base and a the thermal and / or the mechanical property of the base metal improving Additional material is made. Blaslanze nach Anspruch 1, dadurch gekennzeichnet, dass das Dispersionsgemisch aus Aluminium als Basismaterial mit eingelagerten Kohlenstoff-Nanoröhren (Carbon Nano Tubes = CNT) als Zusatzmaterial besteht.Blowing lance according to claim 1, characterized in that the dispersion mixture consists of aluminum as the base material with embedded carbon nanotubes (carbon nanotubes = CNT) as additional material. Blaslanze nach Anspruch 1, dadurch gekennzeichnet, dass das Dispersionsgemisch aus Aluminium als Basismaterial mit eingelagertem Titandiborid (TiB2) als Zusatzmaterial besteht.Blowing lance according to claim 1, characterized in that the dispersion mixture consists of aluminum as a base material with embedded titanium diboride (TiB 2 ) as additional material. Blaslanze nach Anspruch 1, dadurch gekennzeichnet, dass das Dispersionsgemisch aus Kupfer als Basismaterial mit eingelagerten Kohlenstoff-Nanoröhren (Carbon Nano Tubes = CNT) als Zusatzmaterial besteht.Blowing lance according to claim 1, characterized in that the dispersion mixture consists of copper as the base material with embedded carbon nanotubes (carbon nanotubes = CNT) as additional material. Blaslanze nach Anspruch 1, dadurch gekennzeichnet, dass das Dispersionsgemisch aus Kupfer als Basismaterial mit eingelagertem Titandiborid (TiB2) als Zusatzmaterial besteht.Blowing lance according to claim 1, characterized in that the dispersion mixture of copper as a base material with embedded titanium diboride (TiB 2 ) as additional material.
DE201010011170 2010-03-12 2010-03-12 Nozzle head for a lance Withdrawn DE102010011170A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE201010011170 DE102010011170A1 (en) 2010-03-12 2010-03-12 Nozzle head for a lance
EP20110157406 EP2369019B1 (en) 2010-03-12 2011-03-09 Nozzle head for a blowing lance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010011170 DE102010011170A1 (en) 2010-03-12 2010-03-12 Nozzle head for a lance

Publications (1)

Publication Number Publication Date
DE102010011170A1 true DE102010011170A1 (en) 2011-09-15

Family

ID=44148835

Family Applications (1)

Application Number Title Priority Date Filing Date
DE201010011170 Withdrawn DE102010011170A1 (en) 2010-03-12 2010-03-12 Nozzle head for a lance

Country Status (2)

Country Link
EP (1) EP2369019B1 (en)
DE (1) DE102010011170A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322556A1 (en) 1983-06-23 1985-01-10 Didier-Werke Ag, 6200 Wiesbaden Lance for blowing fluidised materials into molten metal
JPS61295313A (en) 1985-06-22 1986-12-26 Chobe Taguchi Method for protecting lance nozzle for steel production
JPS63206420A (en) 1987-02-23 1988-08-25 Kawasaki Steel Corp Blowing lance for converter or the like
JPH08311524A (en) 1995-05-11 1996-11-26 Nippon Steel Corp Method for shutting off heat to lance nozzle for blowing in converter
DE10102854C2 (en) 2001-01-23 2002-11-28 Impact Ges Fuer Nichteisenmeta Lance head for an oxygen lance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045997A (en) * 1959-03-02 1962-07-24 Armco Steel Corp Porous oxygen lance
TW548334B (en) * 1997-08-20 2003-08-21 Jgc Corp Heating furnace and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322556A1 (en) 1983-06-23 1985-01-10 Didier-Werke Ag, 6200 Wiesbaden Lance for blowing fluidised materials into molten metal
JPS61295313A (en) 1985-06-22 1986-12-26 Chobe Taguchi Method for protecting lance nozzle for steel production
JPS63206420A (en) 1987-02-23 1988-08-25 Kawasaki Steel Corp Blowing lance for converter or the like
JPH08311524A (en) 1995-05-11 1996-11-26 Nippon Steel Corp Method for shutting off heat to lance nozzle for blowing in converter
DE10102854C2 (en) 2001-01-23 2002-11-28 Impact Ges Fuer Nichteisenmeta Lance head for an oxygen lance

Also Published As

Publication number Publication date
EP2369019A1 (en) 2011-09-28
EP2369019B1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
CH673005A5 (en)
WO2007071493A1 (en) Components of a steelworks, such as a continuous casting installation or a rolling mill, method for producing such a component and installation for creating or processing semifinished metallic products
DE2903104A1 (en) COOLING ELEMENT FOR A METALLURGICAL OVEN
EP0195417B1 (en) Sintered polycrystalline mixed materials on the basis of boron nitride
EP2369019B1 (en) Nozzle head for a blowing lance
DE102005061135A1 (en) Mold for a continuous casting plant and process for producing a mold
WO2009030331A1 (en) Sintered, polycrystalline composite materials based on boron nitride and zirconium dioxide, method for the production and use thereof
DE2156106C3 (en) Liquid-cooled lance for feeding reaction substances to metallurgical melts
EP1203103B1 (en) Method of producing foamed slag
DE102007028824B3 (en) Process for producing a sheet in a rolling mill
DE102011114737B3 (en) Hochofenblasform
WO2011020832A1 (en) Pressed carbonaceous or carbon-bonded fireproof aluminum oxide products, and method for producing same
EP2275740A2 (en) Coal gasification burner
AT507595B1 (en) NOZZLE FOR THE INTAKE OF OXYGEN-CONTAINING GAS INTO A REFRIGERATED RAIL WITH EDGE PROTECTION THROUGH REPLACEABLE INSERTION PIECE
DE841030C (en) Welding electrode
DE102009060827A1 (en) Lance head for a lance with a ceramic nozzle insert
DE652593C (en) Covered welding electrode
DE102006042794A1 (en) Thermic lance head for cutting metal or concrete has coating consisting of ductile metal matrix with hard material particles embedded in it
DE2127690A1 (en) Blast furnace blow moulds - having a nickel based and ceramic layered coating to improve lifetime
DE976381C (en) Process for producing a protective layer on thermally highly stressed, scale-resistant metal parts
DE2214200C3 (en) Method for improving the durability of refractory building blocks in industrial furnaces and building blocks for carrying out the method
AT394731B (en) Method and gas-flushed block for blowing treatment materials into reaction vessels
DE2617237C3 (en) Lance head for the oxygen inflation process
DE2419584C3 (en) Protective layer on a water-cooled copper blow mold and method for producing the protective layer
DE102010015098B4 (en) Device for introducing gases into hot liquid media

Legal Events

Date Code Title Description
R081 Change of applicant/patentee

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

R082 Change of representative

Representative=s name: HEMMERICH & KOLLEGEN, DE

R120 Application withdrawn or ip right abandoned