DE102009024377B4 - Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy - Google Patents

Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy Download PDF

Info

Publication number
DE102009024377B4
DE102009024377B4 DE102009024377A DE102009024377A DE102009024377B4 DE 102009024377 B4 DE102009024377 B4 DE 102009024377B4 DE 102009024377 A DE102009024377 A DE 102009024377A DE 102009024377 A DE102009024377 A DE 102009024377A DE 102009024377 B4 DE102009024377 B4 DE 102009024377B4
Authority
DE
Germany
Prior art keywords
photoluminescence
analysis method
solar cell
absorber layer
circuit voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102009024377A
Other languages
German (de)
Other versions
DE102009024377A1 (en
Inventor
Alexander Dr. Meeder
Thomas Dr. Unold
Stefan Voigt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
SULFURCELL SOLARTECHNIK GmbH
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SULFURCELL SOLARTECHNIK GmbH, Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical SULFURCELL SOLARTECHNIK GmbH
Priority to DE102009024377A priority Critical patent/DE102009024377B4/en
Priority to PCT/DE2010/000624 priority patent/WO2010142270A1/en
Publication of DE102009024377A1 publication Critical patent/DE102009024377A1/en
Application granted granted Critical
Publication of DE102009024377B4 publication Critical patent/DE102009024377B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6489Photoluminescence of semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Zerstörungsfreies Analyseverfahren zur Güteermittlung einer Dünnschichtsolarzelle auf Chalkopyritbasis mittels Photolumineszenzspektroskopie,
wobei
– das Photolumineszenzspektrum zur Ermittlung der elektrischen Eigenschaften der Solarzelle erstmalig und mindestens nach der Erzeugung der Absorberschicht bei Raumtemperatur gemessen wird,
– anschließend der das gemessene Photolumineszenzspektrum dominierende bandlückennahe erste Peak bezüglich seiner spektralen Position analysiert und
– danach mit Messungen der Leerlaufspannung in Abhängigkeit der spektralen Position des mit der Photolumineszenz bestimmten bandlückennahen Peaks, die vorab an Materialproben vom gleichen Typ der Absorberschicht ermittelt wurden, verglichen und
– in Abhängigkeit von bekannten Grenzwerten der Leerlaufspannung ausgewertet wird.
Non-destructive analysis method for determining the quality of a chalcopyrite-based thin-film solar cell by means of photoluminescence spectroscopy,
in which
The photoluminescence spectrum for determining the electrical properties of the solar cell is measured for the first time and at least after the generation of the absorber layer at room temperature,
- then analyzed the measured photoluminescence spectrum dominating band gap near first peak with respect to its spectral position and
- Then with measurements of the open-circuit voltage as a function of the spectral position of the determined with the photoluminescence band gap near peak, which were previously determined on material samples of the same type of absorber layer, compared and
- Is evaluated in response to known limits of the open circuit voltage.

Figure 00000001
Figure 00000001

Description

Die Erfindung betrifft ein zerstörungsfreies Analyseverfahren zur Güteermittlung einer Dünnschichtsolarzelle auf Chalkopyritbasis mittels Photolumineszenzspektroskopie.The The invention relates to a nondestructive analysis method for quality determination a thin film solar cell chalcopyrite based by photoluminescence spectroscopy.

In den letzten Jahren wurden verstärkt zerstörungsfreie Methoden für Prozessund Qualitätskontrollen während der Herstellung von Solarzellen – sogenannte in-situ Methoden – entwickelt, um die Prozessausbeute zu erhöhen, aber auch um Aussagen zu bestimmten Gütekriterien der hergestellten Halbleiterschicht zu treffen, um so möglichst früh feststellen zu können, ob die gemessenen Parameter der Schicht mit den gewünschten elektrischen Parametern der Solarzelle korrelieren und sich eine Weiterverarbeitung der Absorberschicht einer Solarzelle lohnt.In The last few years have been reinforced destructive Methods for Process and quality controls while the production of solar cells - so-called in-situ methods - developed to increase the process yield, but also statements about certain quality criteria of the semiconductor layer produced to meet as best as possible determine early to be able to whether the measured parameters of the layer with the desired electrical parameters of the solar cell correlate and become one Further processing of the absorber layer of a solar cell is worthwhile.

Dem Stand der Technik nach sind Publikationen bekannt, die sich mit der Beziehung zwischen Photolumineszenz-Eigenschaften und Leerlaufspannung von Solarzellen beschäftigen (siehe beispielsweise „Luminescence and currentvoltage characteristics of solar cells and optoelectronic devices”, G. Smestad and H. Ries, Solar Energy Materials and Solar Cells 25 (1992) 51; „Open circuit voltage and loss mechanisms in polycrystalline Cu(InGa)Se2-heterodiodes from photoluminescence studies”, T. Unold, D. Berkhahn, B. Dimmler, G. H. Bauer, 16th PVSEC Conference, Glasgow, United Kingdom, 1–5 May 2000; „Photoluminescence, open circuit voltage, and photocurrents in Cu(In,Ga)Se2 solar cells with lateral submicron resolution”, T. Jürgens, L. Gütay, G. H. Bauer, Thin Solid Films 511–512 (2006) 678–683).The prior art discloses publications dealing with the relationship between photoluminescence characteristics and open circuit voltage of solar cells (see, for example, "Luminescence and Current Voltage Characteristics of Solar Cells and Optoelectronic Devices", G. Smestad and H. Ries, Solar Energy Materials and Solar Cells 25 (1992) 51. "Open circuit voltage and loss mechanisms in polycrystalline Cu (InGa) Se 2 heterodiodes from photoluminescence studies", T. Unold, D. Berkhahn, B. Dimmler, GH Bauer, 16th PVSEC Conference, Glasgow, United Kingdom, 1-5 May 2000 "Photoluminescence, open circuit voltage, and photocurrents in Cu (In, Ga) Se 2 solar cells with lateral submicron resolution", T. Jürgens, L. Gütay, GH Bauer, Thin Solid Films 511-512 (2006) 678-683).

In diesen Veröffentlichungen wird immer die absolute Größe des Photolumineszenz-Signals oder die Art des Abfalls des Signals bei hohen Energien zur Voraussage der Leerlaufspannung verwendet. Untersuchungen haben ergeben, dass diese Methode in Einzelfällen Korrelationen der Photolumineszenzeffizienz mit der Leerlaufspannung liefern kann, dies aber oft für größere Probenserien nicht notwendigerweise zutrifft. Insbesondere für polykristalline CuInS2-Dünnschichtsolarzellen wurde für eine Probenserie von mehreren Hundert Solarzellen keine ausreichende Korrelation zwischen Photolumineszenzintensität und Leerlaufspannung bzw. zwischen Signalabfall bei hohen Energien und Leerlaufspannung festgestellt. Desweiteren beruht die Messung der Photolumineszenzeffizienz und Linienform auf einer exakt definierten Anregungsleistung und setzt eine ausreichende Photolumineszenzeffizienz voraus, so dass bei geringen Anregungsleistungen ein Signal auch innerhalb kurzer Zeit detektiert werden kann. Wenn die Photolumineszenzausbeute des untersuchten Halbleitermaterials, wie im Falle von CuInS2, sehr schwach ist, kann ein Absolutsignal der Photolumineszenz bei geringer Anregungsleistung der Lichtquelle nicht innerhalb der für Inline-Prozesskontrolle notwendigen kurzen Zeit, d. h. Sekunden, detektiert werden.In these publications, the absolute magnitude of the photoluminescent signal or the nature of the signal drop at high energies is always used to predict the open circuit voltage. Investigations have shown that in some cases this method can provide correlations of the photoluminescence efficiency with the no-load voltage, but this is often not the case for larger sample series. In particular, for polycrystalline CuInS 2 Dünnschichtsolarzellen for a series of several hundred solar cells, a sufficient correlation between photoluminescence intensity and open circuit voltage or between signal drop at high energies and no-load voltage was detected. Furthermore, the measurement of the photoluminescence efficiency and line shape is based on a precisely defined excitation power and requires sufficient photoluminescence efficiency, so that a signal can be detected within a short time even at low excitation powers. If the photoluminescence yield of the examined semiconductor material is very weak, as in the case of CuInS 2 , an absolute signal of the photoluminescence at low excitation power of the light source can not be detected within the short time required for inline process control, ie seconds.

Bei dem in DE 102 48 504 B4 beschriebenen zerstörungsfreien Analyseverfahren wird an der aktuell hergestellten Absorberschicht eine optische Ramananalyse durchgeführt und die Halbwertsbreite ermittelt, die in einem Folgeschritt mit Leerlaufspannung, Füllfaktor und Defektdichte als charakteristische Elektroparameter für die elektrischen Eigenschaften der Solarzelle korreliert werden. Diese optoelektronischen Parameter sind aus Messungen an Materialproben gleichen Typs wie die Absorberschicht bekannt. Auch für dieses Verfahren konnte für größere Probenmengen keine Korrelation zwischen den Messwerten und den charakteristischen Parametern für die elektrischen Eigenschaften der Solarzellen festgestellt werden.At the in DE 102 48 504 B4 described nondestructive analysis method, an optical Raman analysis is performed on the currently produced absorber layer and determines the half-width, which are correlated in a subsequent step with open circuit voltage, fill factor and defect density as characteristic electrical parameters for the electrical properties of the solar cell. These optoelectronic parameters are known from measurements on material samples of the same type as the absorber layer. Also for this method, no correlation could be found between the measured values and the characteristic parameters for the electrical properties of the solar cells for larger sample quantities.

In Thin Solid Films 480–481 (2005) 327–331 wird eine Methode zur Qualitätskontrolle beschrieben, bei der Photolumineszenz- und Ramanspektroskopie kombiniert werden. Es wird ausgeführt, dass die Halbwertsbreiten der A1-Mode dünner CuInS2-Schichten mit einer hohen Leerlaufspannung korrelieren und eine dominierende bandkantennahe Lumineszenz sowie geringe Halbwertsbreiten der A1-Mode Absorberschichten mit hohen Wirkungsgraden kennzeichnen.Thin Solid Films 480-481 (2005) 327-331 describes a quality control method combining photoluminescence and Raman spectroscopy. It is stated that the half-widths of the A 1 mode correlate thin CuInS 2 layers with a high open circuit voltage and characterize dominant band edge near luminescence as well as low half widths of the A 1 -mode absorber layers with high efficiencies.

In J. Appl. Phys. 100, 114514 (2006) wird der Vorteil der Photolumineszenzspektroskopie als kontaktlose Messmethode hervorgehoben, die auch auf nur teilweise komplettierte Solarzellen, d. h. in einem beliebigen Prozessschritt der Herstellung von Si-Solarzellen, angewendet werden kann.In J. Appl. Phys. 100, 114514 (2006) becomes the advantage of photoluminescence spectroscopy highlighted as a contactless measurement method, which also applies only partially completed solar cells, d. H. in any process step the production of Si solar cells, can be applied.

Aufgabe der Erfindung ist es nun, ein weiteres zerstörungsfreies Analyseverfahren zur Güteermittlung einer Solarzelle auf Chalkopyritbasis mittels Photolumineszenzmessungen anzugeben, das eine schnelle Analyse des Absorbermaterials im Bereich von Sekunden mittels Raumtemperatur-Photolumineszenzmessungen ermöglicht.task The invention now is another non-destructive analytical method for quality determination a chalcopyrite based solar cell using photoluminescence measurements indicate a rapid analysis of the absorber material in the range of Seconds by means of room temperature photoluminescence measurements allows.

Die Aufgabe wird für ein Analyseverfahren der eingangs genannten Art dadurch gelöst, dass erfindungsgemäß das Photolumineszenzspektrum zur Ermittlung der elektrischen Eigenschaften der Solarzelle erstmalig und mindestens nach der Erzeugung der Absorberschicht bei Raumtemperatur spektral aufgelöst gemessen wird, anschließend der das gemessene Photolumineszenzspektrum dominierende bandlückennahe erste Peak bezüglich seiner spektralen Position analysiert und danach mit Messungen der Leerlaufspannung in Abhängigkeit der Position des mit der Photolumineszenz bestimmten bandlückennahen Peaks, die vorab an Materialproben vom gleichen Typ der Absorberschicht ermittelt wurden, verglichen und in Abhängigkeit von bekannten Grenzwerten bzw. optimalen Werten der Leerlaufspannung ausgewertet wird.The object is achieved for an analysis method of the type mentioned above in that according to the invention the photoluminescence spectrum for determining the electrical properties of the solar cell is spectrally resolved for the first time and at least after the generation of the absorber layer at room temperature, then the band gap near the measured photoluminescence first peak with respect to it analyzed spectral position and then with measurements of the open-circuit voltage as a function of the position of the determined with the photoluminescence band gap near peak, which in advance on material samples from same type of absorber layer were determined, compared and evaluated in dependence on known limits or optimum values of the open circuit voltage.

In der erfindungsgemäßen Lösung wird das gefundene experimentelle Ergebnis genutzt, dass nämlich die wellenlängenaufgelöste Peakposition des Rekombinationslichts eines CuInS2-Halbleitermaterials mit der Leerlaufspannung der aus diesem Material gefertigten Solarzelle korreliert: Je näher die Wellenlänge des gemessenen Maximums der Photolumineszenz der Probe der Position des mit der Photoluminszenz bestimmten bandlückennahen Peaks in der Vergleichskurve ist, desto größer ist die zu erreichende Leerlaufspannung nach Fertigstellung der Solarzelle. Somit fassen sich bereits frühzeitig im Herstellungsprozess der Solarzelle einerseits Fertigungsfehler erkennen, andererseits ist es möglich, Proben mit niedriger Leerlaufspannung nicht weiter zu prozessieren.In the solution according to the invention, the experimental result found is used, namely that the wavelength-resolved peak position of the recombination light of a CuInS 2 semiconductor material correlates with the no-load voltage of the solar cell manufactured from this material: the closer the wavelength of the measured maximum of the photoluminescence of the sample to the position of the Photoluminescence certain band gap near peaks in the comparison curve, the greater the open-circuit voltage to be achieved after completion of the solar cell. Thus, production errors of the solar cell can be detected at an early stage on the one hand, and on the other hand, it is possible to discontinue samples with a low open circuit voltage.

Das Analyseverfahren kann auch nach dem chemischen Prozessschritt und/oder nach dem Aufbringen der ZnO-Schicht auf die Absorberschicht durchgeführt werden.The Analytical method can also after the chemical process step and / or be carried out after the application of the ZnO layer on the absorber layer.

In einer anderen Ausführungsform wird als Absorbermaterial die Familie der Kupferchalkopyrite, insbesondere Cu(Inx, Ga1-x)(Sy, Se2-y) mit 0 ≤ x ≤ 1 und 0 ≤ y ≤ 2 verwendet.In another embodiment, the absorber material used is the family of the copper chalcopyrites, in particular Cu ( Inx , Ga1 -x ) ( Sy , Se2 -y ) with 0≤x≤1 and 0≤y≤2.

Die Anregung der Photolumineszenz in der Probe erfolgt mit Laserlicht oder Weißlicht, die Anregungswellenlänge ist dabei kleiner als die Bandlücke der Absorberschicht.The Excitation of the photoluminescence in the sample takes place with laser light or white light, the excitation wavelength is smaller than the band gap of the Absorber layer.

Mit dieser Methode ist es außerdem möglich eine Inline-Kontrolle der Homogenität von Solarzellenmodulen durchzuführen, indem ein geeigneter Photolumineszenzmesskopf mit einer Linearverschiebeeinheit senkrecht zur Prozesslinienbewegung geführt wird. Eine sofortige Analyse der Linienlage des Photolumineszenzmaximums über die gesamte Breite des Moduls erlaubt die Erstellung von Homogenitätskarten, mit deren Hilfe in die vorgelagerten Prozessierungsschritte regelnd eingegriffen werden kann.With This method is moreover possible one Inline control of homogeneity of solar cell modules, by a suitable photoluminescence measuring head with a linear displacement unit is guided perpendicular to the process line movement. An immediate analysis the line position of the photoluminescence maximum over the entire width of the Module allows the creation of homogeneity maps, with their help in the upstream processing steps are intervened to regulate can.

Der Vorteil der Erfindung gegenüber bereits bekannten Photolumineszenzbasierten Qualitätskontrollen besteht darin, dass bei CuInS2-Absorbermaterialien CuInS2-Solarzellen und verwandten Solarzellenmaterialien eine genaue Prognose der im Endprodukt erwarteten Leerlaufspannung frühzeitig im Herstellungsprozess gemacht werden kann. Dadurch, dass die erfasste Signalsignatur nicht von der Anregungsintensität abhängt, kann mit einer sehr hohen Anregungsintensität gemessen werden, was zu sehr schnellen Messzeiten und zu sehr guter Signalqualität führt.The advantage of the invention over previously known Photolumineszenzbasierten quality controls is that when CuInS.sub.2 -Absorbermaterialien CuInS 2 solar cells and related solar cell materials, an accurate forecast of the expected final product in open circuit voltage can be made early in the production process. The fact that the detected signal signature does not depend on the excitation intensity can be measured with a very high excitation intensity, which leads to very fast measurement times and to very good signal quality.

Desweiteren ist damit die hier beschriebene Erfindung auch für Materialien mit sehr kleiner Photolumineszenzausbeute geeignet, da ein messbares Signal durch eine Erhöhung der Anregungsintensität erreicht werden kann. Für die bisher in der Literatur diskutierten Photolumineszenz-Qualitätskontrollen muss die Anregungsintensität bekannt sein bzw. genauestens kontrolliert werden um die für eine Qualitätskontrolle notwendige Vergleichbarkeit herzustellen. Wie werter oben diskutiert, wurde selbst mit einer solchen Kontrolle der Anregungsintensität für CuInS2 keine Korrelation zwischen Photolumineszenzausbeute und Leerlaufspannung festgestellt.Furthermore, the invention described here is thus also suitable for materials with a very low photoluminescence yield, since a measurable signal can be achieved by increasing the excitation intensity. For the photoluminescence quality controls discussed so far in the literature, the excitation intensity must be known or must be precisely controlled in order to produce the comparability necessary for quality control. As discussed above, even with such control of excitation intensity for CuInS 2, no correlation was found between photoluminescence yield and open circuit voltage.

Die Erfindung wird in folgendem Ausführungsbeispiel anhand von Figuren näher erläutert. Dabei zeigenThe Invention will be in the following embodiment on the basis of figures closer explained. there demonstrate

1: das Spektrum einer Photolumineszenzmessung an CuInS2 direkt nach dem Aufbringen der Absorberschicht; 1 : the spectrum of a photoluminescence measurement on CuInS 2 directly after the application of the absorber layer;

2: Kalibrierkurve zur Bestimmung der erwarteten Leerlaufspannung einer fertig prozessierten Solarzelle in Abhängigkeit der Position des mit der Photolumineszenzspektroskopie bestimmten bandlückennahen Peaks. 2 : Calibration curve for the determination of the expected open circuit voltage of a finished processed solar cell as a function of the position of the band gap near peak determined by photoluminescence spectroscopy.

Zunächst wird die zu messende Probe, die eine Chalkopyrit-Halbleiterschicht oder eine Dünnschichtsolarzelle mit einer solchen Schicht oder ein Modul mit derartigen Solarzellen sein kann, in einer dunklen Box in einem Probenhalter fixiert und fokussiertes Licht eines Lasers mit einer Wellenlänge von 670 nm auf diese Probe gerichtet. Dabei ist die Anregungsenergie des Lasers größer als die optische Bandlücke des Halbleitermaterials. Die Messung des Photolumineszenzspektrums findet bei Raumtemperatur unter Umgebungsbedingungen statt, kann aber auch im Vakuum oder in Inertgasatmosphäre durchgeführt werden. Das auf die Probe fallende Laserlicht regt Ladungsträger an, von denen ein Teil strahlend rekombiniert und dabei das charakteristische Photolumineszenzlicht aussendet. Dieses wird parallelisiert zum Spektrographen geführt, der als Diodenzeile oder CCD oder als anderer Flächen- oder Zeilendetektor ausgebildet sein kann. Danach wird aus dem so ermittelten und in 1 gezeigten Photoluminszenzspektrum die Linienlage des hochenergetischen Übergangs nahe der Bandlückenenergie z. B. von CuInS2 bestimmt. Die detektierte Peaklage selbst ist nicht von der Anregungsintensität des Lasers abhängig, so dass mit sehr hohen Anregungsintensitäten – die aber natürlich noch unter der Materialzerstörungsschwelle liegen – gemessen werden kann, wodurch für Inline-Qualtitäts- bzw. Inline-Prozesskontrolle erforderliche hohe Detektionsgeschwindigkeiten ermöglicht werden. Die detektierte Position des Peaks wird anschließend mit den Werten aus der Kalibrierkurve – dargestellt in 2 – verglichen und die zu erwartende Leerlaufspannung (Voc) für eine Solarzelle mit einer CuInS2-Absorberschicht kann aus dieser Kurve abgeschätzt werden.First, the sample to be measured, which may be a chalcopyrite semiconductor layer or a thin film solar cell having such a layer or a module having such solar cells, is fixed in a dark box in a sample holder and focused light of a laser having a wavelength of 670 nm is applied to this sample directed. In this case, the excitation energy of the laser is greater than the optical band gap of the semiconductor material. The measurement of the photoluminescence spectrum takes place at room temperature under ambient conditions, but can also be carried out in a vacuum or in an inert gas atmosphere. The laser light incident on the sample excites charge carriers, of which a part recombines radiantly and thereby emits the characteristic photoluminescent light. This is performed parallelized to the spectrograph, which can be designed as a diode array or CCD or other area or line detector. Thereafter, from the thus determined and in 1 shown Photoluminszenzspektrum the line position of the high energy transition near the bandgap energy z. B. of CuInS 2 determined. The detected self-deposition itself is not dependent on the excitation intensity of the laser, so that with very high excitation intensities - which, of course, still below the material destruction threshold - can be measured, which allows for inline Qualtitäts- or inline process control required high detection speeds. The detected The position of the peak is then displayed with the values from the calibration curve - shown in 2 - and the expected open circuit voltage (V oc ) for a solar cell with a CuInS 2 absorber layer can be estimated from this curve.

In Abhängigkeit der ermittelten Leerlaufspannung und in Kenntnis von bekannten Grenzwerten bzw. optimalen Werten der Leerlaufspannung erfolgt nun die Güteeinschätzung der Solarzelle mit einer CuInS2-Absorberschicht, woraus sich Schlussfolgerungen für den weiteren Herstellungsprozess ergeben.In dependence the determined open circuit voltage and in knowledge of known limits or optimum values of the open circuit voltage is now the quality assessment of Solar cell with a CuInS2 absorber layer, resulting in conclusions for the resulting in further manufacturing process.

Claims (5)

Zerstörungsfreies Analyseverfahren zur Güteermittlung einer Dünnschichtsolarzelle auf Chalkopyritbasis mittels Photolumineszenzspektroskopie, wobei – das Photolumineszenzspektrum zur Ermittlung der elektrischen Eigenschaften der Solarzelle erstmalig und mindestens nach der Erzeugung der Absorberschicht bei Raumtemperatur gemessen wird, – anschließend der das gemessene Photolumineszenzspektrum dominierende bandlückennahe erste Peak bezüglich seiner spektralen Position analysiert und – danach mit Messungen der Leerlaufspannung in Abhängigkeit der spektralen Position des mit der Photolumineszenz bestimmten bandlückennahen Peaks, die vorab an Materialproben vom gleichen Typ der Absorberschicht ermittelt wurden, verglichen und – in Abhängigkeit von bekannten Grenzwerten der Leerlaufspannung ausgewertet wird.Nondestructive Analysis method for quality determination a thin film solar cell based on chalcopyrite by means of photoluminescence spectroscopy, in which - the photoluminescence spectrum for determining the electrical properties of the solar cell for the first time and at least after the generation of the absorber layer at room temperature is measured - then the the measured photoluminescence spectrum dominates band gap-near first peak regarding analyzed its spectral position and - afterwards with measurements of the Open circuit voltage depending the spectral position of the determined with the photoluminescence band gap near peaks, in advance on material samples of the same type of absorber layer were determined, compared and - depending on known limits the open circuit voltage is evaluated. Zerstörungsfreies Analyseverfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Absorberschicht die Gruppe der Kupferchalkopyrite, insbesondere Cu(Inx, Ga1-x)(Sy, Se2-y) mit 0 ≤ x ≤ 1 und 0 ≤ y ≤ 2 verwendet wird.Destruction-free analysis method according to claim 1, characterized in that the absorber layer is the group of Kupferchalkopyrite, in particular Cu (In x , Ga 1-x ) (S y , Se 2-y ) with 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2 used becomes. Zerstörungsfreies Analyseverfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Absorberschicht Cu2ZnSn(S, Se)4 verwendet wird.Destruction-free analysis method according to claim 1, characterized in that the absorber layer Cu 2 ZnSn (S, Se) 4 is used. Zerstörungsfreies Analyseverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Anregung der Photolumineszenz in der Probe mit Laserlicht oder Weißlicht erfolgt.Nondestructive Analysis method according to claim 1, characterized in that the Excitation of the photoluminescence in the sample with laser light or white light takes place. Zerstörungsfreies Analyseverfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Anregungswellenlänge kleiner als die Bandlücke der Absorberschicht ist.Nondestructive Analysis method according to claim 4, characterized in that the Excitation wavelength smaller than the band gap the absorber layer is.
DE102009024377A 2009-06-09 2009-06-09 Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy Expired - Fee Related DE102009024377B4 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102009024377A DE102009024377B4 (en) 2009-06-09 2009-06-09 Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy
PCT/DE2010/000624 WO2010142270A1 (en) 2009-06-09 2010-06-01 Nondestructive analytical method for determining the quality of a thin-film solar cell using photoluminescence spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009024377A DE102009024377B4 (en) 2009-06-09 2009-06-09 Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy

Publications (2)

Publication Number Publication Date
DE102009024377A1 DE102009024377A1 (en) 2010-12-30
DE102009024377B4 true DE102009024377B4 (en) 2011-02-10

Family

ID=42744718

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009024377A Expired - Fee Related DE102009024377B4 (en) 2009-06-09 2009-06-09 Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy

Country Status (2)

Country Link
DE (1) DE102009024377B4 (en)
WO (1) WO2010142270A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8629411B2 (en) 2010-07-13 2014-01-14 First Solar, Inc. Photoluminescence spectroscopy
CN109453794B (en) * 2018-11-12 2021-04-09 国家海洋局第一海洋研究所 Cu2ZnSn(SxSe1-x)4Application of alloy nano material as mimic enzyme
CN112014359B (en) * 2020-08-27 2024-04-19 中国电子科技集团公司第十一研究所 Method and device for determining indium, arsenic and antimony components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217454A1 (en) * 1991-05-27 1992-12-24 Fuji Electric Res Thin layer copper indium selenide mfr. - by forming layer on substrate, irradiating, detecting max. light strength emitted and comparing value, for improved solar cell quality
US20080108122A1 (en) * 2006-09-01 2008-05-08 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Microchemical nanofactories

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248504B4 (en) 2002-10-13 2008-01-10 Hahn-Meitner-Institut Berlin Gmbh Non-destructive analysis method for determining the quality of a chalcopyrite-based solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217454A1 (en) * 1991-05-27 1992-12-24 Fuji Electric Res Thin layer copper indium selenide mfr. - by forming layer on substrate, irradiating, detecting max. light strength emitted and comparing value, for improved solar cell quality
US20080108122A1 (en) * 2006-09-01 2008-05-08 State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon Microchemical nanofactories

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Abbott et al.
Abbott et al. J. Appl. Phys., Vol. 100 (2006), 144514 *
J. Appl. Phys., Vol. 100 (2006), 144514
Rudigier, E. et al.
Rudigier, E. et al. Thin Solid Films, Vol. 480-481 (2005), S. 327-331 *
Smestad et al., Solar Energy Materials and Solar Cells, Vol. 25(1992), S.51-71 *
Thin Solid Films, Vol. 480-481 (2005), S. 327-331

Also Published As

Publication number Publication date
WO2010142270A1 (en) 2010-12-16
DE102009024377A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
DE112007001071B4 (en) Method and device for evaluating solar cells and their use
EP2115435B1 (en) Method and arrangement for detecting mechanical defects in a semiconductor component, in particular a solar cell or solar cell arrangement
EP2883042B1 (en) Method and device for inspecting photovoltaic modules
WO2011032993A1 (en) Method and device for characterizing at least one solar cell module
DE102009024377B4 (en) Non-destructive analysis method for determining the quality of a thin-film solar cell by means of photoluminescence spectroscopy
DE102009021799A1 (en) Method for the spatially resolved determination of the series resistance of a semiconductor structure
EP1416288B1 (en) Method and apparatus for optical detection of mechanical defects in semiconductor components, in particular solar cell arrangements
DE102019119326A1 (en) MANUFACTURING METHOD AND EVALUATION METHOD FOR A SiC DEVICE
EP0153901B1 (en) Fabrication process of semiconducting materials and semiconductor devices
DE10248504B4 (en) Non-destructive analysis method for determining the quality of a chalcopyrite-based solar cell
WO2010022922A1 (en) Method for determining the excess charge carrier lifetime in a semiconductor layer
EP2622332B1 (en) Method of analysing photovoltaic layer systems using thermography
DE102015200648A1 (en) Method for determining the degree of crosslinking of a polyethylene compound
DE102008044881A1 (en) Measuring method for a semiconductor structure
DE4217454B4 (en) CuInSe-2 thin film solar cell and process for its manufacture
DE102009003055B4 (en) Method for determining the low-light behavior of a solar cell or a solar module
Gütay et al. Non-uniformities of opto-electronic properties in Cu (In, Ga) Se2 thin films and their influence on cell performance studied with confocal photoluminescence
Johnston et al. Photoluminescence-Imaging-Based Evaluation of Non-Uniform CdTe Degradation
DE19822360C2 (en) Device and method for determining the number, the energetic location and the energetic width of defects
Thomas et al. Role of Ag Addition on the Microscopic Material Properties of (Ag, Cu)(In, Ga) Se2 Absorbers and Their Effects on Losses in the Open‐Circuit Voltage of Corresponding Devices
Pfüller Optical properties of single semiconductor nanowires and nanowire ensembles–probing surface physics by photoluminescence spectroscopy
Lavrenko et al. Advanced luminescence imaging of cigs solar cells
EP2318851B1 (en) Method for determining the recombination properties at a measuring section of a measuring side of a semiconductor structure
DE19915051A1 (en) Methods for determining electronic characteristics of semiconductor material by determining interaction of IR rays with free charge carriers in semiconductor material through evaluation and/or displaying of heat image
Okano et al. Photoelectrical properties of undoped and Na-doped Cu2ZnSnS4 single crystals measured by optical time-resolved spectroscopy

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R020 Patent grant now final

Effective date: 20110619

R081 Change of applicant/patentee

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND , DE

Free format text: FORMER OWNERS: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND ENERGIE GMBH, 14109 BERLIN, DE; SULFURCELL SOLARTECHNIK GMBH, 12487 BERLIN, DE

Effective date: 20130902

Owner name: HELMHOLTZ-ZENTRUM BERLIN FUER MATERIALIEN UND , DE

Free format text: FORMER OWNER: HELMHOLTZ-ZENTRUM BERLIN FUER MA, SULFURCELL SOLARTECHNIK GMBH, , DE

Effective date: 20130902

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee