DE102009001477A1 - Lichtquelle - Google Patents

Lichtquelle Download PDF

Info

Publication number
DE102009001477A1
DE102009001477A1 DE102009001477A DE102009001477A DE102009001477A1 DE 102009001477 A1 DE102009001477 A1 DE 102009001477A1 DE 102009001477 A DE102009001477 A DE 102009001477A DE 102009001477 A DE102009001477 A DE 102009001477A DE 102009001477 A1 DE102009001477 A1 DE 102009001477A1
Authority
DE
Germany
Prior art keywords
fiber
light source
fibers
laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102009001477A
Other languages
English (en)
Inventor
Klaus Stoppel
Werner Herden
Hans-Jochen Schwarz
Andreas Letsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102009001477A priority Critical patent/DE102009001477A1/de
Publication of DE102009001477A1 publication Critical patent/DE102009001477A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

Lichtquelle, insbesondere zur optischen Anregung einer Lasereinrichtung (11), beispielsweise einer Lasereinrichtung (11) eines Laserzündsystems einer Brennkraftmaschine (109), umfassend einen Diodenlaser (13) mit einer Vielzahl von Emittern (131) und eine Lichtleiteinrichtung (12), wobei die Lichtleiteinrichtung (12) eine Vielzahl optischer Fasern (121) umfasst und jede Faser (121) ein erstes Ende (1211) und eine Seitenfläche (1217) aufweist, wobei die ersten Enden (1211) derart zu den Emittern (131) angeordnet sind, dass durch die Emitter (131) erzeugtes Licht in die ersten Enden (1211) der optischen Fasern (121) eingekoppelt wird, wobei die optischen Fasern (121) zumindest im Bereich ihrer ersten Enden (1211) entlang ihrer Seitenflächen (1217) auf Stoß angeordnet sind, dadurch gekennzeichnet, dass die optischen Fasern (121) jeweils einen Faserkern (1213), einen Fasermantel (1214) und eine Faserschlichte (1215) aufweisen, wobei der Faserkern (1213) aus einem ersten Material, der Fasermantel (1214) aus einem zweiten Material und die Faserschlichte (12115) aus einem dritten Material besteht, wobei das erste Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex nhat, wobei das zweite Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex nhat und wobei das dritte Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex nhat und wobei gilt: n> n> n> 1.

Description

  • Stand der Technik
  • Die Erfindung betrifft eine Lichtquelle gemäß dem Oberbegriff des unabhängigen Anspruchs.
  • Eine derartige Lichtquelle ist aus der DE 10 2004 006 932 B3 bekannt und weist einen Diodenlaserbarren mit einer Vielzahl von schmalen Emittern auf, die in Richtung ihrer Längsachse in einer Reihe nebeneinander angeordnet sind. Dem Diodenlaserbarren ist eine Einrichtung zur Strahlführung und Strahlformung des aus ihm austretenden Laserstrahls zugeordnet, die eine Vielzahl von in einer Reihe nebeneinander angeordneten Lichtleitfasern enthält, in die der Laserstrahl einkoppelt. Hierbei ist vorgesehen, dass pro Emitter eine Mehrzahl von sehr dünnen Lichtleitfasern eingesetzt wird, die nebeneinander in einer Reihe über die gesamte Länge des Diodenlasers angeordnet werden, sodass auch die Randbereiche der Eintrittsfläche der Lichtleitfasern von der Emission des Diodenlasers getroffen werden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Lichtquelle anzugeben, bei der ein hoher Anteil der Emission eines Diodenlasers in eine Lichtleiteinrichtung eingekoppelt und in der Lichtleiteinrichtung übertragen wird.
  • Offenbarung der Erfindung
  • Diese Aufgabe wird erfindungsgemäß bei einer Lichtquelle, insbesondere zur optischen Anregung einer Lasereinrichtung, beispielsweise einer Lasereinrichtung eines Laserzündsystems einer Brennkraftmaschine, umfassend einen Diodenlaser mit einer Vielzahl von Emittern und eine Lichtleiteinrichtung, wobei die Lichtleiteinrichtung eine Vielzahl optischer Fasern umfasst und jede Faser ein erstes Ende und eine Seitenfläche aufweist, wobei die ersten Enden derart zu den Emittern angeordnet sind, dass durch die Emitter erzeugtes Licht in die ersten Enden der optischen Fasern eingekoppelt wird, wobei die optischen Fasern zumindest im Bereich ihrer ersten Enden entlang ihrer Seitenflächen auf Stoß angeordnet sind, dadurch gelöst, dass die optischen Fasern jeweils einen Faserkern, einen Fasermantel und eine Faserschlichte aufweisen, wobei der Faserkern aus einem ersten Material, der Fasermantel aus einem zweiten Material und die Faserschlichte aus einem dritten Material besteht, wobei das erste Material für das von dem Diodenlaser erzeugte Licht einen Brechungsindex n1 hat, wobei das zweite Material für das von dem Diodenlaser erzeugte Licht einen Brechungsindex n2 hat und wobei das dritte Material für das von dem Diodenlaser erzeugte Licht einen Brechungsindex n3 hat und wobei gilt: n1 > n2 > n3 > 1.
  • Unter einem ersten Ende einer Faser ist hierbei ein Ende einer Faser in Richtung seiner Längsachse zu verstehen, beispielsweise bei einer zylindrischen Faser eine Grundfläche des Zylinders. Unter einer Seitenfläche einer Faser ist dabei die Fläche zu verstehen, die eine Faser senkrecht zu ihrer Längsachse begrenzt, beispielsweise bei einer zylindrischen Faser die Mantelfläche des Zylinders. Unter Fasern, die entlang ihrer Seitenflächen auf Stoß angeordnet sind, sind Fasern zu verstehen, von denen alle oder fast alle, zum Beispiel mehr als 90% der Fasern unmittelbar benachbarte Fasern entlang ihrer Seitenflächen berühren.
  • Durch die erfindungsgemäße Wahl der Brechungsindizes n1, n2 und n3 wird erreicht, dass der Teil der Emission des Diodenlasers, der an dem ersten Ende der optischen Faser in den Faserkern eingekoppelt wird, in diesem durch die optische Faser geführt wird und zu dem zweiten Ende der optischen Faser gelangt und zugleich der Teil der Emission des Diodenlasers, der in den Fasermantel eingekoppelt, zumindest teilweise innerhalb der Lichtleitfaser geführt wird und zu dem zweiten Ende der optischen Faser gelangt, wobei die Lichtleitung in der optischen Faser des Teils der Emission des Diodenlasers, der in den Fasermantel eingekoppelt, auf Totalreflexion an der Grenzfläche zwischen Fasermantel und Faserschlichte beruht.
  • Es ist insbesondere vorgesehen, dass der Fasermantel den Faserkern in Richtung senkrecht zur Längsachse der optischen Fasern zumindest weitgehend, zum Beispiel entlang mindestens 99,5% der Außenfläche des Faserkerns umhüllt.
  • Es ist ferner insbesondere vorgesehen, dass das Gebilde aus Faserkern und Fasermantel von der Faserschlichte in Richtung senkrecht zur Längsachse der Fasern zumindest weitgehend, zum Beispiel entlang mindestens 99,5% der Außenfläche des Gebildes aus Faserkern und Fasermantel umhüllt wird.
  • Es ist ferner insbesondere vorgesehen, dass die Faserschlichte eine äußere Hülle der optischen Faser in Richtung senkrecht zur Längsachse der optischen Faser bildet.
  • Vorteilhaft wird ein hoher Anteil der Emission eines Diodenlasers in eine Lichtleiteinrichtung eingekoppelt und in der Lichtleiteinrichtung übertragen, wenn die Faserschlichte eine Dicke im Bereich von weniger als einem Mikrometer, insbesondere eine Dicke im Bereich von 0,02–0,1 Mikrometer, aufweist, da in diesem Fall der Anteil des in die Faserschlichte eingekoppelten Lichts besonders gering ist.
  • Vorteilhaft wird ein hoher Anteil der Emission eines Diodenlasers in eine Lichtleiteinrichtung eingekoppelt und in der Lichtleiteinrichtung übertragen, wenn alternativ oder zusätzlich der Brechungsindex n3 der Faserschlichte 1%–15% kleiner ist als der Brechungsindex n2 des Fasermantels und/oder mindestens 1,3 beträgt.
  • Vorteilhaft wird ein hoher Anteil der Emission eines Diodenlasers in eine Lichtleiteinrichtung eingekoppelt und in der Lichtleiteinrichtung übertragen, wenn der Fasermantel eine Dicke im Bereich eines Mikrometers bis weniger Mikrometer, insbesondere eine Dicke im Bereich von 1–5 Mikrometer, aufweist, da in diesem Fall der Anteil des in den Fasermantel eingekoppelten Lichts besonders gering ist, zugleich aber der Effekt der frustrierten Totalreflexion an der Grenzfläche zwischen Fasermantel und Faserkern noch sicher ausgeschlossen werden kann.
  • Es kann beispielsweise erreicht werden, dass die Dämpfung des in den Fasermantel eingekoppelten Lichts nicht höher als etwa doppelt bis dreifach so hoch ist wie die Dämpfung des in den Faserkern eingekoppelten Lichts.
  • Es kann beispielsweise vorgesehen sein, dass das erste Material und/oder das zweite Material ein Glas ist.
  • Es kann beispielsweise vorgesehen sein, dass die optischen Fasern zumindest im Bereich ihrer ersten Enden ausgehend von einem runden Querschnitt derart deformiert sind und so angeordnet sind, dass eine erhöhte Einkopplung der Emission des Diodenlasers erfolgt.
  • Zeichnung
  • 1 zeigt eine schematische Darstellung einer Brennkraftmaschine mit einer Laserzündeinrichtung.
  • 2 zeigt schematisch eine Laserzündeinrichtung im Detail.
  • Die 3a, 3b, 3c und 3d zeigen schematisch ein Beispiel einer Lichtquelle.
  • Die 4, 4a zeigen schematisch den Aufbau und die Anordnung von optischen Fasern.
  • Die 4b zeigt schematisch ein Beispiel der Anordnung von Lichtleiteinrichtung und Diodenlaser.
  • Die 5a, 5b und 5c zeigen schematisch ein weiteres Beispiel einer Lichtquelle.
  • Beschreibung des Ausführungsbeispiels
  • Eine Brennkraftmaschine trägt in 1 insgesamt das Bezugszeichen 109. Sie dient zum Antrieb eines nicht dargestellten Kraftfahrzeugs oder eines ebenfalls nicht dargestellten Generators. Die Brennkraftmaschine 109 umfasst mehrere Zylinder 129, von denen in 1 einer gezeigt ist. Ein Brennraum 14 des Zylinders 129 wird von einem Kolben 16 begrenzt. Kraftstoff 229 gelangt in den Brennraum 14 direkt durch einen Injektor 18, der an einen Kraftstoff-Druckspeicher 209 angeschlossen ist.
  • In den Brennraum 14 eingespritzter Kraftstoff 229 wird mittels eines Laserimpulses 24 entzündet, der von einer eine Lasereinrichtung 11 umfassenden Zündeinrichtung 27 in den Brennraum 14 abgestrahlt und mittels einer Fokussieroptik 261 fokussiert wird. Die Lasereinrichtung 11 wird von einer Lichtquelle 10 über eine Lichtleiteinrichtung 12 mit einem Pumplicht gespeist. Die Lichtquelle 10 wird von einer Steuer- und Regeleinrichtung 32 gesteuert, die auch den Injektor 18 ansteuert.
  • Die Lichtquelle 10 umfasst neben der Lichtleiteinrichtung 12 auch einen Diodenlaser 13, der in Abhängigkeit eines Steuerstroms ein entsprechendes Pumplicht über die Lichtleiteinrichtung 12 an die Lasereinrichtung 11 ausgibt.
  • 2 zeigt schematisch eine Detailansicht des Festkörperlasers 260 der Lasereinrichtung 11 aus 1. Wie aus 2 ersichtlich, weist der Festkörperlaser 260 einen, nachfolgend als Laserkristall 44 bezeichneten, laseraktiven Festkörper auf, dem ein auch als Q-switch bezeichneter Kristall, der passive Güteschalter 46, optisch nachgeordnet ist. Der Festkörperlaser 260 weist ferner einen Einkoppelspiegel 42 und einen Auskoppelspiegel 48 auf. Die Komponenten des Festkörperlasers 260 sind in diesem Beispiel monolithisch ausgebildet, das heißt, sie sind weitgehend unlösbar miteinander verbunden, zum Beispiel durch Bonden und/oder Beschichten.
  • Zur Erzeugung eines auch als Riesenimpuls bezeichneten Laserimpulses wird der Laserkristall 44 durch den Einkoppelspiegel 42 hindurch mit Pumplicht 28a beaufschlagt, sodass es zu einem optischen Pumpen und zur Ausbildung einer Besetzungsinversion in dem Laserkristall 44 kommt. Zunächst befindet sich der passive Güteschalter 46 in seinem Ruhezustand, in dem er eine verhältnismäßig geringe Transmission für das von der Lasereinrichtung 11 zu erzeugende Licht aufweist. Auf diese Weise werden der Prozess der stimulierten Emission und damit die Erzeugung von Laserstrahlung zunächst unterdrückt. Mit steigender Pumpdauer, das heißt während einer Beaufschlagung mit dem Pumplicht 28a, steigt jedoch die Strahlungsintensität in dem Festkörperlaser 260 an, sodass der passive Güteschalter 46 schließlich ausbleicht. Hierbei steigt seine Transmission sprunghaft an, und die Erzeugung von Laserstrahlung setzt ein. Dieser Zustand ist durch den Doppelpfeil 24' symbolisiert. Während des Laserbetriebs erfolgt infolge des Effekts der stimulierten Emission ein rascher Abbau der im Laserkristall 44 vorliegenden Besetzungsinversion, sodass die Emission des Festkörperlasers 260 typischerweise nach einigen Nanosekunden zum Erliegen kommt, und nachfolgend sinkt auch die Transmission des Güteschalters 46 wieder auf ihren ursprünglichen, geringen Wert.
  • Auf die vorstehend beschriebene Weise entsteht ein auch als Riesenimpuls bezeichneter Laserimpuls 24, der eine verhältnismäßig hohe Spitzenleistung aufweist. Der Laserimpuls 24 wird, gegebenenfalls unter Verwendung einer weiteren Lichtleiteinrichtung (nicht gezeigt) oder auch direkt, durch ein ebenfalls nicht abgebildetes Brennraumfenster der Lasereinrichtung 11 in den Brennraum 14 (1) der Brennkraftmaschine 109 eingekoppelt, sodass darin vorhandener Kraftstoff 229 bzw. ein Luft/Kraftstoffgemisch entzündet wird.
  • Die 3a, 3b, 3c und 3d zeigen eine schematische Ansicht eines Ausführungsbeispiels einer Lichtquelle 10. Der von der Lichtquelle 10 umfasste Diodenlaser 13 weist die Bauform eines sogenannten Diodenlaserbarrens auf. Er hat somit eine Vielzahl von nebeneinander angeordneten Emittern 131. Die Emitter 131 weisen eine Seitenfläche 1310 auf, durch die das von den Emittern 131 erzeugte Licht austritt. Diese Seitenfläche 1310 hat typischerweise eine etwa rechteckförmige Gestalt mit einer, üblicherweise als Fast-Axis bezeichneten, kurzen, zum Beispiel 1 μm langen, ersten Seite 1311 und einer, üblicherweise als Slow-Axis bezeichneten, längeren, zum Beispiel 10–500 μm langen, zweiten Seite 1312. Zwischen den in einer Schichtebene, in Richtung der Slow-Axis nebeneinander angeordneten Emittern 131 befinden sich als Trenngräben bezeichnete Bereiche, aus denen kein Licht emittiert wird. Das von den Emittern 131 erzeugte und aus den Seitenflächen 1310 austretende Licht hat jeweils die Form eines Lichtkegels, wobei der halbe Öffnungswinkel des Lichtkegels in der Ebene der Fast-Axis typischerweise im Bereich von 30° bis 60° liegt und allgemeinen deutlich größer ist als der Öffnungswinkel des Lichtkegels in der Ebene der Slow Axis, der typischerweise nur einige Grad beträgt.
  • Wenngleich in diesem Beispiel der Diodenlaser 13 die Bauform eines sogenannten Diodenlaserbarrens aufweist, ist die Erfindung nicht auf eine solche Bauform beschränkt, sondern umfasst beispielsweise auch Diodenlaser 13 mit anderen Anordnungen von Emittern 131, beispielsweise Anordnungen, die Emitter 131 in mehreren Schichtebenen aufweisen, wobei diese Schichtebenen beispielsweise in Richtung der Fast-Axis um einige Mikrometer zueinander versetzt sind, zum Beispiel sogenannte Diodenlaserstacks oder Nanostacks.
  • Die von der Lichtquelle 10 ebenfalls umfasste Lichtleiteinrichtung 12 weist eine Vielzahl von auch als optische Fasern 121 bezeichneten Fasern 121 auf, wobei die Fasern 121 jeweils ein erstes Ende 1211 und ein zweites Ende 1212 aufweisen. Die Fasern 121 sind im Bereich ihrer ersten Enden 1211 in einer Lage nebeneinander angeordnet. Ferner sind die Fasern 121 im Bereich ihrer ersten Enden 1211 so angeordnet, dass die den ersten Enden 1211 zugehörigen Stirnflächen 1216 der Fasern 121 gemeinsam in einer Ebene liegen. Ferner sind die Fasern 121 im Bereich ihrer ersten Enden 1211 entlang ihrer Seitenflächen 1217 auf Stoß angeordnet, also so angeordnet, dass alle Fasern 121 oder fast alle Fasern 121, zum Beispiel mehr als 90% der Fasern 121, unmittelbar benachbarte Fasern 121 im Bereich ihrer ersten Enden 1211 berühren.
  • In diesem Beispiel weisen die Stirnflächen 1216 der Fasern 121 eine im Wesentlichen rechteckige Form auf, desgleichen weisen Querschnitte der Fasern 121 im Bereich ihrer ersten Enden 1211 eine im Wesentlichen rechteckige Form auf. Hierbei berühren sich die Fasern 121 im Bereich ihrer ersten Enden 1211 flächig entlang annährend eben ausgebildeter Bereiche der Seitenflächen 1217 der Fasern 121. Jedoch ist die Erfindung selbstverständlich nicht auf Fasern 121, die im Bereich ihrer ersten Enden 1211 im Wesentlichen rechteckige Querschnitte aufweisen, eingeschränkt. Diese Querschnitte können auch trapezförmig sein oder geschwungene Seiten aufweisen, wobei es bevorzugt ist, dass sich die Fasern 121 im Bereich ihrer ersten Enden 1211 flächig entlang ihrer Seitenflächen 1217 berühren und dass die Stirnflächen 1216 der Fasern 121 gemeinsam in einer Ebene liegen, wobei die Stirnflächen 1216 der Fasern 121 gemeinsam möglichst dicht, das heißt ohne Einschlüsse freier Flächen, liegen.
  • Die Stirnflächen 1216 der Fasern 121 und Querschnitte der Fasern 121 haben untereinander einen zumindest weitgehend gleichen Flächeninhalt, der bevorzugt zwischen 3000 μm2 und 5000 μm2 liegt. Bevorzugt weisen die Stirnflächen 1216 der Fasern 121 und Querschnitte der Fasern 121, die im Bereich der ersten Enden 1211 der Fasern 121 liegen, die Form eines Rechteckes auf, dessen Seitenlängen ein Verhältnis von etwa 0,78 oder pi/4 bilden, wobei sich die Fasern 121 bevorzugt entlang der kurzen Seiten der Rechtecke berühren. Unter einem Querschnitt einer Faser 121 ist im Rahmen dieser Erfindung ein Querschnitt senkrecht zur Längsachse 1219 der Faser 121 zu verstehen.
  • Die Fasern 121 bestehen aus mindestens einem Glas, wobei jede individuelle Faser 121 bevorzugt aus mindestens zwei verschiedenen Gläsern besteht. Glasorten, die zum Einsatz kommen, sind beispielsweise sogenannte Flintgläser und/oder Kalknatrongläser.
  • 4 zeigt einen Ausschnitt der Lichtleiteinrichtung 12, insbesondere der den ersten Enden 1211 der Fasern 121 zugehörigen Stirnflächen 1216, die Querschnitte der Fasern 121 im Bereich ihrer ersten Enden 1211 repräsentieren. Im Querschnitt, beziehungsweise entlang der Stirnfläche 1216, einer Faser 121 wird ein zentral in der Faser 121 angeordneter Faserkern 1213 und ferner ein den Faserkern 1213 lateral, also senkrecht zur Längsachse 1219 der Fasern 121, umgebender Fasermantel 1214 sichtbar. Im Querschnitt, beziehungsweise entlang der Stirnfläche 1216, einer Faser 121 wird ferner eine den Fasermantel 1214 lateral umgebende Faserschlichte 1215 sichtbar. Sowohl die Stirnfläche 1216 der Faser 121 als auch Querschnitte der Fasern 121 im Bereich ihrer ersten Enden 1211 weisen in diesem Beispiel eine nahezu rechteckige Form auf. Desgleichen weisen im Bereich des ersten Endes 1211 der Fasern 121 Querschnitte des Faserkerns 1213 und des aus Faserkern 1213 und Fasermantel 1214 zusammengesetzten Gebildes und des aus Faserkern 1213 und Fasermantel 1214 und Faserschlichte 1215 zusammengesetzten Gebildes nahezu rechteckige Querschnitte auf.
  • Es ist vorgesehen, dass die Dicke des Fasermantels 1214 zumindest im Bereich der ersten Enden 1211 der Fasern 121 im Vergleich zur Querschnittsfläche, insbesondere im Vergleich zur Quadratwurzel des Flächeninhaltes der Querschnittsfläche, des Faserkerns 1213 gering ist, wodurch erreicht wird, dass ein hoher Anteil der Emission des Diodenlasers 13 in Faserkerne 1213 einkoppelt, wo er verlustarm geführt werden kann.
  • Um zu erreichen, dass das Licht, das dennoch in den Fasermantel 1214 einer Faser 121 einkoppelt, dort zumindest teilweise zum zweiten Ende 1212 der Faser 121 geführt wird, ist zusätzlich oder alternativ vorgesehen, dass der Faserkern 1213 aus einem ersten Material, der Fasermantel 1214 aus einem zweiten Material und die Faserschlichte 1215 aus einem dritten Material besteht, wobei das erste Material für das von dem Diodenlaser 13 erzeugte Licht, dessen Wellenlänge beispielsweise 808 nm beträgt, einen Brechungsindex n1 hat, wobei das zweite Material für das von dem Diodenlaser 13 erzeugte Licht einen Brechungsindex n2 hat und wobei das dritte Material für das von dem Diodenlaser 13 erzeugte Licht einen Brechungsindex n3 hat und wobei gilt: n1 > n2 > n3 > 1.
  • In diesem Beispiel hat der Faserkern 1213 im Bereich der ersten Enden 1211 der Faser 121 eine nahezu rechteckige Gestalt und Kantenlängen von 60 μm und 77 μm, der Fasermantel 1214 bildet eine etwa 2 μm dicke Schicht und die Faserschlichte 1215 eine etwa 0,05 μm dicke Schicht. Das erste Material, das Material des Faserkerns 1213, ist ein Glas mit einem Brechungsindex zwischen 1,5 und 1,6, beispielsweise Flintglas. Das zweite Material, das Material des Fasermantels 1214, ist ein Glas mit einem Brechungsindex zwischen 1,4 und 1,5, zum Beispiel Kalknatronglas. Das dritte Material, das Material der Faserschlichte 1215, ist ein Kunststoff und weist einen Brechungsindex zwischen 1,15 und 1,35 auf. Die Faserschlichte 1215 hat zusätzlich die Funktion, die Beständigkeit der Fasern 121 zu verbessern. Die Faserschlichte 1215 kann ein Überzug aus Lack (Acrylat oder Kunststoff) sein.
  • Die ersten Enden 1211 und/oder die zweiten Enden 1212 der Fasern 121 können eine Politur und/oder, wie in 4a dargestellt, eine Antireflexschicht 15 aufweisen. Eine solche Politur und/oder eine solche Antireflexschicht 15 ist so ausgeführt, dass sie optische Verluste beim Eintritt/Austritt in/aus der Lichtleiteinrichtung 12 vermindert.
  • Alternativ oder zusätzlich ist es möglich, wie in 4b schematisch dargestellt, einen Raum zwischen den ersten Enden der Fasern 1211 und den Emittern 131 des Diodenlasers 13 vollständig mit einem optisch homogenen Medium 17, zum Beispiel einem optischen Gel, auszufüllen, vorzugsweise mit einem Gel, dass optische Verluste bei der Einkopplung des von den Emittern 131 des Diodenlasers 13 erzeugten Lichts in die Fasern 121 vermindert und/oder einen Brechungsindex aufweist, der gleich oder etwa gleich, zum Beispiel um nicht mehr als 15% verschieden, dem Brechungsindex des Faserkerns n1 ist.
  • Alternativ oder zusätzlich ist es möglich, die ersten Enden 1211 der Fasern 121 mit einem Abstand von 1 μm bis 10 μm vor den Emittern 131 des Diodenlasers 13 anzuordnen.
  • Wie in den 3a, 3b und 3c ersichtlich, sind die Fasern 121 im Bereich ihrer ersten Enden 1211 mit einem Faserträger 20 verbunden. Der in diesem Beispiel verwendete Faserträger 20 hat die Form eines quaderförmigen Scheibchens, erstreckt sich über die Breite, in der die Fasern 121 angeordnet sind, beispielsweise ca. 20 mm, hat eine in Richtung der Längsachsen 1219 der Fasern 121 orientierte Länge von 1 mm bis 20 mm, zum Beispiel bis 10 mm. Der Faserträger 20 schließt auf seiner dem Diodenlaser 13 zugewandten Seite mit den Stirnflächen 1216 der Fasern 121 bündig ab. Die Höhe des Faserträgers 20 liegt im Bereich von einigen zehntel Millimeter bis einigen Millimetern und ist typischerweise um ein Vielfaches höher als die Höhe der Fasern 121.
  • Der Faserträger 20 besteht aus einem Glas und ist mit den Fasern 121 im Bereich ihrer ersten Enden 1211 stoffschlüssig verbunden. Der Faserträger 20 besteht aus einem Glas, welches im Vergleich zu der Glassorte oder zu den Glassorten, aus denen die Fasern 121 bestehen, eine geringere Härte bei Raumtemperatur, einen vergleichbaren Wärmeausdehnungskoeffizient und/oder eine höhere Erweichungstemperatur hat. Glasorten, die zum Einsatz kommen, sind zum Beispiel Floatgläser.
  • Der Bereich, der vorliegend als Bereich der ersten Enden 1211 der Fasern 121 bezeichnet wird, ist als der Bereich der Fasern 121 aufzufassen, in dem die Fasern 121 auf dem Faserträger 20 angeordnet sind.
  • Der Verbund aus Fasern 121 und Faserträger 20 ist relativ zu dem Diodenlaser 13 fixiert, beispielsweise durch eine Klebung. Eine weitere Möglichkeit ist es, eine Fixierung durch Klemmen herzustellen, sodass sie zu einem späteren Zeitpunkt gelöst werden kann, zum Beispiel zwecks Demontage oder Nachjustieren.
  • Eine weitere Ausführungsform ist in den 5a, 5b und 5c dargestellt. Diese weitere Ausführungsform unterscheidet sich von der in den 3a, 3b und 3c dargestellten Ausführungsform dadurch, dass die Fasern 121 im Bereich ihrer ersten Enden 1211 nicht nur auf einem Faserträger 20 angeordnet sind, sondern zwischen dem Faserträger 20 und einem zweiten Faserträger 21 angeordnet sind. Der Faserträger 20 und der zweite Faserträger 21 haben jeweils die Form eines quaderförmigen Glasscheibchens und sind beispielsweise gleich groß. Beispielsweise haben der Faserträger 20 und der zweite Faserträger 21 die im vorangehenden Beispiel für den Faserträger 20 angegebenen Abmessungen.
  • Zwischen den Faserträgern 20, 21 und den Fasern 121 besteht eine stoffschlüssige Verbindung und sowohl der Faserträger 20 als auch der Faserträger 21 schließt mit den Stirnflächen 1216 der Fasern 121 bündig ab.
  • Es ist einerseits möglich, dass die den Fasern 121 zugewandte Fläche des Faserträgers 20 und die den Fasern 121 zugewandte Fläche des zweiten Faserträgers 21 parallel zueinander sind, sodass der zwischen den Faserträgern 20, 21 verbleibende Spalt eine einheitliche Höhe hat. Alternativ sind die den Fasern 121 zugewandte Fläche des Faserträgers 20 und die den Fasern 121 zugewandte Fläche des zweiten Faserträgers 20 zueinander so verkippt, dass der zwischen den Faserträgern 20, 21 verbleibende Spalt im Bereich der Stirnflächen 1216 der Fasern 121 eine geringere Höhe aufweist als in dem den Stirnflächen 1216 der Fasern 121 gegenüberliegenden Bereich der Faserträger 20, 21. Bevorzugt erfolgt eine Verkippung um einen Winkel von 0,1° bis 2,5°, zum Beispiel 0,2° bis 0,5°.
  • Entsprechend der Form des Spalts zwischen den Faserträgern 20, 21 ist eine kontinuierliche Verjüngung der Fasern 121 vorgesehen. Durch den kontinuierlichen Übergang zwischen einer der Einkopplung in die Fasern 121 zweckdienlichen Querschnittsform und einer der Lichtleitung in den Fasern 121 zweckdienlichen Querschnittsform werden abrupte Übergänge, die potenzielle mechanische Schwachstellen darstellen, vermieden.
  • Die beiden Faserträger 20, 21 können bezüglich ihres Materials gleichartige, insbesondere gleiche Eigenschaften aufweisen. Bevorzugt besteht der zweite Faserträger 21 aus einem Glas, welches im Vergleich zu der Glassorte oder zu den Glassorten, aus denen die Fasern 121 bestehen, eine geringere Härte bei Raumtemperatur und/oder einen vergleichbaren Wärmeausdehnungskoeffizient und/oder eine höhere Erweichungstemperatur aufweist.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 102004006932 B3 [0002]

Claims (9)

  1. Lichtquelle, insbesondere zur optischen Anregung einer Lasereinrichtung (11), beispielsweise einer Lasereinrichtung (11) eines Laserzündsystems einer Brennkraftmaschine (109), umfassend einen Diodenlaser (13) mit einer Vielzahl von Emittern (131) und eine Lichtleiteinrichtung (12), wobei die Lichtleiteinrichtung (12) eine Vielzahl optischer Fasern (121) umfasst und jede Faser (121) ein erstes Ende (1211) und eine Seitenfläche (1217) aufweist, wobei die ersten Enden (1211) derart zu den Emittern (131) angeordnet sind, dass durch die Emitter (131) erzeugtes Licht in die ersten Enden (1211) der optischen Fasern (121) eingekoppelt wird, wobei die optischen Fasern (121) zumindest im Bereich ihrer ersten Enden (1211) entlang ihrer Seitenflächen (1217) auf Stoß angeordnet sind, dadurch gekennzeichnet, dass die optischen Fasern (121) jeweils einen Faserkern (1213), einen Fasermantel (1214) und eine Faserschlichte (1215) aufweisen, wobei der Faserkern (1213) aus einem ersten Material, der Fasermantel (1214) aus einem zweiten Material und die Faserschlichte (1215) aus einem dritten Material besteht, wobei das erste Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex n1 hat, wobei das zweite Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex n2 hat und wobei das dritte Material für das von dem Diodenlaser (13) erzeugte Licht einen Brechungsindex n3 hat und wobei gilt: n1 > n2 > n3 > 1.
  2. Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass der Fasermantel (1214) den Faserkern (1213) in Richtung senkrecht zur Längsachse der optischen Fasern (121) zumindest weitgehend umhüllt.
  3. Lichtquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Gebilde aus Faserkern (1213) und Fasermantel (1214) von der Faserschlichte (1215) in Richtung senkrecht zur Längsachse der optischen Fasern (121) zumindest weitgehend umhüllt wird.
  4. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Faserschlichte (1215) eine äußere Hülle der optischen Faser (121) in Richtung senkrecht zur Längsachse der optischen Fasern (121) bildet.
  5. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Faserschlichte (1215) eine Dicke im Bereich von weniger als einem Mikrometer aufweist und/oder der Brechungsindex n3 der Faserschlichte (1215) 1%–15% kleiner ist als der Brechungsindex n2 des Fasermantels (1214) aber mindestens 1,3 beträgt.
  6. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Fasermantel (1214) eine Dicke im Bereich von 1–5 Mikrometer aufweist.
  7. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dämpfung des in den Fasermantel (1214) eingekoppelten Lichts nicht höher als etwa doppelt bis dreifach so hoch ist wie die Dämpfung des in den Faserkern (1213) eingekoppelten Lichts.
  8. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das erste Material und das zweite Material ein Glas ist.
  9. Lichtquelle nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die optischen Fasern (121) zumindest im Bereich ihrer ersten Enden (1211) ausgehend von einem runden Querschnitt derart deformiert sind und so angeordnet sind, dass eine erhöhte Einkopplung der Emission der Diodenlasers (13) erfolgt.
DE102009001477A 2009-03-11 2009-03-11 Lichtquelle Withdrawn DE102009001477A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102009001477A DE102009001477A1 (de) 2009-03-11 2009-03-11 Lichtquelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009001477A DE102009001477A1 (de) 2009-03-11 2009-03-11 Lichtquelle

Publications (1)

Publication Number Publication Date
DE102009001477A1 true DE102009001477A1 (de) 2010-09-16

Family

ID=42557609

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009001477A Withdrawn DE102009001477A1 (de) 2009-03-11 2009-03-11 Lichtquelle

Country Status (1)

Country Link
DE (1) DE102009001477A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006932B3 (de) 2004-01-30 2005-10-20 Dilas Diodenlaser Gmbh Hochleistungs-Diodenlaser mit einer Einrichtung zur Strahlformung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006932B3 (de) 2004-01-30 2005-10-20 Dilas Diodenlaser Gmbh Hochleistungs-Diodenlaser mit einer Einrichtung zur Strahlformung

Similar Documents

Publication Publication Date Title
EP2406671B1 (de) Lasereinrichtung mit einem diodenlaser und einer vielzahl optischer fasern
EP2976817B1 (de) Laseranordnung
WO2013064481A1 (de) Optische transportfaser und verfahren zu deren herstellung
EP2201242A1 (de) Zündeinrichtung insbesondere für eine brennkraftmaschine und herstellungsverfahren hierfür
AT504335B1 (de) Laserzündvorrichtung
EP2057373B1 (de) Zündeinrichtung für eine brennkraftmaschine
DE102009054601A1 (de) Laserzündsystem
DE102009060711A1 (de) Einzelmodenpropagation in mikrostrukturierten Fasern
DE102009001471A1 (de) Lichtquelle
DE102009001477A1 (de) Lichtquelle
DE102009001478A1 (de) Verfahren zur Herstellung einer Lichtquelle
DE102007048606A1 (de) Diodenlaser mit Strahlformungseinrichtung
EP3039753B1 (de) Vorrichtung zum einkoppeln von pumplicht in eine faser und verfahren zum herstellen einer solchen vorrichtung
EP2976816B1 (de) Laseranordnung
EP2592704B1 (de) Laservorrichtung mit einem optisch aktiven Material aufweisenden Multimode-Lichtleiter
DE102009001485A1 (de) Lichtquelle
DE10322110B4 (de) Anordnung zur Erzeugung von optischen Mehrwellensignalen und Mehrsignal-Quelle
DE102011005327A1 (de) Einzelphotonenemissionssystem
DE102007058529A1 (de) Lasereinrichtung
DE102009046464A1 (de) Lichtquelle
DE102009001466A1 (de) Verfahren zur Herstellung einer Lichtquelle
DE102007040119A1 (de) Zündeinrichtung für eine Brennkraftmaschine
DE102009001479A1 (de) Verfahren zur Herstellung einer Lichtquelle
DE102009001482A1 (de) Verfahren zur Herstellung einer Lichtquelle
DE102015118010A1 (de) Herstellung eines Faserkopplers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee